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ABSTRACT 
We present a system for generating real-time 3D reconstructions 
of the user and other real objects in an immersive virtual 
environment (IVE) for visualization and interaction.  For 
example, when parts of the user's body are in his field of view, our 
system allows him to see a visually faithful graphical 
representation of himself, an avatar.  In addition, the user can 
grab real objects, and then see and interact with those objects in 
the IVE.  Our system bypasses an explicit 3D modeling stage, and 
does not use additional tracking sensors or prior object 
knowledge, nor do we generate dense 3D representations of 
objects using computer vision techniques.  We use a set of 
outside-looking-in cameras and a novel visual hull technique that 
leverages the tremendous recent advances in graphics hardware 
performance and capabilities. We accelerate the visual hull 
computation by using projected textures to rapidly determine 
which volume samples lie within the visual hull.  The samples are 
combined to form the object reconstruction from any given 
viewpoint.  Our system produces results at interactive rates, and 
because it harnesses ever-improving graphics hardware, the rates 
and quality should continue to improve.  We further examine real-
time generated models as active participants in simulations (with 
lighting) in IVEs, and give results using synthetic and real data. 
Additional Keywords: Avatars, Visual Hull, Virtual Reality, 
Head Mounted Displays, Frame Buffer Tricks, HCI (Human-
Computer Interface), Image-Based Rendering 
CG Keywords: I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism – Virtual Reality; I.3.3 [Computer 
Graphics]: Bitmap and Framebuffer Operations, I.3.6 [Computer 
Graphics]: Methodology and Techniques – Interaction Techniques 

1. INTRODUCTION 
We present a technique to generate view-dependent 
representations of dynamic real objects for rendering and natural 
interactions with synthetic objects in immersive virtual 
environments (IVE).  When users move one of their arms into the 
field of view, we want to show an accurately lit, pigmented, and 
clothed arm.  Research has shown that users develop a stronger 
sense of presence when presented with an avatar [13, 16].  In 
addition to increasing presence, avatars enable increased 
interaction, such allowing the user to affect a particle system.  
Generating exact models of the user in real-time would allow the 

system to render a visually faithful avatar.  Calculating exact 
models is difficult and not required for many real-time 
applications.  A useful approximation is the visual hull.  A shape 
from silhouette concept, the visual hull is the tightest model that 
can be obtained by examining only object silhouettes [5]. 
Our system uses graphics hardware to accelerate examining a 
volume for the visual hull.  By using the framebuffer to compute 
results in a massively parallel manner, the system can generate 
reconstructions of real scene objects from arbitrary views in real-
time. The system discretizes the 3D visual hull problem into a set 
of 2D problems that can be solved by the substantial yet 
specialized computational power of graphics hardware.  The 
resulting dynamic representations are used for displaying visually 
faithful avatars and objects to the user, and as elements for 
interactions with VEs and simulations.  As the capabilities and 
performance of graphics hardware continue to improve, our 
system will increase in accuracy, improve reconstruction quality, 
and improve the interactions between real and synthetic objects.  

1.1 RELATED WORK 
There are several approaches to the difficult problem of 
recovering accurate three-dimensional models from real-world 
images. The Virtualized Reality project by Kanade [4] and the 
telepresence work by Sara and Bajcsy use dense stereo algorithms 
[11].  Segmentation and space carving algorithms partition 
volumes using range and/or camera data [1,2,9].  Computer vision 
techniques attempt to understand the content of images so as to 
find correlations for extracting models and environments [3,8,10]. 
At SIGGRAPH 2000, Matusik, etal., presented an image-based 
visual hull algorithm, “Image Based Visual Hulls” (IBVH), that 
used clever traversing of pixels between camera images to 
reconstruct models [6].  IBVH uses multiple cameras and software 
based IBR techniques to compute the visual hull at interactive 
rates.  While IBVHs are well suited for novel viewpoint scene 
reconstruction, our technique is not sensitive to the percent of the 
viewport covered by the reconstruction.  The multiple 
reconstructions per frame used for avatars, dynamic models in 
simulations, and interaction techniques usually fill the viewport.  
Our algorithm’s approach of “querying whether points are within 
the visual hull” allows incorporation of real items as active 
objects of dynamic simulations.  For example, collision detection 
can be done through rendering the synthetic objects and 
determining intersections with the visual hull of real objects.  Our 
algorithm inherently uses graphics hardware to identify 
intersections.  System performance is not tied to reconstruction 
complexity and benefits from the speed and capability 
improvements that accompany new generations of graphics cards. 
Research on avatars in virtual reality has mostly focused on sense 
the presence and appearance.  Most existing VE systems, such as 
the one used in the Walking > Virtual Walking > Flying, in 
Virtual Environments project by Usoh et al., required additional 
trackers to control the motion of a stock avatar model [16].  

 
 
 



Interaction with objects in VEs is accomplished by translating 
hardware actions, such as button pushes, to actions such as 
grasping.  Existing hardware works for some tasks, but for others; 
the mapping is unnatural.  For example, to pick up a book a user 
moves the avatar hand to intersect the virtual book, and then 
presses and holds the trigger.  Our system enables users to see 
their arm and a real book in the VE, and naturally reach out and 
pick up the book. 
Our system has two distinct goals, providing the user visual 
feedback of his body and nearby real objects, and generating real-
time models for rendering, simulations, and interactions with the 
virtual environment.  We discuss each in turn. 

2. 3D RECONSTRUCTION 
The reconstruction algorithm has four steps: image processing to 
label object pixels, calculating the volume intersection, rendering 
the visual hull, and compositing with the virtual environment. 

2.1 OBJECT PIXELS 
Fixed cameras are positioned with each camera’s frustum 
completely containing the volume to be reconstructed.  Except for 
the user and objects of interest, the real-world scene is assumed to 
be primarily static.  We use image subtraction to extract pixels of 
interest from the background.  When initializing, the system 
captures reference images of the vacated scene for each camera.  
For subsequent frames, the reference image is subtracted from the 
current image.  The results are compared against a threshold to 
determine if the image pixel represents part of a new scene object 
[14].  We label pixels with differences below the threshold, 
background pixels, and the rest, object pixels.  After startup, 
only newly introduced objects appear as object pixels because 
their color should substantially differ from the reference pixels.  
Although image subtraction can return slightly noisy results, it 
produces results that are efficient to compute, easy to load balance 
across multiple processors, and sufficient for reconstruction. 

2.2 VOLUME INTERSECTION 
For some applications not requiring precise models, the visual 
hull is an acceptable representation.  The visual hull can be 
obtained by determining the occupied volume.  
A new object in the scene appears as object pixels on every 
camera's image.  If we reverse the idea, object pixels on a camera's 
image represent the presence of an object within a pyramidal 
volume swept out from the camera’s center of projection, through 
the object pixel, and into the scene.  Collectively, the background 
pixels in a camera’s image represent a projection mask.  The rays 
that pass through this mask form a volume that could contain 
objects.  The object pixels carve out a volume in which objects 
potentially exist.  The visual hull is the 3D intersection of all 
object pixel projection volumes.  
Volume visualization algorithms usually build a structure of 
voxels from images and then traverse it to generate a novel view 
[15].  A significant amount of work can be avoided by only 
examining parts of the volume that could contribute to the final 
image.  Instead of trying to compute entire volumes or the 
intersections of potentially complex polygons that represent the 
object pixel projection volumes, we ask, "which points in the view 
volume are inside the visual hull?" 

We use synthetic data of a 3D model rendered from five known 
locations to illustrate our reconstruction technique [Figure 1].  To 
determine if a 3D point is within the visual hull, it must project 
onto an object pixel in every camera’s image, and thus be within 
the object pixel projection volume.  To perform the intersection 
tests between the projection volumes is too expensive for even a 
modest setup.  Numerical stability and robustness problems aside, 
scalability becomes an issue as the number of intersection tests 
grows rapidly with the number of cameras.  Even if simplified 
with hierarchical or algorithmic methods, the brute force approach 
challenges the computation and bandwidth capabilities of most 
machines.  We use the massively parallel computational power of 
graphics hardware to compute a view specific pixel-accurate 
volume intersection in real-time.  

2.3 HARDWARE ACCELERATION 
We use projected textures and the framebuffer to perform 
intersection tests in parallel, and compute only the elements that 
could be contained in the final image.   
A single point: To determine if a 3D point is in the visual hull, 
we render it n times (where n is the number of cameras).  When 
rendering the point for the ith time, the texture matrix stack is set 
to the projection * modelview matrix defined by camera i’s 
extrinsic parameters.  This generates texture coordinates that are a 
perspective projection of image coordinates from the camera’s 
location.  The camera’s image is converted into a texture with the 
alpha of object pixels set to 1 and background pixels set to 0.  An 
alpha test to render only texels with alpha=1 is enabled.  If the 
point is textured, it projected onto an object pixel in camera i.  If 
all n cameras project an object pixel onto the point, then the point 
is within the visual hull [Figure 2].  The system uses the stencil 
buffer to accumulate the number of cameras that project an object 
pixel onto the point.  The pixel’s stencil buffer value is 
incremented for each camera that projects an object pixel onto the 
point.  Once all n textures are projected, we change the stencil test 
and redraw the point. If the pixel’s stencil buffer value <n, it 
means there exists at least one camera where the point did not 
project onto an object pixel and is not within the visual hull.  The 
stencil and color elements for that pixel are cleared [Figure 3].  If 
the pixel’s stencil buffer value equals n, it is within the visual 
hull.  In effect, we are querying the visual hull for an intersection 
with whatever primitive we render. 
In implementation, we ignored the cameras’ intrinsic parameters, 
and future work into camera calibration is planned.  However, we 
have found only using the extrinsic parameters does not greatly 
reduce the quality of the reconstruction for small volumes.   
Parallelization: For all points within the reconstruction view 
frustum, we want to query for inclusion within the visual hull.  To 
approximate this, we sample the volume by rendering planes and 
make use of the framebuffer’s parallel nature to resolve occlusion.  
To generate the first visible surface, a set of planes, orthonormal 
to the view direction and completely filling the rendering window, 
are drawn from front to back.  This is similar to other plane sweep 
techniques for combining textures [7].  For each plane, an 
optimization is to compute a bounding box for each camera’s 
object pixels and project them onto the plane.  The intersection of 
the box projections reduces the size of the plane we render.  To 
compute the projection volume intersections, the plane is drawn 
n+1 times, once with each camera’s projected texture, and once to 
keep only pixels with a stencil buffer value = n.  Pixels with a 



stencil value of n represent points on the plane that are within the 
visual hull.  When drawing the planes from front to back, the 
color and stencil buffers are not cleared between planes.  The 
result is a correctly z-buffered first visible surface of the visual 
hull from the user’s viewpoint [Figure 4].  The number and 
spacing (uniform or non-uniform) of the planes are user defined 
and depends the complexity of objects, reconstruction resolution, 
and application requirements.   
For n cameras, with u x v pixel image planes, rendering p planes 
requires (2n+2)p triangles.  When rendering each plane, we are 
computing uv volume intersection results.  Current graphics 
hardware is capable of drawing between 107 – 109 textured 
triangles per second.  For large volumes with several cameras, our 
geometry requirements are less than 106 triangles per second.  
The two bottlenecks of the algorithm are fill rate and image 
subtraction.  Since every pixel on the screen is rendered n+1 
times per plane, fill rate = (n+1)*p*u*v.  Current graphics 
hardware have fill rates between 108 – 109 pixels per second and 
this restricts the reconstruction quality and resolution.  The other 
computationally expensive component of the algorithm is 
obtaining the object pixels per camera.  Since each pixel has to be 
subtracted each frame, the number of subtractions required is 
u*v*n.  Even with a few cameras, this is expensive to compute 
each frame.  With image processing hardware becoming more 
readily available, we look to integrate accelerated image 
subtraction results. The geometry, fill rate, and computation 
requirements scale linearly with the number of cameras, and the 
results depend substantially on camera resolution, object 
complexity, and number of cameras and planes.  We are 
employing this system on desktop tasks that will make use of real-
time approximate models of real objects within a volume. 

2.4 COLORING THE MODEL 
There have been several methods proposed to use the source 
camera images for reconstructing and texturing a model [12].  We 
compute the final color by using the image from the HMD 
mounted camera to texture the reconstruction result.  
If rendering other than from the HMD view is required, then color 
data from the source cameras are used.  Since our algorithm does 
not build a traditional model, computing visibility per pixel is 
expensive.  The “Image Based Visual Hulls” algorithm by 
Matusik computes both the model and visibility by keeping track 
of which source images contribute to a final pixel result.  
To compute color using source images, we generate a coarse mesh 
of the depth buffer of the reconstruction. We assume the camera 
that most likely contributed to a point’s color shares a view 
direction closest to the mesh’s normal.  For each mesh point, its 
normal is compared to the viewing directions of the cameras.  
Each vertex gets its color from the camera whose viewing 
direction most closely matches its normal [Figure 5].  

3. DYNAMIC ENVIRONMENT 
We sample the visual hull from the viewpoint of the user.  The 
reconstruction  is used as a surface for texturing the image from 
the HMD camera.  Since the reconstruction is done in eye 
coordinates, the rendered virtual environment is composited with 
the reconstructed real objects [Figure 6]. 
Currently, interacting with virtual environments forces a mapping 
of virtual actions to real hardware such as joysticks or mice.  For 

some tasks these associations work well, but for some interactions 
users end up fighting the affordance mismatch of the I/O device.  
For example, in the Walking > Virtual Walking > Flying, in 
Virtual Environments project, the user is instructed to pick up a 
book from a chair and move it around the VE.  The user carries a 
magnetically tracked joystick, and must make the avatar model 
intersect the book to select it.  The user then presses and holds the 
trigger to pick up and carry the book.  
Real-time models of the user enable more natural interactions 
with elements in virtual environments.  In the example system, we 
would replace the synthetic book with a real book that would be 
reconstructed along with the user.  The user could then see the 
book on the chair and naturally reach out to pick it up.  
Additionally, the user gets the benefits of visually faithful avatars 
and haptic response.  These new hybrid realities interact with, and 
are affected by, the user and real objects.  
Real-time dynamic models begin to blur the line between real and 
synthetic objects in the VE.  One important facet of this interplay 
is lighting and shading.  We want the dynamic models of real 
objects to be lit by virtual lights.  To do this, we enable the VE’s 
lights while rendering a mesh of the reconstruction depth buffer.  
The resulting lit vertices are modulated with the applied texture.  
Synthetic lights are affecting real objects.  Conversely, we can use 
traditional shadowing algorithms to cause synthetic elements in 
the environment to cast shadows on the real objects. 
Because the reconstruction algorithm is not the bottleneck (image 
subtraction and data transfer are where most of the time is spent), 
we can use the same camera frames for reconstructions from 
different viewpoints without a large performance hit.  Shadows 
can be calculated by reconstructing the scene from the viewpoint 
of the light, and the resulting image can be used as a shadow 
texture onto scene geometry.  Real objects are affecting the 
synthetic scene.  Our observations note that users show increased 
spatial perception (how high an object or their hand is above a 
table) through the presence of shadows.  
Beyond just an overlay on a computer-generated scene, the 
dynamic models of the user and nearby objects can be active 
elements in simulations.  We have implemented a particle system 
that represents water flow from a faucet.  By reconstructing the 
model from above, a reconstruction of the user’s hand and a 
newly introduced object, a plate, was used as a surface within the 
particle system.  The water particles could interact with the plate 
and flow into the sink [Figure 7].  For other simulations, we can 
reverse the question and ask, “is this synthetic object within the 
visual hull?”  There is no reason to restricting our sampling of the 
visual hull to only planes.  We are working on collision detection 
of potentially complex synthetic models with real objects.  Instead 
of sweeping planes, we query the visual hull for intersections by 
rendering the synthetic models with the projected textures and 
searching the framebuffer for intersections. 
There are many areas that could use online reconstructed models, 
from exploring crowd control and robot motion planning to 
middle school students studying magnetism.  Our real-time model 
reconstruction system is an enabling technology that allows 
virtual environments to be truly dynamic and interact with the 
user in completely new ways.  We anticipate evaluating this 
system for interactions virtual characters, new navigation 
methods, and its affect on presence in VR. 



4. IMPLEMENTATION 
We have incorporated the reconstruction algorithm into a system 
that reconstructs a 8-ft x 6-ft x 6-ft volume.  The system uses five 
wall-mounted NTSC cameras (720x486) and one camera mounted 
on a Virtual Research V8 HMD (640 x 480).  The user is tracked 
with a scalable wide-area optical tracker [18].  
When started, the system captures and averages a series of images 
for each camera for the background “reference” images.  Since 
NTSC divides each frame into two fields, two reference images 
are stored per camera.  Reconstruction is done per field.  While 
this increases the error, latency is reduced and dynamic objects 
exhibit less shearing.  The quality of the visual hull fit is directly 
related to and restricted by the resolution of the camera images. 
The six camera inputs are connected to an SGI Reality Monster 
system.  While PC graphics cards could handle the graphics 
requirements of the algorithm, the SGI’s ability to simultaneously 
acquire multiple color-camera images and its high memory 
bandwidth made it a better solution.  As PCs handle more digital 
video and memory and system bus bandwidths improve, they 
could become a viable platform for the reconstruction technique. 
We use one parent and three child pipes to parallelize the 
reconstruction.  The number of child pipes is a trade off between 
latency and frame rate, both of which increase with more pipes.  
The parent pipe obtains and broadcasts the camera images.  In 
frame sequential order, the child pipes do the image subtraction, 
reconstructs the model, and transfers the results.  The results are 
then combined with the virtual environment. 
Four processors are used to perform the image subtraction, and 
the reconstruction volume is sampled at centimeter resolution for 
2 meters in front of the user.  Rendering the results into a 
320x240 window (scaled for the HMD display), the system 
achieves 12-15 frames per second.  The graphics complexity of 
the reconstruction is ~45,000 triangles per second with a 1.7 * 109 
pixels per second fill rate. The latency is about 0.3 of a second. 
Our VE of a room with a faucet and sink uses the real-time model 
reconstruction technique. The user has a visually faithful avatar 
that casts shadows onto the environment and interacts with a 
water particle system from the faucet.  We observed users cup 
their hands to “catch” the water, put random objects under stream 
to watch particles flow down the sides, and comically try to drink 
the synthetic water.  Unencumbered by additional trackers and 
intuitively interacting with the virtual environment, users exhibit 
an approach of uninhibited exploration, often doing things "we 
didn't think about." 

5. RESULTS AND FUTURE WORK 
We have presented an algorithm that generates a real-time view 
dependent sampling of the visual hull by using graphics hardware 
acceleration.  The resulting reconstructions are used to generate 
visually faithful avatars and as active objects in IVEs.  The system 
does not require additional trackers or require a priori objects 
information, and allows for natural interaction between the objects 
and virtual environment.  
Our system development will focus on collision detection, 
improved rendering techniques, and exploring applications.  The 
algorithm is being refined to better compensate for image 
subtraction and camera calibration error.  We plan on a user study 
to examine the effects on task performance of visually faithful 

avatars and natural interactions with the VE.  We assert that the 
unencumbered interactivity and improved immersion will enhance 
exploration and task performance.  Through expanding the 
interactions between real objects and the synthetic environment, 
we seek to enable a new type of hybrid reality. 
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Figure 1: Synthetic data set of a 3d model rendered from five positions.  This is the input to the reconstruction algorithm.  Our goal is 
to generate an arbitrary view of the user in real-time for avatars and interacting with the virtual environment. 
Figure 2: Using projected textures, each camera (the 
spheres) image is projected onto a plane. 
Figure 3: The points on the plane within the intersection of 
the texture projections are within the visual hull.
Figure 4: Compositing the planes results in a first visible 
surface of the visual hull.  The depth buffer result is shown.
Figure 5: We dynamically reconstruct and light the model 
from a novel viewpoint.
Figure 6: The resulting models can be used for lighting and 
inputs into simulations such as collision detection.
Figure 7: With real-time approximate models of real 
objects they become active participants in a hybrid reality.
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