
Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels

TIANSHI LI, Northeastern University, USA
LORRIE FAITH CRANOR, Carnegie Mellon University, USA
YUVRAJ AGARWAL, Carnegie Mellon University, USA
JASON I. HONG, Carnegie Mellon University, USA

Apple and Google introduced their versions of privacy nutrition labels to the mobile app stores to better inform users
of the apps’ data practices. However, these labels are self-reported by developers and have been found to contain many
inaccuracies due to misunderstandings of the label taxonomy. In this work, we present Matcha, an IDE plugin that uses
automated code analysis to help developers create accurate Google Play data safety labels. Developers can benefit from
Matcha’s ability to detect user data accesses and transmissions while staying in control of the generated label by adding
custom Java annotations and modifying an auto-generated XML specification. Our evaluation with 12 developers showed that
Matcha helped our participants improved the accuracy of a label they created with Google’s official tool for a real-world
app they developed. We found that participants preferred Matcha for its accuracy benefits. Drawing on Matcha, we discuss
general design recommendations for developer tools used to create accurate standardized privacy notices.

ACM Reference Format:
Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong. 2024. Matcha: An IDE Plugin for Creating Accurate
Privacy Nutrition Labels. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 8, 1, Article 3 (March 2024), 38 pages.
https://doi.org/10.1145/3643544

1 INTRODUCTION
Privacy nutrition labels are short, uniform, machine-readable notices that allow users to learn about how their
data is collected and used at a glance [12, 21, 23]. Inspired by this idea, the two main mobile app stores, Apple
app store and Google Play store, introduced a privacy label section in 2020 and 2022 respectively.1 This section
is displayed on the public page of each app and is self-reported by the app developers. As of August 26, 2022,
60% of apps on the Apple app store and 44% of apps on the Google Play store have filled out forms to create
these labels. However, researchers [3, 24, 29, 30, 45] and consumer advocates [14] have raised numerous concerns
about these labels given their current design. One key concern revolves around the accuracy of the labels, which
could fundamentally undermine the entire effort if consumers lose confidence in the stated data practices.

Currently, developers alone are responsible for accurately creating the privacy label. However, recent research
found that this seemingly straightforward task was very challenging for developers [29]. First, developers’
understanding of their app’s data practices may be incorrect or incomplete due to memory errors or unexpected
data collection from third-party libraries [4, 5, 26, 34, 39]. Second, developers’ misinterpretations of the label
terminology could cause errors when they translate the understanding of the app to the privacy label [29].

1“App privacy details” on the Apple app store and “Data safety section” on the Google Play store

Authors’ addresses: Tianshi Li, Northeastern University, Pittsburgh, USA, tia.li@northeastern.edu; Lorrie Faith Cranor, Carnegie Mellon
University, Pittsburgh, USA, lorrie@cmu.edu; Yuvraj Agarwal, Carnegie Mellon University, Pittsburgh, USA, yuvraj@cs.cmu.edu; Jason I.
Hong, Carnegie Mellon University, Pittsburgh, USA, jasonh@cs.cmu.edu.

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.
© 2024 Copyright held by the owner/author(s).
2474-9567/2024/3-ART33
https://doi.org/10.1145/3643544

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 3 . Publication date: March 2024.

3

3

HTTPS://ORCID.ORG/0000-0003-0877-5727
HTTPS://ORCID.ORG/0000-0003-2125-0124
HTTPS://ORCID.ORG/0000-0001-9304-6080
HTTPS://ORCID.ORG/0000-0002-9856-9654
https://doi.org/10.1145/3643544
https://orcid.org/0000-0003-0877-5727
https://orcid.org/0000-0003-2125-0124
https://orcid.org/0000-0001-9304-6080
https://orcid.org/0000-0002-9856-9654
https://orcid.org/0000-0002-9856-9654
https://doi.org/10.1145/3643544
https://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643544&domain=pdf&date_stamp=2024-03-06

33:2 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

Using automated program or network analysis can provide insights into an app’s data usage, but it can not
replace developers in this process. The output of these analyses are not directly useful to end users and need to
be converted to more high-level summaries of data practices. However, automated techniques for detecting data
flows [2, 13] and categorizing them into concepts such as data types [19, 35] and purposes [20, 42] inevitably
suffer from imperfect accuracy. Furthermore, after data leaves the device, it is infeasible to determine how data is
stored, shared, or repurposed without access to the software backend. As the commercial privacy labels embrace
a comprehensive design that also covers server-side data rentions and sharing, the developer’s knowledge is
needed to elucidate the detailed data usage and correct errors made by the automated analysis.

This paper explores a new design space for tools that can improve the accuracy of standardized privacy notices
by leveraging the synergies between developers and automated analysis. We present Matcha, a plugin for the
Android Studio IDE to help developers create accurate Google Play data safety labels. Matcha analyzes an app’s
codebase and provides suggestions about first-party code that accesses or transmits user data based on APIs
and keywords. Matcha also automatically detects popular third-party SDKs that collect or share user data, and
helps pre-fill part of the privacy labels based on the privacy information provided by the third-party developers.
Then it asks developers to confirm or reject the suggestions by adding custom Java annotations and editing an
auto-generated XML spec file for first-party and third-party data practices respectively. Finally, Matcha uses the
annotations and XML to generate a CSV file that can be imported into the developer console to create the label.
The design of Matcha is inspired by prior research on privacy-enhancing IDE plugins, in which annotations

has helped increase the developer’s awareness of privacy issues and reinforce best practices [26], facilitate the
documentation of data practices [26], and streamline the implementation of privacy features [28]. However,
the annotation design of prior research has been relatively simple, requesting information in a more open-
ended format. In contrast, the creation of privacy labels requires much more comprehensive and standardized
information and can be subject to developers’ misunderstandings and knowledge gaps [29]. With Matcha, we
aim to investigate the following problem: How can we apply the annotation-based approach to help developers
overcome the limitations in their capacities and create an accurate privacy label?

The design challenge lies in how to achieve a good balance between reducing developers’ burden and soliciting
accurate information from them. To achieve this goal, we first analyzed Google’s data safety label to design
the annotations and the XML spec that covers all the required information for generating the label. We then
conducted preliminary tests for iterative design and found that developers’ overconfidence and incorrect mental
model of what the plugin can or cannot do made them reject correct suggestions by the plugin. Furthermore, we
noticed that our participants generally lacked basic knowledge about Java annotations, which became another
barrier to providing accurate information. These findings informed our final design of the Matcha IDE plugin.
Creating privacy labels for an app requires significant knowledge about its implementation. Therefore, we

evaluated Matcha with 12 developers working on their own apps. Matcha helped 11 out of the 12 participants
improve the accuracy of their data safety labels as compared to filling out forms on the Google Play developer
console. Our analysis showed that Matcha was effective in addressing errors due to misunderstanding of the
task of creating data safety labels, misunderstanding of the third-party libraries’ data practices, forgetfulness,
and misunderstanding of code behavior. All participants favored Matcha to the baseline due to improved label
accuracy, user-friendly interface, learnability, and the educational benefit of learning more about their app’s
data practices. Drawing on our experiences, we discuss design recommendations for developer tools for creating
accurate standardized privacy notices.

We make the following contributions:

• The design and implementation of Matcha, an IDE plugin for helping developers create accurate Google
Play data safety labels. Our annotation-based approach to creating privacy labels the IDE plugin design can

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:3

address the information overload and the misunderstandings of privacy label terms, resulting in improved
accuracy of privacy labels. Our plugin and source code are available at https://matcha-ide.github.io

• Evaluation studies with Android developers working on their own real-world apps (𝑁 = 12), demonstrating
the efficacy and usability of Matcha.

• Design recommendations for developer tools for creating accurate standardized privacy notices.

1.1 Matcha Use Case
The example below demonstrates the typical workflow for using Matcha to create a data safety label. Carol needs
to create a data safety label for her app. She tries the default approach, which is to fill out forms on the Google
Play developer console. However, the task is overwhelming and she is not sure whether she has answered all the
questions correctly. Then she discovers Matcha and gives it a try.
Matcha analyzes the app’s codebase and identifies API calls that access sensitive user data and send data off

the device and asks her to add an annotation for each API call. Carol clicks on a detected API call (Figure 1A) and
is navigated to the corresponding line of code in the code editor. She uses Matcha’s quickfix (an IDE feature for
repairing code issues, see Figure 1B) to add a @DataAccess annotations (Figure 1C). The API call accesses the
search queries entered by the user, so she selects the data type “In App Search History” from a list of predefined
options. Similarly, she checks another detected API call that sends the search queries out of the device and also
uses the quickfix feature to add a @DataTransmission annotation that describes the “In App Search History”
data flows from the source represented by the data access annotation to the sink represented by the transmission
annotation and provides further information about why the data is being sent and how it is used after leaving the
device (Figure 1D).

Finally she reviews the third-party SDKs’ data practices detected by Matcha. Matcha informs her of data that is
always collected and shared by the third-party SDKS integrated in her app, as well as, optional data collection and
sharing which depends on her configuration of the SDKs. Carol reviews an XML file automatically generated by
Matcha which details all the potential data collection and sharing of each detected SDK and the trigger conditions
(Figure 1E). She considers the user name collection conditions of the Firebase Authentication SDK irrelevant and
removes the corresponding <data> tag. After verifying all instances, she sets the attribute verified to true to
indicate the completion status to Matcha.
After providing all the required information, Carol opens the “Label Preview” view to see the resulting label

(Figure 1F). She notices that her app both collects and shares data, while the sharing is only caused by the
third-party SDKs in the app. She also learns that data accessed and processed on device does not need to be
reported as data collection according to Google’s definition of the term. She then clicks the “Generate Data Safety
Section CSV” button (Figure 1G) to export the data safety label into a CSV, which she later uploads to the Google
Play developer console to fulfill the requirement.

2 BACKGROUND AND RELATED WORK

2.1 Large-scale adoption of privacy nutrition labels: Opportunities and Challenges
Website privacy policies are notoriously long and difficult to read [33]. To tackle the problem, researchers proposed
“privacy nutrition labels” more than a decade ago, to offer a clear, uniform, and succinct format for disclosing data
usage. Many variants have been proposed for websites [21], mobile apps [23], and IoT devices [12]. Prior research
has shown that standardized labels can help users find information about how their data is used faster [22],
improve comprehension of privacy practices [22], and nudge consumers to make more privacy-conscious purchase
choices [12, 23].
Apple introduced the App Privacy section to the Apple App Store in December 2020, marking the first large-

scale deployment of privacy nutrition labels in real life. Google followed with the Data Safety section, their

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

https://matcha-ide.github.io

33:4 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

F

G

B

A

E

C

D

Fig. 1. An overview of the main features of Matcha. Matcha detects API calls that access user data and transmit data out of
the app, as well as 3rd-party SDKs that collect and share user data. Then it guides developers to confirm, refine, or reject the
suggestions by adding custom Java annotations and modifying an auto-generated XML file, which account for first-party and
third-party data practices respectively. Finally, Matcha generates a CSV file that can be uploaded to create the safety label.

version of privacy nutrition labels, to the Google Play Store in May 2022. The introduction of privacy labels to
the two major app stores has multiple potential benefits. First, users can directly gain a better understanding
of an app’s data use [22, 33]. Second, it gives developers a systematic and structured way to disclose their data
practices to end users [29]. Third, the standardized and machine-readable format facilitates the research and
deployment of novel formats of privacy notices to help users further synthesize, analyze, and compare app data
practices [38].

However, researchers have identified numerous problems with these privacy labels. One issue is the prevalent
inaccuracies in these labels. Balash et al. [3] found that many apps seemed likely to collect user data but did not
declare any data collection in their labels. Li et al. [30] suggested that many Apple privacy labels may be outdated.
Kollnig et al. [24] found that many apps used tracking libraries and sent data to known tracking domains but
reported no data collected. Xiao et al. [44] found apps whose data flows were inconsistent with their privacy
labels. Other work focuses on usability issues. Zhang et al. [45] interviewed 24 lay users about the Apple privacy
labels and uncovered problems with the usability, understandability, and effectiveness of these labels. Li et al.
[29] studied the usability and understandability of Apple privacy labels from the developer’s perspective and
identified many barriers that prevent developers from creating accurate privacy labels. These findings suggest
that the accuracy and usability problems are interdependent.
We present Matcha, an IDE plugin, to improve the accuracy of privacy labels by addressing the usability

and comprehension challenges for developers [29]. Although we focus on Google data safety labels because
they support importing labels generated by external tools, we consider the developer-in-the-loop, machine-
facilitated idea generalizable to other types of privacy nutrition labels and standardized privacy notices. We

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:5

derive recommendations for designing developer tools in the same vein from in-depth studies on Matcha and
discuss them at the end of the paper.

2.2 Challenges for developers to create accurate standardized privacy notices
Conceptually, the activity of creating a privacy nutrition label entails two steps. The developer needs to first
establish a thorough and accurate understanding of how their app handles user data [38] and then translate it
into a privacy label using the standard taxonomy. Unfortunately, research has shown that even if developers
intend to create accurate privacy labels, they often encounter significant challenges in both steps.

First, prior work has discovered reasons leading to an inaccurate understanding of the app’s data practices. Li
et al. [26] found that developers may lose track of changes in data practices across different versions of their app
and lack knowledge about data practices in code developed by other colleagues. Other research has revealed
misunderstandings about the data practices of third-party libraries [4, 5, 34, 39], including developers being
unaware of automatic data collection by libraries they include in their apps [5]. Third-party SDKs sometimes
offer disclosures of their data practices, but developers are often unaware of these resources [29, 34, 39].
Second, it is difficult to synthesize data practices using standardized terms. Balebako et al. [6] tested both

crowd workers’ and privacy experts’ ability to categorize data-sharing scenarios using a predefined taxonomy
and found that participants’ understanding of the concepts in the taxonomy varied greatly, even among experts.
More specifically, Li et al. [29] studied how iOS developers created privacy labels for their apps and observed that
developers frequently misinterpreted terms used in the privacy label such as “data collection”.
In this work, we introduce Matcha to address these challenges. Matcha runs simple code analysis to identify

first-party and third-party data practices, and provides scaffolding to help developers supply accurate information
without spending time studying Google’s definitions. Our developer studies showed the efficacy of Matcha in
enhancing the accuracy of privacy labels, and also contributed further understandings of the types of errors that
Matcha helped mitigate.

2.3 Developer tools for creating privacy notices
Some existing tools can help developers audit their data practices and indirectly help developers create privacy
notices. Prior research has built information flow analyzers designed to detect malicious or unwanted information
leaks from an app [2, 13, 16, 25, 37]. Google and Apple have introduced similar support in recent releases of their
systems, such as the data access auditing APIs introduced in Android 11 for helping developers identify unexpected
data accesses. However, most developers are unaware of and rarely use these expert features. Furthermore, these
tools are not immediately useful for privacy label creation because it is difficult to align the detection results with
the types of information that a privacy label needs.

Some tools directly help developers create privacy notices and privacy labels. Key examples are summarized in
Table 1 and compared with Matcha among several dimensions. Notably, while some tools use program analysis
to help identify data practices, none can fully automate this process, and all require developer input. The privacy
labels of both iOS and Android include server-side data retention practices, data usage purposes, and complex
exemption rules. Existing program analysis techniques, which focus on client-side data practices, fall short of
detecting these types of information. Below we further introduce these tools and compare them with Matcha.
Before privacy nutrition labels are widely adopted, researchers have designed tools that leverage program

analysis techniques to improve the creation of various types of privacy notices, such as privacy policies [26, 48]
and in-app privacy notices [28]. These tools can not generate a privacy nutrition label, which requires a more
comprehensive summary of the app’s data practices in a predefined taxonomy that often does not match
developers’ intuitive understanding.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:6 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

Tool/Resource Name Privacy label
creation

Address
human Issues

Automated
analysis

3rd-party
info

IDE
integration

Incremental
update

Honeysuckle [28]
Official Web Forms
Apple Privacy Manifest
Privacy Label Wiz [15]
Privado.ai

Matcha
Table 1. Summary of Matcha and other tools for creating privacy notices. We compare these tools along the following
dimensions: Whether the tool helps with privacy label creation (Privacy label creation); Whether the tool helps address
human-related issues (e.g., infomation overload, misunderstanding of privacy label terms) that can cause inaccurate privacy
labels? (Address human issues); Whether the tool automatically detects data practices (Automated analysis); Whether the tool
provides information for filling out privacy labels for third-party SDKs used in the app (3rd-party info); Whether the tool is
integrated within the development environment so developers can have more context information and potentially work on
the tasks during the development process (IDE integration); Whether the tool supports incremental update of the privacy
notice/label rather than requiring developers to scan the entire codebase from scratch every time (Incremental update). :
fully supported; : partially supported; : not supported

Our work is directly inspired by and builds upon Coconut [26] and Honeysuckle [28], which are IDE plugins
that detect sensitive data use and prompt developers to add annotations. Prior research has shown that adding an-
notations helped developers disclose more data practices when the privacy notice is written in a free form [26] and
implement contextualized privacy UIs more efficiently [28]. However, the complex and standardized design poses
more challenges to creating accurate privacy disclosures due to developers’ misunderstanding and knowledge
gaps [29]. Towards this end, we made substantial changes to the annotation design than prior work. The Matcha
annotation design breaks down the disclosure required by privacy labels into fine-grained, easy-to-understand
data practices, as embodied by the annotation fields. Our work for the first time shows that developers are able to
add annotations based on code analysis results to provide precise information for creating the privacy labels.
With the introduction of the Apple and Google privacy labels, official tools are provided for creating the

privacy labels in the format of web forms. These tools generate privacy labels based solely on developers’ input
and are subject to errors due to developers’ misunderstanding of privacy label concepts and lack of knowledge
about third-party SDKs’ data practices. Matcha significantly address these issues by leveraging the synergies
between annotation-based developer input and automated code analysis, as well as informing developers of the
data practices of the detected third-party SDKs. In April 2023, Apple announced “Privacy Manifest”, which is a
property list that developers need to fill out in Xcode to describe the types of data collected by their app using
the same taxonomy as privacy labels. Third-party SDKs need to provide their own privacy manifest files. Privacy
manifests can be used as a reference to create privacy labels, potentially increasing developers’ awareness of
third-party SDKs. However, the fact that it is a separate requirement creates a barrier to adoption for privacy
label creation.

There are other third-party tools for creating privacy nutrition labels for iOS or Android apps that use automated
program analysis. For example, Privado.ai2 is a commercial tool for creating a Google Play data safety label.
Gardner et al. [15] presents Privacy Label Wiz, which is a web-based tool for creating an Apple privacy label
and reports on the preliminary feedback from developers. Both Privado.ai and Privacy Label Wiz can detect

2https://www.privado.ai/data-safety-report

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

https://www.privado.ai/data-safety-report

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:7

potential data types and use a wizard-like interface to guide developers in providing additional information
for generating privacy labels. Both tools can detect third-party SDKs, and only Privado.ai can automatically
fill out data practices of third-party SDKs. However, these tools were not designed to address the information
overload or the privacy label term misunderstanding issues, as developers are still expected to read all the
text-based guidelines and term definitions on their own. Conversely, Matcha has more design considerations like
the annotation design, step-by-step task guidance, and quick-fixes to walk developers through this process and
overcome these challenges. Another difference is that these tools show the code analysis results with limited
contexts (i.e., no code snippets or only short code snippets), while the IDE integration of Matcha allows for ease
and flexibility of reviewing the code context, which helps developers recall the context and provide accurate
privacy label information. Furthermore, the design of Matcha has also taken the maintenance needs into account.
The use of annotations allow Matcha to efficiently solicit more fine-grained information in context. This enables
the incremental update of privacy labels. Specifically, the developer only needs to modify the annotations around
the code that has changed in the new version, and then regenerate the label. This design eliminates the need to
run the tools to scan the codebase and answer all the questions again from scratch, potentially addressing the
issues of missing updates to the privacy labels [30].

In addition to the system design difference, our work also make research contributions by thoroughly evaluating
our system and synthesizing design knowledge. We are the first to conduct in-depth studies to show that our
tool (Matcha) can improve the accuracy of the privacy label for real-world apps created by the app developers.
Our findings provide insights that can inform the design of future developer support for creating standardized
privacy notices.

3 MATCHA DESIGN AND IMPLEMENTATION
In this section, we present our design goals, how our design fulfills these goals, improvements to the tool design
based on preliminary studies, and our final design and implementation.

3.1 Design goals
We drew upon prior literature to inform our design goals. Li et al. [29] discovered that one obstacle to creating
accurate Apple privacy labels was that developers needed to process a large amount of new information, including
lengthy and complex definitions of terms like data collection. The similarities between the Apple and Google
label filling process suggest that Android developers may also suffer from information overload issues. We argue
that developers will benefit from more scaffolding, which leads to our first design goal:

D1 The privacy label questions should be deconstructed and situated within the context in which developers
handle the specific code that deals with user data.

Developers know how their apps work, but prior research suggests they suffer from forgetfulness [26], lack of
knowledge about other team members’ code [26] and third-party SDK’s data practices [5], and misinterpretations
of terms in privacy labels [6, 29]. Hence, we set the second design goal:

D2 The tool should help developers overcome limitations in their ability to create accurate privacy labels.

Code analysis can be used to identify some data practices that need to be reported in the data safety label.
However, it still has limitations. First, it mainly analyzes data practices within the client app and cannot answer
how data is used after it leaves the device. Second, although algorithms exist to infer purposes of data use [20, 42]
and data types that are not tied to a specific API [19, 35], they are not always accurate. This suggests that
automated code analysis cannot be relied on completely, which leads to our last design goal.

D3 The tool should give developers control to refine or reject the automated analyses when they are inaccurate.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:8 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

Mobile Device

Client App

App Backend

Third parties

Other Apps

@DataTransmission

@DataTransmission

@DataTransmission

3rd-party SDK XML Spec

@DataAccess

@DataTransmission

Collect
Share
Collect+Share

Fig. 2. An illustration of the mapping between the developer input (i.e., annotations and the SDK XML spec) and Google’s
definitions of data collection and sharing. By asking developers to add data access and transmission annotations rather
than directly deal with the label-specific concepts, Matcha reduces errors due to misunderstanding of the label terms while
keeping developers in control of the label.

To satisfy D1, we designed Matcha as an IDE plugin. We adopted the idea of using annotations to document
data practices in code from prior work [26, 28], allowing developers to contribute their knowledge of the app’s
data practices by adding annotations. We divide the design of Matcha into two parts. In the first part, we focus
on determining what types of information to solicit from developers and in what format. In the second part, we
focus on the interaction design to help developers provide accurate information about their data use.

3.2 Developer Input Design
Prior work suggested that developers lack the time and ability to comprehend the label terms [29]. To address
this issue, we designed the specific code format of developer input as a scaffolding for providing all the required
information accurately.

3.2.1 Annotations for explicit data flows within apps. We design the @DataAccess and @DataTransmission
annotations to indicate where data is accessed on device and transmitted to other apps or off the device, namely
the sources and sinks of data flows. Figure 2 shows how Matcha translates the data access and transmission
behaviors to the label terms data collection and sharing, which helps address the misinterpretations of the terms.
Each @DataAccess describes the data types accessed by the app, and each @DataTransmission contains two sets
of attributes covering the data use purposes and the special cases and exemptions of collection and sharing defined
by Google. Developers can use @NotPersonalDataAccess and @NotPersonalDataTransmission to indicate no
data is accessed or transmitted. Table 2 presents the annotation design.

3.2.2 XML spec for implicit data flows caused by SDKs. A library’s data practices may depend on how the app
uses it. For example, in the motivating example the Firebase Authentication library only collects the user’s display
name if the developer provides it. Since much of the configuration of library data use happens outside of the
app, it is hard to determine a proper location for the annotation and check if the required annotation is added.
Therefore, we design an XML file to allow developers to adjust the label based on their use of the library. In the
XML, Matcha generates a <library-custom-usage> tag for each library and populates it with <data> tags that
contain the collection and sharing conditions. Developers can either keep or remove each data tag based on the
condition, and set the verified attribute to true to mark the configuration of a certain library as complete.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:9

Table 2. The table shows the four annotations we designed for the task and their field members that hold different types
of information needed for the label. More details about how @DataTransmission handles collection and sharing are in
Appendix A.

Annotation Fields Note

@DataAccess
id A unique ID defined by the developer to refer to this

access when later annotating data transmissions.
dataType A list of Enum values of predefined data types accessed

by the app and held in the annotated variable

@NotPersonalDataAccess – For explicitly indicating no personal data is accessed
here. It is useful for dismissing an irrelevant data access
suggestion.

@DataTransmission
accessId A list of IDs indicating where the transmitted data is

originally accessed. The IDs are previously defined in
@DataAccess.

collectionAttribute A list of Enum values of collection-related information.
sharingAttribute A list of Enum values of sharing-related information.

@NotPersonalDataTransmission – For indicating no personal data is transmitted out here.
It is useful for dismissing an irrelevant data transmission
suggestion.

3.3 Preliminary Tests for Iterative Design
To achieve D2, we offer suggestions for data access and transmission and quickfixes for adding annotations based
on code analysis. To achieve D3, we let developers have the final say, namely, they can ignore any suggestions,
and the label creation only relies on the annotations and the XML spec that they can modify. This raises a question:
Are developers capable of correctly comprehending the suggestions and building on them to create an accurate data
safety label? We iteratively improved the design to achieve this goal by conducting IRB-approved preliminary
tests with five developers on an initial prototype with basic support for adding annotations and editing the XML
spec. The participants first created the label for their apps by Google’s tool and then using Matcha. The interview
script can be found in Appendix D. One researcher conducted a thematic analysis of the interview transcripts.
Below, we summarize issues that emerged from the studies and how they informed the improvement of our
system design.

3.3.1 Ignoring unexpected suggestions. Some developers appeared to be affected by confirmation bias [7], ignoring
suggestions that did not match their expectations. For example, P3’s app had a feature for sharing the user’s high
score, the game screenshot, and a short message provided by the user. This data falls under the “App activity”
data category per Google’s definition. However, P3 quickly added a @NotPersonalDataAccess annotation to
dismiss Matcha’s suggestion. He explained that “I don’t think high score is personal info”. This example shows
that developers tended to place more trust in their understandings than the system’s suggestion. This created
obstacles to correcting the developer’s misunderstandings. To address this problem, we consulted the guidelines
for human-AI interaction [1] as building trust is the main goal of constructing efficient AI-infused systems.
Specifically, we added proactive and contextualized guidance to help developers establish a clearer mental model
of what Matcha can do and how Matcha’s suggestions work.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:10 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

(a) Data type options customized based on the API
call.

(b) Transmission and storage pre-checked based on the API
call.

Fig. 3. Examples of quickfix dialogs customized based on the API calls to avoid errors and improve learnability and usability.

3.3.2 Difficulty of handling Java annotations. Our participants faced challenges in adding the annotations due to
unfamiliarity with the syntax. For example, Java annotations can only be added to specific code elements, such
as a variable declaration. This troubled developers when they needed to manually add the annotation. Another
example is when developers declare multiple variables altogether (e.g., EditText nameText, ageText;) they
can not add different annotations to each variable. During our preliminary tests, we found that these seemingly
trivial issues with annotations greatly hindered our participants’ abilities to use our tool. Therefore, we optimized
the support for adding annotations in the final version of Matcha to help developers automatically trace where to
add the annotations and reformat their code.

3.3.3 Error-prone direct editing of annotations. Some errors were introduced when developers edited annotations.
Since our participants were first-time users of Matcha and unfamiliar with the Google data safety label design,
they felt overwhelmed by the number of fields they needed to manually complete and the number of predefined
values they can select from. Although direct editing may be more efficient for expert users, it was too error-prone
and confusing for novices. Therefore, we provided a dialog for guiding the developer to fill out all the required
information to generate the annotation.

3.4 Final Design of the IDE Plugin
We present the final design of Matcha, including the five tasks for creating the label and the main supporting
features.

3.4.1 A five-step process. The Matcha label creation process consists of five steps. The first two are for adding
data access annotations and the next two are for transmission annotations. In the first and the third steps,
Matcha guides developers to do a precise API-based search, in which they annotate all the detected API calls that
potentially access user data and send the data out of the app. In the second and the fourth steps, Matcha uses
fuzzy keyword-based search to help developers detect more data types that are collected by the app but have
not been annotated in the previous step. Adding annotations is voluntary for the second and the fourth steps,
which means the developer only needs to add an annotation when they find the detected keywords relevant to
the access to, and transmission of, user data. In the last step, the developer modifies the auto-generated XML
spec file to adapt it based on their usage of the library.

3.4.2 Quickfixes for adding annotations. Matcha offers quickfixes to aid in the annotation creation (see Figure 1).
The quickfix locates which variable to annotate for detected API calls. The developers can also use the quickfix to
add additional annotations for any variables. The quickfix dialog can narrow down or pre-select options based
on the detected API call. For example, for LocationManager.getLastKnownLocation, the available choices are
only approximate location, precise location, and none of the above (Figure 3a). For a Firebase Cloud Storage API,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 3 . Publication date: March 2024.3

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:11

(a) A tooltip suggesting next action. (b) A tooltip explaining the generated annotation.

Fig. 4. Examples of the contextualized, proactive tooltips to offer just-in-time instructions and education about the annota-
tions.

the “data being transmitted off the device” and “data being stored” options are automatically checked (Figure 3b).
We note that users can still modify the annotations in any way they want, while using the dialog to constrain
and validate the developer’s input could both reduce the chance of accidentally making errors and make the tool
easier to learn and use [36].

3.4.3 Contextualized and proactive guidance. To help developers understand what Matcha can do and how
Matcha works, we designed just-in-time tooltips that pop up next to the related code when a certain type of
Matcha suggestions is shown for the first time to give instructions on the expected actions (Figure 4a). Matcha
also provides tooltips that are only informational, such as explaining what the annotations have to do with the
creation of the safety label (Figure 4b). In addition, Matcha offers a systematic introduction of each step in a help
panel (see Figure 1).

3.4.4 Label preview. To help developers better understand how the data safety label is generated, we design a
label preview panel (see Figure 1). For each data type that is collected or shared, a note of “by library,” “by app,”
or “by app and library” is provided, indicating the source of this data collection or sharing. After expanding each
data type, it will show further information like the data collection or sharing purposes, as well as the related code
links. These links allow the developer to check which annotations, custom library usage records in the XML file,
or third-party libraries that always collect user data led to the generation of this particular data safety label entry.

3.5 Matcha System Implementation
The Matcha IDE plugin was developed using the IntelliJ Platform SDK3. We have released the plugin on JetBrain’s
official plugin store and open sourced it on GitHub4.
Our API-based detection was built upon the code analysis subsystem of Coconut [26]. For data access, we

augmented the Coconut API list with APIs from the official guidelines for this task5. For transmission, we kept the
APIs about network requests from Coconut and added on-device sharing API calls for the sharing-only condition.
Our final API list contains 91 data access APIs and 45 data transmission APIs.

We implemented the keyword search using the IntelliJ SDK’s findManager.findInProject API. Our keyword
list comes from three sources: (1) permissions mapped with specific data types in Google’s official guideline6, (2)
keywords extracted from Google’s data type definitions7, and (3) keywords extracted from open-sourced Android
apps using a TF-IDF algorithm. For the third approach, we selected 75 apps by searching for recently updated
GitHub repos (in July 2020) that contain a Google Play link and declare dangerous permissions in the manifest.
To identify the keyword candidates for the data types to be reported in the safety label, we tokenized the Java
3https://plugins.jetbrains.com/docs/intellij/welcome.html
4https://matcha-ide.github.io
5https://developer.android.com/guide/topics/data/collect-share
6https://developer.android.com/guide/topics/data/collect-share
7https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#data_types

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

https://plugins.jetbrains.com/docs/intellij/welcome.html
https://matcha-ide.github.io
https://developer.android.com/guide/topics/data/collect-share
https://developer.android.com/guide/topics/data/collect-share
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#data_types

33:12 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

files from these projects and split the variables, treated each file as a document, and calculated the TF-IDF of each
word per document. We then selected files containing the data access API calls and ranked words appearing in
them based on the average TF-IDF values. Finally, a researcher reviewed the top results and incorporated words
related to the data type into the final list. Matcha’s keyword search feature is case-insensitive. Our final version
covers 180 unique keywords (see Appendix B for details).
Matcha scans the app’s build.gradle file to detect third-party SDKs and fills out the required data collection

and sharing practices in the generated label. Because privacy labels (for both iOS and Android) heavily involve
server-side data practices (such as retention and sharing), it is infeasible to automate the analysis of third-party
SDKs by running static/dynamic program analysis. Therefore, the auto-generated privacy label information for
third-party SDKs was obtained by one researcher manually coding the privacy label filling guidelines provided
by third-party SDK developers (e.g., the documentation of the Firebase SDKs.8). We covered popular commercial
SDKs included in the Google Play SDK Index9. We also added SDKs developed by Google that provided privacy
label guidelines. The SDK list is dynamically loaded every time our plugin loads by requesting a JSON file hosted
remotely, allowing the list to be updated without updating the entire plugin. Our final version for the study
covers 58 unique third-party SDKs (see Appendix B for details). Prior research [9] has shown that over half of
the sensitive data access by third-party libraries are from the most popular 30 libraries, which suggests that our
current implementation could help developers cover a large portion of the data practices due to third-party SDK
in their privacy labels.

For the SDKs that involve optional data collection and sharing practices, Matcha generates XML code to allow for
further customization by the developer. For each detected SDK,Matcha generates a <library-custom-usage> tag
with the initial value of the verified attribute set to false. Then it inserts <data> tags under the <library-custom-usage>
to represent the data collection and sharing instances derived from the guidelines of the SDK.

4 MATCHA EVALUATION

4.1 Study Design Considerations
Evaluating interventions for improving the accuracy of a privacy label is difficult. Unlike many developer tools
that can be evaluated with uniform tasks in well-controlled settings [11, 26, 28, 40, 41], a tool for creating the
privacy label must be evaluated by developers who have adequate knowledge about the app. Otherwise, it
becomes hard to eliminate the impact of lacking familiarity of the app. One potential method is to ask participants
to develop an app with specific data practices and then create the label. However, even developing a small app
can cost thousands to tens of thousands of dollars, making it too costly for research. Hence, we chose to ask
participants to work on a real-world app they developed.

However, asking participants to work on their own apps is also challenging. First, we cannot obtain the ground
truth of the data practices of these apps to verify the developers’ answers. Second, since participants works on
different apps, we cannot directly compare their performance, making a between-subjects study design unsuitable.
Third, it is hard to recruit a large sample of participants who not only have developed an Android app but are
also willing to install a plugin to analyze their code and let researchers look at their code.

Given these challenges, we conducted within-subjects, mixed-methods studies to gain quantitative and qualita-
tive insights for this question: How effective is Matcha in correcting the errors in a privacy label created by Google’s
official tool? We observed how developers created the label using Google’s tool and Matcha. We asked them to
compare the two labels to measure the change in accuracy in the absence of absolute ground truth. The realistic
setting placed higher requirement on our tool to work with arbitrary apps [17].

8https://firebase.google.com/docs/android/play-data-disclosure
9https://developer.android.com/distribute/sdk-index

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

https://firebase.google.com/docs/android/play-data-disclosure
https://developer.android.com/distribute/sdk-index

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:13

4.2 Participants
12 developers participated in our study. We coded the data iteratively and stopped recruiting after reaching
saturation in our qualitative analysis [18]. This sample size is consistent with evaluation studies of novel
programming tools in prior work [11, 28, 31, 46, 47]. Most participants were recruited from freelancer websites,
including eight from Freelancer10 and one from Upwork.11 The other three signed up after seeing advertisements
on Twitter, Slack groups, or from personal connections. Our pre-screening survey asked for an Android app they
developed and their role(s) in the development process, and had quiz questions about Android development.

Our participants came from eight countries and developed the apps either as part of their job, a hobby, or for a
course project. Nine out of the 12 participants had experience in publishing apps on the Google Play store, though
some chose not to use Google Play apps for our study due to NDA restrictions. Most of our participants have low
familiarity with the task of creating privacy labels. Nine out of the 12 participants had heard about the Google
privacy label as a developer or a user, while only three have created one. We also asked about their familiarity
of iOS privacy labels, and only four have heard about it and two have created one. Our sample included six
Google Play apps, with the most popular one having over one million downloads. We append details about each
participant in Appendix E.

4.3 Study Procedure
We started the study by briefing the participant on the study goals and obtained their consent for audio and
screen recording. Before the main tasks, we first gave a brief introduction to the Google Play data safety label.
Then we asked the participants to introduce the app they had selected.

In the first task, the participant created the label for the selected app by filling out forms on the developer
console. Participants logged into the console using an account we created for the study. We asked them to handle
this task as they normally would and encouraged them to use any resources they would normally consult, except
for the app’s current label if available. In the second task, the participant created the label using Matcha. We first
helped them download and install the plugin and then asked them to watch a short tutorial video (2 minutes 42
seconds) before working on the task. If they were not sure about how to fill in certain information, we asked
them to answer based on their best understanding and explain their rationale. After creating the label, we asked
them to import the CSV into the Google Play developer console to create the label. Participants were asked to
think aloud during both tasks. We discuss the potential implications of a learning effect due to the two-task
within-subjects study design along with other methodological limitations in Section 4.6.

The study ended with a brief semi-structured interview. We showed the discrepancies between the two labels
and asked the participant to identify errors in either version and explained what caused the error. Then we asked
which tool they preferred and why. The interview script is in Appendix D.

4.4 Ethics of the Study
The study was IRB-approved. Each interview took 1.5 to 2 hours. Each participant was compensated $70. During
the interview, we allowed them to only share part of their screen to avoid showing identifiable information
and skip any questions they did not feel comfortable answering and reassured them that it would not affect
their compensation. We removed any information that could identify the participants, their apps, and their
organizations before publishing the results.

10https://www.freelancer.com
11https://www.upwork.com

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

https://www.freelancer.com
https://www.upwork.com

33:14 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

4.5 Qualitative Analysis Method
The first author coded the interview transcripts and the screen recordings. First, the author coded when developers
added annotations and modified the XML spec entries. Then the author coded the verbal responses from the
think-aloud process of the main tasks and the post-study interviews using a bottom-up open coding method [10].
The other two authors met with the first author weekly to discuss the findings and derive themes. The coding
process was done with the software MAXQDA. We provide our complete codebook in Appendix F.

4.6 Methodological Limitations
Our study method has some limitations. First, using Matcha after using the developer console may result in a
learning effect: the increased familiarity with the task might have contributed to the improvement in accuracy
caused by Matcha. However, the process of using the two tools and the questions the developers answer are
quite different, which suggests the learning effect may be small. Our qualitative analysis further delineates how
Matcha improved the accuracy. Second, the identified errors are not exhaustive since the ground truth is not
available. As such, the errors analyzed in the paper should not be interpreted as all possible errors. Third, our
participants developed the app individually or in a small team, so our findings may not apply to developers who
work in a big company. Fourth, our findings be subject to the social desirability bias, namely the participants may
be more likely to express a preference for Matcha due to the financial compensation for participation. Hence,
future field research is needed to investigate how developers perceive the tradeoff of time for accuracy in real
life. Fifth, testing Matcha with different apps has inherent limitations as discussed in Section 4.1. One potential
mitigating approach is to conduct the studies with multiple developers working on the same project. We decide
to leave the exploration of this idea for future research.

5 RESULTS
Overall, we found that Matcha helped improve the accuracy of the safety labels. Both objective and subjective
results suggest that Matcha was easy to learn and use. All participants preferred Matcha over Google’s tool.

5.1 Matcha Improved Label Accuracy
All participants considered the Matcha version correct when reviewing the discrepancies between the two
labels, except for F2, who correctly classified gender as “other personal information” in the baseline while then
misclassifying it as “sexual orientation” using Matcha. The misclassification errors do not affect counting the
data types and purposes and therefore do not affect our quantitative measurements. All participants except for
F6 fixed some errors in their labels with Matcha. The proportion of participants who have fixed errors in their
labels using Matcha was 11/12 (approximately 92%) with a Wilson confidence interval of (64.6%, 98.5%) at the 95%
confidence level [32, 43]. Matcha helped report 1.8 times as many data types collected or shared by the app (92 vs.
52) and 3.0 times as many purposes for data collection and sharing (212 vs. 70) as compared to the baseline.

5.2 Types of Errors Fixed by Matcha
Our first analysis examines the errors corrected by Matcha in various aspects. Table 3 summarizes the errors.

5.2.1 Under-reporting vs. over-reporting. Matcha fixed many under-reporting errors (77%), which helped develop-
ers report more comprehensive data practices. We want to note that the Matcha labels also fixed under-reporting
errors in the real-world labels of the six Google Play apps. Matcha also fixed some over-reporting errors (23%).

5.2.2 First-party vs. third-party. A significant fraction of errors corrected by Matcha were caused by third-party
libraries that automatically collect or share data (78%) than by first-party code (22%). This was mostly due to the
Firebase services used for functionality and analytics, as well as other advertising and utility libraries.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:15

Table 3. Analysis of errors fixed by Matcha. The Base. column shows the number of data types and purposes reported using
the developer console, and the Add and Cut columns show what Matcha helped add or remove as compared to the baseline
version. Most fixed errors were under-reporting errors (more added than removed) caused by third-party libraries.

Data Type Data Purpose
Base. Add Cut Base. Add Cut

1st-party collect 21 8 13 34 15 20
3rd-party collect 18 44 11 22 107 15
1st-party share 1 2 1 2 2 2
3rd-party share 12 20 9 12 64 9

Total 52 74 34 70 188 46

5.2.3 Fixed errors related to different data practices. More errors fixed by Matcha were related to data collection
(70%) than data sharing (30%). However, we want to note that the improvement for data sharing might be
more essential, because no data sharing was reported in baseline labels, whereas some data collection was
already reported in baseline. This suggests developers had more severe awareness gaps regarding data sharing.
Furthermore, sharing data with third parties is more sensitive [9], which means the Matcha labels can better
inform users of the privacy risks.

5.3 Matcha Helped Tackle Challenges for Creating Accurate Privacy Labels
We identified four themes in participants’ explanations of errors fixed by Matcha. We found that Matcha helped
address common issues that can lead to misunderstanding of data practices and inaccurate privacy nutrition
labels. [5, 26, 29].

5.3.1 Help tackle misunderstandings about data safety label (F2, F4, F5, F8, F9, F10, F11, F12). Matcha helped fix
errors due to misunderstandings of the data safety label taxonomy. For example, F8 initially thought he should
report some data as collected while the data was only used on device and therefore did not count as collection
per Google’s definition. Matcha explicitly asked whether the data is transmitted off the device, which resolved
the problem by relieving the developer from translating low-level behaviors to the label terms. Interestingly, we
observed that developers ignored unfamiliar data types in the baseline task. For example, F2 said “I did not even
think of ‘other user-generated content.’” Matcha correct these errors by having them focus on a specific API call
and the data types related to the API.

5.3.2 Help reduce errors related to third-party libraries (F1, F2, F3, F5, F8, F9, F11). We found Matcha helped
correct errors due to misperceptions about third-party libraries. Some developers did not consider these libraries
when creating the label. For example, F3 felt the data collected by Firebase was “collected by a different platform”
not part of his app. Some developers were unaware of data collected and shared by libraries. For example, F2
explained that “I didn’t know that the library (Firebase cloud storage) was doing that on its own behind the scenes.”
Interestingly, Matcha has also helped developers who already had some expectation of the third-party data

practices. For example, F1 said “our data is sent to Firebase server, that’s why I am selecting these” as he thought
out aloud when using the baseline tool. However, later Matcha revealed that Firebase collected more data then he
expected. F11 searched the exact data practices of an advertising library used in his app, but couldn’t find the
specific guide provided by the library developer, so he referred to their privacy policy instead. The ambiguous
wording of the privacy policy then caused errors in the first label that were later corrected by Matcha.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:16 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

5.3.3 Help reduce errors due to forgetfulness (F1, F2, F3, F6, F7, F10, F12). One common source of errors that
Matcha helped fix is due to forgetfulness. They could simply be an oversight – “it just escaped my mind” (F3), or
have deeper reasons. For example, F6 forgot the use of a third-party library and explained that “I didn’t actually
recall that because I was not in charge of this part.” F7 forgot he integrated the Admob library a long time ago. Both
errors were caught by Matcha. Similar to earlier research [29], we found developers mostly answered questions
from memory when using the developer console. Matcha’s systematic review of data practices helped developers
find and disclose more data types than they would have otherwise. For example, although F2 checked the Firebase
database in the first task, he forgot certain tables and therefore missed certain collected data types. This was later
fixed by Matcha.

5.3.4 Help reduce errors due to unfamiliar APIs (F1, F2). Matcha even helped developers learn more about the
behavior of unfamiliar APIs. For example, F2 searched for the LocationManager.getLastKnownLocation API
online when adding annotations for the API, and therefore learned more about the precisions of the location
data. F1 thought the Admob library could not obtain approximate location data because the app did not request
location permissions. However, he later learned from Matcha that the Admob library used the user’s IP address
to derive the approximate location, which was not controlled by the permission system.

5.4 Perceived Benefits and Problems of Matcha
All participants preferred Matcha over the baseline due to four main benefits. We also discuss needs for future
improvement.

5.4.1 Benefit: Improved accuracy (F1, F2, F4, F7, F8, F10, F11). The primary benefit of using Matcha was the
improved accuracy, which could outweigh the time cost. As stated by F2, “Accuracy wise, I would prefer the tool
Matcha...For an app that I’m going to publish on Google Play, I would use Matcha, because like, I emphasize accuracy
over efficiency.”

5.4.2 Benefit: Ease of use (F2, F5, F6, F7, F9, F11, F12). Many participants considered Matcha easy to learn and use.
F6 felt the quickfixes for adding annotations were “pretty convenient”. F7 said “I thought it might be complicated.
But when I started a bit, it becomes easier to use”. F2 felt it would be easier if he added annotations as he coded the
app.

We observed that those who devoted more effort towards providing accurate information in the initial task via
the developer console tended to find more value in the ease of use of Matcha. For example, F11 tried to search for
the third-party SDKs’ data practices in the baseline task (as mentioned in Section 5.3.2). He expressed a preference
for Matcha because, “it is very easy, it saves a lot of time, and plus it is more accurate as compared to the Google
Play console, which is very lengthy, and we have to read through all the options and then check the boxes, and we
have to consult the documentation.”

5.4.3 Benefit: Informative tool (F2, F6, F5, F7, F8, F9). Many participants liked Matcha because it helped them
learn a lot about their app and the data safety label. For example, F8 mentioned that, “Before using your plugin,
I was quite sure that I have submitted all the information that I’m getting, but after using the plugin, I am more
knowledge about what’s going on in my app.”

5.4.4 Benefit: Better engagement (F2, F6, F10). Some participants liked that Matcha contextualized all the questions
around specific code, which better engaged them with this task than the developer console. F6 explained that:

The developer console does have everything written on it, but it’s hard to actually relate that to your
own code, because it’s just a bunch of instructions. While the plugin could remind you of what you have
written. For my example, I don’t actually remember if I ever imported the WeChat SDK. I really don’t
remember that. And the console wouldn’t actually remind me of anything.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:17

5.4.5 Benefit: Better flexibility (F3, F6, F12). Some participants considered the code-based label generation more
flexible. F3 mentioned that he preferred the plugin because “It gave me the flexibility I needed and made me feel
like I was still doing development work. All I had to do was add annotations and it generated labels for me.” F12
even thought of the benefits of Matcha’s annotation-based method for future app updates: “If I update the app to
another version, it’s easy to change the annotation and create a new CSV file.”

5.4.6 Problem: Redundancy issues (F2, F6, F5, F8). Developers raised redundancy as a recurrent issue with Matcha,
particularly in keyword search results. Some keywords were too generic and resulted in false positives. For
example, F6 felt that the keyword “search” was not effective in detecting the data type “search history” because it
was often used for unrelated purposes. Developers also noted the redundancy in the required developer input. We
requested that developers add different annotations when making API calls that collect the same type of data, as
they may serve different purposes. However, F2 complained about having to annotate requestLocationUpdates
after annotating getLastKnownLocation, which collect the same data and for the same purpose in his use case.
Future work may consider improving the design with more context-aware suggestions.

5.5 Efficiency of Matcha
Our analysis of developers’ action traces offers insights into the efficiency and learning curve of Matcha.

5.5.1 Overall time performance comparison. It took our participants 30 minutes on average to complete the task
using Matcha (𝑠𝑡𝑑 = 15 minutes), while it only took 9.8 minutes using the developer console (𝑠𝑡𝑑 = 9.3 minutes).
Although developers were able to complete the task faster using the developer console, they did so at the cost of
accuracy.

5.5.2 Time for adding annotations. We analyzed the time for adding privacy annotations, which is a novel task for
developers. Each access annotation (@DataAccess or @NotPersonalDataAccess) took only 1.3 minutes on aver-
age to add (𝑠𝑡𝑑 = 1.6minutes). Each transmission annotation (@DataTransmission or @NotPersonalDataTransmission)
also took 1.3 minutes on average (𝑠𝑡𝑑 = 1.6 minutes). We further show in Figure 5 that the time of adding an
annotation decreases over time, suggesting our participants’ performance increased with practice.

5.6 Developers’ Reactions to Suggestions
Finally, we analyze developers’ reactions to the detected API calls and libraries. Matcha detected 10 access API
calls and 6.3 transmission API calls on average per app, which led to 4.9 access annotations and 5.2 transmission
annotations added by participants on average per app. Note that the number of required annotations are fewer
than the detected API calls because multiple API calls can share one annotation.

Among the 59 access annotations, 19 were @NotPersonalDataAccess; among the 62 transmission annotations,
34 were @NotPersonalDataTransmission, which demonstrated the developers’ abilities to identify and correct
the false positives of Matcha suggestions. For example, the user password and files provided by the app were the
two types of data most commonly labeled as @NotPersonalDataAccess in our study; and data stored locally on
device, network request without user data, and data transmission practices that meet the exemption criteria were
the common reasons for @NotPersonalDataTransmission.
Furthermore, F6, F7, and F10 each added a @DataAccess for a data type that was not covered by API call

detection, showing the benefits of drawing on the developers’ knowledge of the app to complement the API-based
code analysis results.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:18 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

0 1 2 3 4 5 6 7
Annotation Index

0

100

200

300

400

500

600

700

In
te

rv
al

 (s
ec

on
d)

(a) Access annotations

0 1 2 3 4 5 6
Annotation Index

0

100

200

300

400

In
te

rv
al

 (s
ec

on
d)

(b) Transmission annotations

Fig. 5. Time to add an access and a transmission annotation. The indices represent the order of added annotations. For
the reliability of the results, we only show the indices with at least three people’s data. The two figures show that it took
participants longer to add the first access annotation, while the time drastically decreased after the first two attempts and
became stable afterward, suggesting an easy learning curve.

6 DISCUSSION

6.1 Developers and Code Analysis: Better Together
The improved label accuracy (Section 5.1 and Section 5.2) shows the efficacy of making developers and code
analysis handle the part of work they are most effective at and benefit from each other. Meanwhile, using Matcha
improved the participants’ knowledge of their app’s data practices and overcome misunderstandings in data
safety labels (Section 5.4.3 and Section 5.3.1). It is useful to keep developers informed and involved during this
task because their knowledge can complement and refine the code analysis results (Section 5.6). At present,
developers are largely motivated by platform requirements to consider privacy, and their focus is largely limited
to how to satisfy specific requirements [27]. Using Matcha showed a nice side effect to evoke more in-depth
learning for privacy (Section 5.3.4), which might motivate and support further improvements in app privacy
design.

6.2 Using Annotations as a Uniform Privacy Language for Developers
Instead of asking developers to directly describe their apps’ data practices using the label terms, Matcha ask
developers to add annotations and edit the XML spec, and let the tool translate them to the label terms (Figure 2).
This not only mitigated errors due to developers’ misinterpretations of label terms (Section 5.3.1), but also helped
developers reflect on their data use (Section 5.4.4). Moreover, using annotations allows developers to contribute
granular privacy information in a contextualized format, which can potentially be used to automatically generate
various types of privacy notices to help relieve developers from the work of upgrading privacy interfaces [28].

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:19

Hence, the annotations and XML specification may have the potential to become a privacy domain-specific
language for developers, bridging the low-level code behavior and the high-level user-facing disclosure.

6.3 Generalizability of Annotation-based Approach for Creating Privacy Labels
There are many scenarios beyond Android client apps written in Java that require improved developer support
for creating accurate privacy notices. These include apps developed for other platforms (e.g., iOS, cross-platform
web apps) and server-side code. We analyze the feasibility and cost of applying the annotation-based approach to
other contexts in the following.
Matcha focuses on generating Google privacy labels, which follow a different design than the Apple privacy

labels. The key concept in Apple privacy label is also “data collection”. The term “collection” has a similar definition
as in Google’s context, which means the annotation design for gathering data collection related information
can be easily adapted to the iOS context by coding the exemption rules and special considerations into new
pre-defined values for the collectionAttribute field. The two platforms also have unique core concepts in
their privacy label design, such as “data sharing” for Google, and “data linked to users” and “data used to track
users.” for Apple. As a result, the sharingAttribute field in Matcha annotation design should be correspondingly
replaced with linkingAttribute and trackingAttribute. Specifically, the former is used to describe whether
the data is identifiable or stored with other identifiable data, which will requests users to complement server-side
data practices in a similar way as in Matcha. The latter is related to third-party advertising tracking and is directly
associated with the use of the AppTrackingTransparency framework.

Then we discuss the technical feasibility of migrating the annotation-based approach to other contexts (e.g., iOS
apps, cross-platform web apps.) We expect privacy annotations to be applicable to other languages, because many
other languages also support developers to attach metadata to code in different ways. For example, C#, Python,
and TypeScript support some level of customization for annotations or decorators similar to Java’s annotations,
so privacy annotations can be relatively easily migrated to apps written in these languages. For languages that
do not have an official support for custom annotation or decorator yet (e.g., Swift), privacy annotations can be
added in an alternative format such as free-form comments, or by extending the language syntax and writing a
transpiler to do source-to-source translation.

Transferring privacy annotations to an individual programming language is relatively straightforward. However,
a more sophisticated challenge arises when a real-world software system consists of multiple parts written in
different languages. For example, the frontend website may be coded in TypeScript, while the backend server
is coded in Python. As data may be transmitted across these subsystems, there needs to be a unified format to
convert privacy annotations from different languages into intermediate files. These files can then be aggregated
to generate a comprehensive picture of the data practices of the entire system. Aggregating privacy annotations
across systems can further consolidate the annotation design and reduce errors, as some fields that previously
needed to be manually filled can now be automatically inferred (e.g., server-side data retention practices, which
are currently specified in the data transmission annotation as a collection attribute).

6.4 Limitations of the Annotation and Developer Tool Approach
Our work is focused on helping benign developers create accurate privacy labels by tackling their knowledge gaps
and addressing common misunderstandings. However, we want to note that an intrinsic limitation of Matcha
is that it can not prevent malicious developers from hiding their data practices from users. These malicious
developers may intentionally aim to steal user data, or simply fear that users will be discouraged from installing
the app. To address this issue, further research is needed to aid external parties (e.g., users, app marketplaces)
in auditing the privacy labels. The auditing task is possible for popular third-party SDKs by cross checking the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:20 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

app’s privacy label against the data practices disclosed by third-party SDK developers, who are more likely to be
held accountable.
Fully automated auditing for less popular third-party SDKs and first-party data practices can be extremely

challenging, because external parties are not able to audit how the data is used after it leaves the device.
Nevertheless, the annotation approach potentially provides external parties with a method to partially vet the
privacy labels. By requiring developers to disclose more intermediate data than is directly provided in Google’s
label creation form, the intermediate data (e.g., whether certain types of data flow from a source to a sink) can be
vetted by dynamic analysis techniques. Overall, we envision that by designing standardized disclosure formats
like annotations requiring developers to provide low-level, unambiguous data practices, we can enhance the
auditability of privacy notices beyond existing methods such as privacy policies and privacy labels.

6.5 Design Implications for Developer Tools for Privacy
We have shown Matcha successfully helped developers improve the accuracy of their data safety label (Section 5.1
and Section 5.2), was easy to learn and use (Section 5.4.2 and Section 5.5.2), and was preferred by all study partici-
pants (Section 5.4). Below, we synthesize design recommendations for developer tools for creating standardized
privacy notices.

6.5.1 Contextualize the task around code. When filling out forms on the developer console, developers rarely
checked the code to verify their understanding. Moreover, developers had trouble systematically reviewing the
code on their own. Matcha suggests that showing questions around the related code can help developers provide
more accurate answers and learn more about their app (Section 5.4.4).

6.5.2 Provide scaffolding. Despite the promising benefits of making privacy information part of the code, it is
difficult for developers to manually handle the task given the complexity of the required information and the
difficulty of handling an unfamiliar syntax (i.e., the annotation). In Matcha, the use of the quickfix dialog helped
solicit valid and accurate input and eased the learning curve. The dialog allows for more space for presenting the
full questions in a structured format and verifies the developer’s input before it is submitted. This method both
provides sufficient guidance for novice users and flexibility for expert users.

6.5.3 From high-level tasks to low-level questions. Standardized privacy notices need to lump low-level practices
into higher-level categories to improve the clarity of the notice to lay people. However, as developers often have
misperceptions of the standard taxonomy [29], it is helpful to break down each high-level concept into lower-level
questions that probe each aspect of the concept separately. For example, Matcha helped the developers correct
their misunderstandings of “data collecion” and “data sharing” by separating data accesses and transmissions
and asking about special cases and exemption conditions explicitly when the developer added transmission
annotations (Section 5.3.1).

6.5.4 Use proactive guidance and actionable suggestions. One key challenge in creating accurate labels is that
developers tend to be overconfident in their answers and unaware of their own errors and knowledge gaps
(Section 3.3.1 and Section 5.4.3). To better engage the developers in this type of tasks, we used proactive guidance
such as the just-in-time tooltips and the errors flagged in code for missing annotations (Figure 4). We also tried
to break down the entire task into smaller actionable steps. Our suggestions of accesses and transmissions are
grounded in these actionable steps to force the developer to interact with them and ponder on them.

6.5.5 Use precise and specific suggestions. A fundamental challenge in this type of task is to balance the recall
and precision of the suggestions. Our study showed that the precise and specific API-call based suggestions were
better received than more generic keyword-based suggestions (Section 5.4.6). Although it is still necessary to have

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:21

something like the keyword-based detection that emphasizes a good recall rate, it would be more effective if the
precision is also improved so the correct suggestions are not buried in a large volume of irrelevant suggestions.

6.6 Future Research Directions
In this work, we took the first step to design developer tools for creating accurate privacy nutrition labels. Below
we discuss challenges that need to be addressed by future research.

6.6.1 Managing Third-Party SDK Label Information At Scale. In the long run, developers may want to obtain
support for third-party SDKs that are currently not covered, and receive up-to-date suggestions as these SDKs
update their data practices. However, there are two fundamental barriers: 1) some third-party SDK developers do
not disclose their data practices for label creation tasks; 2) even for SDKs that do provide such information, the
ad-hoc format of disclosure results in ambiguity and makes it difficult to automatically parse the information.

We propose two potential directions to tackle these barriers for future research. One idea, independent of the
platform, is to automatically crawl and parse third-party SDK privacy label disclosures, and use a developer-
sourcing approach to collectively vet, fix, and release the data as part of an open-source effort. For example, if a
third-party SDK is detected, the tool may first check if there is a public resource associated with the SDK. If such
a resource exists, the tool may retrieve it and compare it with the latest version to identify any changes in content.
Then it can categorize these changes using the terminology of privacy label and request the developers to verify
them. If such a resource can not be automatically detected, the tool may request the developer to search for the
resource and provide a pointer. In this situation, third-party SDK developers only need to post and update the
guidelines for fulfilling the platform disclosure requirements on their websites, just as they are currently doing.

Another idea relies on the platform to create a standardized format for third-party SDK developers to disclose
their data practices, which can then be automatically integrated into the privacy nutrition label creation process.
The closest real-world implementation of this concept is Apple’s privacy manifests, introduced in 202312. Apple
requires third-party SDK developers to create privacy manifests, allowing downstream app developers to refer
to these manifests when creating their privacy labels. Future research should explore methods to facilitate the
creation and verification of accurate, fine-grained third-party disclosures, and a streamlined process to incorporate
this information into user-facing disclosures, such as privacy labels.

6.6.2 Integrating advanced program analysis techniques. Our proof-of-concept prototype, built with simple code
analysis techniques, already achieved substantial improvement. However, more precise suggestions can help
address the redundancy issues mentioned by participants (Section 5.4.6). One idea is to enhance the keyword
search with large programming models such as Codex [8]. In addition, future research can also study how to
combine dynamic program analysis techniques to provide post-hoc data transmission monitoring and feedback.

6.6.3 Increasing incentives for improving accuracy. Matcha helped developers fix many under-reporting errors,
but it can also make the apps look more invasive than apps with less accurate labels. To solve this problem, the
platform should take actions to motivate developers to improve accuracy. For example, if Google provides some
level of verification of the data practices and makes the results visible to both the developer and the end users, it
can reward developers who honestly disclose their data practices in the privacy label.

6.6.4 Designing for other real-world challenges. Our study focused on creating a data safety label for a completed
app, while future research should also explore other use scenarios. For example, future research may examine
how developers add annotations while coding, as discussed in the methodological limitations (Section 4.6) and by
our participants (Section 5.4.2). Furthermore, future work should study how to support multiple developers or
even people in other roles to coordinate changes in data practices and properly encode them in the annotations.

12https://developer.apple.com/videos/play/wwdc2023/10060/

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

https://developer.apple.com/videos/play/wwdc2023/10060/

33:22 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

7 CONCLUSIONS
In this paper, we present Matcha, an IDE plugin that can help developers create an accurate data safety label.
Matcha leverages automated code analysis to offer developers data use suggestions and allows developers control
the label with annotations and an XML spec. In our studies, Matcha helped our participants improve their app’s
label accuracy. Matcha was perceived as easy to learn and use, and was preferred by all participants over Google’s
tool for the benefits of accuracy, better engagement and flexibility, and providing useful information. We discussed
the design implications on developer tools for the creation of standardized privacy notices.

ACKNOWLEDGMENTS
This research was supported in part by the National Science Foundation under Grant No. CNS-1801472, Innovators
Network Foundation, and CMU CyLab Seed Funding. Tianshi Li was supported in part by the CMU CyLab
Presidential Fellowship. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Government. We thank the anonymous reviewers for their constructive
feedback.

REFERENCES
[1] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N

Bennett, Kori Inkpen, et al. Guidelines for human-ai interaction. In Proceedings of the 2019 chi conference on human factors in computing
systems, pages 1–13, 2019.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and
Patrick McDaniel. Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps: precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. ACM SIGPLAN Notices, 49(6):259–269, June 2014.
ISSN 1558-1160. doi: 10.1145/2666356.2594299. URL http://dx.doi.org/10.1145/2666356.2594299.

[3] David G Balash, Mir Masood Ali, Xiaoyuan Wu, Chris Kanich, and Adam J Aviv. Longitudinal analysis of privacy labels in the apple app
store. arXiv preprint arXiv:2206.02658, 2022.

[4] Rebecca Balebako and Lorrie Cranor. Improving app privacy: Nudging app developers to protect user privacy. IEEE Security & Privacy,
12(4):55–58, July 2014. ISSN 1558-4046. doi: 10.1109/msp.2014.70. URL http://dx.doi.org/10.1109/msp.2014.70.

[5] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason Hong, and Lorrie Faith Cranor. The privacy and security behaviors of smartphone
app developers. In Proceedings 2014 Workshop on Usable Security, USEC 2014. Internet Society, 2014. doi: 10.14722/usec.2014.23006. URL
http://dx.doi.org/10.14722/usec.2014.23006.

[6] Rebecca Balebako, Richard Shay, and Lorrie Faith Cranor. Is your inseam a biometric? a case study on the role of usability studies in
developing public policy. In Proceedings 2014Workshop on Usable Security, USEC 2014. Internet Society, 2014. doi: 10.14722/usec.2014.23039.
URL http://dx.doi.org/10.14722/usec.2014.23039.

[7] Souti Chattopadhyay, Nicholas Nelson, Audrey Au, Natalia Morales, Christopher Sanchez, Rahul Pandita, and Anita Sarma. A tale
from the trenches: cognitive biases and software development: cognitive biases and software development. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20. ACM, June 2020. doi: 10.1145/3377811.3380330. URL
http://dx.doi.org/10.1145/3377811.3380330.

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[9] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I. Hong, and Yuvraj Agarwal. Does this app really need my location?:
Context-aware privacy management for smartphones: Context-aware privacy management for smartphones. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):1–22, September 2017. ISSN 2474-9567. doi: 10.1145/3132029. URL
http://dx.doi.org/10.1145/3132029.

[10] Robin Cooper. Decoding coding via the coding manual for qualitative researchers by johnny saldaña. The Qualitative Report, October
2016. ISSN 1052-0147. doi: 10.46743/2160-3715/2009.2856. URL http://dx.doi.org/10.46743/2160-3715/2009.2856.

[11] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. Wrex: A unified programming-by-example interaction for
synthesizing readable code for data scientists. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI
’20. ACM, April 2020. doi: 10.1145/3313831.3376442. URL http://dx.doi.org/10.1145/3313831.3376442.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

http://dx.doi.org/10.1145/2666356.2594299
http://dx.doi.org/10.1109/msp.2014.70
http://dx.doi.org/10.14722/usec.2014.23006
http://dx.doi.org/10.14722/usec.2014.23039
http://dx.doi.org/10.1145/3377811.3380330
http://dx.doi.org/10.1145/3132029
http://dx.doi.org/10.46743/2160-3715/2009.2856
http://dx.doi.org/10.1145/3313831.3376442

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:23

[12] Pardis Emami-Naeini, Yuvraj Agarwal, Lorrie Faith Cranor, and Hanan Hibshi. Ask the experts: What should be on an iot privacy
and security label? In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, May 2020. doi: 10.1109/sp40000.2020.00043. URL
http://dx.doi.org/10.1109/sp40000.2020.00043.

[13] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones: An information-flow
tracking system for realtime privacy monitoring on smartphones. ACM Transactions on Computer Systems, 32(2):1–29, June 2014. ISSN
1557-7333. doi: 10.1145/2619091. URL http://dx.doi.org/10.1145/2619091.

[14] Geoffrey A. Fowler. iphone app privacy labels are a great idea, except when apple lets them deceive - the washington post. https:
//web.archive.org/web/20220630055538/https://www.washingtonpost.com/technology/2021/01/29/apple-privacy-nutrition-label/, 1 2021.
(Accessed on 08/27/2022).

[15] Jack Gardner, Yuanyuan Feng, Kayla Reiman, Zhi Lin, Akshath Jain, and Norman Sadeh. Helping mobile application developers create
accurate privacy labels. In 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, June 2022. doi:
10.1109/eurospw55150.2022.00028. URL http://dx.doi.org/10.1109/eurospw55150.2022.00028.

[16] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and Martin Rinard. Information-flow analysis of
android applications in droidsafe. In Proceedings 2015 Network and Distributed System Security Symposium, NDSS 2015. Internet Society,
2015. doi: 10.14722/ndss.2015.23089. URL http://dx.doi.org/10.14722/ndss.2015.23089.

[17] Philip Guo. Ten million users and ten years later: Python tutor’s design guidelines for building scalable and sustainable research
software in academia. In The 34th Annual ACM Symposium on User Interface Software and Technology, UIST ’21. ACM, October 2021. doi:
10.1145/3472749.3474819. URL http://dx.doi.org/10.1145/3472749.3474819.

[18] Monique M. Hennink, Bonnie N. Kaiser, and Vincent C. Marconi. Code saturation versus meaning saturation: How many interviews
are enough?: How many interviews are enough? Qualitative Health Research, 27(4):591–608, September 2016. ISSN 1552-7557. doi:
10.1177/1049732316665344. URL http://dx.doi.org/10.1177/1049732316665344.

[19] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu Zhang, and Guofei Jiang. {SUPOR}: Precise and scalable
sensitive user input detection for android apps. In 24th USENIX Security Symposium (USENIX Security 15), pages 977–992, 2015.

[20] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava, Matthew Fredrikson, Yuvraj Agarwal, and Jason I. Hong. Why
are they collecting my data?: Inferring the purposes of network traffic in mobile apps: Inferring the purposes of network traffic in
mobile apps. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(4):1–27, December 2018. ISSN
2474-9567. doi: 10.1145/3287051. URL http://dx.doi.org/10.1145/3287051.

[21] Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W. Reeder. A “nutrition label” for privacy. In Proceedings of the 5th
Symposium on Usable Privacy and Security, SOUPS ’09. ACM, July 2009. doi: 10.1145/1572532.1572538. URL http://dx.doi.org/10.1145/
1572532.1572538.

[22] Patrick Gage Kelley, Lucian Cesca, Joanna Bresee, and Lorrie Faith Cranor. Standardizing privacy notices: an online study of the
nutrition label approach: an online study of the nutrition label approach. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’10. ACM, April 2010. doi: 10.1145/1753326.1753561. URL http://dx.doi.org/10.1145/1753326.1753561.

[23] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. Privacy as part of the app decision-making process. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13. ACM, April 2013. doi: 10.1145/2470654.2466466. URL
http://dx.doi.org/10.1145/2470654.2466466.

[24] Konrad Kollnig, Anastasia Shuba, Max Van Kleek, Reuben Binns, and Nigel Shadbolt. Goodbye tracking? impact of ios app tracking
transparency and privacy labels. In 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’22. ACM, June 2022. doi:
10.1145/3531146.3533116. URL http://dx.doi.org/10.1145/3531146.3533116.

[25] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick
Mcdaniel. I know what leaked in your pocket: uncovering privacy leaks on android apps with static taint analysis. arXiv preprint
arXiv:1404.7431, 2014.

[26] Tianshi Li, Yuvraj Agarwal, and Jason I. Hong. Coconut: An ide plugin for developing privacy-friendly apps: An ide plugin for developing
privacy-friendly apps. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(4):1–35, December 2018.
ISSN 2474-9567. doi: 10.1145/3287056. URL http://dx.doi.org/10.1145/3287056.

[27] Tianshi Li, Elizabeth Louie, Laura Dabbish, and Jason I. Hong. How developers talk about personal data and what it means for user privacy:
A case study of a developer forum on reddit: A case study of a developer forum on reddit. Proceedings of the ACM on Human-Computer
Interaction, 4(CSCW3):1–28, January 2021. ISSN 2573-0142. doi: 10.1145/3432919. URL http://dx.doi.org/10.1145/3432919.

[28] Tianshi Li, Elijah B. Neundorfer, Yuvraj Agarwal, and Jason I. Hong. Honeysuckle: Annotation-guided code generation of in-app privacy
notices: Annotation-guided code generation of in-app privacy notices. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 5(3):1–27, September 2021. ISSN 2474-9567. doi: 10.1145/3478097. URL http://dx.doi.org/10.1145/3478097.

[29] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor, and Jason I. Hong. Understanding challenges for developers to
create accurate privacy nutrition labels. In CHI Conference on Human Factors in Computing Systems, CHI ’22. ACM, April 2022. doi:
10.1145/3491102.3502012. URL http://dx.doi.org/10.1145/3491102.3502012.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

http://dx.doi.org/10.1109/sp40000.2020.00043
http://dx.doi.org/10.1145/2619091
https://web.archive.org/web/20220630055538/https://www.washingtonpost.com/technology/2021/01/29/apple-privacy-nutrition-label/
https://web.archive.org/web/20220630055538/https://www.washingtonpost.com/technology/2021/01/29/apple-privacy-nutrition-label/
http://dx.doi.org/10.1109/eurospw55150.2022.00028
http://dx.doi.org/10.14722/ndss.2015.23089
http://dx.doi.org/10.1145/3472749.3474819
http://dx.doi.org/10.1177/1049732316665344
http://dx.doi.org/10.1145/3287051
http://dx.doi.org/10.1145/1572532.1572538
http://dx.doi.org/10.1145/1572532.1572538
http://dx.doi.org/10.1145/1753326.1753561
http://dx.doi.org/10.1145/2470654.2466466
http://dx.doi.org/10.1145/3531146.3533116
http://dx.doi.org/10.1145/3287056
http://dx.doi.org/10.1145/3432919
http://dx.doi.org/10.1145/3478097
http://dx.doi.org/10.1145/3491102.3502012

33:24 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

[30] Yucheng Li, Deyuan Chen, Tianshi Li, Yuvraj Agarwal, Lorrie Faith Cranor, and Jason I. Hong. Understanding ios privacy nutrition
labels: An exploratory large-scale analysis of app store data. In CHI Conference on Human Factors in Computing Systems Extended
Abstracts, CHI ’22. ACM, April 2022. doi: 10.1145/3491101.3519739. URL http://dx.doi.org/10.1145/3491101.3519739.

[31] Michael Xieyang Liu, Andrew Kuznetsov, Yongsung Kim, Joseph Chee Chang, Aniket Kittur, and Brad A. Myers. Wigglite: Low-cost
information collection and triage. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22.
ACM, October 2022. doi: 10.1145/3526113.3545661. URL http://dx.doi.org/10.1145/3526113.3545661.

[32] Justin Lubin and Sarah E. Chasins. How statically-typed functional programmers write code. Proceedings of the ACM on Programming
Languages, 5(OOPSLA):1–30, October 2021. ISSN 2475-1421. doi: 10.1145/3485532. URL http://dx.doi.org/10.1145/3485532.

[33] Aleecia M McDonald and Lorrie Faith Cranor. The cost of reading privacy policies. I/S: A Journal of Law and Policy for the Information
Society, 4:543, 2008.

[34] Abraham H Mhaidli, Yixin Zou, and Florian Schaub. "we can’t live without {Them!}" app developers’ adoption of ad networks and their
considerations of consumer risks. In Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019), pages 225–244, 2019.

[35] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng Wang. {UIPicker}:{User-Input} privacy identification
in mobile applications. In 24th USENIX Security Symposium (USENIX Security 15), pages 993–1008, 2015.

[36] Don Norman. The design of everyday things: Revised and expanded edition. Basic books, 2013.
[37] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon. Effective inter-

component communication mapping in android with epicc: An essential step towards holistic security analysis. In Proceedings of the
22nd USENIX security symposium, pages 543–558, 2013.

[38] Florian Schaub, Rebecca Balebako, Adam L. Durity, and Lorrie Faith Cranor. A Design Space for Effective Privacy Notices*, page 365–393.
Cambridge University Press. doi: 10.1017/9781316831960.021. URL http://dx.doi.org/10.1017/9781316831960.021.

[39] Mohammad Tahaei, Kopo M. Ramokapane, Tianshi Li, Jason I. Hong, and Awais Rashid. Charting app developers’ journey through
privacy regulation features in ad networks. Proceedings on Privacy Enhancing Technologies, 2022(3):33–56, July 2022. ISSN 2299-0984.
doi: 10.56553/popets-2022-0061. URL http://dx.doi.org/10.56553/popets-2022-0061.

[40] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M. Drucker. Diff in the loop: Supporting data comparison in exploratory
data analysis. In CHI Conference on Human Factors in Computing Systems, CHI ’22. ACM, April 2022. doi: 10.1145/3491102.3502123. URL
http://dx.doi.org/10.1145/3491102.3502123.

[41] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D. Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan.
Documentation matters: Human-centered ai system to assist data science code documentation in computational notebooks. ACM
Transactions on Computer-Human Interaction, 29(2):1–33, January 2022. ISSN 1557-7325. doi: 10.1145/3489465. URL http://dx.doi.org/10.
1145/3489465.

[42] Haoyu Wang, Jason Hong, and Yao Guo. Using text mining to infer the purpose of permission use in mobile apps. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15. ACM, September 2015. doi:
10.1145/2750858.2805833. URL http://dx.doi.org/10.1145/2750858.2805833.

[43] Edwin B. Wilson. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22
(158):209–212, June 1927. ISSN 1537-274X. doi: 10.1080/01621459.1927.10502953. URL http://dx.doi.org/10.1080/01621459.1927.10502953.

[44] Yue Xiao, Zhengyi Li, Yue Qin, Jiale Guan, Xiaolong Bai, Xiaojing Liao, and Luyi Xing. Lalaine: Measuring and characterizing
non-compliance of apple privacy labels at scale. arXiv preprint arXiv:2206.06274, 2022.

[45] Shikun Zhang, Yuanyuan Feng, Yaxing Yao, Lorrie Faith Cranor, and Norman Sadeh. How usable are ios app privacy labels? Proceedings
on Privacy Enhancing Technologies, 2022(4):204–228, October 2022. ISSN 2299-0984. doi: 10.56553/popets-2022-0106. URL http:
//dx.doi.org/10.56553/popets-2022-0106.

[46] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. Interactive program synthesis by augmented examples.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20. ACM, October 2020. doi:
10.1145/3379337.3415900. URL http://dx.doi.org/10.1145/3379337.3415900.

[47] Chengbo Zheng, Dakuo Wang, April Yi Wang, and Xiaojuan Ma. Telling stories from computational notebooks: Ai-assisted presentation
slides creation for presenting data science work. In CHI Conference on Human Factors in Computing Systems, CHI ’22. ACM, April 2022.
doi: 10.1145/3491102.3517615. URL http://dx.doi.org/10.1145/3491102.3517615.

[48] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. Privacyflash pro: Automating privacy policy generation for mobile apps. In
Proceedings 2021 Network and Distributed System Security Symposium, NDSS 2021. Internet Society, 2021. doi: 10.14722/ndss.2021.24100.
URL http://dx.doi.org/10.14722/ndss.2021.24100.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

http://dx.doi.org/10.1145/3491101.3519739
http://dx.doi.org/10.1145/3526113.3545661
http://dx.doi.org/10.1145/3485532
http://dx.doi.org/10.1017/9781316831960.021
http://dx.doi.org/10.56553/popets-2022-0061
http://dx.doi.org/10.1145/3491102.3502123
http://dx.doi.org/10.1145/3489465
http://dx.doi.org/10.1145/3489465
http://dx.doi.org/10.1145/2750858.2805833
http://dx.doi.org/10.1080/01621459.1927.10502953
http://dx.doi.org/10.56553/popets-2022-0106
http://dx.doi.org/10.56553/popets-2022-0106
http://dx.doi.org/10.1145/3379337.3415900
http://dx.doi.org/10.1145/3491102.3517615
http://dx.doi.org/10.14722/ndss.2021.24100

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:25

Table 4. The collectionAttribute field of the @DataTransmission annotation encodes the data collection information as
a list of predefined attribute values. This table shows the groups of attributes that need to be completed in this field, as well
as the corresponding collection questions and the exempt conditions of collection defined by Google.

Attribute name Values Original questions / Exempt conditions

TransmittedOffDeviceTrue or False Is this data collected, shared, or both?

NotStoredInBackend True or False Is this data processed ephemerally?

EncryptedInTransit True or False Is all of the user data collected by your app encrypted in
transit?

OptionalCollection True or False Is this data required for your app, or can users choose
whether it’s collected?

UserToUserEncryptionTrue or False User data that is sent off device, but that is unreadable
by you or anyone other than the sender and recipient
as a result of end-to-end encryption does not need to be
disclosed.

CollectedFor Seven options: App functionality;
Analytics; Developer communica-
tions; Advertising or marketing;
Fraud prevention, Security and
compliance; Personalization; Ac-
count Management

Why is this user data collected? Select all that apply.

A ANNOTATION DESIGN DETAILS
Table 4 and Table 5 summarize the design details of the @DataTransmission annotation.
Table 5. The sharingAttribute field of the @DataTransmission annotation encodes the data sharing information as a list
of predefined attribute values. This table shows the groups of attributes that need to be completed in this field, as well as the
corresponding sharing questions and the exempt conditions of sharing defined by Google.

Attribute name Values Original questions / Exempt conditions

SharedWithThirdParty True or False Is this data collected, shared, or both?

OnlySharedWithServiceProviders True or False Sharing is exempt if transferring user data
to a “service provider” that processes it on
behalf of the developer.

OnlySharedForLegalPurposes True or False Sharing is exempt if transferring user data for
specific legal purposes, such as in response to
a legal obligation or government requests.

OnlyInitiatedByUser True or False Sharing is exempt if transferring user data to
a third party based on a specific user-initiated
action, where the user reasonably expects the
data to be shared.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:26 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

OnlyAfterGettingUserConsent True or False Sharing is exempt if transferring user data
to a third party based on a prominent in-app
disclosure and consent that meets the require-
ments described in our User Data policy.

OnlyTransferringAnonymousData True or False Sharing is exempt if transferring user data
that has been fully anonymized so that it can
no longer be associated with an individual
user.

SharedFor Seven options: App functional-
ity; Analytics; Developer com-
munications; Advertising or
marketing; Fraud prevention,
Security and compliance; Per-
sonalization; Account Manage-
ment

Why is this user data shared? Select all that
apply.

B MATCHA IMPLEMENTATION DETAILS
This section summarizes details about the implementation of the Matcha IDE plugin. Table 7 and Table 6 presents
the keywords used in Matcha to facilitate the detection of sensitive data access code. Table 8 presents all the SDKs
that Matcha can detect and automatically generate the safety label for based on the SDK’s open documentation
about its data practices.
Table 6. Matcha keyword list (based on definitions and the keywords extracted from open-sourced projects that contain
sensitive API calls). Matcha uses keyword search to complement the API-based detection of code that accesses sensitive user
data.

Category Data Type Keywords

Personal Info

Name name
Email Address email
User ID uid, user id
Address home address, city, country, zip code
Phone Number phone, default dialer
Race and Ethnicity race, ethnicity, african, indian, asian
Political or Religious
Beliefs

political, religious

Sexual Orientation sexual orientation, gay, lesbian, transgender, bisexual, queer
Other Personal Info birth, nationality, gender, male, female, non-binary, veteran

Financial Info

User Payment Info credit card, billing, cvv, routing number, account number, bank
Purchase History purchase
Credit Score credit score
Other Financial Info salary, debt

Calendar Calendar Events calendar, attendee

Photos and Videos Photos photo, barcode, image, picture, media

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 3 :27

Videos video, recording, media
Contacts Contacts contact, call history, interaction duration

Location Approximate Location location, city, country, ip address
Precise Location location, latitude, longitude

Health and Fitness Health Info health, medical, medicine, symptom, disease, doctor, physi-
cian, sleep, wellness, therapist, emergency, emergencies, pe-
riod, pregnancy

Fitness Info fitness, exercise, workout, sport, diet, nutrition

Messages
Emails email, sender, recipient, subject
Sms or Mms message, sms, mms, sender, recipient, subject
In-App Messages message, chat, reply, replies, comment, sender, recipient, sub-

ject
Device or Other IDs Device or Other IDs mac address, widevine, device id, instance id, app id, advertis-

ing id, fingerprint, user agent, unique id, token, AdvertisingId-
Client

Files and Docs Files and Docs file, document, backup, restore, download, storage, media

Audio Files
Voice or Sound Record-
ings

voice, sound, recording

Music Files music, song
Other User Audio Files

App Activity

App Interactions selected, visit number, view number, getItemAtPosition,
getItemIdAtPosition, AccessibilityService, TextService, Instru-
mentation, shortcut

Installed Apps installed app
In-App Search History search
Other User-Generated
Content

bios, note, response

Other User Activities gameplay, dialog option
Web Browsing Web Browsing History browser, cookie, browser cache, browsing cache, search, web

view

App Info and
Performance

Crash Logs crash, stack trace
Diagnostics ActivityManager, ApplicationErrorReport, ApplicationExit-

Info, BatteryManager, Benchmark, Debug, HealthStats, Mac-
robenchmark, PowerManager, StrictMode, battery, loading
time, latency, frame rate, diagnostics

Other App Perfor-
mance Data

performance

Table 7. Matcha keyword list (based on permissions). Matcha uses keyword search to complement the API-based detection
of code that accesses sensitive user data.

Category Data Type Keywords

Personal Info

Name BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Email Address BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
User ID BIND_AUTOFILL_SERVICE, GET_ACCOUNTS

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

3

33:28 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

Address BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Phone Number BIND_AUTOFILL_SERVICE, GET_ACCOUNTS,

READ_CALL_LOG, READ_PHONE_NUMBERS,
READ_PHONE_STATE, READ_SMS

Race and Ethnicity BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Political or Religious
Beliefs

BIND_AUTOFILL_SERVICE, GET_ACCOUNTS

Sexual Orientation BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Other Personal Info BIND_AUTOFILL_SERVICE, GET_ACCOUNTS

Financial Info

User Payment Info BIND_AUTOFILL_SERVICE
Purchase History
Credit Score
Other Financial Info

Calendar Calendar Events READ_CALENDAR, WRITE_CALENDAR

Photos and Videos Photos READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Videos READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Contacts Contacts ACCEPT_HANDOVER, ADD_VOICEMAIL, AN-
SWER_PHONE_CALLS, CALL_PHONE, PRO-
CESS_OUTGOING_CALLS, READ_CALL_LOG,
READ_CONTACTS, READ_PHONE_NUMBERS,
READ_PHONE_STATE, READ_SMS, RECEIVE_MMS,
RECEIVE_SMS, RECEIVE_WAP_PUSH, SEND_SMS,
WRITE_CONTACTS

Location Approximate Location ACCESS_COARSE_LOCATION, AC-
CESS_MEDIA_LOCATION

Precise Location ACCESS_FINE_LOCATION, ACCESS_MEDIA_LOCATION

Health and Fitness Health Info ACTIVITY_RECOGNITION, BODY_SENSORS
Fitness Info ACTIVITY_RECOGNITION, BODY_SENSORS

Messages
Emails
Sms or Mms READ_SMS, RECEIVE_MMS, RECEIVE_SMS, RE-

CEIVE_WAP_PUSH, SEND_SMS, WRITE_SMS
In-App Messages

Device or Other IDs Device or Other IDs AD_ID, READ_PRIVILEGED_PHONE_STATE
Files and Docs Files and Docs READ_EXTERNAL_STORAGE,

WRITE_EXTERNAL_STORAGE, MAN-
AGE_EXTERNAL_STORAGE

Audio Files
Voice or Sound Record-
ings

CAPTURE_AUDIO_OUTPUT, RECORD_AUDIO,
READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:29

Music Files READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Other User Audio Files CAPTURE_AUDIO_OUTPUT, RECORD_AUDIO,
READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

App Activity

App Interactions QUERY_ALL_PACKAGES
Installed Apps
In-App Search History
Other User-Generated
Content
Other User Activities

Web Browsing Web Browsing History

App Info and
Performance

Crash Logs
Diagnostics BATTERY_STATS
Other App Perfor-
mance Data

Table 8. Matcha third-party SDK list. Matcha can automatically detect 58 third-party SDKs and automatically fill out the
data collection and sharing practices based on the SDK’s documentation. The list is primarily curated based on the Google
Play SDK Index and also contains a few SDKs developed by Google which also provided such type of documentation.

SDK Names Maven ID Matching Pattern

AdMob .*com.google.android.gms:play-services-ads.*|.*com.google.android.gms:play-
services-ads-lite.*

Ironsource .*com.ironsource.sdk:mediationsdk.*
Vungle .*com.vungle:publisher-sdk-android.*
AppsFlyer .*com.appsflyer:af-android-sdk.*
Adjust .*com.adjust.sdk:adjust-android.* |.*com.android.installreferrer:installreferrer.*

|.*com.adjust.sdk:adjust-android-webbridge.*
Chartboost .*com.chartboost:chartboost-sdk.*
Tapjoy .*com.tapjoy:tapjoy-android-sdk.*
Google Play Games Services .*com.google.android.gms:play-services-games.*
Firebase Authentication .*com.google.firebase:firebase-auth.*|.*com.google.firebase:firebase-auth-ktx.*
Firebase App Check .*com.google.firebase:firebase-appcheck.*|.*com.google.firebase:firebase-

appcheck-debug.*|.*com.google.firebase:firebase-appcheck-safetynet.*
|.*com.google.firebase:firebase-appcheck-playintegrity.*

Firebase Cloud Firestore .*com.google.firebase:firebase-firestore.*| .*com.google.firebase:firebase-firestore-ktx.*
Cloud Functions for Firebase .*com.google.firebase:firebase-functions.*|.*com.google.firebase:firebase-functions-

ktx.*
Firebase Cloud Messaging .*com.google.firebase:firebase-messaging.*|.*com.google.firebase:firebase-messaging-

ktx.*
Cloud Storage for Firebase .*com.google.firebase:firebase-storage.*|.*com.google.firebase:firebase-storage-ktx.*
Crashlytics .*com.google.firebase:firebase-crashlytics.*|.*com.google.firebase:firebase-

crashlytics-ktx.*|.*com.google.firebase:firebase-crashlytics-ndk.*

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:30 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

Dynamic Links .*com.google.firebase:firebase-dynamic-links.*|.*com.google.firebase:firebase-
dynamic-links-ktx.*

Google Analytics .*com.google.firebase:firebase-analytics.*|.*com.google.firebase:firebase-analytics-
ktx.*

Firebase In-App Messaging .*com.google.firebase:firebase-inappmessaging.*|.*com.google.firebase:firebase-
inappmessaging-display.*|.*com.google.firebase:firebase-inappmessaging-
ktx.*|.*com.google.firebase:firebase-inappmessaging-display-ktx.*

Firebase Installations .*com.google.firebase:firebase-installations.*|.*com.google.firebase:firebase-
installations-ktx.*

Firebase ML model down-
loader

.*com.google.firebase:firebase-ml-modeldownloader.*|.*com.google.firebase:firebase-
ml-modeldownloader-ktx.*

Performance Monitoring .*com.google.firebase:firebase-perf.*|.*com.google.firebase:firebase-perf-ktx.*
Realtime Database .*com.google.firebase:firebase-database.*|.*com.google.firebase:firebase-database-

ktx.*
Remote Config .*com.google.firebase:firebase-config.*|.*com.google.firebase:firebase-config-ktx.*
RevenueCat .*com.revenuecat.purchases:purchases.* |.*com.revenuecat.purchases:purchases-store-

amazon.*
User Messaging Platform
SDK

.*com.google.android.ump:user-messaging-platform.*

reCAPTCHA Enterprise .*com.google.android.gms:play-services-recaptcha.*
ARCore .*com.google.ar:core:.*
ML Kit .*com.google.android.gms:play-services-mlkit-barcode-

scanning.*|.*com.google.android.gms:play-services-mlkit-face-
detection.*|.*com.google.android.gms:play-services-mlkit-image-
labeling.*|.*com.google.android.gms:play-services-mlkit-image-
labeling-custom.*|.*com.google.android.gms:play-services-mlkit-
language-id.*|.*com.google.android.gms:play-services-mlkit-text-
recognition.*|.*com.google.android.gms:play-services-code-scanner.*|
.*com.google.mlkit:barcode-scanning.*|.*com.google.mlkit:camera.*
|.*com.google.mlkit:digital-ink-recognition.*|.*com.google.mlkit:entity-
extraction.*|.*com.google.mlkit:face-detection.*|.*com.google.mlkit:image-
labeling.*|.*com.google.mlkit:image-labeling-custom.*|.*com.google.mlkit:language-
id.*|.*com.google.mlkit:linkfirebase.* |.*com.google.mlkit:object-
detection.*|.*com.google.mlkit:object-detection-custom.*|.*com.google.mlkit:playstore-
dynamic-feature-support.*|.*com.google.mlkit:pose-
detection.*|.*com.google.mlkit:pose-detection-accurate.*
|.*com.google.mlkit:segmentation-selfie.*|.*com.google.mlkit:smart-
reply.*|.*com.google.mlkit:text-recognition.*|.*com.google.mlkit:text-recognition-
chinese.*|.*com.google.mlkit:text-recognition-devanagari.*|.*com.google.mlkit:text-
recognition-japanese.*|.*com.google.mlkit:text-recognition-
korean.*|.*com.google.mlkit:translate.*

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:31

Google Cast (cast-tv) .*com.google.android.gms:play-services-cast-tv.*
Google Maps .*com.google.android.gms:play-services-maps.*
Google Pay - Wallet SDK .*com.google.android.gms:play-services-wallet.*
Google Pay - TapandPay
SDK

.*com.google.android.gms:play-services-tapandpay.*

SafetyNet .*com.google.android.gms:play-services-safetynet.*
Google Play Integrity .*com.google.android.play:integrity.*
Snowplow Android Tracker .*com.snowplowanalytics:snowplow-android-tracker.*
Kochava .*com.kochava.base:tracker.*
Airship SDK .*com.urbanairship.android:urbanairship-fcm.*|.*com.urbanairship.android:urbanairship-

hms.*|.*com.urbanairship.android:urbanairship-message-
center.* |.*com.urbanairship.android:urbanairship-adm.*
|.*com.urbanairship.android:urbanairship-preference-center.*
|.*com.urbanairship.android:urbanairship-automation.*

Appodeal SDK for Android .*com.appodeal.ads:sdk.*
Apptentive .*com.apptentive:apptentive-android.*
Branch .*io.branch.sdk.android:library.*
Braze Android SDK .*com.appboy:android-sdk-ui.*
Bugsnag .*com.bugsnag:bugsnag-android.*
CleverTap Android SDK .*com.clevertap.android:clevertap-android-sdk.*
Fyber Marketplace SDK .*com.fyber:marketplace-sdk.*
HyprMX .*com.hyprmx.android:HyprMX-SDK.*
Instabug .*com.instabug.library:instabug.*
Interactive Media Ads (IMA)
SDK

.*com.google.ads.interactivemedia.v3:interactivemedia.*

MoEngage Android SDK .*com.moengage:moe-android-sdk.*
Ogury SDK .*co.ogury:ogury-sdk.*
Pangle Ad SDK .*com.pangle.global:ads-sdk.*
Pollfish .*com.pollfish:pollfish-googleplay.*
PubMatic OpenWrap SDK .*com.pubmatic.sdk:openwrap.*
Singular SDK .*com.singular.sdk:singular_sdk.*
Smaato NextGen SDK .*com.smaato.android.sdk:smaato-sdk.*|.*com.smaato.android.sdk:smaato-

sdk-rewarded-ads.*|.*com.smaato.android.sdk:smaato-sdk-
banner.*|.*com.smaato.android.sdk:smaato-sdk-interstitial.*

Start.io (Formerly StartApp) .*com.startapp:inapp-sdk.*
Taboola SDK .*com.taboola:android-sdk.*
Verve Group HyBid SDK
(formerly PubNative)

.*net.pubnative:hybid.sdk.*

C PRE-STUDY SURVEY
Thank you for agreeing to participate in this CMU study on creating the Google Play data safety section. We look
forward to interviewing you.

For this interview study, we will ask you to create the data safety section for one Android app that we selected
from your recent Android apps. The selected app has been sent to you. If you are not sure which app to report
on, please message us to ask.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:32 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

In this pre-study survey, we would like to ask a few questions about you and the selected app. At the end of
the survey, you will see a scheduling link where you can make a booking for our interview.

(1) What is your participant ID for this study? (The ID was sent to you.)
(2) What is the Google Play link to the app that you will report on? (The selected app was sent to you. If your

app is not on Google Play, just provide the name of the app that you entered in the screening survey.)
(3) Please confirm that your app is mainly developed in Java (not other languages/frameworks such as Kotlin,

Unity, Flutter, Cordova etc.)
• Yes, my app is mainly developed in Java
• No, my app is developed in other languages/frameworks

(4) Which option best describes this Android app?
• Commercial project
• Research project
• Course project
• Hobby Project
• Other [Free form response expected]

(5) (If the Q4 answer is commercial project) How many employees work in the company that developed this
app?
• 1-4
• 5-9
• 10-19
• 20-49
• 50-99
• 100-249
• 250-499
• 500-999
• 1,000 or more

(6) Is this an individual-developed app or a group-developed app?
• individual
• group

(7) (if the Q6 answer is individual) How many people participated in the development of this app (including
app design, mobile app, and server side development) ?
• 2-5
• 6-10
• 11-20
• more than 20

(8) Which of these roles describe your job for developing this app? (Please select all that apply)
• Mobile App Developer
• Backend Developer
• Data Scientist and Analyst
• Designer
• Project Manager
• Security Engineer
• Privacy Engineer
• Quality Assurance Analyst
• Other roles (please specify) [Free form response expected]

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:33

(9) Note that during the study, you will try out an Android Studio plugin and use it to generate the data safety
label for your selected app. Therefore, please make sure to install Android Studio and have your app’s
source code readily available on the machine you use for the interview. Since our plugin may guide you to
add annotations in your app’s code, we recommend you to either create a copy of your app or commit all
changes before the study. We need to collect the data safety labels you created during the study solely for
research purposes, and we will not collect other data about your app. Feel free to remove the annotations
and uninstall the plugin after the study. I have read and understood the requirements above and still want
to participate in this study. If you have any concerns, please contact me before submitting the survey.
• Yes
• No

(10) What is the version of your Android Studio?
(11) Are you a professional Software Developer, i.e. software development is the major component of your

job?
• Yes
• No

(12) Did you major in computer science or related fields in school?
• Yes
• No

(13) What is your gender?
• Man
• Woman
• Non-binary/third gender
• Prefer not to answer

(14) What is your age group?
• 18-24
• 25-34
• 35-44
• 45-54
• 55-64
• 65+
• Prefer not to answer

(15) In which country do you currently reside?

D INTERVIEW SCRIPT

D.1 Introduction
Thanks for agreeing to participate in our study. First, I need to read our standard introduction, as required by our
study protocol.

Our group at CMU has been doing research for many years on tools for developers. We are currently working
on a research project about the Google Play safety labels, which is a new feature of the Google Play store that
shows details of Android apps to end users. Android developers are now required to provide the privacy details
for their apps by answering certain questions about data collection and sharing. The general goal of our research
is to learn about how Android developers accomplish this task to help us improve a developer tool we design and
build to streamline this task.

We understand that you have developed an app named [the app name]. We would like to have you complete
the task of creating a safety label for the selected app using different methods. We expect the entire study session

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:34 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

to take approximately 90 minutes, though timing may vary depending on the complexity of the app. The study
involves two tasks. In the first task, we will ask you to create the label on the Google Play developer console.
Then we will ask you to create the label again using a different method. Finally, we will ask some follow-up
questions regarding the labels you created during the study, how you perceive certain concepts, and whether you
encountered any difficulty during the process. Since we want to observe how you completed this task, we would
like you to share your screen during the interview. We need to record both the audio and the screen during the
entire interview solely for analysis purposes. We will use Zoom to make the recordings. Only researchers in our
group working on this project will have access to the recordings. The interviews will be transcribed automatically
by Zoom and we may include parts of the transcripts in our research papers that do not identify you, your app,
or your organization.
In the second task, we would like you to try out an Android Studio plugin developed by our lab. We would

like you to install the plugin on your Android Studio and then open the source code of the selected app in this
Android Studio. The plugin will guide you to create a csv file that you can import into the Google Play developer
console to complete the safety label requirement. We will ask you to send us the csv file for analysis purposes.
The plugin will not collect any other information about your app and you can either choose to keep it installed
or remove it after the study.
Do you have the latest version of Android Studio IDE installed? Some features of the plugin may not work

well if you’re not using the latest version of Android Studio. [Proceed after getting their affirmative answer]
Do you have the source code prepared on this machine? Is it OK to install the plugin on your Android Studio?

[Proceed after getting their affirmative answer]
And in the second task/later part of the study, the plugin may potentially guide you to make some slight

modifications to your app, such as adding annotations and adding a configuration file. We highly recommend
you to make a copy of your source code or commit all the previous changes before the study. Is this OK with
you? [Proceed after getting their affirmative answer]

Your participation is entirely voluntary and you may quit the study at any time. If you don’t feel comfortable
answering a question, feel free to skip it and it will not affect your compensation. You must be 18 or older to
participate in this study. You will be compensated $70 for participating. The interview will be conducted remotely
through the computer. Since the interview will be recorded, it is important that you be in a private room, and not
in an open-space cubicle, for example. These recordings may be stored on protected computers at CMU and on
Zoom, with transcripts potentially edited using a service called Otter. There are no expected risks or benefits to
you for participating, beyond the benefits of helping improve the understanding of privacy labels in general and
helping you improve the accuracy of your label.

This study was approved by the Institutional Review Board (IRB) at CMU. We will not identify you, your app,
or your organization in any publications that come out of this research without your written permission.

Is that all OK? If yes, please sign the consent form.
Is it OK if I record the interview? [Start recording after receiving their positive answer]

D.2 BackgroundQuestions
Now I’ll introduce some background about the Google data safety section, which is the main topic we’re discussing
today. I prepared some slides and I’m gonna share my screen.
(The slides contain screenshots of Google Play safety labels. After showing the slides, ask the following

questions)

• Have you heard about them before?
• Have you created any of these labels before?
• Have you heard about the iOS privacy label before? If so, have you created it for any iOS apps?

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 3 . Publication date: March 2024.3

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:35

Before we get started, I’d love to learn a little bit more about your app. Can you briefly tell me:
• What’s the app designed for?
• What was your role in the development?
• Is it still under active development?

D.3 Task 1: Use Google Play Developer Console to Create the Label
Verbal instruction: Now I’ll introduce today’s first task. I’d like you to log into the google play developer console
using a test account provided by us, and create a label of the selected app. The label should accurately represent
the data practices of the selected app.
Please handle this task as you normally would and take as long as you need. You are welcome to look at any

documentation you would normally consult, except for the app’s privacy label if it’s available. In order for us
to see any resources you use, please either share your full screen or open any additional resources in the same
window where you’re completing the task.

If you need a resource that is not currently available or would ordinarily ask somebody for help, please say
aloud what resources you would use and who you would usually contact.
Please try to keep thinking aloud during this process. Basically that means tell me whatever comes to your

mind when working on this task, such as say your thought process aloud or voice any questions or comments
you have. When you think you’re done, just let me know.

D.4 Task 2: Use Matcha to Create the Label
Verbal instruction: Our lab developed an Android Studio plugin to help you create the safety label in a semi-
automated way. In the second task, you will create the label again using this tool. Now let me help you install the
plugin and set up the environment.
[After installing the plugin] I have prepared a short video introducing how to use this plugin. I’ll send the

link to you. Could you play it from your end? This video contains some sound. Please let me know if the sound
doesn’t work correctly on your end.

[After the tutorial] Do you have any questions?
[After answering their questions] Now let’s go back to the IDE. Similar to the first task, please try to keep

thinking aloud during this process. Basically that means tell me whatever comes to your mind when working on
this task, such as say your thought process aloud or voice any questions or comments you have.

D.5 Post-Study Interview
Now I would like to compare the two safety labels that you just created. For the first label you just created on the
developer console, please open the developer console to show the preview. For the second label created with
Matcha, please switch to the “label preview” tab in the IDE plugin. Put the two windows side by side so we can
compare the results. We’re anticipating there may be some discrepancies.

Before we compare the results, I want to reassure you that the goal of this study is not to measure your ability,
and discussing these discrepancies will help us understand the effectiveness of our tool and identify challenges
developers may encounter when handling this task, so please don’t be shy in noting any inaccuracies in either
label. Your perspective is really helpful, and no identifying information will be shared about you, your app, or
your company, in our report.

When I go through each discrepancy instance between the two versions, could you tell me;
• Which version do you think is more accurate?
• What do you think could possibly cause the difference between the two privacy labels?

Next, I’d like to ask a few questions about your experience using the two tools.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:36 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

How is the experience of using the Google Play developer console and Matcha? Which one do you prefer?
Why?

What do you think about using Matcha to generate privacy labels in general?
[Showing the key features of Matcha using a few slides] Could you tell me which are the three features of

Matcha that you felt the most useful and why?
We hope to deploy this tool in the future and would like feedback to help us improve the design and implemen-

tation. Is there anything that we can improve in this tool that can make you more likely to install and use it? Any
other thoughts to share? We’ll continue working on Matcha, if you have any friends that might be interested in
it, let us know!

E PARTICIPANT OVERVIEW
Table 9 provides a detailed overview of the background of each participant and their app selected for the study.

F QUALITATIVE ANALYSIS CODE BOOK
We present the final code book of our qualitative analysis in Table 10.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition Labels • 33:37

Table 9. Participant Overview. Our sample features a good sample of developers and apps across several dimensions, including
participant’s geographic location (Location), app development purpose (Purpose), app development team size (Team Size),
app downloads (Downloads), the current data safety label on Google Play (Current label), and participant’s role(s) in the
development team (Participant’s Role(s) In Team). Nine out of the 12 participants had prior experience in publishing apps on
the Google Play store (Play). The app development purposes involve four options, covering situations when the participant
developed the app as part of their job (Job), as part of their hobby (Hobby), for a course project (Course), and for a research
project (Research).

ID Play Location Purpose Team
Size

Downloads Current label Participant’s Role(s) in Team

F1 yes Pakistan Job 2-5 1M+ No data shared, 4 data types
in 3 categories collected
(App activity, App info and
performance, and Device or
other IDs)

Mobile App Developer, De-
signer

F2 no U.S. Course 2-5 Not Play N/A Mobile App & Backend De-
veloper, Designer

F3 no Nigeria Hobby 1 Not Play N/A Mobile App & Backend De-
veloper, Designer, Project
Manager

F4 yes Ukraine Hobby 1 Not Play N/A Mobile App Developer
F5 yes Georgia Job 2-5 50K+ No data shared, 6 data types

in 4 categories collected
(Personal info, Photos and
videos, App activity, and De-
vice or other IDs)

Mobile App Developer

F6 no U.S. Course 2-5 Not Play N/A Mobile App & Backend De-
veloper

F7 yes Pakistan Job 1 Not Play N/A Mobile App Developer
F8 yes Pakistan Job 1 100+ No data shared, no data col-

lected
Mobile App Developer

F9 yes Bangladesh Hobby 1 500+ Not provided Mobile App Developer
F10 yes Egypt Course 1 Not Play N/A Mobile App Developer
F11 yes Pakistan Job 1 100K+ Not provided Mobile App Developer
F12 yes India Job 1 100K Not provided Mobile App Developer

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 33. Publication date: March 2024.

33:38 • Tianshi Li, Lorrie Faith Cranor, Yuvraj Agarwal, and Jason I. Hong

Table 10. The complete codebook of our qualitative analysis of the interview recordings

Theme Code Memo Example

Cause of
error

Forgetfulness The developer mentioned they for-
got something about their apps,
such as libraries integrated in the
app or a feature implemented in
the app.

“Sorry, I forgot about this section.
It was for users to add text to their
photos” (F7)

Library The developer mentioned misun-
derstanding related to third-party
libraries.

“This one is more precise, because
I did not know that the library was
was doing it on its own behind the
screen. So that’s why I did not put
this information.” (F2)

Misunderstanding about the
task

The developer mentioned they did
not understand something related
to the data safety label creation
task.

“I did not know that I need to re-
port out other user generated con-
tent.” (F2)

lack technical knowledge The developer mentioned some-
thing that demonstrated their
misunderstanding about technical
concepts.

“I’m not sure if that is if I’m ac-
tually using the precise location
are like an approximate location.
That’s where I’m confused.” (F2)

Comment
on
Matcha

prefer Matcha - informative The developer mentioned Matcha
helped them learn useful informa-
tion.

“I never care about data collection
and I don’t even look at what we
do. So I think I learned a lot from
this” (F5)

prefer Matcha - better flexi-
bility

The developer mentioned Matcha
gave them better flexibility in the
label creation process.

“I want it because it gives me the
flexibility and it give me the feel-
ing of a developer’s mindset.” (F3)

prefer Matcha - better en-
gagement

The developer mentioned Matcha
better involved them in the task.

“It’s a lot more involved process
when you’re using Matcha than
Google Play console.” (F2)

prefer Matcha - accuracy The developer mentioned Matcha
improved the label accuracy.

“I prefer the plugin because it can
search the privacy leak for devel-
opers.” (F4)

prefer Matcha - easy to use The developer mentioned Matcha
was easy to learn and use.

“I think the quickfix for the anno-
tation is pretty convenient” (F6)

issue - redundancy The developer complained that
several tasks felt repetitive and un-
necessary to them.

“Like for some strange reason I
think, it looks for the word search,
but isn’t search really common?”
(F6)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 3 . Publication date: March 2024.3

	Abstract
	1 Introduction
	1.1 Matcha Use Case

	2 Background and Related work
	2.1 Large-scale adoption of privacy nutrition labels: Opportunities and Challenges
	2.2 Challenges for developers to create accurate standardized privacy notices
	2.3 Developer tools for creating privacy notices

	3 Matcha Design and Implementation
	3.1 Design goals
	3.2 Developer Input Design
	3.3 Preliminary Tests for Iterative Design
	3.4 Final Design of the IDE Plugin
	3.5 Matcha System Implementation

	4 Matcha Evaluation
	4.1 Study Design Considerations
	4.2 Participants
	4.3 Study Procedure
	4.4 Ethics of the Study
	4.5 Qualitative Analysis Method
	4.6 Methodological Limitations

	5 Results
	5.1 Matcha Improved Label Accuracy
	5.2 Types of Errors Fixed by Matcha
	5.3 Matcha Helped Tackle Challenges for Creating Accurate Privacy Labels
	5.4 Perceived Benefits and Problems of Matcha
	5.5 Efficiency of Matcha
	5.6 Developers' Reactions to Suggestions

	6 Discussion
	6.1 Developers and Code Analysis: Better Together
	6.2 Using Annotations as a Uniform Privacy Language for Developers
	6.3 Generalizability of Annotation-based Approach for Creating Privacy Labels
	6.4 Limitations of the Annotation and Developer Tool Approach
	6.5 Design Implications for Developer Tools for Privacy
	6.6 Future Research Directions

	7 Conclusions
	Acknowledgments
	References
	A Annotation Design Details
	B Matcha Implementation Details
	C Pre-Study Survey
	D Interview Script
	D.1 Introduction
	D.2 Background Questions
	D.3 Task 1: Use Google Play Developer Console to Create the Label
	D.4 Task 2: Use Matcha to Create the Label
	D.5 Post-Study Interview

	E Participant Overview
	F Qualitative Analysis Code book

