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Abstract 

In computer graphies, polygons are widely used to represent 3D models or scenes- When 

complex polygonal models contain more detail than needed, or difTerent levels of detail are 

required, models need to be simplified. SimpLified models have sigdicantly fewer polygons 

but still preserve similarity with the original. Existing simplification algorithms u s u d y  

have dif£iculty in producing good quality simplified models with low polygon counts. In 

addition, users have limited control over how models are simplified. 

In this thesis, we propose that by adding user control to automatic simplifications, the 

quality of simplified models can be improved. We developed a tool that integrates an 

existing simplification algorithm and prûvides users with the ability to interact wit h the 

simplification process. The tool produces a multiresolution representation 5om an input 

model, and offers a set of hctionalities that d o w  users to modify mode1 geometry, local 

detail, and the simplification process. By sirizplifving models semiautomatically, users are 

able to produce more desirable simplified models with low polygon counts. 
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Chapter 1 

Introduction 

In computer graphics, polygonal models are a wideiy used method to represent surfaces- 

Compared to other modeling techniques, polygonal models are very simple. The most 

commonly seen polygonal models are made up of only triangles. However, this simplicity 

does not reduce its power in representing surfaces- Surfaces of arbitrary type and complexity 

can be represented by polygons. Another advantage that makes polygonal models so popular 

is t hat they are very fast to render u1 graphics hardware- Simple scan-line rendering enables 

graphics acceleration chips to render millions of triangles per  second. This is especially the 

case in the personal computer and computer garning industry. 

Because of the importance of polygonal models, numerous techniques have been devel- 

oped to make them more powerful and efficient. One area tha t  has been a focus of interest 

in the past decade was the simplification and multiresolution representations of complex 

models. Various algorithms have been developed and some of them codd produce fairly 

good results. However, we observed that there is an absence of tools that provide user 

control over these algorithms. We believe that providing such a tool coupled with good ex- 

isting simplification techniques will further improve model quality. Thus we develop a tool 

system that aUows user intervention in automatic model simplification in a multiresolution 

context . 

1.1 Mode1 Simplification 

In many computer graphics applications, very large and complex polygonal models are 

generated, such as in CAD designs and real models scanned in by cameras. The number 

of polygons contained in the raw output of these models often go up to tens of thousmds 

or even millions. Such a large number of polygons not only make the model difEicult to 

manipulate, but often contain umeeded detail. The triangles used to represent the fine 



details often shrink to a single pixel after rendering. Thus simplification algorithms have 

been developed to simplie the complex models to drastically reduce the number of polygons 

while preserving visual fidelity to a certain degree. In figure 1.1 (a), the bunny is the original 

model generated fiom scanning, which contains around 69000 triangles. In figure 1.1 (b): 

the model is reduced to 5000 triangles. It can be seen that although more than 90% of the 

faces are removed, the visual quality of the model is very close to the original. 

(a) Original mode1 with 69451 (b) Simplified mode1 with 4999 
triangles triangles 

Figure 1.1: Original and simplified bunny model. 

Having similar quality with the original model, simpEed models are easier to manipu- 

late, require l e s ~  storage space, and are faster to render. 

1.2 Multiresolut ion Representation 

Closely related to model simplification is the multiresolution representation of polygonal 

models. A sirnplified model is an approximation of the original model with less detail. 

If there are many such approximations with difFerent degree of simplification, we have 

the original model represented at differerit levels of detail (LOD), or difFerent resolutions. 

Multiresolution representations provide a trade off between performance and quality. More 

detail enhances the quality but requires more cornputing power for display, thus reducing 

display speed. Based on need, a certain resolution must be chosen that provides the best 

tradeoff between performance ând detail. For example, when a model is viewed from a 

distance, it will shrink to a s m d  area on the screen. Clearly there is no need to render 

this model in full detail. A simple and coarse representation of the model should serve. 

However, if a model is viewed closely, we would want to see more detail. 



The straightforward approach to represent multiple resolutions would be to store severaI 

copies of the model at  different levels of detail. Each copy is used to satisfy some range 

of detail requirements. When the detail requirement changes, the resolution is changed 

by rendering a different copy. This simple approach is used quite widely, such as in flight 

simulation applications. But it is not able to produce a continuous range of multiresolution 

models . 

Recently there have been many advances in multiresolution modeling. Various tech- 

niques have been developed to create mult iresolution representat ions of polygonal models 

[GAR99a]. Compared to the simple method of storing discrete model resolutions, such rep- 

resentations are able to produce continuous levels of detail and are more storage efficient. 

Many simpEcation dgorithms could be extended to create a multiresolution representa- 

tion of the original model. In many cases, this is achieved by keeping a record of the whole 

simplification process, Later the history of the simplification process could be used to create 

structures that are able to extract levels of detail. Other techniques create a multiresolution 

representation explicitly such as subdivision methods [PUP97]. 

1.3 Motivation 

Nearly every simplification algorithm that exists today does a fairiy good job in simpl%ing 

a single complex rnodel d o m  to a certain level of detail, for example at several thousand 

faces. Although numerical errors of the simpliiied models are generally different fiom one 

simplification algorithm to another, the visual quality perceived by human eyes are almost 

the same at this level of detail. It is only when the model needs to be simplified further, 

for example to a few hundred faces, that these algorithms begin to display the dserences 

in quality. In some circumstances, modeIs are required to be simpwed to this level. This is 

especidy the case in computer games, where PCs are the dominant platforms. For example, 

in a 3D first person game, if rendering each character requires displaying several thousand 

polygons, the display speed might be too low to keep the user's interest. Thus it is desirable 

to simplify models to a few hundred of polygons, while still maintaining reasonable quality. 

However, even with algorithms that produce relatively good quality results at low poly- 

gon counts, the simpmed models normally leave much to be desired. One reason for this 

is a common characteristic shared by most existing simplification algorithms: the sirnplS- 

cation process is completely automatic and driven by some kind of error measure. When 

the number of polygons is large, it works well because each simplification step has only a 

small effect on the visud quality of the model. But when the number of polygons is small, 



the choice of each simplification step bas a much larger impact on the simplified model. At 

this stage, humans usually do a better job than automatic algorithms. 

Hence it is reasonable to enable users to intervene in the simplification process, or 

to make modifications to the sirnplified models after it is done. Making modifications to 

simplified models itself is not difücdt. We can apply a simplification algorithm to a complex 

model and use a 3 3  modeler to edit the output. However, the limitation is that only a single 

level of detail can be worked on. If ten levels need to be modified, the work wiU be tedious. 

A tool that is more closely associated with simplification and multiresolution models will 

facilitate this process- 

Taking advantage of multiresolution representations, we can modify models in ways 

that are not possible with a normal 3D modeler. First, the user is able to view Merent 

levels of detail and choose one to work on. Second, Heren t  resolutions are related in a 

rnultiresolution representation. The modifications at one level can be used to affect other 

levels which rnay reduce the same kind of edit a t  different levels. Third, we can apply 

operations t hat span different resolutions such as preserving meaningful features. This 

camot be achieved in editing levels separately. The end result would be an improved 

simplified model that fits particular requirements. We also have the option of saving the 

entire multiresolution representation, so that more levels of detail might be produced later. 

1.4 Objective 

The major objective of our tool is to provide a way for the user to intervene in the simpli- 

fication process and improve coarse level models. The tool wiU integrate a simplification 

algorithm which provides the user a way to simplify the input model. After the model has 

been simplified, a multiresolution representation of the modei is created. The tool offers a 

set of functions that enable the user to navigate differeat resolutions, manipulate the rnodel 

at different levels of detail, and produce an improved simplified model. 

Specifically, our goal is to provide the user with the following functionalities: 

SimpliG a polygonal model and produce a multiresolution representation of it. 

The user can navigate through and view different levels of detail. The levels are 

created in the simplification process and represent a range of quality between the 

original and fully simplified model. 

Allow the user to make modifications at a chosen level: 



- Edit the geometric shape of the model. 

- Propagate the modifications to other detail levels. 

- Preserve features across levels. 

- Modi6 the interna1 structure of the multiresolution representation. 

Handle texture coordinates. 

Output the model. 

These functionalities were and are our targets. While many more improvements could 

be made, we have made substantial progress on each of them. 

1.5 Thesis Structure 

The rest of the thesis is organized as the following: 

Chapter 2, a survey on the recent research on simplification and rnultiresolution mod- 

eling. 

Chapter 3, presents an overview of the Q S h  simpIScation algorithm, which we 

integrated into our semiautomatic simplification tool. 

Chapter 4, a detailed description of constructing the multiresolution structure that is 

used in the system. 

Chapter 5, a detailed description of the set of editing tools. 

Chapter 6, presents the evaluation and results of the tools. 

Chapter 7, is the conclusion and some discussion of future work. 



Chapter 2 

Background and Related Work 

There has been much research on mcldel simplification in the past decade. More recently, 

attention has been directed at rnultiresolution modeling. In this chapter, we present some 

background information, and review some of the most important research advances in these 

areas. 

2.1 Definitions and Terminologies 

Before reviewing the research results, let us fkst formalize some terminology and definitions 

that will be fiequently referred to in later discussions. 

Mode1 Representation 

There are mnny ways to represent surface models in computer graphies. Two popular ones 

are polynomial pat ches and polygons [ZOR97] . Polynomial patches divide the surface into 

patches and approximate each patch with polynomial surfaces, such as spline surfaces. At 

the border of the patches different degrees of continuity can be maintained. This method 

allows compact representations of smooth surfaces using a small number of control points. 

Its main applications are approximat iag srnoot h surfaces wit h low curvat ure. The difficulty 

with such kind of representations is that it is computationally expensive. When representing 

fine detail, the number of control points may become very large and dficult to maintain- 

Polygons gained wide popularity in represent ing surfaces in comput er grap hics because 

of their simplicity and power to encode detail. Polygons are easy and fast to render for 

rendering hardware. In particular, triangles are the only type of polygon used in many 

applications. This is because triangles are the simplest polygons, and any polygonal surface 

can be converted into triangles. 

A polygonal model is a piecewise surface model consisting of a collection of vertices and 



faces. Let M (V, F )  denote the entire polygonal model. V is the coUection of all the vertices 

and F is the collection of al1 the faces in M [GAR99]- Each face in F is a polygon made 

up of a number of vertices from V- 

There are many ways to store M. One way is to store faces of M by 

[HOF89], where f is a face and each triple is the geometric coordinates of one vertex in 

f .  Such a structure has lots of redundancies, and updating one vertex requires updating 

each of its copies in each face corner. A more eficient structure uses pointers to vertices. 

Vertices are stored in a List with each vertex identified by a unique ID. Each face f contains 

three vertex IDs, and each pair of the vertices of f defines an edge. The set of model faces 

defines most of the topology and adjacency information, except for edges and vertices that 

do not belong to any face. In our context, only faces are visible elements. Thus we will 

ignore edges and vertices that do not belong to any face. 

As polygonal models can be converted to models with o d y  triangle faces, we will only 

consider models containhg exclusively triangles. In the following text, polygons will refer 

to triangles only. The term model will refer specifically to triangle models unless otherwise 

stated- 

Manifold and Non-Manifold Surfaces 

In topological terms, an n-manifold M in Em, where m 2 n is a subspace that is locally 

homeomorpbic to P, i.e., for every point p of Ml there exists a neighborhood U of p t hat is 

horneomorphic to IP [HOF89]. E" is the n-dimensional Euclidean space. Homeomorphism 

is a bijective (one to one) mapping where every neighborhood is also a neighborhood after 

such mapping. In short, homeomorphism keeps two spaces t opologically equivalent . We 

are specifically interested in 2-manifolds. A 2-manifold without boundary is a manifold such 

that for m y  point p on the surface, it has a neighborhood that is homeomorphic to a disc. A 

2-manifold zuith boundary is a manifold that any point p on the surface has a neighborhood 

that is homeomorphic to a disc or a half disc. Later on, we will abbreviate 2-manifold with 

the term manifold. 

htuitively speaking, a manifold surface is more regular. Each edge of the surface has 

no more than two adjacent faces. And each vertex bas a closed ring of adjacent faces, or a 

fan of adjacent faces if the vertex is on the boundary. 



Figure 2.1: Adjacency- 

Adjacency 

For clarity of later discussions, we will here define the meanings of adjacency between 

difFerent elements of the model. When two vertices are connected by an edge, we Say they 

are adjacent to each other. If a vertex u is an endpoint of an edge e, we Say e is an adjacent 

edge of u. When a vertex v is a corner vertex of a face f ,  we Say f is an adjacent face of v. 

All adjacent faces of a vertex form a face star of the vertex. Similarly, all adjacent edges 

of a vertex form an edge star of the vertex, and al l  adjacent vertices of the vertex form a 

vertez star. If an edge e belongs to a face f ,  we Say that they are adjacent to each other. An 

edge with only one adjacent face is called a bovndary edge. Two edges are adjacent to each 

other if two they share one end point. However, if two edges share both end points, they are 

considered identical. Edge directions are not considered. If two faces share a common edge, 

they are adjacent to each other. If two faces share more than one common edge (i.e., the 

two faces share the same vertices) but with dSerent normal directions, they are different. 

However, if their normals point to the same direction, the two faces are identical. Faces 

only sharing one vertex are not considered adjacent with each other. For example, in the 

surface shown in figure 2.1, e is an adjacent edge of v. f and f' are two adjacent faces of 

v. All faces around v form a face star of v, and vertices k, Z, s , p ,  q, r are the vertex star of 

v. Edge r u  is adjacent to faces f and f', and f is adjacent to f '. AU edges residing at the 

outline of the surface are boundary edges. 



Patches and Partitions 

A patch is a group of connected elements of the model sudace. A face patch of a model is 

defined as a collection of connected faces P. By "connected" we mean t hat if starting fkom 

an arbitrazy face in P and allowing walking to the adjacent faces within Pl all faces of P 

can be visited- Thus each face patch occupies a contiguous part the model surface- For a 

number of face patches of a model, if they do not share faces with each other, and their 

union covers al1 model faces, the face patches define a face partition of the model surface. 

Similarly, we can d e h e  vertex patches and vertex partitions. The difference with their 

face counterparts is that they are defined on the vertices. If a set of patches do not share 

elements with each other but tbeir union does not cover the entire model, they implicitly 

define a partition of the model surface, because the remainïng vert ices or faces are implicit ly 

one or more patches. 

2.2 Model Simplification 

Model simplification deals with the problem of reducing the number of polygons in highly 

detailed polygonal models and, at the same tirne, preserving visual or geometric similarity 

wit h the original model. Generdy speaking, each simplification algorithm contains the 

following comp onent s: 

1. The basic simplification operations that actually reduce vertices or faces. 

2. The mechanism that preserves the similarity between the original model and the 

simplified model. 

3. The evaluation of the ciifFerence (or error) between the simplified and the original 

models. 

The most common difference between simplification algorithms lies in the fkst component. 

For example, some algorithms work by deleting vertices, while others may do it by con- 

tracting edges. However, the second component is the most crucial part of a simplification 

algorithm. It is here where the quality of simplification is iduenced the most. The third 

component does not appear in all simplification algorithms. Some algorithms use the error 

to guide the second component, thus combining the two components. Others may use other 

kinds of heuristics, and do not explicitly measure error. There are, however, tools that 

can calculate the error of the sirnpmed models and are independent of the simplification 



algorithms [CIG98]. Such tooIs provide a way to evaluate different simplification dgorithms 

in a uniform context. In the following review of simplification algorithms, we will classi& 

the dif5erent techniques mainly based on the £kt component. The classifkation borrows 

some ideas from [KEC97] but with some changes. Within each of the major categories, 

algorit hms are furt her difTerent iat ed using the second component . 

Algorit hm Characteristics 

An important property of simplification algorithms is the direction it works in. If the 

starting point is the original model and the algorithm keeps working toward the simplified 

model, it is called a decimation method. If the algorithm starts from a coarse representation 

and iteratively refines it, the method is a refinement method. The termination condition 

usuaUy is a threshold which could be the desired number of vertices or faces, or the largest 

error that is acceptable between the simpwed and the original. 

Some algorithms work by applying operations that only affect a local area of the modei. 

For example, an algorithm may delete one vertex at  a time and patch the hole. Such 

simplifications use local operations. Other algorithms, however, apply simplification on the 

whole model, and there is no distinct iteration of Iocal simplification operations. 

Simplification algorithms also difFer in the assumptions they make about the input 

model. A significant number of algorithms rely on the model surface being manifold. For 

exampie, they will assume each edge has only two adjacent faces and use this assumption 

in the algorithm. O tner algorithms accept more general surfaces. 

Simplification algorithms also dXer in abilities to handle model properties, such as 

preserving model topology. Some algorithms not o d y  can handle the geometric shape 

of simplified models, they also can treat texture coordinates, colors or normals. These 

properties are important for the visual quality of the simplifled model. 

IR the next ferr subsections, we will review the major simplification techniques. 

2.2.1 Vertex Clustering 

Vertex clustering techniques work by grouping vertices of a mode1 into cells. For each cell, a 

representative vertex is computed and is used to replace al1 other vertices in the cell. These 

types of algorithms are fast compared to others, but they generally cannot achieve very 

high quality simplifications. 



Rossignac and Borrel 

The vertex clustering technique developed by Rossignac and Borrel [ROS93] [ROS97] uni- 

formly divides the model's bounding box into grid cells based on geometric proximity. The 

size of the cells is decided by how much the mode1 needs to be simplified. Each vertex is 

assigned a weight value which reflects the perceptual importance of the vertex. The value is 

estimated by taking the inverse of the maximum angle between all pairs of incident edges on 

the vertex. For every cell, a representative vertex is calculated by merging all the vertices in 

the cell. The calculation of the merged vertex could be selected fkom severd approaches: it 

could be the mean of the vertices in the celi, the weighted sum of the these vertices, or the 

vertex with the greatest weight. All original vertices are replaced by its ceIlYs representative 

vertex. Then the model's faces are reconstructed using representative vertices according to 

the original faces. 

This technique is quite general, because it only depends on the vertex set and could work 

with any type of surface. The original model's topology is not preserved. Thus disjoint parts 

might be merged and holes on the original model could close. 

Low and Tan 

The method developed by Low and Tan [LOW97] offers an improvernent of Rossignac and 

Borrel's algorithm. An improved weighting strategy is used, where instead of using uniform 

grid cells, c e h  are centered around weighted vertices. The vertices are sorted in non- 

increasing order according to the weight values assigned to them. The top vertex in the Est 

(the vertex with the highest weighting) is used as the center of a new ceU. All the vertices 

in the celi are replaced by the representative vertex and removed from the vertex list. This 

process is repeated for the rest of the vertices in the sorted list. To prevent cases where a 

sliver face is widened by clustering, vert ices are checked if they f d l  into multiple ce&. If so, 

the cell with the closest center is chosen. To further improve the quality of the simplified 

model, elongated parts that are reduced to edges are rendered as thick edges with dynamic 

normals . 

Brodsky 

Both of the previous two algorithms can be viewed as decimation methods, because they 

start fiom the original mode1 and end at the simplified model. The R-Simp algorithm 

[BR0991 is a refinement method using vertex clustering. Initially it treats the whole mode1 

as an entire ce11 and iteratively subdivides it into 2, 4 or 8 sub-cells depending on the 



nature of model surfaces contained in a ceIl. Each subdivision is decided by the surface 

cumedness, defined as the sum of all the face norrnaIs in the tell. The heuristic is based on 

the observation that where the curvature is high, the length of the sum of the normals tends 

to be small, and the cells are divided by planes splitting high cunrature faces. Simplification 

terminates when enough cells have been created, and each cell is replaced by a representative 

vertex calculated by optimizing the quadric error metric [GAR99]. 

2.2.2 Face Merging 

Face merging algorithms simplify models by merging roughly coplanar faces into sets, and 

each set of faces is replaced by fewer larger polygons. This kind of dgorithms are decimation 

methods. 

Hinker and Hanson 

The algorithm developed by Hinker and Hanson [HIN93] has a tirne cost of O(n logn), 

where n is the input size. First, the model faces are grouped into roughly coplanar sets. 

Before each set is created, a representative normal is selected. A polygon is added to the 

set if its normal falls within a user-specified error range around the representative normal. 

After a polygon is added, the representative normal is adjusted to be the average of the 

polygon nomals in the set, in order to avoid missing candidate faces when using fked 

representative normals. After copianar sets are built , a segment Iist is created. A segment is 

a list of b o u n d q  points that identifies the boundary between the polygon sets. Connected 

segments are joined together, and new polygons are constructed fiom them. Finally the 

new polygons are re-triangulated. This algorithm seems to work best on surfaces with zero 

curvature in at least one direction, such as cylinders and cones [GAR99a]. 

Kalvin and Taylor 

Kalvin and Taylor developed a face merging method using "superfaces" [KAL96]. A su- 

perface is a "nonplanar polygon" defined by the boundary of a face patch. The algorithm 

works in three phases. In the £kst phase, superfaces are created. Starting from a random 

seed face that has not been visited, face sets are grown by adding more faces to it. A set 

of merging rules decides whether new faces are added. The rules test whether a face is 

nearly coplanar with faces in the face set and whether adding it causes irregdar patches. 

The second phase straightens the boundaries of the constructed superfaces. Edges between 

adjacent superfaces are replaced by straight edges which are called "superedges". To avoid 



over-simplification, the superedges are recursively spiit until every boundary vertex is with- 

in a bounded distance to an adjacent superface. The last phase is the triangulation phase 

where the supefface edges are projected onto the approximation plane- The projected 2D 

polygons are decomposed into star polygons and are t riangulated. 

2.2.3 Simplification Envelopes 

Varshney et ai. 

The algorit hm developed by Amitabh Varshney et al. [VAR951 [COH96] uses offset surfaces 

to guarantee an error bound. An offset surface is parauel to the original model surface with 

a constant distance. At the beginning, two offset surfaces are created inside and outside 

the original mode1 with a distance E ,  so that the model surface is contained in a surface 

envelope. If the envelope intersects with itself, E is reduced to avoid it. After the envelope 

has been set up, the model is sirnpued. In m 9 5 ] ,  a global method is applied by creating 

a set of candidate triangles, A candidate triangle is defhed by three original vertices that 

are visible to each other within the envelope. This ensures that the candidate triangles do 

not intersect with the envelope- The candidate triangles are then sorted in decreasing order 

by how many original triangles they cover. Then the model is reconstructed by adding 

the candidate triangles in order, while deleting original triangles t hat overlaps with the 

newly added candidate triangle. Any holes in the process are patched with triangles. In 

[COH96], a local algorithm is added in complement to the global one, because the global 

algorithm's complexity grows too fast and is not practical when model becomes big. The 

local algorithm is a vertex decimation method constrained by the envelope- Compared to 

the global algorithm, the local one is faster and more robust . This algorithm only accepts 

models with manifold surfaces. 

2.2.4 Re- t iling Surfaces 

Turk 

Turk adopts a method of re-tiling [TUR92] surfaces suitable for curved surfaces. At first, 

a user-defined number of points are randomly distributed across the model surface. To 

make the distribution even, each point is propelled by its neighbors, and the points drift 

on the model surface until aU the points reach a stable state. After this, the points are 

triangulated and the original vertices are discarded. The triangulation process first creates 

a mutual tessellation, which is an intermediate polygonal surface that triangulates both the 

original vertices and the new points. The mutual tessellation contains al1 the original edges. 



Then the old vertices are deleted hom the mutual tessellation. When an old vertex v is to 

be removed, the face star around u is found and projected onto a plane, which results in 

a polygon containhg v. Then v is removed and the polygon is triangulated, the result of 

which is mapped back onto the model. Topology is checked and preserved in the simplified 

model. The algorithm dso detects curvature in the model surface. Where the curvature 

is high, the density of the points is increased. This wiU enhance the preservation of detail 

a t  high curvature area. The algorithm also maintaias mapping of the original vertices and 

the simplXed model, which facilitates interpolation between distinct ievels of detail. This 

algorit hm works only with manifold surfaces. 

2.2.5 Vertex Decimation 

Vertex decimation methods typicdly delete one vertex at each iteration, and the resulting 

hole on the surface is patched by new triangulations. These algorithms and Iater intro- 

duced edge and face decimation methods are similar in that they a.ll iteratively apply local 

decimation operations. 

Schroeder et al. 

The algorithm developed by Schroeder et al. [SCH92] decimates vertices in multiple passes. 

It classses the local geometry and topology around a vertex into five categories called: 

simple, complex, boundary, interior edge and corner edges. Simple vertices are surrounded 

by face stars and are manifold. Complex vertices have adjacent surfaces that are not 

manifold. Vertices lying on boundaries are called boundary vertices. If a vertex is shared 

by two feature edges, it is an interior edge vertex- Here feature edges are defined as edges 

with the dihedral angle between two adjacent triangles greater than a specsed angle. If 

three or more feature edges share the same vertex, then it is a corner edge vertex. AU kinds 

of vertices are candidate vertices except complex vertices. The decimation of a vertex is 

decided by the distance of the vertex to the average plane of surrounding triangles. If the 

distance is wit hin a specified value, the vertex is removed. If the vertex is on a boundary or 

feature edge, the distance to the Iine that connects the two closest neighbors of the vertex 

is used. After the vertex is removed, the hole is triangulated by a recursive loop splitting 

procedure. 



2-2.6 Edge Decimation 

Edge decimation or edge contraction methods simplify models by deleting edges. After an 

edge is deleted, it is replaced by a target vertex. The surrounding surface of the edge is 

updated using the new vertex. 

Hoppe et al. 

Hoppe et al. developed a mesh optimization algorithm [HOP931 which minimizes an energy 

function. Inïtially a set of data points X are taken fiom the input model. These points are 

used for measuring the error of the sirnpliiîed mesh, and placing its vertices. The energy 

function is defined as 

The first component measures the error of the simplified model fkom the original model. 

It is defined as the sum of squared distances fkom the data points X to the simplified mesh. 

The second term is proportional to the number of vertices in the mesh. The last component 

places a spring with rest length zero on each of the edge. 

Minimization of the energy function is achieved in two nested minimization sub-problems. 

The inner minimization is continuous and optimizes geometry, in which vertex positions are 

updated to rninimize the f is t  and third term of the energy function- The outer minirniza- 

tion is discrete and optimizes topology. Three edge operations, namely edge collapse, edge 

swap and edge split are tried in turn to attempt to mïnimize the energy function. With in- 

ner and outer minimizations, the model is simpmed and adjusted to fit the original model. 

Topology is preserved during simplification. This algoritfun is slow, but is able to produce 

very good results for various models. 

In later work, the mesh optimization method is modified to the progressive meshes algo- 

rithm [HOP96]. The detail of this algorithm is introduced later. The major improvements 

of progress meshes are the speed of simplification and the multiresolution representation. 

Garland 

The QSlim algorithm [GAR99] developed by Michael Garland is basically an edge contrac- 

tion algorithm. But it is also extended to merge vertex pairs which are disjoint and close 

enough to each other so as to merge disjoint parts. QSlim offers a very compact repre- 

sentation of error metric, called quadrics, for face patches on the original model. Given a 

vertex position, quadrics can be used to calculate the error of the vertex to the patch of 



faces associated with the quadric. In addition, a quadric can be used to get the optimized 

position of a vertex. A quadric is initiaily derived from the formula which calculates the 

distance of a vertex to a plane, Each quadric consists of a matrix, a vector and a scalar- 

An important property of quadrics is that merging two face patches corresponds to the 

addition of the associated quadrics. With the quadric representation, there is no need to 

maintain a Iist of original faces associated with each vertex during simplification. Instead, 

each vertex has a quadric and the quadric is enough to calculate the error of the vertex and 

optimize the vertex's position. When an edge is contracted, the target vertex's quadric is 

the s u  of the quadrics of the two end points, and the target vertex's optimized position 

is calculated Tom its quadric. The algorithm itself is simple. AU candidate edges or vertex 

pairs are &st put into a priority queue, sorted by the error that will be introduce if the edge 

is contracted. Then the edge with the least error is contracted first. The two end points 

of the edge is replaced by the target vertex and al1 aEected edges is updated. This process 

repeats until the specified number of faces is reached or the edge queue is empty. 

With some extension, the quadric error metric can be generalized to accommodate not 

only the position coordinates, but also vertex at tributes such as color, normal or texture co- 

ordinates. The dgorithm remains the same. QSlim is the simplification algorithm current ly 

used in our semiautomatic simplification implementation. 

2.2.7 Triangle Decimation 

Triangle decimation algorithms remove one triangle at a time. With each removal the hole 

is re-triangulated or a new point is inserted. 

Hamann 

The method developed by Bernd Hamann [HAM941 is a triangle decimation algorithm. 

First it weights aU the faces depending on the curvature at each vertex of the face and the 

angles of the face. The curvature weight is used to preserve portions of the surface with 

high curvature. The angle weights are used to penalize sliver faces. Then the triangle with 

the minimal weight is chosen for removal. After a triangle T has been removed, a new 

vertex will be inserted for better triangulation of the hole. The position of the new vertex is 

obtained by first choosing a point p in the projected local surface of T, then project p in the 

direction of T's normal onto a quadratic surface that approximates the mode1 surface before 

removing T. To triangulate the hole, initially triangles are created centering around the new 

vertex. Then a series of edge swaps are applied for bet ter shaped triangles. After a triangle 



removal, afF'ected triangles' weights are updated. The simplification process continues until 

the desired number of vertices is reached. 

2.2.8 Summary of Simplification Algorithrns 

Simplification algorithms are generally evaluated by their speed of simplification and quality 

of results. Quality is usudy  evaluated by the error between the original model and the 

simpwed model. A complete and fair comparison of these algorithms should be done in 

the same environment and using the same input. Evaluation of the error should also be 

provided by a uniform measurement. However, these are often hard to do. Here we gave a 

general description of the speed and quality of the algorithms. More detailed cornparisons 

could be found in [BR099]. Due to lack of data, not ail algorithms introduced in previous 

sections are covered. 

Vertex clustering algorithms are generdy the fastest among all the simplification algo- 

rithms, but usually produce relatively poor quality results. The vertex clustering algorithm 

in w S 9 3 ]  is the fastest simplification algorithm. Other simpMcation algorithms vary in 

speed, and do not necessarily relate with their category. QSlim [GAR99] is a fast algorithm 

with fairly good quality. It is a little slower than vertex clustering algorithms but generd- 

ly faster t han ot her algorit hms. Progressive meshes [HOP961 and simplification envelopes 

[COH96] come next in speed and with better quality. The mesh optimization [HOP931 

method is very slow but produces the best quality results. 

Simplification of Attributes 

Besides geometric position, a vertex often has more attributes, such as texture coordinates, 

vertex normals and colors. The model shape has been the major focus of interest in sim- 

plification algorithms. However, these other attributes are also important in the model's 

appearance. Some simplification algorithms have s tarted taking t hem into consideration. 

Cohen et al. 

Cohen et al. [COH98I7s appearance-preserving simplification algorithm decouples the ver- 

tex positions from its attributes. Surface attributes are converted to color and normal 

textures- During simplification, texture deviations are considered in addit ion to geometry. 

The algorithm &st divides the model surface into patches, and each patch is parameterized 

using a spring system and mapped to a rectangular region in the texture space. With this 

parameterization, each triangle in the model is scanned and assigned texture coordinates. 



Texture deviation is defined as the distance between two vertices having the same texture 

coordinates. The texture deviation of a triangle is the maximum of ail such distances of its 

vertices. In practice, the deviation is approximated by axis aligned bounding boxes, and 

these boxes are enlarged during simplification to ensure that they cover the corresponding 

original vertices. Texture deviations are integrated with a geometry metric to affect the 

order of simplification such as edge collapses. 

The quadric error metric in the QSlim algorithm can be generalized and extended to in- 

tegrate vertex attributes [GAFW]. The vertex attributes are treated in the same way as 

the position coordinates, thus placing the vertices into higher dimension spaces. All the 

previous concepts remain the same, except that their calculation is now in higher dimen- 

sional spaces, instead of the previous 3-dimensional space. Other than such an extension, 

the overd algorithm remains the same. 

Based on Garland's quadric error metric, Hoppe designed a new quadric error metric that 

handles surface attributes [HOP99]. Instead of extending the quadric error metric to high- 

er abstract dimensions, another quadric term is introduced specïfically for simpli6ing at- 

tributes. The introduced quadric is added to the original geometric quadric resulting in a 

new quadric. Compared to the extended quadric in [GAR99], the new quadric error met- 

ric requires fewer coefficients, and is more precise in simplifying the attributes. To handie 

multiple values for a single attribute at each vertex (such as different texture coordinates 

for each face), wedges are introduced. Each wedge is assigned a quadric for a single value 

for each at tribute. During simplification, each vertex at  tribute is op timized from wedge 

quadrics similar to optirnizing geometrical positions. 

2.4 Multiresolution Modeling 

Mode1 simplification is used to generate simplified versions of the original model with differ- 

ent amomts of detail. These levels of detail could be used to meet different reqirirements. 

However, instead of just a collection of simplified models, more complicated structures, 

called multiresolution models, can be designed to represent a model at various resolutions. 

Multiresolution models also provide more capability for editing the model, for example, 

changing a coarse level afFects the fine levels in similas ways. The problem of multiresolu- 





m EScarar is minimized and the optimal attribute value is found. To preserve discontinuity 

curves, it &st checks if the topology of the curve is modified by a set of rules. If the topology 

of the curve is modified, the edge collapse is disabled or penalized- Otherwise, additional 

points are sampled on the curve, and the Edisc term is minimize in the similar way as Edist 

in the energy function. 

The simplification algorithm produces a series of edge collapses which reduces the orig- 

inal mesh M to a simplified mesh M O  along with the edge collapses 

The inverse of each edge collapse is a vertex split. Reversing the edge collapse sequence, 

the mesh codd be represented as  a simplified mesh M O  along with a series of vertex splits 

Applying the vertex splits to M o  will recover the original mesh. This progressive mesh 

representation c m  be used to progressively transmit a multiresolution mesh. The represen- 

tation also allows selective refinement based some conditions, such as the viewing frustum. 

2.4.4 Vertex Tree 

The vertex tree structure can be generated naturally 60m some simplincation algorithms 

such as vertex clustering, edge decimation and face decimation methods. A vertex tree 

is a tree structure consisting of vertices. It has a root node which contains several chil- 

dren. These children have a number of children of their own. Each node can only have 

one parent. The single node without a parent is c d e d  the root of the vertex tree. Any 

simpMcation algorithm that works by collapsing a number of vertices and replacing t hem 

with a representative vertex could be modified easily to create a vertex tree. Currently, 

vertex trees find application mostly in realtime view dependent simplification, where the 

mode1 is dynamically simpMed based on the current view point. However, we will use it 

for a different purpose which will be explained in later chapters. 

Luebke and Erikson 

In the hierarchicd dynamic simplification (HDS) method developed by Luebke and Erikson 

[LUEg?], the vertex tree is used for view-dependent dynamic simplification. The algorit hm 

aims at dynamically simplieing complex CAD models depending on the viewpoint of the 

user. A vertex clustering algorithm is applied that creates the vertex tree in a preprocessing 



phase. Each node contains a number of descendent nodes and related triangles. The nodes 

are classified as actiue and inactive nodes. Active nodes are locatcd at the top portion of 

the tree and form a active tree, while inactive nodes occupy the lower portion of the tree. 

The active nodes located at the boundary between the active and inactive nodes are called 

boundary nodes. The boundary nodes form a cut through the tree- A list of triangles called 

the active triangle list is maintained, which contains al1 currently visible faces. Boundary 

nodes are expanded and replaced by their children when more detail is needed. A number 

of new triangles will be added to the active triangle list after an expansion. If less detail is 

needed, boundary nodes are coilapsed and some triangles are deleted £rom the active triangle 

list. Whether to collapse or expand nodes or which nodes are chosen depends on the nodes' 

screen space error. Each node has a bounding sphere containhg alI the descendents of the 

node, and the sphere is projected onto the screen. If the screen space occupied by the 

sphere of a node is below an error bound, the node will be collapsed. Otherwise it will be 

expanded. Thus the view of the model will dynamically adjust its detail at various parts 

according to how much detail is needed fiorn the curent view point. Besides the screen 

space error, the model silhouette is also detected and nodes potentially on the silhouette are 

tested with a tighter screen space error. This improves the shape of the silhouette &om the 

curent view point. Several optimizations are applied, which includes exploiting temporal 

coherence, culling invisible no des and parallelizat ion. 

Xia and Varshney 

The multiresolution structure developed by Xia and Vashney [XIA961 is a special vertex 

tree. The algorithm extends the edge collapses in progressive meshes and creates a rnerge 

tree which is essentially a binary vertex tree. For each edge coUapse, the vertex that is 

merged into the other vertex is called the child and the other vertex is called the parent. 

A series of edge collapses are applied and the parent-child relationships are established. To 

prevent merges that causes face fold-overs, a set of merging dependencies are enforced. 

The coarsest level model is used to initialize the vertex display list and the face display 

list. Then the vertex and face List is updated by adaptive refinernent or collapse based on 

image space error. This process is similar to that of the Luebke's approach. When updating 

the vertex display list, merging dependencies are taken into account to avoid fold-overs. 



Similar to Xia and Varshney's work, Hoppe [HOP971 extended the progressive mesh repre- 

sentation to aUow view dependent selective refinement. The structure is a vertex hierarchy 

with explicit parent-child relationship stored. Two operations, vsplit and ecol are defined 

which split an edge or collapse an edge respectively. Some preconditions are defined as to 

whether a vsplit and ecol is legal. Three refinement criteria are established which are based 

on the current view frustum, the surface orientation and the screen-space geometric error. 

If all of the t hree refinement requirements are met then the vertex is split- O therwise it is 

collapsed. 

Gueziec et al. 

The structure developed by Gueziec et al. [GUE98] does not create the vertex tree explicitly. 

But it is essentidy a vertex tree structure as we have described- The structure is used for 

interactive navigation of LOD and progressive transmission. The  algorithm assumes the 

input surface is manifold. An edge collapse algorithm is used t a  sirnplifi the input model. 

At first, the rnodel is sirnplified in a series of edge collapses. For each edge contraction, one 

vertex is kept which is colored red, and the other is merged into the  red vertex and is colored 

blue- The red vertex becomes the representative vertex of the  blue vertex. The red-blue 

coloring is the similar as the parent-child relations in [XIA96]. A vertex representative array 

is maintained which records the representatives of al l  the original vertices. Each vertex is 

dso associated with a level value which is incremented depending on the edge neighbors 

during simplification. After simplification, the order of edge collapses is built into a directed 

acyclic graph, Navigating through the LODS is achieved by replacing the vertex index array 

with the original or the representative vertex index. If the original index is used, it is a 

split. Othenvise it is a collapse. The algorithm also outputs a progressive representation 

which transmits the leveIs through batches of triangles and vertices, along with the vertex 

representative array. 

2.4.5 Multiresolution Parameterizat ion 

Mult iresolution adaptive parameterization of surfaces (MAP S) developed by Lee et al. 

[LEESSI constructs a smooth parameterization of the original mesh over a base domain. 

The parameterization allows applications such as remeshing the  original mesh into meshes 

with subdivision connectivity. The algorithm uses a vertex decimation simplification algo- 

rithm to reduce the original mesh into a base mesh. The hole praduced by removing vertices 



is flattened using conformal mapping and triaagulated by constra.int Delauney triangula- 

tion. During simplification, a bijection II fiom the original mesh AfL  to the base mesh 

M O  is maintained. For each sirnplincation step M' to M ' - ~ ,  barycentric coordinates are 

computed for each vertex in the original mesh according to M ' - ~ .  This process continues 

until the base mesh M O  is reached and the original vertices are all mapped to the triangles 

in Mo. Once the parameterization is finished, it can be used to remesh the original mesh 

into a subdivision connectivity mesh. This is achieved by subdividing the base mesh and 

mapping the vertices created fiom subdivision back to the original mesh. For any vertex p, 

first find the base triangle that contains p, i?om which the original triangle that contains 

p can be found. Then the mapping of p from the base mesh to the originai mesh can be 

calculated by II-' which is the inverse mapping of Tl. To smooth subdivision across base 

domain boundaries, the base domain is &st smoothed using modified Loop subdivision 

which maps the base mesh to itself. Then the inverse mapping II-' is applied resulting in 

smoothed remeshing. When subdividing the base mesh, uniform subdivision could be quite 

inefficient, which leads t O adaptive subdivision. Each triangle t O be subdivided is associated 

with an error value. Since each triangle has a set of original vertices mapped onto it, the 

error is defined as the maximum of the distances of the vertices to the triangle. When the 

error is below a threshold, the triangle is not further subdivided. 

2.5 Multiresolution Editing 

The multiresolution representations presented so far allow displaying, transmission and 

navigation of the multiple levels of detail. However, sometimes we want to edit the mul- 

tiresolution models. Editing a multiresolution model is different f?om traditional modeling 

in that we edit the model at multiple levels of detail. Multiresolution modeling offers many 

options that traditional modeling cannot provide. For example, after we have edited at a 

certain level, we can propagate the change to other levels, providing user control of scale. 

Or we can take surface patches extracted kom different levels and combine them together, 

so that the resulting model has a desired distribution of detail. 

Cignoni et al. 

The Zeta tool [CIG98a] implemented by Cignoni et al. proposes a data structure and 

algorithm that enables a user to interactively refine or simplie a user-specified region on 

models with manifold surfaces. The algorithm introduces a concept called the lifetime of 

a face. Each face is associated with two errors &hrth and &death. €&,-th is the mesh error 



when the face is &st introduced into the mesh and &decith is the mesh error when the face 

is deleted. The interval [ E ~ ~ ~ ,  &hath] is the Lifetime of a face. The key data structure is 

c d e d  a packed facet-edge denoted as a pfe. A pfe is a directed edge attached with al1 the 

adjacent faces t hat ever appeared during simplifkation. Since edges have direct ions, each 

original edge on the mode1 is divided into two opposite edges, and each of the two opposite 

edges takes responsibility for one side of the manifold surface. Within a pfe, the faces' Life 

intervals are disjoint with each ot her. A pfe and its faces have pointers to other pfes which 

allows traversal of al1 pfes. Pfes are constructed fiom a vertex decimation algorithm. When 

a vertex is removed and the hole is retriangulated, new triangles as well as the old ones 

are all  added to their edges' pfes. The entire mode1 is not stored explicitly, but irnplicitly 

defined by the pfes. The multiresolution representation consists of a vertex list, a face List 

and the collection of pfes. 

Given an error E, extracthg a mesh corresponding to error E is achieved by traversing 

pfes starting eorn an initial seed pfe- For each visited pfe, one of its faces is selected whose 

lifetime contains e. Since faces within a pfe have disjoint lifetimes, the selection is unique. 

After a mesh Ievel has been constructed, the user can select a region by defining a focal 

point and a radius. This region is to be selectively refined or simplified. The user provides 

two error values and E,, which decide the error at the focal point and at the boundary of 

the region. The user can &O specify a distribution function between the two errors. Given 

these information, the selected region is reconçtructed in the similar way as constructing the 

mesh, only that the error constraints follow the new specifications. The order of traversing 

pfes are constrained by some conditions so as to avoid inconsistent face expansion. 

Zorin et al. 

The interactive multiresolut ion mesh edit ing aigorit hm developed by Zorin et al. [ZOR97] 

uses subdivision to achieve multiresolution representat ion. The mult iresolut ion mode1 is 

fkst constructed kom an analysis process followed by a synthesis process. Analysis creates 

a coarse mesh from a fine mesh. A version of the Taubin [TAU951 smoothing filter is 

used to enhance the quality of the coarse representation. Synthesis refines the coarse mesh 

and builds the fine mesh. In the synthesis process, Loop's subdivision scheme and local 

fiames are used for propagation in the fine direction. To prevent the exponential storage 

space and processing time resulting from unifora subdivision, the algorithm is modified 

into an adaptive and a local version. Adaptive analysis and synthesis are used to cut 

off further subdivision where the difference between the fine level and the coarse level is 



below a threshold. As user edits are typically restricted to a local area of the model, local 

versions of analysis and synthesis are used to update only the triangles that are afFected 

by the editing. With the analysis and synthesis process, user edits can be propagated 

both in the coarse direction and in the fine direction. The algorithm also uses adaptive 

rendering to display the model, where the children of a subdivided triangle are only drawn 

when considered necessaqr, and larger triangles are rendered whenever possible and thus 

increasing rendering speed. 

Kobbelt et al. 

The multiresolution modehg algorithm developed by Kobbelt et al. [KOB98] is capable of 

editing arbitrazy meshes. The a l g o r i t h  simplifies the original model using a decimation 

algorithm, and a hierarchy is built from it. For multiresolution editing, the algorithm uses 

srnoothing and local £kames- Smoot hing a mesh is achieved by applying a discrete fairing 

algorithm called the umbrella algorithm. Local fiames are built based on faces, where each 

triangle and its three adjacent triangles are approximated by a quadratic surface. Distance 

vectors to the approximation surface is used as the detail coefficients. Editing is a multi-level 

smoothing process. It is defined as a V-shaped process ai = ikP@i-i RQ, applied fkom right 

to lefi. 9 is the smoothing operator which smoothes the current mesh. R is the decimation 

operator which decimates the mesh to the next coarse level. is a recursive cal1 to 

smooth the next coarse level. R is the downhill part of the V-shaped recursion. It continues 

until the coarsest level is reached. The operator P re-inserts the decimated vertices and 

the Enal smoothing operator Q eliminates noise. In interactive modeling, however, the 

multi-level smoothing starts directly from the coarsest level and omits the pre-smoot hing 

phase. The mesh is reconstructed each time after an editing operation is applied. This 

eIiminates dependency on the history of operations. When the user applies a modification 

to the mesh, first a boundary is designated to define the scale of influence. A handle is 

defined within the scale which is a strip of triangles. The handle is controlled by the user 

and all vertices on the handle are transformed in the same way. The rest of the vertices 

within the defined scale interpolate the fîxed scale boundary and the controlled handle, and 

the fairing algorithm makes sure the interpolation is smooth. 

What is Missing 

In previous sections, we have surveyed research on simpMkation and multiresolution mod- 

eling- Many simplification algorithms have been designed. These algorithms are able to 



take a complex model as input, and produce a simplified model with much fewer faces and 

vertices. However, nearly all such simplification algorithms share some common disadvan- 

tages. One is t hat the algorithms offer limited control to the user. Typically, a user can only 

control the simplification process by supplying a set of parameters. Such control may not be 

enough in circumstances where complex control is required. Another disadvantage is that 

at low polygon counts, a human user would probably do a better job than the algorithms. 

Moreover, when a model is handed to a simplification algorithm, all rneaning conveyed in 

the model will be lost. For example, a biinny mode1 resembles a bunny onIy to a human, 

but to a simplification algorithm, it is no more than a collection of vertices and triangles. 

The drawbacks with automatic simplification algorithms warrant a tool that offers the 

user more control and interactivity in the s imp~ca t ion  process. Multiresolution editing 

can be applied in this respect. However, the existing multiresolution modelers do not fit 

very well because existing multiresolution modelers emphasize editing the original model 

with the help of coarse representations, instead of iaproving mode1 simplification. These 

observations motivated us to develop the semiautomatic simplification tool. 



Chapter 3 

QSlim Overview 

Our work utilizes a siniplifkat ion algorithm to produce the multiresolut ion model. Mmy 

different simplification algorithms could be chosen for this. Initially we used the R-Simp 

algorithm which is a vertex clustering algorithm. Currently we are using the QSlim algo- 

rithm because of its good simplification quality, reasonable speed, and its use of decimation 

rather than refinement. In this chapter we wîIl give a review of QSLim [GAR99] in more 

detail. 

3.1 The Basic Algorithm 

As &st introduced in Chapter 2, QSlim is an edge decimation algorithm- The basic deci- 

mation operation is an edge contraction. At each step, the algorithm chooses a candidate 

edge and contracts it, reducing the vertices as well as the faces. 

3.1.1 Edge Contraction 

The contracted edge will be replaced by a single vertex v. This vertex is used later on 

to represent the edge. After an edge is contracted, the local neighborhood of the edge 

will be afTected by the contraction and must be updated. Figure 3.1 shows a normai edge 

contraction. In the figure, the contraction causes the number of vertices to be reduced by 

one. The two adjacent faces of the edge degenerate to single edges and are eliminated. The 

number of faces that degenerate because of each edge contraction depends on the topology 

of the surface. It might be one if the edge is on the boundary, or more than two if the edge 

has more than two adjacent faces. The set of faces surrounding the contracted edge is the 

union of each endpoint's face star. Each face within this set m u t  be updated using the 

new vertex. The edge queue (see "selecting edges for contraction" below) also needs to be 

updated. The edges surrounding the contracted edge is the union of each end point's edge 



(a) Before edge contraction (b) After edge contraction 

Figure 3.1: Contracting an edge. 

star. Each edge in this set wiU use the new vertex v as an end point. Some edges will be 

merged and become redundant. Such edges must be deleted from the edge queue. 

Vertex Placement 

There are several ways to get the position of the replacement vertex v -  We can rnerge one 

end point into the other. This approach has the advantage that there is no need to store the 

target vertex information separately. The progressive mesh representation [HOP961 using 

this approach can achieve similar size of representation as the original model. 

However, when the best approximation is desired, optirnized vertex placement should 

be used so that the error introduced by the edge contraction is minimized. 

Selecting Edges for Contraction 

The algorithm iteratively selects an edge and contracts it. The choice of the next edge to 

contract has a significant impact on the quality of the result. In QSlim, edges are sorted 

by the error their contractions will introduce. Each time we select an edge to contract, we 

pick the one that will introduce the least amount of error. After an edge contraction, the 

surrounding edges are affected, and their error must be recalcdated, and consequently their 

position in the queue must be adjusted. 

Vertex Pairs  

Since edge contractions only merge connected components of a model, separate components 

will remain disjoint after simplification. This is a desired result in some situations. Some- 

times better simplification can be achieved if some disjoint components are merged together, 

especially when they are close to each other. For example, a grid of disjoint but closely 



packed rectangles is better joined together and approximated by a Iarger rectangle, rather 

than contracting each individual rectangle. QSlim extended edge contraction to vertex pair 

contraction. Not only edges are candidates for contraction, vertex pairs that are within 

a distance threshold T are aiso contracted. The T is specified by the user and is usually 

s m d .  For our work, however, we ignore T and only use edges as candidates for contraction. 

However, such a feature could be added in future versions- 

3.1.2 Simplification Process 

The simplification algorithm works by iteratively selecting an edge, contracting it, and 

updating the local neighborhood aEected by the contraction. Candidate edges are put into 

a priority queue, sorted by the error of the edges. Each time the top edge (introducing 

the least error) in the queue is popped off and contracted. The algorithm stops when the 

queue is empQ or some predefined condition is met, such as the number of faces reaching 

a threshold. If the queue is empty, the whole model will be reduced to a single vertex. 

The algorithm could be described in the following steps: 

1. Initialize the model for simplification. 

2. Select candidate edges for contraction and calculate the error for each edge. 

3. Place a l l  the edges in a priority queue sorted by edge error, with minimum error edge 

at the top. 

4. Repeat until queue is empty or termination condition is met: 

(a) Pop an edge fiom the priority queue. 

(b) Contract the edge, replacing it with a new vertex. 

(c) Update dec ted  neighboring edges and faces. 

This algorithm in fact applies to other iterative edge decimation algorithms as weil. The 

fundamental difference between t hese algorithms is how the edges are sorted, how the error 

is evaluated, and how target vertices are positioned. QSlim introduces quadrics that offer a 

compact representation of the error rneasurement and allow optimizing replacement vertex 

positions. 



3.2 The Quadric 

The major contribution of QSIim is the introduction of quadric based error metric. A 

quadric offers a compact representation of surface characteristics. Given a vertex position, 

it can e d u a t e  the vertex's error relative to the associated surface and can &O find out the 

optimal vertex position by minimizing the error. 

3.2.1 The Definition 

The derivation of quadrics st&s kom a vertex's distance to a plane. Given a plane P 

where n is the plane's normal vector, the squared distance of a vertex u to P is 

This could be further expanded as 

Denoting n = [x, y, zIT, the term nnT is a matrix 

and dnT is a vector. Denoting nnT as A, dnT as b, and the scalar d2 as c, a quadhc Q is 

defined as 

Thus the squared distance of u to  P is 

where Q(v) is the evaluation of Q with vertex W. 

'1n later discussions, vectors representing vertices are in boldface only in formulas, not in text. 



3.2.2 The Error Metric 

Since each face of a model defines a plane, the error of a vertex v to a face f is defined 

as the squared distance from u to the plane P defined by f ,  which could be calcdated by 

evaluating the quadric of P. For a set of faces F, each face of F defines a quadric Tom its 

plane. The error fiom v to aU the faces in F is defined as the sum of errors fkom v to  each 

face of F: 

where E F ( v )  denotes v's error to the face set F I  It can be shown that quadrics have the 

property 

i z 

This indicates that when evaluating the sum EF, there is no need to calculate the error 

fiom v to each face in F. Instead, we calculate the sum of the faces' quadrics and the error 

could be evaluated from the quadric sum. 

Each original model vertex vi h a .  a number of adjacent faces which is the face star of vi. 

When contracting an edge (vil vj), both end points are replaced by a new vertex v. Thus v 

is associated with the union of vi and vj's face star. If a Iater contraction collapses an edge 

containing v, lets Say (v, vk) , and replace it with a new vertex v', v' will again inherit faces 

associated with v and vk. As simplification goes on, associated face sets merge and become 

larger. If the whole model is simpiified to a single vertex r, the associated face set of r will 

be al l  the faces in the model. Therefore, for any vertex v that appears during simplification, 

it has an associated set of faces, which we denote as F(v). Considering equation 3.1, we 

can assign each vertex v a quadric 

f 

which is the sum of quadrics of each face in F(v). 

Initially all the original vertices' quadrics are initialized by adding quadrics from their 

face stars. When contracting an edge (vi, vj) + v, we calculate the quadric of v by 



By maintaining a quadric for each vertex, we elirninate the need for storing F (v) explicitly. 

If the error for a particular vertex v is needed, it can be obtained by evahating Q, (u)- 

Normalized Quadric 

Suppose we have a triangle f with quadric Q f. The total quadric of f  is Qj. If we subdivide 

f into 2 triangles, since the plane d e h e d  by f is the same, each sub-triangle aiso has a 

quadric Q f. Now the total quadric of f is 2Q f. Clearly the total quadric is dependent on 

the tessellation. This is a problem when we are initializing the original vertices' quadrics. 

We would want the quadrics dependent only on the mode1 geometry, Thus it is desirable 

to normalàze the face quadrics such that they are independent of tessellation. In QSlim, 

a face's quadric is normaiized by dividing the face into fkagments. Each hagrnent has a 

quadric weighted by its area and assigned to a face vertex. The vertex adds the quadrics of 

all &agments assigned to it. In this way, the total quadric of a mode1 would be independent 

of tessellation. 

3.2.3 Calculating Optimal Vertex Position 

With the error rnetric defined, finding the optimal vertex position means minimizing the 

error value. For a vertex u with quadric Q, its error is 

Taking partial derivative for Q on each coordinaée component of v : (x, y, z) ,  we have 

Solving VQ(v) = O yields the optimal vertex position v = - ~ - ' b .  This position has the 

minimal error for the faces associated with Q. The optimal replacement vertex positions 

are calculated this way after an edge has been contracted. 

3.2.4 The Extended Quadric 

Sometimes a vertex has additional properties, such as texture coordinates, colors or nor- 

mals, other than geometric positions. Additional attributes are treated in the same way as 

positions. For example, a vertex with RGB color values can be generalized to a vertex in 

6-dimensional space. AU previous concepts remain the same except that their implemen- 

tation is norv in higher dimensions. The squared distance fkom a vertex to a plane can be 

reduced to the same form D~ = V ~ A V  + 2bTv + c, where A is a symmetric matrk,  b is a 

vector and c is a scalar value. Thus the quadric definitions are mostly the same. 



With the quadric extended to allow more vertex attributes, the dgorithm can treat 

additional vertex attributes a th little modification. However, there are restrictions to the 

kind of attributes that can b e  included. The attribute values should be on a per vertex 

basis, i.e,, each vertex should only have a single set of attributes. For geometrical positions, 

this is implicitly true because the  vertex can only have one position in geometric space. But 

for other attributes such as texture coordinates and vertex norrnals, a vertex could have 

one set for each adjacent face- By "duplicating" vertices at the same geometric position but 

different texture or normal coordinates, QSlim can handle these problerns to some degree. 

Even this approach has its Limitations. For example, if two vertices have texture coordinates 

fkom the same texture map, a small difference between the texture coordinates rneans the 

vertices are also close to each other on the texture map. However, if the coordinates corne 

from difFerent texture maps, t h e  distance calculated fkom the two coordinates does not make 

much sense, since even when the  distance is very small, it does not mean the textures are 

more continuous. In Chapter 2, we have described wedges introduced by Hoppe [HOP99]. 

With such an extension, the problem can be fixed. 

3.2.5 Constraints 

Feature edges and boundaries may be important to the visual quality of a model. Preser- 

vation of boundaq or feature edges is achieved by weighting quadrics of vertices on these 

edges, such that the error and position of the replacement vertex is biased toward the edge 

to be preserved. For an edge e that is to be preserved, an imaginary face for each adjacent 

face of e is inserted dong e, and imaginary faces are vertical t o  their correspondhg adjacent 

face (figure 3.2). The quadrics of the imaginary faces are weighted by a large factor and 

added to the initial quadrics of edge points of e. Thus when optimizing vertex positions, 

the result will bias toward the vertical faces because these faces have larger weights. In this 

way, the replacement vertices tend to be closer to the preserved edge and the edge shape is 

preserved. 

Int egrat ing Quadrics in Simplification 

Given the quadric error metric, we can add detail to the simplification dgorithm presented 

at  the beginning of this chapter. 

In the initialkation phase, the quadric for each vertex is calculated by adding the nor- 

nialized quadrics of its adjacent faces. 

When initializing the edge queue, each edge is assigned a quadric by adding the quadrics 



Figure 3.2: The vertical imaginary face is added for edge constraints. 

for the vertices adjacent to the edge. The optimal replacement vertex position is calcdated, 

and the error of an edge is evaluated by applying the optimal vertex position to its quadric. 

Then the edge is inserted to the edge queue sorted by its error. 

For each edge contraction, a new vertex is created taking the optimal position calculated 

previously, and wit h its quadric being the quadric of the edge. All affected neighboring edges 

must be updated, The update includes recalculating each afFected edge7s quadric and error. 

The edge's position in the edge queue must be adjusted to preserve the order of the queue. 



Chapter 4 

Mult iresolut ion Represent at ion 

In this chapter, we will introduce the multiresolution representation used in our system. This 

multiresolution structure is a vertex tree as introduced in Chapter 2. It is similar to those 

used in [XIA961 and [LUEg?]. Many simplification algorithms are able to create a vertex 

tree naturally. Such dgorithms Spically map several vertices to one vertex during each 

simplification step. Edge decimation and vertex clustering algorit hms are good examples 

of these. Because of the many-to-one mapping, a tree structure is suitable to record the 

simplification process. 

4.1 Vertex Tree Terminology 

Here we define the notations that we use fkequentl; q in our Iater discussions. 

A vertex tree is a tree structure whose nodes are vertices in a certain space. For o u  

discussion, the space is 3-dimensional geometricai space. Each node of the tree has zero or 

one parent node, and may have a nwnber of child nodes. The comection between a parent 

and a child is cailed a link. If a node has no parent node, it is called the root of the tree. 

Figure 4.1: An example of a vertex tree. 
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(a) The faces to be simplified (b) The constructed vertex 
tree 

Figure 4.2: Building a vertex tree from a surface with 6 vertices- (a) are the faces to be 
simplified. (b) is the constructed vertex tree. The number at  the internal nodes denote the 
order they are created. The dotted links indicate that node 5 is the pseudo root added to 
create a single tree- 

A tree has only one root. If a node has no children, it is called a leaf node, which is also 

called an original vertex. We c d  nodes that are not leaf nodes the internal nodes, which 

could also be called branch nodes. Each internal node &O defines a subtree or a cluster, 

with the internal node being the subroot of the subtree. Nodes that share a common parent 

are siblings to each other. Each node has a unique path made up of links connecting the 

node to the root . If a node v bas a path p, all nodes on p except u are câUed ancestor nodes 

to v, and v is a descendent node to its ancestors. The number of links on p is called the 

level or the depth of u. The root has a depth of O. A set of vertex trees that are disjoint 

with each other is a vertex forest. Vertex forests codd be converted to a single vertex tree 

by adding a root node taking all the roots of the vertex trees as children. We also place the 

tree such that the root is at the top, and the leaf nodes are at the bottom. The direction 

£kom the leaf nodes to the root is up, and the opposite direction is down. Figure 4.1 shows 

an example of a vertex tree. 

If all the nodes of a vertex tree is uniquely ordered and put into a list, we Say that the 

tree is ordered, and the list is called the order list. If the order list only contains the internal 

nodes of the tree, we caU it internally ordered. 

Construction of Vertex Tree 

A vertex tree is constructed from the bottom up during the simplification of the input 

model. In the QSlim algorithm, each iteration contracts an edge (vil vj) + u. The two 
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(a) Reconnection after a single edge 
contraction. 
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(b) Current proses after several edge 
contractions. 

Figure 4.3: Recomect current proxies after edge contractions. 

vertices vi and vj are replaced by the optimized vertex v. This is a mapping of two vertices 

to one new vertex. Thus a single edge contraction creates a s m d  tree where u is the parent 

(also the root) and vi and v j are its children. Al1 adjacent edges and faces of vi and uj are 

reco~ec ted  to W. In Iater simplifications, v will also be contracted and become a child of 

the new node. As the simpMcation progresses, a vertex tree will be built fiom the bottom 

up. If the model is not simplihed to a single node but down to a certain number of faces, 

the result of the simplification will be a vertex forest. For simplicity, the forest is converted 

éo a vertex tree by adding a pseudo root node. Figure 4.2 shows a simpEcation process 

that builds a vertex tree from a small surface with 6 vertices. 

Current Proxies 

In QSlim, after each edge is contracted, the edge's vertices are deleted and the new node is 

used ta represent the edge.' However, we would like to preserve the old vertices to build a 

vertex tree. Thus we must have a way to access the newly created node for later reference 

to the contracted edge- We use current proxies to achieve th&- 

For each original vertex of the model, we add a pointer t hat initially points to it. We cal1 

the pointers current prunes, and use the term CP(u) to refer to the current proxy of the 

original vertex v.  When we refer to the vertices, instead of using the vertices themselves, 

we use its current proxies. After an edge e(vi, uj) has been contracted to the vertex v, 

'In practice, one end point is deleted and the other is updated with the new node's information. This is 
logically equivalent to deleting both end points and creating a new one. 



both CP(vi) and GP(vj)  are now pointing to v. Therefore, any reference to v, or vj is 

now actudy referring to v. If v is fater contracted again and has a parent v', both CP(vi) 

and CP(vj)  should be redirected kom v to u'. Figure 4.3 illustrates updating the current 

proxies after edge contractions. 

Redirecting current proxies to a particular node is initially implemented as a recursive 

c d ,  see algorithm 1. 

Algorithm 1 Redirecting current proxies to r. 
reconnect ( Node r, Node d ) 

C 
if ( d is leaf ) 

C 
CP(d) = r; 
return; 

foreach c of d's child 
reconnectc r, c ) ;  

1 

At any time in the simplification, current proxies will point to the vertices that the 

mode1 has been simpEed to. Using current proxies makes updating vertex references easy. 

When a vertex's current proxy is changed to a new vertex, al1 edges and faces that refer to 

that vertex will be automaticdy updated. 

Each current proxy is assigned a unique ID, and current proxies are referred by their 

IDs. In implementation, the current proxies are stored in an m a y  and the index is used 

as the ID. Thus a face wiU contain the current proxy IDs for its vertices. Whenever a 

face vertex is changed, the face shape also changes- If an edge of a face is contracted, two 

of the face's vertices will have current proxies pointing to the same node, and the face is 

degenerate (see figure 4.4). 

Order List 

As introduced in Chapter 3, QSlim iteratively picks an edge from the top of the edge 

queue and contracts it- As each edge contraction produces a new vertex tree node, the 

sequence of edge contractions generates a list of nodes uo, vl, . . . , v,. All nodes contained 

in this list are created during simplification, i.e., t hey are all  internd nodes. These nodes 

connect the internal nodes of the vertex tree into a particular order. Thus the vertex tree is 

internally ordered after simplification. Figure 4.2 (b) has already shown the ordering among 



Figure 4.4: The face updates after three edge contractions- The solid lines represents the 
tree links. Dotted lines are the faces. After updating current proxies, face vertices will be 
automatically updated. The face (h, e, f )  is now updated to face (a, 6,  c).  The other faces 
are degenerate. 

the internal nodes, which is reflected by the numbers. The list that connects aU the internd 

nodes is the order lis& If we start ftom the fkst node and follow the order list, we are able 

to traverse aU the internal nodes of the tree. The Est reflects the order that QSlim contracts 

edges. Since aLl candidate edges are sorted by the error their contraction introduces, the 

order list is sorted in the same way. Therefore each node of the order list inherits the edge's 

error as the sorting key. The direction of the order list is hom coarse to fine, Le., the nodes 

that are generated later during simplification are closer to the hont of the list. Thus the 

first node in the list will be the last node generated Tom the last edge contraction. For 

the order list, we also maintain a pointer that points to a particular node in the list. The 

pointer is called the current position in the order Est. 

The order list is difEerent from the edge queue in that the edge queue is created by 

QSlim, and only exists during simplification. Once the simplification is over, the edge 

queue is destroyed. The edge queue is o d y  an au-uiliary structure assisting simplification 

for selecting candidate edges. The order list, however, is a property of the vertex tree, and 

exists as long as the vertex tree. It defines a particular order that the internal nodes are 

connected. The order list can be directly created from the edge queue by recording each 

edge contraction selected by the edge queue. But it does not depend on the edge queue. 

We can always sort the internal nodes of the vertex tree according to some other criteria 

and produce a new order list. 



(a) A cut made up of leaf nodes (b) A cut made up of internai and leaf 
no des 

Figure 4.5: Examples of tree cuts. 

Tree Balance 

Since an edge contraction is a locd  operation, and QSlim selects the next candidate edge 

o d y  based on the error, the constructed vertex tree is usually not balanced. The parts that 

get simplified more will have deeper subtrees while less sîmplified parts may have shallow 

subtrees. The extreme situation is that  one node gets contracted and its parent immediately 

gets contracted and so on. This will create the most unbalanced tree. However, such cases 

are iinlikely to appear because edges are sorted by their error. Where simplification is too 

severe in one local area, the error of later edge contractions in that area will be greater and 

thus their contraction will be delayed in the edge queue. In the next iteration the algorithm 

will pick an edge from elsewhere. Thus the simplification algorithm itself will try to balance 

the tree to a certain degree. The relative balance of the vertex tree is shown in Chapter 6 .  

4.3 Cut of the Vertex Tree 

A cut of a tree is a node set C that satisfies: 

1. for any original vertex vi, CP(vi) E C; 

2. for any two nodes nr E C and nk E C, nl is not an ancestor of nk- 

3. for any node n E C, there is a t  least an original vertex u such that CP(v)  = n. 

Intuitively speaking, a cut of the vertex tree is the vertex set of a simplified version of the 

original model, Figure 4.5 shows examples of tree cuts. As we will see in the next section, 

a cut is a complete partitioning of the model vertices. 



For any face f (co, ci, c2), where ci are nodes pointed to by the face's current proxies, if 

al1 three nodes belong to the cut of the vertex tree and none of the two nodes are identical, 

f is called a current face. For any cut of the vertex tree, all current faces form the current 

leuel of the vertex tree. 

The cut and current level define the visible nodes and faces when the user navigates the 

vertex tree, which we will introduce later. Corresponding to a cut is a unique position in 

the order list . 

Part itioning 

It is not diEcult to see that each internal node defines a vertex patch of the model, because 

each internal node is the root of a subtree which contains a set of original vertices. Particu- 

lady, the root defines a vertex patch that contains the whole model's vertices. At one level 

below the root, each child of the root defines a vertex patch, and thus all the children of the 

root define a vertex partition of the model- We could also go further down to other levels 

and the subsequent levels will have their own partitions of the tree. At lower levels, the 

patch size becomes smaller and smaller. Figure 6-13 shows a partition of the bumy model 

at  one level d o m  from the root. Any given cut defines a partition of the model vertices. 

Given a partition, a vertex belongs to a unique vertex patch. However, a face has three 

vertices and each vertex may belong to dserent partitions. This is why some faces are not 

colored in figure 6.13 as  their vertices belong to different patches. We can assign such faces 

specificnlly to one of the patches, for example, we c m  assign the face to the patch that 

contains the face's vertex with index zero. In this way, a vertex patch defines a face patch, 

and the vertex partition also defines a face partition. 

4.5 Navigation of the Resolutions 

After the vertex tree is constructed along with an order list, we are able to navigate the 

Merent  resolutions of the model. Suppose we are now looking at the finest resolution, 

the current position is the last node in the order Est. We can decrease the resolution by 

moving the current position backward in the order list. When the current position moves 

backward for one node, we have to perform one collapse. A collapse is the replay of an 

edge contraction, which is an operation of reconnecting a node's children's current proxies 

to that node. The algorithm of collapsing is shown in algorithm 2- 

When a node gets collapsed, several nodes on the current resolution become invisible 



Algorithm 2 Collapsing a node 

1 
reconnect (n) ; 
mark degenerate faces as invisible ; 

1 

and are replaced by their parent. The neighboring faces need to be checked for degeneracy. 

If a face has two corner vertices with their current proxies pointing to the same node, it is 

degenerate and will need to be marked as invisible. 

Similar to collapsing but in the opposite direction, we define the operation of splitting. 

This is a step forward in the order Est. The operation is to split a visible node and replace 

it with its children. The algorithm of splitting is shown as in algorithm 3. 

Algorithm 3 Splitting a node 
s p l i t (  Node n ) 

1 
foreach c in n J s  chifdren 

reconnect (c) ; 
check for faces that become visible; 

1 

As with collapsing, the affected faces must be checked since some of the invisible faces 

become visible again and should be marked as such. 

By collapsing and splitting, we are able to go back and forth in the order list. As 

we traverse the order k t ,  faces disappear and reappear depending on the change of their 

visibility. The order List is actually a record of the simplification process, and our traversal 

is replaying the simplification process back and forth. At any stage of the traversal, we are 

looking at the current level of the vertex tree, and the set of visible nodes is a cut. 

4.6 Optimizations For the Tree Structure 

4.6.1 Mode1 Topology 

We need to be able to extract the topology information £kom any current level of the tree, 

such as finding the adjacent faces of a node. Topology information can be stored explicitly 

in each node. This will require a large amount of memory, and with a lot of redundancy. 

On the other hmd, since all nodes are linked in the vertex tree, and the original mode1 has 



ail the topology infirmation, aU topology information could be retrieved from the original 

model. 

There are mmy ways to express topology, we c m  store adjacent edges, vertices or faces 

in each vertex structure. Storing adjacent faces will encompass both adjacent edges and 

vertices, since we do not consider isolated vertices and edges. Therefore we keep a list of 

adjacent faces in each of the origind vertex structures. No topology information is stored at 

internal nodes. When we want to get topology information kom internal nodes, we have to 

find the corresponding original vertices for this information. The basic operation of getting 

topology information is getting the neighbor faces of a node. This is a recursive call shown 

in algorithm 4. The leaf nodes that are descendents of this node are found and the adjacent 

faces are added to the returning list. The third parameter vis determines if we want to 

have the current faces (visible faces) oniy, or al1 the adjacent faces regardless of visibility. 

Algorithm 4 Getting neiehbor faces of a node 
nodeAdjacentFaces( Node n, Faces f l i s t ,  Bo01 vis ) 

{ 
if ( n is leaf node ) 

foreach f in n8s neighboring faces 
r 

i 
if ( (f not in flist) and ( !vis or f .visible) ) 

f list . add(f) ; 
} 
return; 

1 
foreach c in nJs chilàren 

nodeAdjacentFaces ( c , f , vis ) ; 

With algorithm 4, we are able to implement the operation of updating visible faces in 

the splitting and collapsing operations. In collapsing, we collect the adjacent current faces, 

and check each one's visibility after the coliapse. For splitting, we have to get all adjacent 

faces including visible and invisible ones, so that some revived invisible faces can be marked 

as visible again. 

In [LUE97], each node maintains a list of original triangles that are contained in the node 

classified as two groups. One group has faces with only one corner contained in the node. 

The other group with two or more corners contained in the node, but not in its children. 

The first group is used to update corners of faces that are still visible after collapsing or 



(a) Before rearrangement. (b) After remangement 

Figure 4.6: Rearrange vertices. 

splitting the node. The second group is used to identiS. which faces shoulc d be deleted 

(invisible) or added (visible) after the node is collapsed or split. In out approach, these 

functions are accomplished by the curent  proxies and algorithm 4. There is no need to 

update the face corners in the first group because this is done automaticaUy by updating 

the current proxies. The second group of faces are eliminated because we retrieve the face 

list on the fly and check for visibillQ Without having to maintain the list of faces a t  each 

node, we Save some amount of memory required for each node. If the original mode1 is big, 

the memory savings could be signïficant. However, this approach will likely to be slower. 

4.6.2 Rearranging Leaf Nodes 

Although clear as definitions, recursive calls are expensive and slow. As the user traverses 

the order list back and forth, the nodeAdjacentFaces function is called hequently, and 

the recursive calls in it could slow down the speed of response. The reconnect function 

in algorithm I is also a recursive c d .  Looking at  these functions reveals that what the 

recursive call does is to have access to the Ieaf nades that are descendent to an interna1 

node. If we c m  get these leaf nodes in another way, we can achieve some optimization. 

AU the model's original vertices and their corresponding current proxies are stored in 

an array. An original vertex and its current proxy is accessed by its index. Initially the 

array is created in the order of reading in the vertices. However, if we rearrange the order 

of these nodes according to the tree, we can associate the order of the vertices with the tree 

structure. The idea is to do a depth e s t  traversal and rearrange the vertices in the order 

that they are visited. See figure 4.6, in which the original tree (a) is rearranged as (b). 

For each node v, we add two indices called the span(v) that is an index range (a, b). 

The original vertices within the index range are all descendents of u. For example, in fi,aure 

4.6, node P has a span of (0, 3) and the leaf nodes within that range are d l  descendents of 



After the mode1 is sirnplified we build the span for each node. Leaf nodes will have 

the span of a single index. With the span information, we can now eiiminate the recursive 

structure of reconnect and nodeAdjacentFaces, and update the current proxies or get the 

adjacent face list directly (see algorithm 5 and algorithm 6). 

Algorithm 5 Revised reconnect function - 
reconnect( Node n ) 

C 
for ( i=span(n) . a; i<=span(n) .b ; ++il 

// redirect the i'th current proxy to a 
current-pointerci) = n; 

Algorithm 6 Revised adjacent face function 
nodeAdjacentFaces ( Node n, Faces f list , Bo01 vis ) 

for( i=span(n) . a; i<=span(n) . b; ++i) 

f oreach f in vertex(i) ' s  neighboring faces 

C 
if ( (f not in flist) and ( ! vis or f .visible) ) 

f list . add(f) ; 
} 

} 
1 

4.6.3 Generalized Tree 

By default, Q S h  b d d s  a binary vertex tree, because its prirnary simplification is an edge 

contraction. However, this might be too fine-grained and requires a large amount of memory 

for big models. Quad-tree or oct-tree may be required for hierarchies which consume less 

memory. To generalize this idea, the upper bound of the number of children a node could 

have becomes a parameter child-bound that the user can specie. When contracting an edge 

(v i ,  v j ) ,  if an end point is an interna1 node, the replacement node v can choose to adopt 

its children if after adoption, the number of children of v is within child-bound. Figure 4.7 

shows this process. 



(a) Before adoption. (b) After adoption. 

Figure 4.7: The replacement node adopts the edge end point's children. 

It is important that such adoption preserves some relationship that exists between pre- 

vious parent and children. For QSlim, this relationship is that the parent's quadric equalç 

the sum of chilchen's quadrics: 

I t  is not dXicult to see that adoption preserves this relationship. 



Chapter 5 

Semiaut omat ic Simplification 

Numerous simplification algorithms have been introduced in the past decade. Most of them 

are completely automatic. Some of them offer I t e d  user control, often in the form of input 

parameters such as error bound, the number of vertices or faces desired, or some criteria 

for detecting features t hat need special care during simplification. Once the simplification 

process has started, the user can only depend on the algorithm to produce a good final 

result. The limitations of completely automatic simplifications are: 

The suitable parameters are hard to obtain. It is true that with the right set of 

input parameters, the simplXcation algorithm wouid produce some very good results- 

However, h d i n g  such a set of parameters is not easy. Each algorithm has its own 

context and parameter domain which d q e n d s  not only on the algorithm but also on 

the input model. 

The simplification process is not interactive. As indicated above, finding the correct 

parameters requires mnny trials which i s  tedious. When dealing with visual objects, 

the user would usudy  want to manipulate the objects and get feedback interactively. 

Not enough control for the user. Setting a few parameters in some circumstances is 

not enough for complex control over the simplification. It is better to have a way that 

the user can control the simplification i n  a flexible and intuitive marner. 

Perceptual quality may not be the consistent with numerical or geometric quality. AU 

simplification algorithms rely on certain numerical measurement of the model quality. 

However, the perceptual and numerical quality of the simplification may not always 

be in agreement. One simplification with large numerical errors may appear more 

sirnilar to the original model than mot  her simplification wit h smaller errors- 



Automatic algorithms do not understand the model. Each model has some semantic 

value that a human could easily recognize. However, automatic algorithms treat the 

input model only as a collection of triangles and vertices. With user control, the 

simplification is more consistent with the meaning of the model. 

Automatic algorithms cannot adapt to model use. For example, a model is usually 

associated with a skeleton in animation applications. It is better to simpliQ the model 

t aking the skeleton int O considerat ion. 

Automatic simplification has the advantage of dealing with large models, where it is im- 

possible for huxnan to sirnpLi@ manually. However, when it cornes down to a certain level 

of coarseness, hurnans usuaUy do a better job than the automatic algorithms. It will be 

bet ter if advantages of both approaches be combined so that better simplification c m  be 

achieved. Our work is an effort toward achieving this goal, Our goal is to build a tool that 

offers automatic simplScation with fairly good results, at the same time providing the user 

with tools to m o d e  the simplification process and improve the simplification result. 

Our tools are different £iom traditional modelers. There are many excellent 3D modelers 

that offer rich collections of tools and features for the user to build or edit 3D models. Our 

work is not a competing modeler in this sense. We are focuçed on simpMcation and try 

to produce better simplification results. One question that couid be asked is: why not 

use a simplification tool combined with a traditional modeler? The user could simplify 

the model to a certain level of detail, and use the modeler to modi& it and continue 

simplification. The disadvantage with this process is that it is not interactive. Alternating 

between simplification and modeling could be cumbersome. Our tool will offer a unified 

environment for simplification and modeling. Another important disadvantage of traditional 

rnodelers is that they only operate on a single level of detail. Our tool will exploit the 

multiresolution structure, where the user modifications are not limited to a single level of 

detail. Multiresolution models provide another dimension in which to operate: the different 

detail levels. Once the user improvements are finished, it is possibIe to extract a number 

of levels at different resolutions that are also improved. This is an important benefit where 

multiple levels of detail are expected. Finally, interacting with the simplification process 

affords a high level of control not available with modelers and rnanual manipulation. 

As introduced in Chapter 2, there is already research being done on multiresolution edit- 

ing. Our work differs from those. Multiresolution editing is focused on changing the model, 

in particdar the original model. Typically the original model is changed by manipdating 



the coarse levels, giving control of the scale of the edit. Although our work offers editing 

tools, we are focused on improving the fidelity of coarse level representations and we would 

prefer to preserve the original model instead of changing it. Specific functions unique to 

this approach include the ability to control distribution of detail on the model sudace and 

the partitioning of the surface. 

In the following two chapters, we will give a detailed description about the structure we 

use and the functionalities that are provided based on the structure. 

Our tool is an integration of simpMcation algorithrns and a modeler that the user can use to 

intervene the automatic simplifkation process. Starting fkom a highly detailed model, the 

user applies a series of edits using the provided functionalities and produces an improved 

coarse level representation. 

The typical procedure of using the tool is 

1. The system reads in an input mode1 and simplifies it. This produces a hierzchical 

structure t hat encodes multiple resolutions of the model. 

2. The user navigates the hierarchy and selects a level of detail that he/she wants to 

make changes. Then using the functionalities provided in this tool, the user manuaUy 

improves the model a t  this level. 

3. The change made by the user can be propagated to other levels of detail. Or the user 

could restart the simplifxation taking the modified level as input. This will recreate 

al1 the coarse levels wit h the fine levels unchanged. 

4. Step 2 and 3 is repeated until the model is improved as the user wants it. 

5. The whole hierarchy or a single level of detail is output. 

In Chapter 4, we introduced the vertex tree structure that is used for multiresolution rep- 

resentation in our tool. Briefly speaking, the vertex tree remembers old vertices instead of 

deleting them as pure simplification does. Meanwhile, we record the decimat ion process in 

an order list, and traversing the list enables us to navigate the simplification process which 

results in dserent levels of detail. As our goal is to improve the quality of simplification, 

we should provide the ability for users to interrene in the simplification process and modify 

the model, so that the model has a better appearance than that produced from automatic 



simplification directly. We offer a set of tools that are usefd for the user to achieve this 

goal. 

There are many possible ways to apply changes to a model. The fundamental method 

is changing the geometric positions of model elements, which is provided by traditional 

modelers. What is unique in our tool is the multiresolution representation. This enables us 

to modiS. the model in a mdtiresolution context. We can exploit the structural power of 

the representation so that better simplified nzodels can be created. 

Geometric Position Editing 

The basic operation that a user can appLy to a model is to change the geometric positions 

of elements. By exwnining the model, a user locates the vertices that are poorly placed 

by simplification dgorithms and moves them to a better place. The faces that contain this 

vertex will be updated with the change. 

The geometric editing tool in our modeler is quite simple. The user selects a vertex 

and moves the mouse, the vertex will follow the mouse movement and once the mouse is 

released, the vertex is put to a new position. Compared to the rich set of geometric editing 

tooIs offered by traditional modelers, this is rather simple and incomplete. Providing a 

complete set of such features would be beyond the scope of this thesis as our work is more 

focused on exploiting the multiresolution representation. 

One thing that needs consideration is how to define the movements of vertices. When 

the user moves the mouse, the vertex follows them in the eye space- Currently, the user 

can only move a vertex parde l  to the screen, which means paralle1 to the XY plane in eye 

space. The model can be rotated to achieve translation in the third axis. 

5.3 Propagation 

Simply moving a single vertex is too Iimited. Usually we want the change to propagate to 

some other area. There are three identifiable directions for propagation, which are: 

Propagation to the parent. The change of a node affects the position of its parent, 

which in turn affects all the ancestors. 

Propagation to the children. The change of a node affects its children and furthes 

descendents. 



Propagation to the neighbors. The change of a node affects the neighboring nodes on 

a cut that is being viewed- 

5.3.1 Propagation to the Parent 

As the goal is to improve simplification results, the user might desire that changes in the 

currently viewed cut influence the coarser levels. This implies that when there is a change 

in the child nodes, the parent should in some way reflect this change. This requires that 

the parent's position be dependent on the child's position. However, parent positions do 

not depend on their children after the vertex tree has been initially coastructed. As shown 

in Chapter 3, the quadrics are initialized £rom the original faces and accumulated during 

simplification. Therefore, when using t hese quadric values to evaluate the optimal node 

positions, the target position only depends on the original faces. Unless the related original 

surface is changed, a node's optimized position wiU not be afFected. 

A way to work around this is to use faces in the current level to recalculate the quadrics 

so that the parent's position is aBected by the child's change. Suppose we are moving a node 

v, and the parent node of v is v,. Let us assume that v is an internal node. Initially, the 

quadric of v is derived by summing its children's quadrics. Now we recalculate v's quadric 

not from its children, but from its current faces. The calculation is exactly the same process 

that the original vertices' quadrics are initialized. For each current face fi that are adjacent 

to u, denote its quadric as Q f i  - Thus v's quadric is 

2 

where i iterates al1 the adjacent faces of v. pi are weighting factors associated with each 

face quadric depending on the weighting strategy (see section 3.2.2). After v's quadric is 

recalculated, vp7s quadric is updated by sirmming its children's quadrics again. For vp7s 

children that have not moved, the old quadrics are used. Thus v/s quadric is sum of a 

mixture of original face quadrics and current face quadrics. 

5.3.2 Propagation to the Children 

When an internal node is moved, it might be desirable to move its descendents as well. 

There are two ways that we might like the change to he propagated toward the fine Ievel 

nodes. One is to propagate the change wit hout any modification. This will change al1 the 

fine level nodes including the original vertices. On the other hand, sometimes we might 

want to preserve the original model. This is true when we are especially concerned with 



improving only simplified modek. In addition, levels t hat are closer to the original should be 

affected less than those farther fiom the original. The total effect would be the descendents7 

changes become weaker and weaker as they approach the original vertices, and when the 

original vertices are reached, the changes disappear. We denote this effect as attenuation. 

Glo bai Interpolation 

One way to achieve the propagation is by globally interpolate the change. Suppose we move 

the node v and the difference vector between the old and the new position is b. If we add 

d to all the children of v, this will give all the descendent nodes of v the same movement. If 

we want to attenuate the child node changes, we can interpolate d based on an attenuation 

factor at each node. 

Choosing an Attenuation Factor 

We want the changes to get smaller and smaller as nodes get closer and closer to the original 

model. Adding an attenuation factor and denoting it as t (O 5 t 5 l), the interpolated 

position u' is v' = v + t - b. Thus t should be 1 at  the node that is being rnanipulated, and O 

at the leaf nodes. One way of getting t is to relate it to the node depth. The closer a node is 

to the leaf nodes, the smaller it is. At leaf nodes t = 0, and at the node being rnanipulated 

t = 1. Nodes between v and leaf nodes have values between (O, I), and should decrease as 

nodes7 depth increases. A difficulty is that the vertex tree is usually not balanced. For an 

interna1 node, the number of links on the path to each leaf node within v's span is difierent. 

Thus we cannot use the link numbers directly because for each node there shodd be ody  

one t value associated with it. 

One approach we have tried to overcome this problem is to assign a length value to each 

link, and use the length instead of the nurnber of links. We stretch the links to make all leaf 

nodes have the same path length, which we normalize to one- For a node v, its attenuation 

factor is calculated by 

where max-leaf-distance(v) calculates the number of links fkom v to the deepest leaf spanned 

by v. This function evenly divides the path lengths where possible. Otherwise, it will stretch 

a short path to match a longer path. Figure 5.1 shows an example. 

Now that we have a consistent t value for each node, we can interpolate by it. However, 

a problem with this approach is that the calculation of t is purely based on the structure and 

does not relate to the model geometry. Thus discontinuities easily appear after interpolation. 



Figure 5.1: Stretrihing links to get tinified t value. 

Another approach we tried is to use the error evaluated by the quadric at each node to 

obtain the attenuation factor. Suppose the vertex u being rnanipulated has error ê. For each 

descendent of v with error E', a pre-attenuation factor is calculated by t' = $. Since the finer 

level nodes have smailer error than coarser level nodes, and leaf nodes (original vertices) 

have zero error, t' possesses the property required by an attenuation factor. However, the 

curve of t' is usually very steep, because the error at  the rnanipulated vertex is often much 

Iarger than its descendents. To smooth the curve, we define the attenuation factor to be 

t = fi. This produces better results than the previous approach. 

Since the purpose of user edits is to improve the mode1 quality, modifications are usually 

small. Attenuation is suitable for these tasks. However, if the edit introduces drastic 

modifications to the mode1 surface, there might be discontinuities in some levels. This 

usually happens when an intermediate level is made up of nodes with very difTerent changes 

due to different at tenuation factor. 

Propagation by Local fiames 

Another approach of propagating to the children is through local coordinate spaces or local 

frames. The global interpolation approach has the disadvantage that al1 movements are 

parallel. Sometimes it is desirable to see the changes inchde some orientation change. For 

example, when we grab the nose tip and move it, the orientation of the nose also changes. 

We would like the fine details of the nose to also rotate to thei.  new orientation instead of 

moving in pardel  with their parent. This is achieved by creating local frames and detail 

vectors. 

In (KOB981, local frarnes are based on faces. To avoid artifacts, the face and its adjacent 

three faces are approximated by a quadratic surface, and detail coefficients are distance 



Figure 5.2: Setting up a local frame- ON is the average of 0 's  neighboring face normals. 
P is ON'S orthogonal plane. OE is the projection of an edge onto P. The third axis wiU 
be a cross product of O N  and OE. 

vectors to the surface. As our structure is a vertex tree, it is natural to use vertex based 

local fiames- In order to let local fiames' orientation change with the surface, one axis X is 

set up by averaging the neighboring face normals. Another axis Y is obtained by projecting 

one adjacent edge onto the orthogonal plane of X. The third axis Z is just the cross product 

of the first two (see figure 5.2). Thus when a node is being moved, its orientation will be 

adjusted according to the local surface. 

Detail vectors are obtained by transforrning the children's position in world space to 

the parent's local space. Given a local came L. and a vector u in world space, we denote 

V I  = L(v) to be the conversion fiom world space to L. Conversely, we denote the inverse 

operation as v = L-'(d) which converts a local vector to world space. When the parent's 

position is changed, the children7s positions are updated by adding the detail vectors to the 

parent's local fiame. 

The local kames are implemented in a nested maaner. Suppose we have a path con- 

taining nodes: no, ni, n2,. . . nk, where no the node with the smallest depth on the path, 

and is in the world space. n l  is defined in the space of no, including its position and local 

kame. n2, in turn, is in the local frame of n1. Thus n2 is two Ievels down the nesting. This 

goes on to the last node in the chain. The basic operation in dealing with local fiames is 

converting a position between the world space and a nested fiame of a certain level, which 

is shown in algorithms 7 and 8. 

Note that in nested local fiames, the operation L-' transforms a vector to the space 

that is one level higher than the frame L. m e n  the user manipulates a node, its local 

frame's origin is changed, and the orientation is also changed by averaging the neighboring 



Akorithm 7 Convert a vector fiom local frarne to world mace 
globalize( Node n, Vector v ) 

v = L - ~ v ) ;  
i f (  n.frame i s  nested i n  higher level  frame ) 

{ 
globalize ( n. parent, v ) ; 

} 
1 

Algorithm 8 Convert a vector fiom world space to local kame - 
local ize(  Node n, Vector v ) 

i f  ( n.frame is  nested in higher level  frame ) 

C 
localize ( n. parent, v ) ; 

face normals. Al1 its descendents' positions are recalculated by converting their position 

fiom the nested local frame space to the world space. The Iocal fiame structure, however, 

remains the same except for the node that is being manipulated. 

The nested fr'ame structure is created when the user selects a node, and destroyed when 

the node is released. IdeaUy it would be nice to have a static nested local frame structure 

because setting up the nested fiames costs extra computation. But the difEculty with static 

local kames is that the adjacency relationship between the nodes as well as between a node 

and its faces is not static in the vertex tree, depending instead on the current cut and 

the order List, which can be interactively modified (see section 5.4). A node could exist 

in multiple cuts of the vertex tree, each creating a dxerent set of adjacent faces and a 

correspondingly different local fiame- For example, in figure 5.3, the node v could have 

different adjacent faces and nodes iû different cuts. So we cannot set up its Iocal frame 

until the cut it currently resides is determined. 

To achieve the attenuation effect, we could use the attenuation factor to interpolate the 

old position and the new position of each descendent node. 



Figure 5.3: Neighborhood is not static but depends on the cut. The dotted lines indicate 
the face edges. The solid lines are the links in the vertex tree- After A is collapsed into 
B, V's neighbor node is changed to B. The adjacent face is also changed. This requires 
setting up the locd fiame again. 

5.3.3 Propagation to Neighbors 

It is often too tedious to manipulate a single vertex at a time. Often when a user moves a 

particular node, it is expected the neighboring vertices would be affected in some way. In 

[KOB98], the neighbor interpolation is achieved by discrete fairing, which is used to smooth 

out the surface between control points. Our approach interpolates the change directly. The 

user can specify the range of neighboring nodes to be a£fected. The range is a topological 

circle defined in the number of edges around the selected node. When the user moves the 

selected node and the vector between the old and new position is 2, the neighboring nodes 

within the range will interpolate 2 by multiplying an interpolation factor t, where t is a real 

value between the interval [O, 11. The t factor here is similar to the attenuation factor in child 

propagations. To provide the user with more control on the shape of neighbor interpolation, 

we use a Bezier cunre segment to produce the interpolation factor t = B(#edges). Given the 

topological distance Tom a neighboring node to the selected node, the curve will generate a 

t value, which is guaranteed to be 1 at the selected node and O at the specified range border. 

The interna1 distribution of t is controlled by two control points of the Bezier curve. Figure 

6 -7 shows the curve segments, and corresponding propagations. For any afkcted neighbor 

nodes, if propagations to the parent or child are required, they will be applied at these 

no des. 

5.4 Order List Mariipulation 

The order list associated with the vertex tree initially records the order in which QSlim 

contracts the edges. This order produces the best series of approximations with respect to 



the quadric metric. However, it may not be necessary to preserve this order list. Allowing 

changes of the order list will provide the user with ability to edit across different resolutions. 

The order Iist is built by memorizing each edge contraction. At each edge contraction, 

the replacement node is added to the list. At the end of the simplification, the order List 

is a list of internal nodes. The subscript k indicates the kth edge contraction, and the node 

vi is the replacement vertex produced by that contraction. The reason the List is reversed 

from its index order is because the model is in the simplified state after simplification. 

Nodes are added to the list by pushing it onto the fiont. Two directional arrows indicate 

that list nodes rnay be visited backwads and forwards. 

As introduced in Chapter 4, following the list WU traverse the entire vertex tree. At 

any point in the traversal, the current position corresponds to a current level or cut in 

the tree. If we waLk through the order list fkom the start to the end, the list will define 

a way to selectively r e h e  the model. If we change the permutation of the order k t ,  

we can create other ways to selectively refine the simplified modeL This will create novel 

simplified levels t hat are not produced in the original simplification process. In the following 

we describe two applications of rnanipulating the order Iist, which are local traversal and 

feature preservations. 

5.4.1 Local Refinement and Simplification 

Given a crude simplified model, some parts that are simplified may be acceptable as the 

Enal output. For example, the faces that are more planar could be replaced by Iarger 

triangles. However, there are parts where more detail is desired, like facial expressions or 

regions that bear important characteristics of the particuiar model. The order list produced 

by a simplification algorithm like QSlim always compares error across the entire model, and 

cannot refine important regions without refhing satisfactory regions as well. 

User controlled local refinement is natural with the vertex tree structure. Users simply 

select a vertex in the cut which is an internal node. As each internal node is the root of 

a subtree. we can just expand the node. For simplicity, when expanding the subtree, all 

children of a node are used to replace it. If the user wants to further expand a particular 

node in the expanded subtree, that node could be selected and the same procedure is 

applied. In figure 5.4, the node V is locally refined, and the cut after refinement contains 

finer level nodes A, B and C. 



(a) The coarse level cut- (b) The cut &ter order manipulation. 

Figure 5.4: Order manipulation changes the cut of the tree. 

Local simplification is the reverse of local rehement. But the dxerence is that while 

local refinement is a completely local operation that only affects the subtree, local simpli- 

fication affects the neighboring nodes. When a node v is to be simplified, its parent node 

must be coilapsed, which will always simplify v7s siblings. Thus local simplification is really 

not that If the parent of the manipulated node is the root of the vertex tree, the 

whole model could be simplified. 

After local refinernent and simplification, the order List must be updated to reflect the 

changes in the current cut. For nodes that become visible due to local traversal, we adjust 

theîr positions in the order list so that the current position in the list corresponds to the 

modified cut. The update involves a series of node movements in the order list similar to 

those introduced in the following discussions of feature preservations. 

5.4.2 Preserving Features 

Some parts of the model surface carry more meaning than other parts, such as the outline of 

eyes on a human face model. We call such parts features. Typicdy, features are in the form 

of edges, but it can also be vertices or faces. Automatic simplification algorithms usually do 

a poor job in preserving features, as it is hard for the algorithms to detect precisely which 

area has more semantic value than the rest. Bowever, with the aid of a human operator, 

features can be specified and preserved. 

The order list could be used to preserve features. Basicdy, we achieve this by delaying 

the coilapse of certain vertices and forcing them to appear in coarser levels. Suppose we 

have an order list 



and vk is specified as  a node in a set of feature nodes. To clarify our discussions, Vi is called 

the front of the Iist and vo the end of the list. Suppose we start navigation fkom vo, which 

corresponds to the £inest level (or cut), and navigâte toward vi corresponding to the coarsest 

level. Such a navigation is a series of simplifications. We would like the feature nodes to be 

retained to a coarser level, say at  the position of vj. Normally, by the time our navigation 

(i-e., the current position in the order list) reaches v j 7  vk has already been collapsed. Now 

we can mmually move vk in front of vj so that when our navigation reaches vj , vk is still 

visible. Thus the order list now becomes 

Now when we follow the order Est and get to vj7 vk will always be visible. However, there 

are some dependencies among the nodes. Ancestor nodes cannot be collapsed later than 

descendents because this will also collapse the descendents. In other words, if v, is an 

ancestor to v,, it must be that m > n. When we move nodes around in the order list, such 

relationship must be maintained otherwise the list wiU not produce a monotonie series of 

approximations. Therefore, when vk is being moved towards the &ont of the order list, we 

must check if it passes any of its ancestors. If so, the ancestor must also be moved to keep 

ahead of vk. The adjusted ancestor is positioned immediately in front of vk. The ancestor 

could be placed at other positions fiont of vk, but that does not have an obvious advantage. 

Moreover, vk and its adjusted ancestors should have a smaller error than any of the nodes 

between [ui, v ~ + ~ ] ,  so that if we sort the nodes between [vi7 vk] after moving vk, ut and its 

ancestors will always be adjacent. 

We can specZy a group of nodes such as a feature edges or a feature region and do 

the same thing for each node witbin the feature. The features would be preserved in the 

coarse levels. Looking at figure 5.4 in another way, nodes A, B and C could be a number 

of feature nodes that a user wants to preserve. Before preserving the features, the cut in 

(a) corresponds to the current position in the order list. After preserving the feature nodes, 

the current position corresponds to the cut in (b). 

In implementation, the user examines the model and identifies features on the model 

surface. The features are selected either as a line of edges or a patch of faces. Then the 

user navigates to another level (typically a coarser level) and preserves the features to that 

level. 



5.5 Modi&ing the Vertex Tree Structure 

Anot her possibility of applying modifications is to rnodify the vertex tree structure itself. 

Once the vertex tree is built, we rely on it to navigate multiresolution models and make 

changes in the multiresolution context. However, the vertex tree itself might have room for 

improvement. As introduced in Chapter 2, the vertex tree divides the mode1 surface and 

vertices into different patches. A subtree will group a number of faces and vertices into it. 

If this job is done by a human user, the natural way is to divide the model into several 

logical parts, such as the head, the body or the tail, as  for the bunny model. However, this 

is hard to be done by simplification algorithms. Thus the vertex tree might be changed in 

a way that is perceptually, semanticdy, or utility based, rather than error based. 

The modification of the vertex tree structure is denoted as reclustering. Our objective 

is to let the user provide guidance on how the vertex tree should be structured. Since the 

structure is created during simplilication, it could be modified by applying simplification 

again, but based on some user input as constraints. Viewed in another perspective, this 

is a way to freeze the simpEcation process, apply some changes and continue with the 

simplification. 

5.5.1 Reclustering 

One useful functionali~ lets the user speciS a patch on the model surface at  a certain level, 

and after simplification, the patch will become a subtree. If we want a specsc subtree 

to be formed from a patch, the nodes inside the patch are allowed to be joined with each 

other, but no nodes in the patch are allowed to be joined with nodes fkom outside before 

the subtree is already constructed. 

In QSiim, nodes are joined together by contracting edges. Thus we force the construction 

of a subtree by not allowing edge contractions between nodes in the patch and the outside 

nodes. Since QSlim inserts all candidate edges into the edge queue before simplification, 

we can delay the insertion of these edges. Thus during simplification, no edge contraction 

would occur between the nodes in the patch and nodes outside the patch, and the patch 

will be simplified until no more edge contractions are available within the patch, which is 

now a single node. After the patch has been simplified to a node, we will have constructed 

a subtree based on the patch. At this time, we would like the simplified patch to participate 

in the rest of the simplification process otherwise the patch wiLl remain as an isolated node. 

We now re-insert all the edges that we have delayed at the start of simplification into the 



edge 

A B C  G A B C H  

(a) Vertex tree without reclustering (b) Vertex tree after reciustering 

Figure 5.5: Reclustering. (a) is the vertex tree before clustering. In (b), the vertices A, B 
and C are defined as a patch. G and H are border vertices. The edges AG and CH are 
deleted at the beginning. After the subtree is constructed, the deleted edges are re-inserted. 

edge queue (of course, many of the re-inserted edges are now redundaat and should be 

removed), and later simpEcations will incorporate the subtree into the resimpiified tree 

structure. 

Care should be taken a t  the border of patches. If we allow the border nodes to be 

simplified by both the patch and its surroundings, they will compete to simpli@ the same 

nodes, corrupting the order list. Therefore, we choose to treat the border nodes as outside 

of patches, and edges connecting the border with inside nodes are inserted into the edge 

queue only after the patch is simplified. Figure 5.5 shows an example of reclustering. The 

vertices A, B, and C are defined as a patch from which a subtree is built. 

Preserving Feature Edges by Reclustering 

As a variant of reclustering, we treat a set of user defined feature edges separately using the 

reclustering techniques. Basicdy, we make feature edges a patch. The interna1 nodes are 

the nodes on the edge. Similady, we do not insert edges connecting the edge with outside 

nodes at the beginning of simplification. In addition, the user designates a number of nodes 

on the feature edge which are defined as critical points. Critical points are nodes that are 

important in keeping the shape of the feature edge. When contracting an edge, if one end 

point is a critical point and the other is not, the edge is merged into the critical point, 

which means the replacement node copies the critical point. If both end points are critical 

nodes, the edge is not contracted. In this way, the critical points are completely preserved. 

Different from reclustering, the deleted edges are not re-inserted later. 

In section 5.4.2, we have introduced preservation of features by manipdating the order 

list. In tbat approach, features could be made to appear in lower levels by changing the order 



in which the nodes are refined and coIlapsed. When a fine level node is forced to be collapsed 

later, it will appear in Iower Ievels. However, order list manipulation is severely limited by 

the partial order (or the parent-child relationship) enforced by the vertex tree structure. 

Reclustering eliminates the partial order. The advantage of reclustering is t hat rechstering 

allows one to manually define the structure of vertex trees. Within a user defined patch, 

simplification continues, but patch boundaries are not crossed. This ailows the user to 

define semantic constraints on mode1 simplification. Combined with order manipulation, 

reclustering enables users to effectively traverse meanin@ regions, and preserve utilization 

or functionally d e h e d  regions. 



Chapter 6 

Result s and Evaluation 

The traditional met hod to evaluate a simplification algorithm is to test its speed and qual- 

ity. Given the same model and similar environments, the time that an algorithm uses to 

simpl* it to a certain degree, and the qua&@ of the result are the two very fundamental 

measurements of a simplification algorithm. However, because of the semiautomatic nature 

of our tool, the traditional testing and evaluation method of simplification algorithms does 

not fit here. User manipulations emphasize visual effect rather than quantitive precision. 

It shodd not be surprising that a user-improved model has larger error than automatically 

generated ones. However, fkom the stand point of a user, the modified model will be more 

similar to the original model because the modifications directly correspond to user require- 

ments. For this reason, strict cornparisons of numerical error between the results of our tool 

and those of automatic simplification algorithms do not provide much useful information. 

Interactive multiresolution modeling is the basic nature of our system. The ideal way 

to test such a system would be a user study. Due to time and resource constraints, such a 

study is not included in the thesis. Thus the major testing for the work is to demonstrate 

the effects that we are striving to achieve. This will be in the form of a set of images 

showing these effects. Additionally, the space and time requirements of the tool should also 

be examined. Thus we will evaluate the system in these three aspects. 

The Vertex Tree 

The size of the tree depends on the size of the model and the structure of the tree. Since 

the number of model faces remains constant once the model has been read in, the size of 

the vertex tree depends mainly on the number of nodes in it. If we generate a binary tree, 

the total number of nodes (including the original nodes) will be roughly twice the original 

nodes. When the tree is not binary, the total n m b e r  of nodes generated will depend on the 



Child bound 
51968 

Memory 
Maximum dept h 

Table 6.1: Vertex tree of the biinoy model. The original model has 34834 vertices and 69451 
faces. The model is simplified to 2 faces and 3 vertices. 

Figure 6.1: The distribution of leaf depths. The X axis is the range of depths. The Y axis 
is the number of leaf nodes with a dept h. The left c u v e  is the distribution of leaf dept hs 
with child bound set to 4. The right curve is the distribution with child bound set to 2. 

upper bound of the number of children at each node as well as the simplification process. 

Balance is another property of the vertex tree. More balance generally indicates better 

structured tree (in a balanced tree, all leaf nodes are a t  the same depth). The vertex tree is 

normally not perfectly balanced after construction, but will be balanced to a certain degree 

because of the nature of simplification algorithms. Table 6.1 shows the space and balance 

of the vertex trees generated fiom the biinny model. The child bound parameter specifies 

the upper bound of the number of children each node could have. By default this value is 

2, as QSlim is an edge contraction algorit hm. When adjusted to larger values, a node could 

have no more than t hat number of children. We see that the default biriary tree bas almos t 

twice as many vertices as the original, with the maximum depth of 20 links, the memory 

consurned in real implementation is around 18 megabytes. When this parameter is adjusted 

to 4, the number of nodes and the maximum depth have decreased si@cantly, and the 

memory consumed dropped to around 13.5 megabyt es. 



Figure 6.2: The interface of the tool. 

Figure 6.1 shows the distribution of the depths of leaf nodes. The lefi curve corresponds 

to the child bound parameter set to 4, and the right curve is the default binary tree. With 

the majority of leaf nodes centered at  a specSc depth, it is obvious that the simpWcation 

algorithm tries to  produce a vertex tree with certain degree of balance. 

6.2 Interactivity 

The main interface of the system is shown in Figure 6.2. The viewing area is also where the 

user manipulates the model. Users can select vertices, define edges or patches. The tool 

but tons control the interaction modes. 

6.2.1 Navigation of Multiresolutions 

Navigating diEerent resolutions is achieved by traversing the order list. After the vertex 

tree is built, the model is at  its coarsest level. By dragging a slide bar, the user can change 

the current order list position, which changes the resolution of the current model view. 

This is shown in figure 6.3. Because traversing the order list is sequential, the required time 

is dependent on the degree of change in resolution (or the magnitude of change in order 

list position). In Chapter 4, we have described reordering the vertices so that each node 

could be associated with a span of current pointers. Changing the resolution requires a 

linear traversal of the span of each involved node. The larger the span is, the more time a 

traversa1 takes. We have tested the time used in changing resolutions for the horse model, 



(a) SimpIified cow mode1 with 100 faces (b) Simplified cow mode1 with 1500 faces 

( c )  Simplified cow mode1 with 3000 faces (d) Original cow mode1 with 10862 faces 

Figure 6.3: Navigating resolutions 



[ Traversal range 1 Vertex # 1 Face # 1 Time (sec) ] 

Table 6.2: Navigation tirne for the horse model. 

shown in table 6.2. The vertex tree created is a binary tree. The first row is the simpMed 

model. The last two rows are traversals of the whole order list in both directions. The rows 

in the middle are traversal times with 500 node increments. The speed test is run on an 

SGI Octane with kvo 175MHz RlOOOO MIPS ~rocessors' and 128 Mbytes main memory. 

It can be seen that it takes more time to traverse the first 50C nodes than the following, 

and for later traversals the times do not difFer very much. This cou1d be explained fiom 

the structure of the vertex tree. For a nearly bdanced tree, the closer a node is to the 

root, the larger is its span size, and the size grows geometrically. Since the nodes at  the 

beginning of the order list are closer to the root, traversing these nodes takes significantly 

more time. From the last two rows we see that collapsing the model is faster than refining 

the model. This can be explained by the fact that (a) refining requires visiting the span of 

each of the children of a parent node, while collapsing only requires a single loop through 

the span of the parent node; (b) refining requires checking a larger face set for visibility, 

because invisible faces must be checked to see if any of them become visible again, while 

collapsing only requires checking currently visible faces. The normals of the dected visible 

faces need to be updated too. 

The time used for changing resohtions is dependent on the model. Since we do not 

store the adjacency information explicitly as in [LUE97], it requires more time for checking 

for face visibility and adjusting face normals. In practice, users generally do not need to 

work on the whole vertex tree generated kom simplifying the original model, because for 

a fine detailed model such as the bunny model, a major portion of the intermediate levels 

'~owever, only one processor is used. 
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(a) Onginai (b) Edited 

Figure 6-4: Editing a single vertex. The level is simplifled from the biinny mode1 used in 
table 6.1. It contains 314 vertices and 607 faces. 

will be quite similar to the original model and do not need manual iniprovernents. Users 

ty-pically only need to generate and work on the top portion of the whole vertex tree, which 

has fairly small spans and interactive response. 

6.3 Improving Simplification Quality 

In Chapter 5, we described three approaches to improve the simplified model. These include 

geometric editing with propagation, manipulating the order list, and reclustering. We will 

next dernonstrate the effects of these functionalities. Please note that the following edits 

shown as images are not real examples of improving model quality. The edits are deliberately 

exaggerated for clearer demonstration of the effect of each operation. In real applications, 

edits are generally much subtler, as the purpose of the edits is to improve model quality. 

At the end of the chapter, we will present a more realistic example. 

6.3.1 Geometric Editing 

The basic editing tool is picking a vertex and changing its position. The user clicks the 

mouse on the model and selects a vertex. By dragging the mouse the vertex will be moved 

to a new position. Figure 6.4 shows an editing of a single  verte^.^ 
21n the following images involving vertex editing, an arrow points to the vertex being manipulated. 



6.3.2 Propagation to Parents 

To make editing at the current level affect the coarser levels, we propagate the change to 

the parent. This is achieved by recalculating the ancestor quadrics and get the optimized 

position from the recalculated quadrics. Figure 6.5 shows propagating to the parent after 

a vertex has been edited- To highlight the effect of propagation to the parent, we chose 

two coarse levels with different degree of detail. One vertex on the biinny's head is dragged 

outward on the finer level, and the relatively coarser level changes similarly. 

6.3.3 Propagation to Children 

Here we dernonstrate the eEect of propagating an edit to descendent nodes. When the user 

selects a vertex at a certain level, a nested coordinate space is set up in the subtree below 

the selected vertex. Changing the selected node wiU move the descendent nodes dong wit h 

it. Taking the two levels fiom figure 6.5, we reverse the operation in figure 6.6, where the 

edit is now on the coarser ievel and the change is propagated to the finer level. We see that 

two vertices in the finer level protruded from their original positions, due to editing on a 

single vertex in the coarser level. This indicates that the two vertices in the finer level are 

children of the vertex that was edited in the coarser level. 

In Chapter 5, we have discussed retaining the original mode1 and attenuating the editing 

effect- An example of the desired effect is given in figure 6.9. The current attenuation scheme 

works well for mild edits, which should be the major type of edits in practice. However, if in 

some occasions drastic change is needed, there might be discontinuities in some intermediate 

levels. 

6.3.4 Propagation to Neighbors 

From the previous sections, we have seen propagation to the parent and children for editing 

a single vertex. Simply editing a single vertex is clearly too limited for larger models. 

To enlarge the eEect of editing a single vertex, we add neighbor propagation to allow the 

changes of a single vertex to affect its neighbors. The user specifies a radius of a topological 

ring centered at the selected vertex. A segment of Bezier curve defines the shape of the 

propagations. Figure 6.7 shows the curve and the associated neighbor propagations. The 

curve in (c) has a sharper shape, which results in a sharper surface in (d). 



(a) The simplified bunny nrith 167 ver- 
tices and 319 faces- 

(b) A vertex on the bunny's head is 
dragged ouhvard. 

(c) A coarser level with 80 vertices and (d) Change is propagated from the finer 
150 faces. level edit. 

Figure 6.5: Propagation to the parent after a singIe vertex editing. 



(a) Bunny mode1 with 80 vertices and (b) Bunny mode1 167 vertices and 319 
150 faces. A vertex on the bunny head faces- The change is propagated from 
is dragged out. the coarser level edit. 

Figure 6.6: Propagation to the children after a single vertex edit. 

6.3.5 Combined Propagation 

With neighbor propagation, we have seen that the change affects a region of the model 

surface. If we combine the neighbor propagation with parent and child propagations, we 

c m  affect correspondhg regions in both coarse and fine resolutions. Figure 6.8 demonstrates 

the result with all  three types of propagations turned on. For each row, the left image is the 

model before editing or propagations. The right image is after the editing or propagation 

has been applied. The f i s t  row is a level which the user manipulates. It resides between a 

finer level and a coarser level. After the user edit this level, the finer and coarser leveIs are 

both affected in the similar fashion. 

Here we also demonstrate the attenuation ef3ect in propagation to the finer levels in 

figure 6.9. The vertex tree is generated from a simpmed biinny mode1 with 10000 faces. 

The first image is a coarse level that the user operates. Using neighbor propagation, the 

bunny's head is raised. The change is propagated across the finer levels with weaker and 

weaker effects, which c m  be seen from the rest of the images. When the original model is 

reached, the change has disappeared. 

6.3.6 Order Manipulation 

In this section we demonstrate the effect of preserving features by manipulating the order 

list. A series of vertices are first defined to be features. Then the user selects a lower Ievel in 



(a) The segment of Bezier curve with de- 
fault shape. 

(b) Edited mode1 with propagated 
neighbors according to curve in (a). 

(c) The Bezier c u v e  nrith an edited 
shape. 

(d) Eciited model nrith propagated 
neighbors according to curve in (c). 

Figure 6.7: Propagation to the neighbors. The model is simplified with 791 vertices and 
1557 faces. The radius of neighborhood is 5. 



(a) Before editing (b) After editing 

(c)  Before propagation (d) After propagation 

(e) Before propagation (f) -4fter propagation 

Figure 6.8: Combined propagations. (a) (b) are the level the user works on with 41 1 vertices 
and 800 faces. The neighbor radius is 5. (c)(d) has 5048 vertices and 10000 faces. (e)(f) 
has 157 vertices and 299 faces. 



(a) Edited level with 259 ver- 
tices and 499 faces 

(b) Propagated leve1 with 512 
vertices and 999 faces 

(c) Propagated level with 1017 
vertices and 2000 faces 

(d) Propagated level with 1522 
vertices and 3000 faces 

(e) Propagated level with 2026 
vertices and 4000 faces 

(f) The original mode1 is left 
unchanged 

Figure 6.9: Propagation with attenuation. 



which the features are desired to appear. In figure 6.lO(a), a line of feature edges are defined 

on the fine level. In (b), a coarse level is selected around which the feature is desired to 

appear. In (c) , after the feature has been preserved, the current level shifted toward the fine 

direction by 81 nodes due to node dependencies. Compared to the total of 4933 levels, this 

shift is not very big. The image in (c) clearly shows the fine cuve  that has been preserved, 

while the other parts still remain crude- 

6.3.7 Local Traversal 

In this section we demonstrate the result of local refinement. This is one of the basic 

functions also achieved by the Zeta tool [CIG98a]. Local simplification can only be done for 

one collapse at a time for the moment. We demonstrate local refinement on the simpued 

bunny shown in figure 6.1 1. We iteratively r e h e  the bunny's head on the coarser level. 

This added detail at the mouth and eye region. The ear is also refined a little- The refined 

model now has more vertices and faces. By carefully selecting important regions to refine, 

we can limit the number of added faces while irnproving the model quality. 

Local simplification is shown in figure 6.12. A region is selected on the bunny's leg. Two 

collapses are made in the region, which fill the patch with simplified triangles. 

6.3.8 Reclustering 

Ln Chapter 4, we have mentioned that the vertex tree partitions the mode1 surface into 

patches. Each cut of the vertex tree corresponds to a partition of the model surface. Figure 

6.13 shows the partition of the model surface defined by the direct children of the root. 

Since the model is simplified to 3 vertices, there are three patches in the partition, each 

of which have a difFerent color in the figure. The band between the patches are faces that 

have vertices in different patches, which is the reason they are not colored as  they do not 

belong to any single patch. 

Fkom figure 6.13 we see that the partition generated by the algorithm has no correlation 

to the semantic structure of the model. A human user would normally divide the model 

surface based on semantic rneaning, making the bunny's head a patch. This indicates that 

there shodd be a subtree containing the bunny7s head. We use reclustering to achieve this. 

The user defines a patch that should form a separate subtree. After simplification, a subtree 

will be created as desired. The location of the subtree depends on the size of the patch and 

the simplification algorithm. Patches could be defined before simplification begins, or on a 

intermediate level after simplification. In the latter case, the upper portion of the vertex 



(a) Feature edges are defined on the fine (b) -4 coarse level (55 vertices and 100 
level (0048 vertices and 10000 faces). faces) with simplified feature. 

(c) The feature is preserved to the lower 
IeveI, with a shift of 81 nodes. 

Fi,lgure 6.10: Preserving an edge by changing order position. 



(a) The coarse level with 55 vertices and (b) The refined level with 98 vertices and 
100 faces 330 faces 

Figure 6.11: Local refinement- 

tree will be destroyed and the model is resimplified fkom the intermediate level. In either 

case, the defined patch will be guaranteed to form a subtree after simplification. Figure 

6.14 shows the reclustered version of the bunny in figure 6.13, where the bunny's head is 

defined as a patch and reclustered as a subtree. The partition of the rest of the surface is 

generated by the simplification algorithm. 

With proper partitioning, the model is easier to manipulate. For example, when propa- 

gating to the children, it is easier to predict the propagation when the patches are defined 

by the user. Another example would be that local traversal will be well cofined within the 

local patch. 

6.3.9 Preserving Feature Edges 

Here we dernonstrate preservation of feature edges by reclustering. The effect is similar 

with that of manipulating the order list. But the difTerence is that here the structure of 

the vertex tree is actua.lly rnodified. Following the example in figure 6.10, we define sirnilar 

feature edges and preserve them in the simplified model, which is shown in figure 6.15. 

The large points rendered in (a) are treated as critical points and are preserved during 

simplification. Other vertices are simplified within the feature edges only, so that the edge 

shape is better maintained- 



(a) The original leg region on the bunq- (b) A region is selected for collapse 

(5048 vertices, 10000 faces) 

(c )  The selected region is coliapsed twice 

Figure 6.12: Local simplification 



(a) The front of the model (b) The badc of the model. 

Figure 6.13: A partition of the bunny model (5048 vertices, 10000 faces). The model is 
simplified to 3 vertices and 2 faces. Subtïee roots are children of the root of the vertex tree. 
The white dot in the patches are used as a seed to find the patches. 

(a) The front of the mode1 (b) The back of the model 

Figure 6.14: The bunny's head is clustered as a subtree. 

79 



(a) Feature edge defined on the fine level (b) SimplXed mode1 (81 vertices, 150 
(5048 vertices, 10000 faces) faces) without preserving feature edges 

( c )  Simplified model (80 vertices, 149 
faces) with feature preserved 

Figure 6.15: Feature preservation by reclustering 



As an example of the application of this tool, we worked on the cow model to try to improve 

a simplification at low polygon counts. This is not an elaborate example. We mainly used 

order manipulation with some small usage of other techniques. Here we consider the cow's 

head to be more important than other parts, so we try to add more detail to the head. 

To maintain the low polygon counts, the body is represented in fewer nurnber of polygons. 

Since the body surface is more planar, such reduction does not affect the quality signifilcantly. 

Figure 6.16 shows the editing effects. Before simplifkation, we defhed a feature edge on 

the cow's horn with four critical points. Thus the shape of the horn is well preserved after 

simpLification. Then we repetitively applied local refinement and order manipulation to add 

or preserve important features on the cow's face. The cow's nose, eyes and ears are clearly 

refined after these set of operations. To reduce the polygon counts, local simplification is 

applied on the cow's body where the curvature is low. Important features such as the creases, 

the feet and nipples are especially taken care of by local refinement and order manipulation. 

Thus the overall quality on the body does not degrade very much. Geometric editing is 

applied where considered necessary. 

6.4 Summary 

In this chapter, we have demonstrated the various functionalities to rnodie the multires- 

olution model. With these, we are hoping to offer users the ability to improve the model 

by working in a multiresolution context and to control the simplification process. We have 

been able to achieve encouraging results for the functionalities. 

However, there are many places where the tool can be împroved. 

One possible improvement is the interactiviw. Currently the tool is not very efficient 

at handling very large models. As we have seen in table 6.2, the horse is a relatively large 

model with over 90000 faces, and the navigation time has reached about 30 seconds for a full 

traversal. Although this could still be called 'interactive' to some degree, it is cumbersome 

to wait for half a minute to return £rom the end to the start of the order list. At present, 

the best way to work with this model is first to simpliS. the model automaticaily to a 

level that looks very similar with the original model, but with significantly fewer faces, and 

use the tool to improve the partially simplified model. This is the reason why most of the 

demonstrations in this chapter used a simplified biinny model with 10000 faces. In this way, 

we work only on the top portion of the full vertex tree and interactivity is increased. The 



(a) Original cow model. 

(c) The cow's head before editing 

(b) Original cow model 

(d) The cow model before editing 

(e) The cow's head after editing (f) The cow mode1 after editing 

Figure 6.16: An example. The level being worked on has 262 vertices and 520 faces. 
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efficiency for o u .  implementation could s t ill be improved, perhaps allowing bet ter interaction 

with larger models. 

Another possible improvement is the attenuation effect for significant editing. Discon- 

tinuities are obsenred when vertex changes are big. The reason for this problem Lies in the 

multiple levels of detail possible a d  the unbalanced nature of the tree. Since each cut of 

the vertex tree is a detail level, there are numerous combinations of tree nodes (Le-, the 

tree cuts) that produce valid level of detail models. The simplification algorithm guarantees 

that these combinations produce relatively reasonable approximations of the original model. 

This is the reason that we can manipulate the order list to make nodes appear in different 

resolutions yet still have a level without much discontinuity. However, with drastic changes 

on a certain level, this property is hard to preserve. 

Other aspects of improvements will be classified as  future directions, which we will 

discuss in the next chapter. 



Chapter 7 

Conclusion and Future Directions 

In this thesis, we have introduced a tool that enables the user to manipulate model sim- 

plifications. The tool integrates simplification and modeling into one ulzified environment. 

With this tool, the user can make direct modScations to the simplified model, and in- 

stead of working on a single level of detail, the user can work in a multiresolution context, 

which is not offered in traditional modeling tools. It is our hope that the tool provides an 

environment more suitable for simplScation and LOD design. 

7.1 Contributions 

At the beginning of Chapter 5, we have discussed the limitations of existing simplification 

algorithms and multiresolution modeling tools. These limitations motivated us in developing 

the tool presented in this thesis. As a brief overview, existing simplification algorithms 

are limited in that they lack interactivity, do not offer enough control for users, discard 

model semantics, and their assessrnent of simplification quality may not be consistent with 

perception. Exist ing rnultiresolution modehg  tools do not meet t hese needs because t hey 

emphasize editing rather than simplification. These limitations demand a semiautomatic 

simplification tool. 

O u .  work features the following contributions to 3D modeling and simplification. They 

are also a siimmary of the major components of the tool system. 

The tool unifies simplification with modeiing. Simplification tools and modeling tools 

have been two distinct components. Coupling these two components into one unified 

system presents a more suitable tool for creating model simplifications and LODS. 

User edits can be  propagated in three directions: the fine, coarse, and neighbor direc- 

tions. 



By manipdating the order list, detail can be added or deleted as needed, in the context 

of the vertex tree. 

By reclustering, the vertex tree can be redefined by the user and constructed in a 

specific way. This will produce a tree structure that has more correlation with the 

semantics and practical use of the model. 

rn Patches, feature edges and critical points can be defined by the user and preserved 

during simplification. 

7.2 E'uture Work 

This thesis is our first attempt to present a modeling tool for simplification and LOD, As 

the work went on, many problems and ideas came up which point to interesting topics that 

are worth exploring. 

7.2.1 A General Framework 

While developing the tool, we consciously made it less dependent on the simplification algo- 

rithm integrated with the tool. Without dependency on a specific simplification dgorithm, 

the tool can be considered a general ftamework with the vertex tree as the basic architec- 

ture. The simplification algorithm will be more like a 'plugin' for the framework. However, 

certain assumptions about the simplification algorithm are made. 

The most important assumption is that the algorithm shodd be able to produce a 

vertex tree. This requires the algorithm to map several vertices to a new representative 

vertex. This is crucial in setting up the parent-child relationship between the nodes. Vertex 

clustering, edge decimat ion and face decimationlalgorithms are able to generat e vertex trees. 

Algorithms that apply global simplification operations, such as simplification envelopes 

[COH96], are harder to incorporate. The second dependency is found in reclustering. We 

force the tree to be constructed in a specific way by deleting certain edges, so that patches 

can be isolated and evolve into a subtree. This assumes the simplification algorithm to be 

an edge contraction algorithm. It would be better if a more general solution could be found 

that does not make such an assumption, which allows more simplification algorithms to be 

used. Another dependency is the order list. However, many algorithms generate such a 

list. This dependency could be completely removed by sorting the interna1 nodes in a post 

processing phase. 

' ~ h e  decimation algorithms should generate a representative vertex for the removed vertices. 
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7.2.2 Improvement of Propagation 

The problem of getting the attenuation effect has been discussed at the  end of last chap 

ter. This is a problem that is yet to be solved in our future work. Other than that, the 

current propagation scheme has a lot of room for improvement. First, t he  current neighbor 

propagation solution is rather simple. A more sophisticated propagation scheme such as a 

fairing method [KOB97] might increase the power of editing. Propagation to the parent is 

presently achieved by recalculating the quadrics introduced by QSlim. This places another 

dependency on the simplification algorithm. Propagation to the children has possible room 

for improvement too. The current nested coordinate space approach is d36cult to integrate 

with the attenuation effect that we have wanted to achieve- A global interpolation approach 

might be more suitable in this respect. 

The fact that an arbitraq cut of the vertex tree produces a reasonable approximation 

of the original model is an ïmplicit property of the tree generated fiom siimplification. Such 

a property comes fiom the fact that al1 cuts of the vertex tree are approximations of the 

same surface. However, after user edits and propagation, two different surfaces emerge, in 

which one is the original model surface, and the other is the edited surfaces. If the two 

surfaces are similar, there will not be huge discontinuities. However, if t he  two surfaces are 

drastically difFerent , some cuts will inevitably contain mmy discontinuities. For example, 

we can take some nodes kom the original surface and some nodes fiom the edited surface 

and make it a cut (following the structural dependency requirements), such a cut obviously 

has discontinuities. A possible solution is that some more dependency requirements be 

placed on the possible cuts after a user edit. However, exactly what kind of dependencies 

should be enforced due to user edits is worth studying more. 

After working on one level, the user rnay navigate to another level and make more 

modifications. It may be desirable t hat subsequent propagations preserve the editing on 

the previous level. 

7.2.3 More Editing Tools 

The geometric editing tool in our current systern is simple, with the o d y  ability to move 

the position of a vertex. More extensive tool sets should offer functiondities that resemble 

a traditional modeler. SpecScally, it would be nice if the user could add or delete faces 

and vertices at arbitrary levels. This is not a trivial extension, as the operation will require 

modification of the vertex tree. 

It wodd also be good to let the user edit attributes other than vertex positions. In the 



present system, we are able to accept models with a single texture image. This is, however, 

an asset that comes with QSlim, because QSlim is able to accommodate vertex attributes in 

generalized quadrics- Textures have an important impact on the visuai quality of models. 

Texture boundaries have special importance similar to geometric creases on the mode1 

surface. Using Hoppe's wedges [HOP991 will enable the tool to handle multiple texture 

coordinats at a single vertex. However, thk approach also depends on QSlim. Further 

work must be done in order to handle general vertex attributes with other algorithm. 

7-2 -4 Quality Improvement Tools 

Another possible set of tools could be integrated to improve the quality of a particular 

level. Algorithm such as K-Means optimization could be used to achieve this. Usually 

these kinds of tools are slow and expensive. But they are useful when the user especially 

wants to fine-tune and improve a level, but rnanually doing so requires too much work. 

7.3 Conclusion 

Simplification and multiresolution modeling is a new and interesting area of research. This 

thesis presents some ideas in this area, with the implementation of a prototype. There are 

stiu maay more topics to explore. Hopefidly, the tool can evolve into a useful application 

as more problems are solved and new techniques are developed. 
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