Check for
Updates

quired that (1) each I; be a proper subset of L, and (2) N be a proper
subset of each I;.
In set-theoretic notation,

LonuUrnuU...Uly
Ngll ﬂlgﬂ...ﬂIan :

where “ U denotes the union of features and (1"’ denotes the intersec-
tion of features (selection of only those common to both the two oper-
ands). :
11.2 MODULAR SPECIFICATION OF SUBSETS

Modular specification of subsets is an equivalent method for deter-
mining the intermediate subsets of a language by other than explicit
enumeration.

In the modular approach, there is a nucleus, N, and a set of modules,
M, where each module is a collection of language additions to N. The
nuecleus has no feature in common with any module. (That is, N N M; =
¢ (empty).)

The standard subsets are the nucleus in combination with any one
or more of the modules:

ILi=NUM,UM,U...UM;

p
with
LoNUM, UM U...UM,
for a language having n modules.
With the module approach, it might be possible to achieve L only

by inclusion of more than one module. Secondly, there may be nested,
overlapping, or mutually exclusive modules. That is, it is not necessary

that either

o~
]

N U M;

for some i,

or that
& =M; N M; for all i, j 1],

Note that given N, L, and some intermediate subsets, then a set of
modules capable of generating precisely those subsets (and L) can be
determined.

When there are to be multiple subsets, specification in terms of modu-
larity is preferable.

11.3 METHODS OF SPECIFICATION
(To be submitted for approval at a later date.)

11.4 SoMEe RESTRICTIONS

As with standards in general, a standard programming language
represents a floor, not a ceiling. Thus L or a subset may be the basis of
a more extensive programming language.

Suppose some programming language X purports to include I (a
subset of L), but not all of L. In order for X to be an acceptable exten-
sion of I, X must not contradict L. That is, X must not contain a syn-
tactic form or syntactic feature of L to which X ascribes a different
meaning from the one aseribed by L. It is permissible, however, for X
to provide a new syntactic form to achieve an effect already obtainable
in L or even in I. In other words, any extensions made to a subset of L
must be permissible extensions to L itself.

If the definition of L involves modules which are defined to be mu-
tually exclusive, L as such is excluded from the standard. However, it
must be possible to form L as an extension to the standard. In other
words, modules must not be mutually exclusive on the basis of contra-
diction but only on the basis of appropriateness.

I

where

PROPOSED USA STANDARD

Code Extension Procedures for Information Interchange*

Editor’s Note

This proposed American Standard has been accepted for publica-
tion for a four-month period followed by a siz-week letter ballot by
USA Standards Commiitee X3 Computers and Information Process-
ing. In order that the final version of the proposed standard reflect the
largest public consensus, X3 authorized publicalion of this document
to elicit comment, and general public reaction with the undersitanding
that such a working document is an intermediate resull in the stand-
ardizalion process and is subject to change, modification, or with-
drawal in part or in whole. Comments should be addressed to the X3
Secretary, Business Equipment Manufacturers Association, 235 East
42 Street, New York, NY 10017 —E. L.

Key Words and Phrases: standard code, code, information inter-
change, characters, shift out, shift in, escape, data link escape,
control functions, standard procedures, code exlension, code table, bit
patiern

CR Categories: 1.0, 2.0, 2.43, 8.20, 3.24, 3.50, 3.51, 3.52, 8.53, 3.54,
8.55, 3.56, 8.57 8.70, 8.71, 8.72, 3.78, 3.74, 3.75, 3.80, 3.81, 3.52, 8.83.
50, 5.1, 6.2, 6.20, 6.21, 6.92

* USASI Document X3.4/248, June 14, 1968

Volume 11 / Number 12 / December, 1968

Foreword

(This foreword is not a part of the USA Standard Code Extension Pro-
cedures for Information Interchange, X3....)

The proposed USA Standard Code for Information Interchange
(ASCII-USASI X3.4-19) provides coded representations for a set of
graphic and control characters having general utility in information
interchange. In some applications it may be desirable to augment the
standard repertoire of characters with additional graphic symbols or
control functions.

The Code includes several special characters intended to facilitate
the representation of such additional symbols or functions, a process
known as code extension. Although the basic nature of code extension—
providing for encoding of information beyond the standard—Ilimits the
degree to which it may be standardized, there are advantages to ad-
herence to certain standard rules of procedure. These advantages include
minimized risk of conflict between systems required to interoperate,
and the possibility of including advance provision for code extension in
the design of general purpose data handling systems.

These standard procedures were developed after extensive study of
various potential applications and of trends expected in system design.

1. Scope

This standard specifies a set of procedures for the representation, by
characters of ASCIIL, of graphic symbols or control functions, not di-
rectly represented in ASCII, which may be required for a specific appli-
cation or system. This standard does not make specific assignment of
such characters or functions.

1 USA Standard Code for Information Interchange

849

Communications of the ACM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F364175.364217&domain=pdf&date_stamp=1968-12-01

2. General

2.1 The characters provided in ASCII for code extension purposes are:
SO Shift Out
SI Shift In
ESC ZEscape
DLE Data Link Escape

2.2 SO and SI are intended for use in extension of the graphic reper-
toire to symbols not assigned in the code proper. The standard proce-
dures for their use are described in Section 3.

2.3 ESC is principally intended for extension of the control repertoire
of the code to control functions not assigned in the code proper, other
than communication control functions. Standard procedures for its use
are described in Section 4.

2.4 DLE is intended for extension of the control repertoire of the code
to communication control functions not assigned in the code proper.
Standard procedures for its use are to be covered in standards for data
communication control procedures. The basic principles of these pro-
cedures are described, for reference only, in the Appendix, Section A5.
2.6 The promulgation of these standard procedures is in no way meant
to deprecate the use of other code extension procedures, so long as the
implications of such usage upon system compatibility are recognized
(see also Appendix, Section A2.4).

2.6 This standard does not make specific assignment of additional
graphic symbols or control functions to be represented through code
extension. The possibility of standardizing some such assignments in the
future is still under study. Users of these procedures are advised to seek
the latest information in this regard should their use be one potentially
impacted by such standardization.

2.7 The ASCII code table is shown for reference in the Appendix as
Figure Al

3. Graphic Set Extension: Use of SO (Shift Out)
and SI (Shift In)

3.1 The characters SO and SI are used to select which of two sets of
graphic symbols is to be associated with the 95 ‘“graphic”’ bit patterns
of the standard code.

3.2 SO indicates that the standard set of graphics is to be replaced
with an “alternate’ set.

3.3 SI indicates that the graphic bit patterns of the code are to again
be associated with the standard set of graphic characters.

3.4 The use of this procedure requires agreement between the parties
to the interchange as to the assignment of characters to the alternate
set (see 2.6).

3.5 There is no implication that all 95 positions of the alternate graphic
set be different from the corresponding members of the standard set,
nor even that all 95 are assigned.

3.6 The new characters of the alternate set may be entirely different
symbols, or they may differ from those of the standard set only in size,
style, or other ‘‘typographical” attributes.

3.7 The set of 32 control characters in the code and the character DEL
(Delete) should not be affected by the ‘‘shift out’’ operation.

3.8 If more than one “‘alternate” set is required, SO should be utilized
to select the principal such set, and escape sequences (see Section 4) used
to select each of the other such sets.

3.9 Alternatively, in such a situation escape sequences may be assigned
to select which of the available alternate sets is to be subsequently put
into force by the use of SO.

3.10 In either case, SI restores the use of the standard graphic set.
3.11 Tt is recommended that terminal devices and other such equip-
ment be arranged to automatically revert to the use of the standard
graphic set whenever the association of the terminal with another ter-
minal or system has been discontinued or suspended: that is, at the end
of a call, transmassion, or whatever is appropriate.

4. Control Set Extension: Use of ESC (Escape)

4.1 The character ESC is used as a prefix to a sequence of one or more
additional ASCII characters used to represent a control function not
directly represented within the code.

4.2 An escape sequence is considered to include its associated ESC
character, and its length is defined accordingly.

4.3 Such sequences—known as ‘‘escape sequences’—should not be
used to represent additional communication control functions (see
Appendix, Section A5).

4.4 This standard provides a uniform method for the definition of
code extension sequences of any length (two characters or greater).

4.5 The use of this procedure requires agreement between the parties
to the interchange as to the assignment of functions to specific escape
sequences (see 2.6).

4.6 The means of marking the end of a sequence depends upon division
of the characters of the code into two classes, known as ‘‘intermediate’”
and ‘“final”’ characters, respectively.

4.7 A standard variable length sequence begins with ESC, continues, if

850 Communications of the ACM

necessary, with any number of “intermediate” characters, and invari-
ably ends with one ‘““final” character. Two-character sequences, there-
fore, contain no “intermediate” characters but consist of ESC followed
by one “final” character.

4.8 The final characters are those in columns 0, 1, and 3-7 of the ASCII
code table, that is, the control characters, the numerics, both the upper-
case and lowercase letters of the alphabet, and certain special graphics,
except as noted in Section 4.9.

4.9 The intermediate characters are those in column 2 of the code
table, that is, space and the bulk of the special graphics.

4.10 The following characters should be excluded from assignment in
escape sequences (see Appendix, Section A4.4.):

Designation Name Cflﬁ;ri(/llbil:w
NUL Null 0/0
SOH Start of Heading 0/1
STX Start of Text 0/2
ETX End of Text 0/3
EOT End of Transmission 0/4
ENQ Enquiry 0/5
ACK Acknowledge 0/6
DLE Data Link Escape 1/0
NAK Negative Acknowledge 1/5
SYN Synchronous Idle 1/6
ETB End of Transmission Block 1/7
CAN Cancel 1/8
SUB Substitute 1/10
ESC Escape (except as first character) 1/11
DEL Delete 7/15

APPENDIX

[This appendiz is not a part of the USA Standard Code Extension Proce-
dures for Information Interchange but is included to facilitate its use.)

Al. Introduction

This appendix to the USA Standard Code Extension Procedures for
Information Interchange. Figure A.1, contains a discussion of the objec-
tives, criteria, and other considerations that were used in the develop-
ment of the standard, as well as supplementary information to facilitate
the effective application of these procedures.

looo 00] 0]0 0]1 100 101 1]0 111
R RN 1 2 | 3 e | s | 6 | 7
olololo| o NUL | DLE | SP 0 e p P
olofol1]| 1 SOH | b 1 1 A Q o q
oflo{1jo]| 2 STX | DC2 " 2 B R b v
ofol1]1| 3 ETX | DC3 # 3 c s c s
o[1]olo] 4 EOT | DC4 5 4 D T d f
oftjof1} 5 ENQ | NAK | % 5 E u e u
o[1[hle] 6 ACK | SYN & 6 F v f v
o[i[1fa| 7 BEL | ETB | ° 7 G W g w
1{olofo] 8 BS | caN (8 H X h x
1lefo|1]| 9 HT EM) 9 1 Y i y
1or]o] 10 LF | suB * : J z i z
ot n vT | ESC + ; K [k {
1[1]ofo] 12 FF FS , < L \ I i
o[t] 13 CR GS - - M 1 m }
11irfo] 14) RS . > N - n ~
] s si us ’ ? o | _ o DEL

Fig. Al. USA Standard Code for Information Interchanges
(USASCII) per X3.4-1967

A2. General

A2.1 Background. In the establishment of a general purpose code such
as the USA Standard Code for Information Interchange (ASCII), or its
international counterpart, the ISO 7-bit code, a fundamental decision
must be made as to the size of the code. In making such a decision there
is usually a conscious effort to avoid the most obvious problems with a
code which is either too large or too small. Should the number of charac-
ters included be too small, many individual users will find their needs
not accommodated and will be forced to adopt ‘‘parochial” codes for
their applications. Should the number of characters be too large, many
potential users will find the standard code disproportionately costly to
implement, or untenably inefficient in transmission or storage, and will

Volume 11 / Number 12 / December, 1968

again be driven to the use of some other code. Thus, either extreme in
code sizing will reduce the generality of application of the code, defeating
the very purpose of standardization in this field.

The 7-bit size (128 characters) adopted for ASCII is thought to be
near optimum at present with respect to the above considerations.
Nevertheless, there will doubtlessly be numerous applications with
requirements that are not accommodated by a code of this size, or at
least not by the specific characters assigned within it. Still it is hoped
that many of these applications can be served by the use of the standard
code augmented in some appropriate manner. Through such an approach
the user may be able to implement much of his system with standard
hardware or software. More significantly, perhaps, he will thereby be
able to retain compatibility with other systems for the interchange of
that information which can adequately be directly represented by the
standard code.

The concept of augmenting the standard code for such purposes may
be spoken of in a generic way as ‘‘code extension”.

A2.2 Standardization of Procedures. The codes with which we are
concerned contain four characters whose definitions indicate their rela-
tionship to code extension. They are:

SO (Shift Out)

SI (Shift In)

DLE (Data Link Escape)

ESC (Escape)

The use of these characters is not treated in detail in the code stand-
ards. Actually the very nature of code extension inherently limits the
degree to which standards for it may be constructed: it is a means of
operating ‘“beyond the standard.” Nevertheless, there are several ad-
vantages to establishing a standard general procedure.

First, such standardization can prevent undesirable conflict between
independently contrived applications of code extension. For example, a
code extension procedure used by a data communication terminal device
should be inherently free from any hazard of conflict with a code exten-
sion procedure used in a communications system which may be called
upon to serve the terminal.

Second, the availability of such standards can provide guidance to

system designers to facilitate the advance inclusion of general provisions
for code extension operations in information handling equipment.
A2.3 Application of Standard Procedures. The standard procedures are
directed at the application of code extension to those portions of a
system where the use of the standard code itself would ordinarily be
appropriate, that is, in what is spoken of as *‘information interchange.”

Naturally there are other functions within many information inter-
change systems for which an extremely unusual usage of the standard
code, or some entirely different representation of information (e.g. the
points of a character matrix), may be entirely appropriate. Such functions
are often thought of as being internal to some autonomous system com-
yponent. Just as the code standard is not presumed to be appropriate for
such functions, it is not presumed that the procedures of this standard
are appropriate for them.

A2.4 Related Approaches. The suggested procedures presented here for
code extension should in no way be considered to deprecate the practice
of using sequences of graphic characters to represent machine instruec-
tions, graphic characters not otherwise available, and so forth. Pro-
gramming languages used in data processing, for example, are based
upon such an approach.

A2.5 ASCII. Figure 1 shows the USA Standard Code for Information
Interchange and is provided for reference. The code consists of two
general categories of characters, graphics and controls. There are 32
controls, 95 graphics, and the character DEL (Delete) which in reality
is neither. The 95 graphics include both uppercase and lowercase letters
of the Latin (often called roman) alphabet, the Arabic numerals 0 to 9,
a number of punctuation marks and special symbols, and SP (space),
the *‘nonprinting graphie.”

A3. Graphic Set Extension: Use of SO and SI

A3.1 Basic Concepts

A3.1.1 There are a number of applications which are not adequately
accommodated by the graphic set of the standard code. The most
prominent examples are those of systems in which special symbols are
required by some scientific discipline or commercial usage (for example,
meteorology), and those requiring the use of languages which cannot be
directly represented by the Latin alphabet, such as Russian. Of course,
these needs could often be met through graphic substitution: that is, by
adopting for the system a code which differs from the standard code in
that certain standard characters are replaced by the special ones which
are required. The displaced standard characters are, however, naturally
lost to use by such a system. However, it will often be desirable for the
system to have the capability of printing (or otherwise handling) such
special graphics, while retaining the ability to communicate with other
systems using the standard set of graphics. The procedures of Section
2 provide for this.

A3.1.2 Although the control characters are not to be affected by the
‘““shift out” operation, it is of course possible that the use of a new set of
graphics may require a corollary change in the execution of a control

Volume 11 / Number 12 / December, 1968

within its standard definition. For example, if the alternate graphic set
contains characters which are given a larger typographical size than those
of the standard set, the character Line Feed may have to produce a
larger motion when the alternate set is in use. This is of course not
construed as a change in the control character set.

A3.1.3 Aspointed out in Section 3.5, there is no implication that the
alternate set should be entirely different from the standard set nor that
all 95 positions are even assigned. It may contain whatever repertoire of
characters are needed for operation in a particular environment. For
example, the alternate set might retain the standard letters and numerals
but replace certain punctuation marks with weather symbols. In another
application, the lowercase alphabet might be replaced in the alternate
set by special mathematical symbols, while the uppercase alphabet, the
numerals, and the punctuation marks are retained. It is recommended
that any symbols common to both the standard and alternate sets be
assigned to the same code table position in both. It is also advisable to
leave SP (space) in the alternate set whether required or not, as many
printing mechanisms treat it separately, not actually behaving as if it
were a graphic.

A3.2 Application to Devices of Modest Repertoire

A3.2.1 It should be noted that useful application of these principles
may in some cases be made in devices having a relatively modest capacity
for different graphies. Consider, as an example, the problem of making a
terminal device to render messages in both Latin (standard) and Greek
(alternate) alphabets and requiring the conventional numerals and
punctuation in connection with either. In many situations it would be
satisfactory to render all letters in uppercase; that is, the receipt of the
coded representation for either ““A’ or “a” would cause “A” to be
printed.? Extending this principle to the special symbols coded in the
same area of the code with the letters, it is seen that 32 printing charac-
ters can suffice for 64 characters of the code. (Actually 63, since DEL,
though coded in the graphic region, is not a graphic.) Adding provision
for the 10 numerals and the 22 remaining symbols, the machine need
have but a 64-character graphic capacity for its work in the Latin
alphabet.

A3.2.2 An additional 31 printing characters can serve, in the same
manner, for both the uppercase and lowercase Greek alphabets and some
associated special symbols when in the alternate set. The 10 standard
numerals and the 22 standard punctuation marks are used in the alternate
set operation. This postulated application can therefore be implemented
in this manner with a terminal device having only the 95-character
graphic capacity which would ordinarily be required for full rendition of
the standard set.

A3.2.3 Such a device when in its standard mode may receive,
without hazard, information containing any of the 95 ASCII graphics.
If a graphic set shift were not used in this application, the bilingual
capability could only be served with a 95-graphic printer by making the
Greek alphabet a graphic substitution for the lowercase Latin letters in
the code table.

The device could not then be safely used for interchange of informa-
tion with systems which might use the lowercase Latin letters, since the
receipt of these would of course cause the printing of Greek letters.

A3.3 Multiple Graphic Sets. In many applications there will be a need
for many alternative graphic sets. Applications in the graphic arts
industry will often be of this class. It has been frequently suggested that,
to cater to such needs, provisions should be made for the use of a suffix
after the character SO to indicate which alternate set is desired. Actually,
however, such a procedure appears to be neither necessary nor desirable.
Therefore, SO is reserved for use, by itself, to select the single alternate
set in systems having but two sets® and for selecting the principal al-
ternate set in systems having several sets. The additional alternate sets,
if provided, should be invoked according to the procedures of Section
3.7 or 3.8.

This approach avoids any possible need for one device to be capable
of handling two types of control-representing sequences, one type
prefixed with Escape and the other with SO.

A4. Control Set Extension: Use of ESC (Escape)

A4.1 General

A4.1.1 The expected requirements for additional controls beyond
those assigned in the code are somewhat different from those for addi-
tional graphics. It is typical of systems requiring additional graphics
that the graphiecs may often be used in groups and for an extended period,
such as when printing text in a foreign language. On the other hand, it is
more typical of controls that they appear sparsely throughout the
information. For this reason the standard procedures for obtaining
additional controls do not provide for replacing the standard set of
control characters with an alternative one but rather for the one-at-a-

2 This technique is already widely in use where 64-graphic printers are used in sys-
tems which utilize all 95 graphic characters.

3 Such systems may be of appreciable commercial significance. A prominent example
is that of & message handling system in a country having a nonLatin national alpha-
bet, where the national and standard (and therefore international) alphabets are
both useful.

Communications of the ACM 851

time representation of additional controls by sequences of existing char-
acters, called ‘ escape sequences.”

A4.1.2 In order that a code extension sequence may invariably be
identifiable as such, each such sequence begins with the prefix character
ESC (Escape), which has no other use. (The name Escape is perhaps a
little misleading in this respect: the character was initially established as
a signal that subsequent operation was to be “not in the standard code.””)
A4.2 Sequence Length

A4.2.1 It was at one time proposed that code extension sequences
should be standardized as always consisting of ESC and a single-following
character. While this would be adequate for many applications, there are
a number of considerations which may make longer sequences desirable
in many cases. One such consideration is just that of having an adequate
number of sequences available for the functions required in one system,
or in a number of systems requiring nonconflicting function representa-
tions. Another consideration is that it is sometimes desirable to represent
a critical function by a long sequence to gain security against accidental
or malicious operation. A third consideration is the desire, in some sys-
tems, to have a mnemonic relationship between the character sequence
and the designation of the function to be controlled.

A4.2.2 In many systems it is very useful to have a doctrine which
allows sequences of various lengths to coexist in the same system.

Paramount among the requirements for a variable-length doetrine
is the need to have a simple means for a device to determine the end of
each sequence which it receives, that is, how many of the characters
following ESC are associated with it. This is necessary so that the device
may avoid giving the normal interpretation to individual characters of a
code extension sequence, even when the specific sequence is not to be
recognized and acted upon,

A4.2.3 The procedures of Section 4 provide this flexibility without
requiring the use of an ““ending’’ character in each sequence, which carries
no other information.

A4.3 Partition of the Code

A4.3.1 There are a number of criteria which affected the way in
which the characters of the code were divided into ‘‘intermediate” and
“final” groups. Among the significant ones were

1. “Intermediates” should be distinguishable from ‘“‘finals” by a
simple logical test, preferably by the sense of 1 bit in the coded repre-
sentation.

2. A given class of characters, such as alphabetic, and numeric, should
be entirely within one group.

3. Uppercase and lowercase of any specific alphabetic characters
should be in the same group. This allows a system designer to assign
sequences so that no distinction is made on the basis of case, if desired.

4. A number of 2-character (i.e. ESC-plus-one-‘final’’) sequences
should be available which use only letters or numerals, because such
sequences are convenient for use by humans.

5. The “final’’ group should contain some characters which are likely
to occur with reasonable frequency in a stream of data. This ensures
that, should the legitimate final character of a sequence be lost or muti-
lated, the system will soon be restored to its normal mode of character
interpretation.

A4.3.2 These criteria led to partition of the code into ““ intermediate’
and “final” characters as follows (See section 4.6):

Columns 0, 1, and 3 through 7 of the code table contain final char-
acters (bibgbs 7= 010).

Column 2 of the code table contains intermediate characters (bibsbs =
010).

(See A4.4 below for restrictions.)

This partition is felt to produce the most useful balance in the degree
to which these criteria are satisfied.

A4.4 Restrictions. The restrictions of Section 4.5 were imposed in
order to avoid certain potentially serious problems.

A4.4.1 The ten communication control characters should never be
used in Escape sequences. Such use could cause interference with the
control logic of communication systems through which the data may
be passed, unless the systems were arranged to detect the sequences and
determine their lengths, an unnecessary burden. These ten characters
are:

Designation Name cfz‘;frfz é%)?lgw
SOH Start of Heading 0/1
STX Start of Text 0/2
ETX End of Text 0/3
EOT End of Transmission 0/4
ENQ Enquiry 0/5
ACK Acknowledge 0/6
DLE Data Link Escape 1/0
NAK Negative Acknowledge 1/5
SYN Synchronous Idle 1/6
ETB End of Transmission Block 1/7

Also, additional communication controls should not be represented by
ESC sequences but rather by DLE sequences, as described in Section A5,

852 Communications of the ACM

A4.4.2 The following characters also should not be assigned in
Escape sequences:

Designation Name CE}';% ;:%él‘fw
NUL Null 0/0
CAN Cancel 1/8
SUB Substitute 1/10
ESC Escape (except as the first character) 1/11
DEL Delete 7/15

A4.4.2.1 NUL is excluded due to the hazards associated with the
lack of clearly established conventions for its use and because some
systems may be unable to process this character.

A4.4.2.2 CAN is excluded since its purpose is to ‘“‘cancel” a portion
of the data and may thus appear abruptly in a stream of data and may
even be used to ‘““cancel’”’ an Escape sequence.

A4.4.2.3 SUB is similarly excluded because it may be used to replace
a character determined to be in error and may thus unpredictably appear
in an escape sequence as a result of this process.

A4.4.2.4 ESC is excluded to avoid confrontation with the paradox
created by its definition as a ‘‘final’’ character: after the first ESC of a
sequence another would mean at once that the sequence was starting
and ending. It therefore seems better to avoid this problem than to
become dependent upon specific resolutions of it in equipment.

A4.4.2.5 Finally, DEL is excluded because in some systems it may
unpredictably appear as a result of correction of operator errors in
perforated tape, and because some portions of a system may ‘‘delete”
this character from the data stream.

A4.4.3 The use of the remaining control characters in any ESC

sequence should be avoided whenever possible, due to the effects which
they may cause if the ESC is lost or mutilated or is not recognized for
some other reason (see also A4.6).
A4.5 Printing of ESC. The question is often raised as to whether or not
typical terminal devices will print a symbol for ESC. It is expected that
there will be printing devices capable of printing symbols for many or all
of the control characters. Nevertheless, it is a basic concept of the code
that, in the ordinary application, the control characters will be non-
printing. Control-printing devices would thus be primarily for monitoring,
maintenance, and similar functions.

When a need is expressed for ESC to print, it is instructive to ask,
“If there were a character in the code for this function, would we want
it to print?’ If the answer is “‘no,” then it is reasonable to suggest that
the ESC (and the rest of the sequence, for that matter) not print. The
nonprinting of ESC will no doubt be inherent on most devices as it is a
control character; nonprinting of the rest of the Escape sequence may be
easily controlled by virtue of the simple way in which the beginning and
end of a sequence are delineated.

If the answer is “yes,” then either

(1) the application calls for a ‘‘monitoring-type” printer anyway,
and when one is provided, the ESC will print; or

(2) the function is in the nature of a program instruction, or an
abbreviation for something, and should be represented by the syntactic
use of graphics anyway, as is traditional in programming languages.
A4.6 Anomalies

A4.6.1 The response of a system to a second ESC inadvertently
introduced into a sequence is not prescribed.

A4.6.2 A sequence should always be considered ended if a final
character is recognized, whether or not the character is recognized and
regardless of whether the final character is an ‘‘allowable” one in escape
sequences. If the final character is ESC, it may optionally be considered
to start a second sequence (see A4.6.1).

A5. Code Extension for Communication Controls:
Use of DLE (Data Link Escape)

Standardization of specific procedures for the use of DLE falls within
the jurisdiction of ASA Task Group X3.3.4, Communication Control
Procedures. The subject is discussed here only to show the relationships
of this use to other aspects of code extension.

It is necessary for a communication system to be able to readily
distinguish between the communication controls which are of concern to
it and other controls with which it is not concerned. The assignment of
specific communication control characters in the code provides this
distinetion under ordinary circumstances. It is necessary that this
distinction be preserved when additional controls of one type or the other
are represented by escape sequences. The character DLE (Data Link
Escape) is provided for use in lieu of ESC as the first character of se-
quences used to represent additional communication controls. Thus
communication link control logic may ignore ESC entirely, passing it
and the characters which follow as any other “text” characters. Code
extension sequences of concern to the communication control logic can
invariably begin with DLE, to which the logic may be made sensitive.

The prohibition previously expressed against the use of communication
control characters in ESC sequences is intended to prevent direct inter-
ference with the communication control logic.

Volume 11 / Number 12 / December, 1968

