
A Compositional Theory of Linearizability

ARTHUR OLIVEIRA VALE, ZHONG SHAO, and YIXUAN CHEN, Yale University, USA

Compositionality is at the core of programming languages research and has become an important goal toward
scalable verification of large systems. Despite that, there is no compositional account of linearizability, the
gold standard of correctness for concurrent objects.

In this article, we develop a compositional semantics for linearizable concurrent objects. We start by show-
casing a common issue, which is independent of linearizability, in the construction of compositional models
of concurrent computation: interaction with the neutral element for composition can lead to emergent be-
haviors, a hindrance to compositionality. Category theory provides a solution for the issue in the form of the
Karoubi envelope. Surprisingly, and this is the main discovery of our work, this abstract construction is deeply
related to linearizability and leads to a novel formulation of it. Notably, this new formulation neither relies
on atomicity nor directly upon happens-before ordering and is only possible because of compositionality,
revealing that linearizability and compositionality are intrinsically related to each other.

We use this new, and compositional, understanding of linearizability to revisit much of the theory of
linearizability, providing novel, simple, algebraic proofs of the locality property and of an analogue of
the equivalence with observational refinement. We show our techniques can be used in practice by con-
necting our semantics with a simple program logic that is nonetheless sound concerning this generalized
linearizability.

CCS Concepts: • Theory of computation→ Parallel computing models; Denotational semantics; Cat-

egorical semantics; Program verification; Program specifications; • Software and its engineering→

Correctness;

Additional Key Words and Phrases: Linearizability, game semantics, concurrency, program logic

ACM Reference Format:

Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen. 2024. A Compositional Theory of Linearizability. J. ACM

71, 2, Article 14 (April 2024), 107 pages. https://doi.org/10.1145/3643668

1 INTRODUCTION

Linearizability is a notion of correctness for concurrent objects introduced in the 90s by Herlihy
and Wing [1990]. Since then, it has become the gold standard for correctness of concurrent objects:
it is taught in university courses, known by programmers in industry, and commonly used in
academia. Its success can be justified by a myriad of factors: it is a safety property in a variety
of settings [Guerraoui and Ruppert 2014]; it appears to capture a large class of useful concurrent

This material is based upon work supported in part by NSF grants 2019285, 1763399, 2313433, and 2118851, and by the
Defense Advanced Research Projects Agency (DARPA) and Naval Information Warfare Center Pacific (NIWC Pacific) under
Contract No. N66001-21-C-4018. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the funding agencies.
Authors’ address: A. Oliveira Vale, Z. Shao, and Y. Chen, Department of Computer Science, Yale University, P.O.Box 208285,
New Haven, CT 06520, USA; e-mails: arthur.oliveiravale@yale.edu, zhong.shao@yale.edu, yixuan.chen@yale.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 0004-5411/2024/04-ART14
https://doi.org/10.1145/3643668

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

https://orcid.org/0000-0003-1091-7560
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0001-8659-8493
https://doi.org/10.1145/3643668
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3643668
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643668&domain=pdf&date_stamp=2024-04-12

14:2 A. Oliveira Vale et al.

objects; it allows for linearizable concurrent objects to be horizontally composed together while
preserving linearizability, which Herlihy and Wing [1990] call locality; it aids in the derivation of
other safety properties [Herlihy and Wing 1990]; it is intuitive: a linearizable concurrent object
essentially behaves as if its operations happened atomically under any concurrent execution, a
property that has been formalized by the notion of linearization point by Herlihy and Wing [1990],
and by an observational refinement property by Filipovic et al. [2010].

1.1 The State of the Theory of Linearizability

Linearizability is commonly used to define correctness of concurrent objects and to aid in
verification of concurrent code. We believe that the current theory of linearizability suffers from
a few biases.

Atomicity: Because the classic definition of linearizability is based on linearizing to an atomic
specification, most of the subsequent work on it has focused on atomicity. Even though Filipovic
et al. [2010] have noticed that the insight of linearizability lies not in atomicity, but rather in preser-
vation of the happens-before order, most of the subsequent work still focuses on atomicity. This is
true even though many useful concurrent objects do not linearize, leading to numerous variations
on the theme [Castañeda et al. 2015; Goubault et al. 2018; Haas et al. 2016; Neiger 1994]. When
aiming for compositionality, atomicity becomes a hindrance, as often even if an object linearizes
to an atomic specification, it can happen that the components used to implement that object are
not themselves atomically linearizable.

Compositionality: The typical approach to assembling verified concurrent objects into
a larger system relies on a refinement property in the style of Filipovic et al. [2010]. Usu-
ally, there is a syntactically defined programming language for expressing concurrent code
and often specifications as well. The code is verified by linking a library L′B with an
implementation N = N1 ‖ · · · ‖ Nk , specified in the programming language, to form
a syntactic term Link L′B ;N . A trace semantics �−� allows one to obtain the traces
for the resulting interface �Link L′B ;N�, and an observational refinement property
allows to consider instead a linearized library LB linked with N to reason about the
linearizability of the library that N implements. Now, suppose one is given an imple-
mentationM relying on a library L′A, that is Link L′A;M , to implement L′B . There is no

obvious way to composeM andN so to re-use their proofs of linearizability to obtain
a linearizable object Link L′A; (N ◦M). At best, one has to either syntactically link them together,
and re-do the proofs, or inline M in N and re-verify the code obtained through this process.

Syntax: As outlined in Compositionality, there is also a bias towards syntax, even in Filipovic
et al. [2010], one of the foundational articles on linearizability. This becomes an issue when differ-
ent components are modeled by different computational models but need to be connected nonethe-
less (such as when one wants to model both hardware and software components, or when compo-
nents are written in different programming languages). This situation occurs in real systems. For
instance, Gu et al. [2015, 2016, 2018]’s verified OS contains components in both C and Asm. The
way they manage to make the two interact is by only composing components after compiling C

code into Asm using CompCert [Leroy 2009], a solution which is yet again reliant on syntactic
linking. Less optimistically, there would be no compiler to aid with this. In this context, an entire
metatheory for the interaction between the two languages would need to be developed, together
with a theory of observational refinement across programming languages. In a large heterogeneous
system, this becomes unwieldy, as there could be several computational models involved. Mean-
while, a compositional abstract model could embed each heterogeneous component and reason
about them at a more coarse-grained level.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:3

Theory: Overall, the theory of linearizability is rather underdeveloped. There are essentially
two characterizations: the original happens-before order one from Herlihy and Wing [1990], and
the observational refinement one from Filipovic et al. [2010]. Guerraoui and Ruppert [2014] ad-
dressed the folklore that linearizability is a safety property, while Goubault et al. [2018] gave a
novel formulation of linearizability in terms of local rewrite rules and showed that linearizability
may be seen as an approximation operation by proving a certain Galois connection. Otherwise,
there isn’t a clean theory that addresses the semantic and computational content of linearizability,
providing foundations for properties such as locality and observational refinement. As a side-effect
of this, the proofs of these properties are rather complicated.

A more general and abstract theory of linearizability could not only simplify these issues but
also be more easily adapted to novel settings
where there is no obvious happens-before ordering.

Verification: The issues outlined above are even more relevant in formal verification, espe-
cially when targeting large heterogenous systems. A recent line of work [Koenig and Shao 2020;
Oliveira Vale et al. 2022] maintains that compositional semantics is essential for the scalable ver-
ification of such systems. The idea is that individual components are verified in domain specific
semantic models appropriate for the verification task, which target fine-grained aspects of com-
putation. This is necessary as semantic models for verification are tailored to make the verifica-
tion task tractable. But then, these components are embedded into a general compositional model,
shifting the granularity of computation to the coarse-grained behavior of components. This gen-
eral model acts as the compositional glue, connecting the system together. As linearizability is
the main correctness criterion for concurrent objects, a compositional model of linearizable ob-
jects is necessary to provide that glue for large, heterogeneous, potentially distributed, concurrent
systems.

1.2 Summary and Main Contributions

— In this article,1 we develop a compositional model of linearizable concurrent objects. We
cover some background, motivation, and main results informally in Section 2.

We first construct a concurrent game semantics model (Section 3). For the sake of clar-
ity, we strive for the simplest game model expressive enough to discuss linearizability: a
bare-bones sequential game model interleaved to form a sequentially consistent model of
concurrent computation.

— As with other models of concurrent computation, the model in Section 3 fails to have a neu-

tral (or identity) element for composition. We remedy this in Section 4 by using a category-
theoretical construction called the Karoubi envelope. We argue that this construction comes
with two transformations KConc− and EmbConc− converting between the models from
Sections 3 and 4.

— Surprisingly, the process of constructing the model in Section 4 reveals that linearizability
is at the heart of compositionality, and in particular we do not need to define linearizability:
it emerges out of the abstract construction of a concurrent model of computation, as we
discuss in Section 5. We show this by giving a generalized definition of linearizability and
then by showing its tight connection to KConc−, leading to a novel abstract definition of
linearizability.

— We then give a computational interpretation of linearizability in Section 5.4 by showing that
proofs of linearizability correspond to traces of a certain program ccopy.

1This article is an extended and improved version of Oliveira Vale et al. [2023].

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:4 A. Oliveira Vale et al.

— Simultaneously, these new foundations reveal that compositionality is also at the heart of
linearizability. In Section 5.5, we give an analogue of the usual contextual refinement result
around linearizability which admits an extremely simple proof because of our formalism.

— In Section 5.6, we revisit Herlihy-Wing’s locality result and provide a novel proof of locality
based on our computational interpretation and abstract formulation of linearizability, lead-
ing to a more structured and algebraic proof of a generalized locality property.

— In Section 6, we revisit our construction from the point of view of category theory, showing
that it can be generalized to other settings with similar structure. We establish a notion of
abstract linearizability, and provide sufficient conditions on a category for the interaction
refinement property and locality results of Section 5 to hold. We also give an abstract proof
of the Galois connection from Goubault et al. [2018].

— In Section 7, we use the construction and tools developed in Section 6 to recount classical
Herlihy-Wing linearizability, and show that our methods faithfully specialize to Herlihy-
Wing linearizability when constructing a category of atomic games.

— In the brief Section 8, we compare our definition of linearizability with interval-sequential
linearizability [Castañeda et al. 2015], showing that they are equivalent.

— In Sections 9 and 10, we carefully analyze the notion of possibilities of Herlihy and Wing
[1990], providing a novel proof of the equivalence of linearizability with linearization points,
and develop a generalization of their notion to our setting. This culminates in establishing
the basic principles to develop a program logic for our notion of linearizability.

— In Section 11, we provide a brief interlude to develop a concurrent object-based semantics,
inspired in Reddy [1996] and Oliveira Vale et al. [2022], which will be the model of code for
our program logic.

— In Section 12, we showcase our model is practical by connecting our semantics with a con-
crete program logic, and showing how the theory can be used to compose concurrent objects
and their implementations together to build larger objects.

2 BACKGROUND AND OVERVIEW

2.1 Background

2.1.1 Game Semantics. Since Herlihy and Wing [1990] was published, many techniques have
been developed by the programming languages and the distributed systems communities to model
concurrent computation. One technique that has risen to prominence, mostly because of its suc-
cess in proving full abstraction results for a variety of programming languages, is game seman-
tics [Abramsky et al. 2000; Blass 1992; Hyland and Ong 2000]. Its essence lies in adding more
structure to traces, which are called plays in the paradigm. These plays describe well-formed in-
teractions between two parties, historically called Proponent (P) and Opponent (O). A game A (or
B) provides the rules of the game by describing which plays are valid; types are interpreted as
games. As one typically takes the point of view of the Proponent, and models the environment as
Opponent, programs of type A � B (an affine program that produces a play from B by interacting
with A) are interpreted as strategies σ : A � B for the Proponent to “play” this game against
the Opponent. A strategy is essentially a description of how the Proponent reacts to any move by
the Opponent in any context that may arise in their interaction. The standard way of composing
strategies informally goes by the motto of “interaction + hiding”: given strategies σ : A � B
and τ : B � C the strategy σ ;τ : A � C is constructed by letting σ and τ interact through
their common game B, obtaining a well-formed interaction acrossA,B, andC , and then hiding the
interaction in B to obtain a play that appears to happen only in A and C .

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:5

2.1.2 A Surprising Coincidence. Ghica and Murawski [2004] constructed a concurrent game
semantics to give a fully abstract model of Idealized Concurrent Algol (ICA). In attempting to
construct their model of ICA, they faced a problem: the naïve definition of concurrent strategy
does not construct a category for lack of an identity strategy. In other words, there is no strategy
idA : A � A such that σ ; idA = σ holds for any strategy σ : A, a basic property of a compositional
model. Their solution was to consider strategies that are “saturated” under a certain rewrite system,
an approach they inherited from Laird [2001]’s work on the semantics of CSP.

Interestingly, the same rewrite system appears in Goubault et al. [2018]’s work on linearizabil-
ity. There, they gave an alternative definition of linearizability based on a certain string rewrite
system over traces.2 Denoting an operationm (either an invocation or a response) made by a com-
putational agent α by ααα:::m, the key rule of this rewrite system is given by

h · ααα:::m α ′α ′α ′:::m′ · h′� h · α ′α ′α ′:::m′ ααα:::m · h′

if and only if α � α ′ andm is an invocation orm′ is a return. That is, two events ααα:::m and α ′α ′α ′:::m′ in
a trace h ·ααα:::mα ′α ′α ′:::m′ ·h′ may be swapped when they are events by different threads, α and α ′, and
the swap makes an invocation occur later or a return occur earlier. These swaps precisely encode
happens-before order preservation.

The coincidence between the two rewrite systems is unexpected. Ghica and Murawski [2004] are
simply attempting to construct a compositional model of concurrent computation, without regard
for linearizability. They make their model compositional by considering only strategies saturated
under a rewrite relation which happens to encode preservation of happens-before order.

So why should this rewrite system appear as a result of obtaining an identity for strategy com-
position?

2.1.3 Compositional Refinement-Based Verification. Consider a model of computation C defin-
ing what it means to be an object of type A,B,C as well as a way to represent computation
σ : A → B that uses an object of type A to implement an object of type B. To be compositional,
this model should moreover come with a few operations:

— a notion of refinement formalizing when σ : A → B is refined by σ ′ : A → B, written
σ ⊆ σ ′;

— a vertical composition operation −;−, which takes σ : A→ B and τ : B → C and constructs
σ ;τ : A → C . Intuitively, it takes a piece of computation that implements objects of type C
using objects of type B, and one that implements objects of type B using objects of type A,
and produces one that implements objects of type C using objects of type A directly;

— a horizontal composition operation − ⊗ − defined on both objects and code. Intuitively, it
takes independent objects of type A and B and composes them into an object of type A ⊗ B
which allows for both objects to be used simultaneously as if they were a single object.

These operations are required to satisfy many compositionality properties, like associativity and
existence of neutral elements. They are also required to interact well with each other. For instance,
both vertical and horizontal composition need to be monotonic with respect to refinement, so
individual components can be refined individually and still imply a corresponding refinement for
the composed system. Another set of important properties enforce that horizontal and vertical
composition interact well with each other, providing flexibility when composing components.

Ultimately, one finds that these requirements naturally lead to the idea that this model should
assemble into an enriched symmetric monoidal category. This collects the desired properties as
discussed above and provides a robust algebra to reason about verified components. In the end,

2The idea of using rewriting to define linearizability already appears in Aguilera and Frølund [2003]’s work on linearizabil-
ity in the context of crashes and abortions.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:6 A. Oliveira Vale et al.

one obtains a model that makes it easier to assemble verified components into larger systems, but
also to reason about them through refinement. This does come at a cost, as one must design the
framework to guarantee it satisfies these properties.

2.2 An Example on Compositionality

Compositionality is not only important for providing semantics to programming languages, but
also for the sake of scalability in formal verification. We now provide a few examples of how
compositionality helps profitably organize a verification effort.

2.2.1 Coarse-Grained Locking. We model an object Lock with acq and rel operations which take
no arguments and return the value ok. We can encapsulate this information as the signature:

Lock := {acq : 1, rel : 1}

meaning that 1 = {ok} is the set of return values for both the acq and rel operations. We denote
by †Lock the type of traces using operations of Lock and by P†Lock the set of traces of type †Lock.
An example of a concurrent trace in P†Lock is (the arrows keep track of the individual threads of
computation, and are merely a visual aid):

s = α1α1α1:::acq α2α2α2:::acq α2α2α2:::ok α3α3α3:::acq α2α2α2:::rel α3α3α3:::ok α2α2α2:::ok

this trace s linearizes to the following atomic trace t , also in P†Lock, called atomic because every
invocation immediately receives its response:

t = α2α2α2:::acq α2α2α2:::ok α2α2α2:::rel α2α2α2:::ok α3α3α3:::acq α3α3α3:::ok

In particular, linearizability enforces that any operation that “happens before” some other op-
eration in s (an operation happens before another if the return of the first happens before the
invocation of the later), still happens before that operation in t . This is usually formalized by defin-
ing a partial order on the events of a trace, called the happens-before order. We call this aspect of
linearizability “preservation of happens-before order”.

As usual, concurrent objects are specified by sets of traces. In this way, a concurrent lock object
is specified as a prefix-closed set of traces ν ′lock ⊆ P†Lock. To be correct this specification ν ′lock should
linearize to the atomic specification νlock ⊆ P†Lock given by the set of traces s ∈ P†Lock such that

if s = s1 · α1α1α1:::m1 · α2α2α2:::m2 · α3α3α3:::m3 · α4α4α4:::m4 · s2 then

— Ifm1 = acq then α1 = α2 = α3 = α4 andm2 =m4 = ok andm3 = rel;
— Ifm1 = rel then α1 = α2, α3 = α4,m3 = acq andm2 =m4 = ok;

and, if s is non-empty, then its first invocation is acq. We take the convention that a primed speci-
fication (like ν ′lock) is more concurrent than its un-primed counterpart (like νlock).

A typical application of a lock is synchronizing accesses to a resource shared by several asyn-
chronous computational agents. For instance, suppose we have a sequential queue with signature:

Queue := {enq : N→ 1, deq : N + {	}}

Its concurrent specification ν ′queue can be specified as the largest set of traces s ∈ P†Queue such
that

if s = p ·ααα:::deq ·ααα:::k · s ′ and p is atomic then either qstate(p) = k :: q′ or qstate(p) = [] and k = 	,

where qstate is an inductively defined function taking an atomic trace p and returning the state
qstate(p) of the queue after executing the tracep from the empty queue []. Note that as soon as any
non-atomic interleaving happens in a trace of ν ′queue the behaviors of enq and deq are unspecified
and therefore completely non-deterministic. This reflects the assumption that this Queue object is
a sequential implementation that is not resilient to concurrent execution.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:7

Fig. 1. Shared Queue implementation (left), and Lock implementation (right).

Such a Queue object can be shared across several agents by locking around all the operations
of Queue, as demonstrated in the following implementation Msqueue : Lock ⊗ Queue � Queue

implementing a shared queue using a lock and a sequential queue implementation (see Figure 1).
Note that when several independent objects must be used together, we use the linear logic tensor
− ⊗ − to compose them horizontally into a new object, such as in the source type of Msqueue.

The queue object ν ′squeue implemented by Msqueue is linearizable to the usual atomic specification
νsqueue of a Queue. But observe that ν ′queue is not linearizable to νsqueue. This means that the com-
position of ν ′lock and ν ′queue into an object of type Lock ⊗ Queue specified as ν ′lock ⊗ ν ′queue (the set
of all sequentially consistent interleavings of ν ′lock and ν ′queue) is also not linearizable to an atomic
specification. This is enough for approaches which are over-reliant on atomicity to be unable to
handle this situation cleanly. A solution there is to remove the dependence on the non-linearizable
queue by inlining its implementation in terms of programming language primitives. This solution
is unfortunate, as intuitively what Msqueue does is turning a non-linearizable queue into a lineariz-
able one. Inlining its implementation removes the connection between the sequential implementa-
tion and the code implementing this sharing pattern. Instead, what one would like to do is to use
off-the-shelf sequential components freely, like in the code in Figure 1. Meanwhile, by divorcing
linearizability from atomicity, we will still have that ν ′lock ⊗ ν ′queue is linearizable to νlock ⊗ ν ′queue
according to a generalized notion of linearizability. We connect our model with a program logic
to show that the code in Figure 1 does implement a linearizable Queue object correctly.

2.2.2 Implementing a Lock. A typical implementation for Lock is the ticket lock implementation
(see Figure 1), relying on a sequential counter and a fetch-and-increment object with signatures

Counter := {inc : 1, get : N} FAI := {fai : N}

The FAI object comprises a single operation fai which both returns the current value of the fetch-
and-increment object and increments it. It is well known that the concurrent ν ′fai object specifica-
tion is linearizable to an atomic one νfai.

The Counter object ν ′counter has a subtler specification. It models a semi-racy sequential counter
implementation similarly to the queue from Section 2.2.1. But different from the racy queue, the
counter must be slightly more defined, as the lock implementation requires that the sequential
implementation be resilient to concurrent get calls, and with respect to concurrent get and inc

calls. However, if inc calls happen concurrently, the behavior is undefined. This is not an issue
for the lock implementation because it never happens in a valid execution of a lock. We model
this by assuming that the concurrent specification of the Counter, ν ′counter, is linearizable (in our

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:8 A. Oliveira Vale et al.

generalized sense) with respect to a less concurrent one, νcounter, given by the largest set of traces
s ∈ P†Counter satisfying:

If s = p · ααα:::get ·m · s ′ thenm = ααα:::k and if moreover p�{inc:ok} is atomic and even-length then
k = #inc(p),

where #inc(−) is an inductively defined function returning the number #inc(p) of inc calls in p.
Note that we do not bother defining what ν ′counter actually is, as our proofs, using a refinement
property à la Filipovic et al. [2010], will only rely on the linearized specification νcounter.

Occasionally, one implements the ticket lock so that it yields while spinning so as to let other
agents get access to the underlying computational resource (such as processor time). For some
purposes, this is crucial to obtain better liveness properties. For this, we define a signature

Yield := {yield : 1}

with concurrent specification ν ′yield given by

ν ′yield := {s ∈ P†Yield | s = s1 · ααα:::yield · s2 · ααα:::ok · s3 ⇒ there is a pending yield in s1 · s2}

that is to say, a call by α to yield is only allowed to return if another agent calls yield concurrently
with α . A typical trace of ν ′yield looks like

α1α1α1:::yield α2α2α2:::yield α2α2α2:::ok α3α3α3:::yield α1α1α1:::ok α2α2α2:::yield α3α3α3:::ok

Now, observe that by definition, ν ′yield contains no atomic traces, as yield only returns if another

yield happens concurrently with it. That means that no atomic linearized specification for ν ′yield will
be faithful to its actual behaviors. Despite that, its traces can always be simplified, while preserving
happens-before-order, so that between a yield invocation and its return ok the only events that
appear are the ok for the agent who took over the computational resource and the yield call for
the agent who yielded, like so

α2α2α2:::yield α1α1α1:::yield α2α2α2:::ok α3α3α3:::yield α1α1α1:::ok α2α2α2:::yield α3α3α3:::ok

That is to say, Yield is linearizable (in our sense) to a non-atomic specification, and we can still use
our observational refinement property to simplify the reasoning on the side of the client of Yield.
With the Yield object at hand, we verify that the implementation in Figure 1 for the ticket lock is
linearizable using a program logic. Once Mlock and Msqueue are individually verified, we can use
a vertical composition operation −;− to compose them into a program implementing the shared
Queue directly on top of FAI, Counter and Yield while preserving the fact that this composed
implementation implements a linearizable Queue object. We depict this example in Figure 2.

2.3 Overview

Our work will address the question raised at Section 2.1.2 by showing that linearizability is already
baked in a compositional model of computation. Crucially, our goal is to show that a model of con-
current computation with enough structure naturally gives rise to its own notion of linearizability,
and that linearizability is intrinsically connected to the compositional structure of the model.

For this, we define a model of sequentially consistent, potentially blocking, concurrent compu-
tation Conc, inspired by Ghica and Murawski [2004]. Similarly to their model, this model fails to
have a neutral element for composition −;−. An abstract construction called the Karoubi envelope
allows us to construct from Conc a compositional model Conc which does have neutral elements.
This new model Conc differs from Conc in that its strategies σ of type A � B are strategies of
Conc that moreover are invariant upon composition with a certain strategy called ccopy−. This

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:9

Fig. 2. In our compositional model, off-the-shelf components can be composed horizontally by using the

linear logic tensor − ⊗ −. Each component’s implementation is verified against its linearized specification

individually (left). Refinement and generalized linearizability allow to use the simpler specifications νfai, and

νyield to prove that ν ′
lock

, implemented byMlock is linearizable to νlock. By assuming ν ′counter linearizable to the

specification νcounter, it is unnecessary to know the actual concurrent behavior of the racy counter. Vertical

composition (right) allows one to compose the two implementations together to obtain a fully concurrent

description of the composed system while maintaining that after the composition ν ′squeue is still linearizable

to νsqueue. We use ccopy to denote the neutral (or identity) element for composition, discussed in Section 3.2.

Fig. 3. Code corresponding to ccopy− (left); Diagram depicting the operations KConc and EmbConc (right).

strategy corresponds to the traces of a program where each agent in the concurrent system runs
the code in Figure 3 in parallel, which implements f by importing an implementation of f itself, or
alternatively to an η-redex λx . f x . This construction comes with some infrastructure: a saturation
operation KConc and a forgetful operation EmbConc, depicted in Figure 3. Importantly, KConc σ is
defined to be ccopyA;σ ; ccopyB while EmbConc σ is by definition just σ itself. The central but simple
result of this article is that

Proposition 2.1 (Abstract Linearizability). A strategy σ : A ∈ Conc is linearizable to a

strategy τ : A ∈ Conc if and only if

σ ⊆ KConc τ

By linearizability we mean a generalized, but concrete, definition of linearizability which
nonetheless faithfully generalizes Herlihy-Wing linearizability when τ is an atomic strategy. It
is important to emphasize that because KConc arises from the Karoubi envelope construction, not
only it does not involve happens-before ordering but also it immediately suggests an abstract def-
inition of linearizability which could be sensible anywhere this abstract construction is used.

We give a novel characterization of linearizability by showing that the strategy ccopy−, corre-
sponds to proofs of linearizability, giving a computational interpretation to proofs of linearizability
(where s�A denotes the projection of the trace s to events of A). We call this a computational inter-
pretation because ccopy− is the denotation of the concrete program in Figure 3.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:10 A. Oliveira Vale et al.

Proposition 2.2 (Computational Interpretation). s1 linearizes to s0, both plays of type A, if

and only if there exists a play s ∈ ccopyA : A � A such that

s�A0 = s0 s�A1 = s1

where A0 and A1 denote the source and target components of A � A.

Then, we show a property analogous to the usual contextual refinement property, admitting a
very simple proof due to the abstract formalism we develop.

Proposition 2.3 (Interaction Refinement). ν ′A : A ∈ Conc is linearizable to νA : A ∈ Conc if

and only if for all concurrent games B and σ : A � B it holds that

ν ′A;σ ⊆ νA;σ

After that, we define a tensor A⊗B amounting to all the sequentially consistent interleavings of
traces of type A with traces of type B, that is, interleavings such that each agent behaves sequen-
tially locally. We then use the insight given by the computational interpretation of linearizability
proofs and show that for any A and B:

ccopyA⊗B = ccopyA ⊗ ccopyB

This equation can be interpreted to say that proofs of linearizability for objects of type A ⊗ B

correspond to a pair of a proof of linearizability for the A part and a separate proof of linearizability
for the B part. We use this insight to give a more general account of the locality property originally
appearing in Herlihy and Wing [1990], obtaining as a corollary the following locality property:

Proposition 2.4 (Locality). Let ν ′A : A, ν ′B : B and νA : A, νB : B. Then

ν ′ = ν ′A ⊗ ν ′B is linearizable w.r.t. ν = νA ⊗ νB

if and only if

ν ′A is linearizable w.r.t. νA and ν ′B is linearizable w.r.t. νB

Perhaps more important than the property itself is the methodology we use to establish it. Rather
than the usual argument using partial orders, originally from Herlihy and Wing [1990] and also
appearing in a setting closer to ours in Castañeda et al. [2015], we give an algebraic proof relying
on the abstract definition of linearizability from Proposition 2.1.

This success in developing the fundamental theory of linearizability from this angle motivates
a straight-forward categorification of the notion of linearizability in models based on this kind of
Karoubinization. We also closely compare our definition with other well-established notions of lin-
earizability in locally sequential models: the original formulation in terms of atomic specifications
[Herlihy and Wing 1990], and the more recent and expressive interval-sequential linearizability
[Castañeda et al. 2015].

We then build an axiomatic approach for formulating linearizability proofs that unifies the pos-
sibilities approach by Herlihy and Wing [1990] with our methodology. In the process, we use the
computational interpretation angle to show that each possibility axiom corresponds to a differ-
ent kind of move that the copycat strategy might make in a valid execution. We refine this into
a principled way to annotate an implementation strategy with proofs of linearizability, which ul-
timately results in our own framework for possibility-based axiomatic proofs and an alternative
way to characterize linearization points (and their generalization to linearization intervals). We
then elaborate our axiomatic approach into a rely-guarantee program logic inspired by Khyzha
et al. [2017].

At this point, we will have all the ingredients to compose concurrent objects into larger
systems, such as in the example in Figure 2. We showcase this by using our program logic to

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:11

verify individual components. Vertical composition corresponds to strategy composition −;−.
Horizontal composition is provided by the tensor − ⊗ − which is well-behaved with respect to
linearizability due to the locality property. As our model is enriched over a simple notion of refine-
ment, we will also have that these constructions are harmonious with refinement. The interaction
refinement property allows us to leverage the linearized specification of components to ease
reasoning.

3 CONCURRENT GAMES

In this section, we define our model of concurrent games, built by interleaving several copies of a
sequential game model. We start by defining a simple model of sequential games Seq in Section 3.1.
Then, we define a multi-threaded interleaved model Conc in Section 3.2 and observe that it defines
a semicategory.

3.1 Sequential Games

Before we proceed, we briefly define a sequential game model. Similar models appear elsewhere in
the literature. See, for instance Abramsky and McCusker [1999] and Hyland [1997], which we sug-
gest for the reader who seeks a detailed treatment. Our concurrent model amounts to interleaving
several sequential agents which behave as in the sequential game model we define now.

The reader familiar with game semantics will note that, unlike the aforementioned references,
we do not make use of justification pointers. This greatly simplifies the presentation, and is enough
to discuss standard notions of linearizability, giving hope that our treatment is amenable to mecha-
nization. This means, however, that our development does not handle programs written in higher-
order languages well, as we briefly discuss in Section 13. Our presentation is also unusual in that
we do not require O-receptivity initially. The benefits of this approach will be clear later once we
note that this is the natural setting to handle linearizability.

As we outlined in Section 2.1.2, types are interpreted as games. In the following definitions
Alt(S, S ′) is the set of sequences of S + S ′ that alternate between S and S ′, � is the prefix relation,
and �even is the even-length prefix relation.

Definition 3.1. A (sequential) gameA is a pair (MA, PA) of a set of polarized moves MA = MO
A
+MP

A

and a non-empty, prefix-closed set of alternating sequences PA ⊆ Alt(MO
A
,MP

A) of MA, called plays,
such that every non-empty play s ∈ PA starts with a move in MO

A
.

The moves in MO
A

are the Opponent moves, and those in MP
A the Proponent moves. Every se-

quential game A defines a labeling map λA : MA → {O, P} by the universal property of the sum.
An example of a game is the unit game Σ in which Opponent may ask a question q which

Proponent may answer with a response a. In this way, MO
Σ = {q} and MP

Σ = {a}, and Σ admits
exactly the following three plays:

PΣ := { ϵ , q , q −−−−−→ a }

corresponding to the empty play, the play where Opponent has asked q and awaits a response
from the Proponent, and a play where Proponent has replied.

Games can be composed together to form new games. Of particular importance for us will
be the tensor A ⊗ B of two games A and B, and the linear implication A � B. In the following,
we denote by s�A the projection of s to its largest subsequence containing only moves of the
game A.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:12 A. Oliveira Vale et al.

Definition 3.2. Let A and B be (sequential) games. The tensor of A and B is the game A ⊗ B =
(MA⊗B , PA⊗B) defined by

MO
A⊗B := MO

A +M
O
B MP

A⊗B := MP
A +M

P
B

PA⊗B := {s ∈ Alt(MO
A⊗B ,M

P
A⊗B) | s�A ∈ PA ∧ s�B ∈ PB }

The game A � B = (MA�B , PA�B) is defined by

MO
A�B := MP

A +M
O
B MP

A�B := MO
A +M

P
B

PA�B := {s ∈ Alt(MO
A�B ,M

P
A�B) | s�A ∈ PA ∧ s�B ∈ PB }

The game 1 is given by the following data:

MO
1 := 	 MP

1 := 	 P1 := {ϵ}

The plays of A⊗B are essentially plays of A and B interleaved in a sequential play, so that A⊗B
corresponds to independent horizontal composition. The game A � B meanwhile corresponds to
switching the roles of Opponent and Proponent in A and then taking the tensor with B.

As a matter of illustration, the maximal plays (under prefix ordering) for the games Σ0 ⊗ Σ1 (the
two plays on the left) and Σ0 � Σ1 (the two plays on the right) are depicted below. We denote
by Σ0, Σ1 the two components of these types, both of which are instances of the game Σ. We will
similarly add an index to the moves of each component.

Σ1 q1 a1 q1 a1

Σ0 q0 a0 q0 a0

⊗

Σ1 q1 a1 q1 a1

Σ0 q0 a0

�

Observe that in the game Σ ⊗ Σ Opponent can choose to start in either component, while in the
game Σ � Σ Opponent must start in the target component (Σ1) due to the flip of polarity in the
source component (Σ0). In Σ ⊗ Σ only Opponent may switch components, while in Σ � Σ only
Proponent may switch components because of alternation (these are typically called the switching
conditions of sequential games).

Continuing along what we outlined in Section 2.1.2, programs are interpreted as strategies.

Definition 3.3. A (sequential) strategy σ over the gameA, denoted σ : A, consists of a non-empty,
prefix-closed set of plays in PA.

A morphism between sequential games A and B will then be defined as a strategy for the game
A � B. Strategy composition is defined as usual by “interaction + hiding”. Formally,

Definition 3.4. Given games A,B,C we define the set int(A,B,C) of finite sequences of moves
from MA +MB +MC as follows:

s ∈ int(A,B,C) ⇐⇒ s�A,B ∈ PA�B ∧ s�B,C ∈ PB�C

The interaction int(σ ,τ) of two strategies σ : A � B and τ : B � C is given by the set

int(σ ,τ) := {s ∈ int(A,B,C) | s�A,B ∈ σ ∧ s�B,C ∈ τ }

And finally, the composition σ ;τ is defined as

σ ;τ := {s�A,C | s ∈ int(σ ,τ)}

Proposition 3.5. Strategy composition is well-defined and associative.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:13

This means that sequential games and sequential strategies assemble into a semicategory, which
we denote by Seq. Recall that a semicategory is a category without the requirement of neutral
elements for composition. In order to upgrade Seq into a category, it is usual to add an extra
requirement to strategies.

Definition 3.6. A sequential strategy σ : A is O-receptive when:

If s ∈ σ , Opponent to move at s and s ·m ∈ PA, then s ·m ∈ σ .

Then, the neutral element for strategy composition is the (sequential) copycat strategy.

Definition 3.7. The (sequential) copycat strategy copyA : A � A is defined as

copyA := {s ∈ PA�A | ∀p �even s .p�A0 = p�A1 }

It is folklore in game semantics that

Proposition 3.8. For a sequential strategy σ : A � B, copyA;σ ; copyB = σ if and only if σ is

O-receptive.

which gives as a corollary that:

Corollary 3.9. The copycat strategy is the neutral element for strategy composition ofO-receptive

strategies.

We collect these results as the category Seq of sequential games defined in the following.

Definition 3.10. The category Seq of sequential games and O-receptive sequential strategies is
the category whose objects are sequential games A, B, C and whose morphisms are O-receptive
strategies σ : A � B, τ : B � C . Strategy composition is given by σ ;τ : A � C and the neutral
elements for strategy composition are given by the copycat strategies copyA : A � A.

A useful class of examples of sequential games to keep in mind are games associated with effect
signatures.

Definition 3.11. An effect signature is given by a collection of operations, or effects, E = (ei)i ∈I

together with an assignment ar(−) : E → Set of a set for each operation in E. This is conveniently
described by the following notation:

E = {ei : ar(ei) | i ∈ I }

Cursorily, we can define a game Seq(E) associated with an effect signature E as the game which
has as O moves the set of effects e ∈ E and as P moves the set ∪e ∈E ar(e) of arities in E. We take
the freedom of writing E for Seq(E). The typical plays of E appear below in the left and consist of
an invocation of an effect e ∈ E followed by a response v ∈ ar(e).

E : e v †E : e1 v1 e2 v2 . . . en vn

We can lift such a game E to a game †E that allows several effects of E to be invoked in sequence.
Its plays, depicted above on the right, consist of sequences of invocations ei ∈ E alternating with
their responses vi ∈ ar(ei). The examples in Section 2.2 were all specified using effect signatures.
It is easy to observe that †E accurately captures the type of sequential traces of an object with E
as its interface.

For example, the game corresponding to the Counter signature defined in Section 2.2 has as
maximal plays the plays depicted below on the left. †Counter allows for several plays of Counter

to be played in sequence. Note, however, that it merely specifies the shape of the interactions with
†Counter. Two plays of †Counter are displayed on the right.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:14 A. Oliveira Vale et al.

inc ok

∀n ∈ N. get n

get 3 inc ok get 7 get 2 inc

inc ok get 1 get 1 inc ok

This minimal treatment of †−will suffice for now. We discuss it in more detail later in Section 11.
Effect signatures, when allied with the replay modality, provide a compact way to represent the
traces that are usually considered in imperative programs, and will figure prominently in the pro-
gramming language we consider in Section 12.

3.2 Concurrent Games

We assume as a parameter a countable set of agent names ϒ. These names will be used to distin-
guish different agents playing a concurrent gameAAA. We are now ready to define concurrent games.

Definition 3.12. A concurrent gameAAA = (MA, PA) is defined in terms of an underlying sequential
game A = (MA, PA) in the following way:

— Its set of moves MA is given by the disjoint sum MA :=
∑

α ∈ϒ MA. That is to say, its moves
are of the form ααα:::m ∈ MA for any agent α ∈ ϒ and move m ∈ MA.

— Its set of plays PAAA is the set PAAA := Φ(PA) of self-interleaving of plays of the sequential gameA.

Formally, denote by s ‖ t the set of interleavings of the finite sequences s and t , defined
inductively by

ϵ ‖ s = s ‖ ϵ = s x · s ‖ y · t = x · (s ‖ y · t) ∪ y · (x · s ‖ t)

Given sets of finite sequences S,T , we define the set of interleavings S ‖ T and the set of
self-interleavings Φ(S):

S ‖ T :=
⋃

s ∈S,t ∈T

s ‖ t Φ(S) :=
⋃
n∈N

⋃
{α1, ...,αn }∈Pn (ϒ)

(ια1(S) ‖ · · · ‖ ιαn
(S))

where Pn(ϒ) denotes the set of subsets of ϒ of size n, and ια (s) labels every move m in s , of every
sequence s ∈ S with the label α denoted by ααα:::m.

The sequential game A is the game that each agent α ∈ ϒ plays locally. We denote by πα (s)
the projection of a concurrent play s ∈ PAAA to the local play πα (s) by agent α . In particular, for
any play s ∈ PA, πα (s) ∈ PA. Observe that a concurrent game A with underlying sequential
game A = (MA, PA) is completely determined by its underlying sequential game A per the formula
A = (

∑
α ∈ϒ MA,Φ(PA)). Because of this, it is convenient to write A = (MA, PA) when specifying a

concurrent game, as we will do for the rest of the article.
Along the lines of our sequential game model Seq we now define the notion of a (concurrent)

strategy over a (concurrent) gameAAA.

Definition 3.13. Let AAA = (MA, PA) be a concurrent game. A (concurrent) strategy σ over AAA, de-
noted σ : AAA, is a non-empty, prefix-closed subset of PAAA.

The definition of a concurrent strategy is mostly analogous to that of a sequential strategy. In
fact, πα (σ) is a sequential strategy over the sequential game A for every α ∈ ϒ. We again defined
morphisms by first defining an implication gameAAA � BBB, which simply instantiates the underlying
sequential game as the sequential implication game. This should be understood as having each
agent play the sequential arrow game A � B.

Definition 3.14. Given concurrent games AAA = (MA, PA) and BBB = (MB , PB),where A = (MA, PA)

and B = (MB , PB) are sequential games, we define the concurrent gameAAA � BBB as

AAA � BBB := (MA�B , PA�B)

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:15

Strategy composition is defined analogously to the sequential case.

Definition 3.15. Given concurrent games A = (MA, PA),B = (MB , PB),C = (MC , PC) we define
the set int(A,B,C) of finite sequences of moves from MA +MB +MC as follows:

s ∈ int(A,B,C) ⇐⇒ s�A,B ∈ PA�B ∧ s�B,C ∈ PB�C

Then, the parallel interaction int(σ ,τ) of two strategies σ : A � B and τ : B � C is the set

int(σ ,τ) := {s ∈ int(A,B,C) | s�A,B ∈ σ ∧ s�B,C ∈ τ }

And finally, the composition σ ;τ is defined as

σ ;τ := {s�A,C | s ∈ int(σ ,τ)}

Proposition 3.16. Strategy composition is well-defined and associative.

Proposition 3.16 establishes a semicategorical structure to concurrent games and strategies.

Definition 3.17. The semicategory Conc has concurrent games A,B as objects and concurrent
strategies σ : A � B as morphisms. Composition is given by −;−.

We define the game †E of concurrent traces over the signature E by first defining E := (ME , PE)

and then †E := (M†E , P†E). So the game †E has each agent playing the corresponding sequential
game †E concurrently. This justifies all the notation used in Section 2.2, and in particular all the
traces depicted serve as examples of plays of games †E for the respective effect signatures. Effect
signatures as games and the replay modality †− admit a rich theory. We remind the reader that
we will treat it in more detail in Section 11.

4 CONCURRENT GAMES AND SYNCHRONIZATION

In Section 3.2, we defined a concurrent game semantics modeling potentially blocking sequentially
consistent computation, and we noted that we obtain a semicategorical structure. In this section we
discuss the issue with neutral elements (Section 4.1) and present a solution by constructing from
the semicategory Conc a category Conc of concurrent games (Section 4.2), presented abstractly,
and discuss some infrastructure around it (Sections 4.3 and 4.4). We finalize by adapting a result of
Ghica and Murawski [2004] which allows us to give a concrete characterization of this category
(Section 4.5).

4.1 The Copycat Strategy

In order to appreciate the difficulty with neutral elements in concurrent models, one must first un-
derstand what such a neutral element looks like. So let us first ground the discussion on sequential
computation. As we saw in Section 3.1, the neutral element in Seq is the copycat strategy copy−.
The name comes from the fact that it replicates O moves from the target component to the source
component and replicates P moves from the source component to the target component. In the
case of copyΣ : Σ � Σ there is only one possible interaction (displayed on the left): All other
plays of copyΣ are prefixes of this play. This strategy corresponds to the implementation displayed
on the right of Figure 4, for the method q using a library that already implements the method q.
Suppose we compose the copycat strategy with itself, that is, we build the strategy copyΣ; copyΣ,
and recall the motto “interaction + hiding”. The resulting interaction prior to hiding is: The middle
row of the interaction is the one that is then hidden. It simultaneously plays the role of the source
of the play in the top two rows, and the target in the play in the bottom two rows. The resulting
interaction, after hiding, is the interaction from Figure 4, as expected. In terms of the correspond-
ing implementations composing the two strategies amounts to inlining the code of one into the
other, as depicted in the right of Figure 5.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:16 A. Oliveira Vale et al.

Fig. 4. Maximal play of copyΣ (left) and corresponding pseudocode (right).

Fig. 5. Maximal play of int(copyΣ, copyΣ) (left) and corresponding pseudocode (right).

In the concurrent version Σ ∈ Conc of Σ, each agent of ϒ locally plays Σ. The obvious neutral
element in this situation would be to have each agent α ,α ′ ∈ ϒ locally run copyΣ, a strategy
we call ccopyΣ : Σ � Σ, which is akin to linking the code from Figure 4 for each agent in ϒ.
ccopyΣ, therefore, comprises all plays which are interleavings of copyΣ. One such play is the play
t displayed below:

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

� ∈ ccopyΣ

Now, consider a strategy σ : Σ � Σ consisting only of the play s below (and its prefixes):

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ α ′α ′α ′:::q α ′α ′α ′:::a ααα:::q

� ∈ σ

The plays s and t can interact in the following two ways (among others) when considering the
composition σ ; ccopyΣ:

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ α ′α ′α ′:::q α ′α ′α ′:::a ααα:::q

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ ααα:::q α ′α ′α ′:::q α ′α ′α ′:::a

Σ α ′α ′α ′:::q α ′α ′α ′:::a ααα:::q

Each of these interactions results in a different ordering of the last two moves: α ′α ′α ′:::a and ααα:::q.
Therefore, the strategy σ ; ccopyΣ includes both of the following plays:

ααα:::q · α ′α ′α ′:::q · α ′α ′α ′:::q · α ′α ′α ′:::a · α ′α ′α ′:::a · ααα:::q , ααα:::q · α ′α ′α ′:::q · α ′α ′α ′:::q · α ′α ′α ′:::a · ·ααα:::q · α ′α ′α ′:::a ∈ σ ; ccopyΣ

This is despite the fact that the second play is not in σ . Therefore, ccopyΣ is not a neutral element.
This issue is not due to a bad choice of candidate for a neutral element, it turns out that there

is no strategy that behaves like the neutral element for every concurrent strategy. This is the

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:17

issue that Ghica and Murawski [2004] faced and is a common issue in compositional models of
concurrent computation. Now, if strategies were required to be saturated under the rewrite system
from Section 2.1.2 (where we interpret invocation asO move and return as P move), then σ would
not be a valid strategy, as it must include both orderings to be saturated.

4.2 Concurrent Games and Saturated Strategies

We start by formally defining the concurrent copycat strategy ccopy:

Definition 4.1. The concurrent copycat strategy ccopyA : A � A is defined as the self-
interleaving of the sequential copycat strategy copyA : A � A:

ccopyA := Φ(copyA)

Proposition 4.2. ccopyA is idempotent.

This observation is all it takes to make use of an abstract construction called the Karoubi en-
velope to construct a model of concurrent games where ccopy− does act as the neutral element
for strategy composition, as we will treat in detail in Section 6. This construction allows us to con-
struct a category Conc that specializes Conc to strategies that are well-behaved upon composition
with the family of idempotents ccopy−. Concretely, Conc is defined as follows:

Definition 4.3. The category Conc has as objects concurrent games A, B and as morphisms
strategies σ : A � B ∈ Conc saturated in that

ccopyA;σ ; ccopyB = σ

Composition is given by strategy composition −;−with the concurrent copycat ccopy− as identity.

4.3 Refinement for Concurrent Strategies

We endow the semicategory of concurrent strategies with an order enrichment, which also gives
our notion of refinement. We order strategies σ ,τ ∈ Conc(A,B) by set containment σ ⊆ τ . This
assembles the hom-set Conc(A,B) into a join-semilattice. Joins are given by union of strategies,
which are well-defined as prefix-closure, non-emptiness and receptivity are all preserved by unions.
Composition is well-behaved with respect to this ordering in the following sense:

Proposition 4.4. Strategy composition is monotonic and join-preserving.

Refinement is a pesky issue in the context of concurrency, non-determinism, and undefined
behavior [Laird 2001; Liang et al. 2014]. We do not purport to address this issue in this article.
Instead, we choose trace set containment to remain faithful with linearizability, where this notion
of refinement is prevalent. Interestingly, strategy containment is a standard notion of refinement
in game semantics as well.

4.4 The Semifunctors KConc and EmbConc

The abstract treatment in Section 6 will also show that the abstract construction giving rise to
Conc comes with some infrastructure around it for free. For instance, it readily gives a forgetful
semifunctor from Conc (seen here as a semicategory Semi Conc by forgetting the fact it has neutral
elements) to Conc

EmbConc : Semi Conc −→ Conc

acting as the identity semifunctor. We will omit applications of EmbConc when it causes no harm.
There is also a transformation which takes a not necessarily saturated concurrent strategy σ

and constructs the smallest strategy that is saturated and contains σ , which we name

KConc : Conc → Semi Conc

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:18 A. Oliveira Vale et al.

as defined in Section 6, and explicitly given by

A
KConc

�−−−−−−−−−→ A σ : A � B
KConc

�−−−−−−−−−→ ccopyA;σ ; ccopyB

Unfortunately, this mapping does not assemble into a semifunctor. Despite that, KConc is an oplax
semifunctor, in the sense described in the following proposition.

Proposition 4.5. For any σ : A � B and τ : B � C:

KConc(σ ;τ) ⊆ KConc(σ);KConc(τ)

It is straight-forward to check that KConc is continuous, that is, it is monotonic and join-
preserving. It is important to emphasize that while we give concrete definitions for these oper-
ations, they come from the abstract construction we describe for an arbitrary semicategory in
Section 6.

4.5 Fine-Grained Synchronization in Concurrent Games

In Section 4.2, we gave a rather abstract definition for the strategies in Conc. Ghica [2023], in
a slightly different setting, observed that this abstract definition is equivalent to a concrete one,
originally appearing in Ghica and Murawski [2004], involving the rewrite system we discussed in
Section 2.1.2, which we now adapt to our setting.

Definition 4.6. Let A = (MA, PA) be a concurrent game. We define an abstract rewrite system
(PA,�AAA) with local rewrite rules:

— ∀m,m′ ∈ MA.∀α ,α ′ ∈ ϒ.α � α ′ ∧ λA(m) = λA(m
′) ⇒ ααα:::m · α ′α ′α ′:::m′�AAA α ′α ′α ′:::m′ · ααα:::m

— ∀o,p ∈ MA.∀α ,α ′ ∈ ϒ.α � α ′ ∧ λA(o) = O ∧ λA(p) = P ⇒ ααα:::o · α ′α ′α ′:::p �AAA α ′α ′α ′:::p · ααα:::o

The main result of this section is the following alternative characterization of saturation.

Proposition 4.7. A strategy σ : A � B is saturated if and only if it is:

O-receptive: If s ∈ σ , o an Opponent move and s · o ∈ PAAA, then s · o ∈ σ .

�-closed: ∀s ∈ σ .∀t ∈ PA�B.t �AAA�BBB s ⇒ t ∈ σ , and

The key lemma to show this alternative characterization is the synchronization lemma, as coined
by Ghica [2023]. It essentially establishes that there is still synchronization happening under this
liberal setting, all enabled by the fact that each agent is still synchronizing with itself.

It is useful to define a closure operator over sets of plays. Given a set of plays S ⊆ PA we
call strat(S) : A the least O-receptive strategy containing S , obtained as the prefix and receptive
closure of S .

Proposition 4.8 (Synchronization Lemma). Let s = p ·ααα:::m ·α ′α ′α ′:::m′ ·p ′ be a play of A � B. Let

σ = strat(p · ααα:::m · α ′α ′α ′:::m′ · p ′). Then,

p · α ′α ′α ′:::m′ · ααα:::m · p ′ ∈ ccopyA;σ ; ccopyB ⇐⇒ α ′α ′α ′:::m′ · ααα:::m�A�B ααα:::m · α ′α ′α ′:::m′

The core of the proof of Proposition 4.8 lies in the dynamics of ccopy−. If we focus on an agent
α ∈ ϒ, a typical play in ccopyB behaves as displayed below on the left.

ααα:::q ααα:::a

ααα:::q ααα:::a

ααα:::q α ′α ′α ′:::a

. . . ααα:::q α ′α ′α ′:::a . . .

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:19

Observe that no matter what the other agents are doing it is always the case that the copy of
an O move in the target appears later in the source, and a copy of a P move in the target appears
earlier in the source. So if we have a play s ∈ PB such that s = p ·ααα:::q ·α ′α ′α ′:::a ·p ′ any of its interactions
with ccopyB, such as in strat(s); ccopyB, look something like the play displayed above on the right.

After hiding the interaction in the source, the resulting play can at most makeααα:::q appear earlier
and α ′α ′α ′:::a appear later, so it cannot change their order. For any of the other cases for the polarities
of those two moves, there is always a case where they can appear swapped as the result of the
interaction. So the proof of Proposition 4.8 is a case analysis of the polarities of ααα:::m and α ′α ′α ′:::m′.

5 LINEARIZABILITY

In this section, we argue that linearizability emerges from the Karoubi construction used to define
Conc and establish several of the main results of this article. In Section 5.1, we establish that KConc

exactly corresponds to a general notion of linearizability which is improved in Section 5.2, while in
Section 5.4, we observe that plays of ccopy− correspond to proofs of linearizability. In Section 5.5,
we show a property analogous to the usual observational refinement property, and in Section 5.6,
we show the locality property.

5.1 Linearizability

We start by defining linearizability.

Definition 5.1. We say a play s ∈ PA is linearizable to a play t ∈ PA if there exists a sequence of
Opponent moves sO ∈ (MO

A
)∗ and a sequence of Proponent moves sP ∈ (M

P
A)
∗ such that

s · sP �A t · sO

A play s ∈ PA is linearizable with respect to a strategy τ : A ∈ Conc if there exists t in τ such
that s is linearizable to t . If every play of a strategy σ : A is linearizable with respect to τ : A then
we say σ is linearizable with respect to τ .

In this general definition of linearizability, sP completes some pendingO moves with a response
by P while the sequence sO plays the role of the pending invocations that are removed from s . Note
that t need not be atomic and may still have pending Opponent moves. The rewrite relation�A

plays the role of preservation of happens-before order. In this sequentially consistent formulation
of concurrent games, this generalized definition of linearizability is closely related to interval-
sequential linearizability [Castañeda et al. 2015], which we address in more detail in Section 8.
When the linearized strategy is specialized to atomic strategies only, we obtain Herlihy-Wing
linearizability. In Section 7, we give a thorough account of the specialization to atomic games.

The central result of this article is a characterization of KConc in terms of linearizability.

Proposition 5.2. For any τ : A ∈ Conc

KConc τ = {s ∈ PA | s is linearizable with respect to τ }

Proof. Suppose s ∈ KConc τ . By Proposition 4.7 it follows that there exists t ∈ τ such that
s �A t · sO for some sequence of O moves sO (coming from receptivity) and, therefore, by setting
sP = ϵ we are done.

Suppose there are sP and sO such that s · sP �A t · sO . By Proposition 4.7 t · sO ∈ KConc τ , and
then again by Proposition 4.7 s · sP ∈ KConc τ . By prefix-closure, s ∈ KConc τ , as desired. �

A lot of this proposition is taken for by Proposition 4.7. Observe thatO-receptivity explains why
some Opponent moves sO may be removed, while the fact that the play can be completed with Pro-
ponent moves sP arises from prefix-closure. We also find it important to remind the reader that

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:20 A. Oliveira Vale et al.

KConc is defined in terms of its role in the relationship between a semicategory and its Karoubi enve-
lope, as will be treated in detail in Section 6. In this way, Proposition 5.2 shows that linearizability
arises as a result of an abstract construction solving the problem of lack of neutral elements in
our concurrent model of computation. An immediate corollary of Proposition 5.2 is an alternative
definition of linearizability.

Corollary 5.3 (Abstract Linearizability). A strategy σ : A ∈ Conc is linearizable to a strat-

egy τ : A if and only if

σ ⊆ KConc τ

As KConc appears as a result of an abstract construction, this alternative definition may be used
even in situations where there is no candidate for a happens-before-ordering or a rewrite relation
such as − � −. As matter of example, Ghica [2013] defines a compositional model of delay-
insensitive circuits. There, the Karoubi envelope is used to turn a model of asynchronous circuits,
which is not physically realizable into one that is. This abstract definition of linearizability implied
by Proposition 5.3 and developed in detail in Section 6 could be adapted to that setting to give a
notion of linearizability for delay-insensitive circuits.

This abstract construction will also allow us to give a more general but simple proof of the
refinement property in Section 5.5 and locality in Section 5.6.

5.2 Strong Linearizability

This alternative and abstract characterization also suggests the following variation of
linearizability:

Definition 5.4. We say σ : A ∈ Conc is strongly linearizable to τ : A when σ is linearizable with
respect to τ and τ ⊆ σ .

We call this strong because it implies the conventional notion of linearizability as defined in Def-
inition 5.1. As the restriction of that notion of linearizability to atomic plays implies linearizability,
it immediately follows that atomic strong linearizability implies Herlihy-Wing linearizability. Note
that when σ is strongly linearizable with respect to τ we obtain that

KConc τ ⊆ KConc σ = σ

Together with Corollary 5.3 it follows that σ = KConc τ so that σ is fully characterized by its
linearization. Therefore, a strongly linearizable σ is a strategy which is in the image of KConc.

Concretely, strong linearizability matches the intuitive understanding of usual linearizability.
Indeed, in works based on operational semantics, there is always the possibility that by chance the
scheduler schedules the threads in such a way that it generates an atomic execution for the system.
Those atomic executions turn out to be exactly the linearization of the objects that are studied in
that context.

When an object is non-strongly linearizable to a specification, it means that the specification is
not accurate: it is an over-approximation. For example, it is easy to prove that every concurrent
strategy is linearizable to some atomic strategy. This is quite striking, as the reader knowledgeable
about linearizability will note that often in the literature objects are deemed “not linearizable”.

The classical example of such an object is an exchanger. We can model an exchanger object
which exchanges natural numbers by the following signature:

Exch := {exch : N→ N}

Intuitively, exch allows two agents to synchronously exchange a value, so that the following is a
prototypical trace of an exchanger:

ααα:::exch(n) · α ′α ′α ′:::exch(n′) · ααα:::n′ · α ′α ′α ′:::n

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:21

where we see that α and α ′ receive as returns the values that each other passed as argument. A
more complex trace of the exchanger is

s = α1α1α1:::exch(n1) · α2α2α2:::exch(n2) · α3α3α3:::exch(n3) · α3α3α3:::n2 · α4α4α4:::exch(n4) · α1α1α1:::n4

Note that in s agents α1 and α4, have already committed to exchange values with each other, and
so have α2 and α3 (even though α2 and α4 have not returned yet). We refrain from giving a formal
specification νExch for conciseness, as the intuition will suffice for our argument here. Now, observe
that s is linearizable (in fact, Herlihy-Wing linearizable) to

α1α1α1:::exch(n1) · α1α1α1:::n4 · α3α3α3:::exch(n3) · α3α3α3:::n2

In fact, we may always remove all pending invocations from a trace, and then appeal to the fact
that every partial order has a total order that extends it, to obtain that every trace is Herlihy-Wing
linearizable to some trace. This implies that any concurrent object is Herlihy-Wing linearizable to
some atomic specification.

Standard linearizability does not rule out such bad specifications, while strong linearizabil-
ity does. Our formalism shows exactly in which sense non-strong linearizability yields an over-

approximation: If σ is strongly linearizable to τ then σ = KConc τ , as we showed above. Meanwhile,
when σ is linearizable to τ but not strongly linearizable, we have a strict containment σ ⊂ KConc τ .

A critic to this argument may say that instead, when one says that an object is “not linearizable”
they mean that for a specific atomic specification. Note though that no atomic specification for
the exchanger object makes sense, as its behaviors are, at least intuitively, intrinsically concurrent.
But again, strong linearizability makes this precise: it requires that the linearized specification be
a “sub-object” of the concurrent object, in that all the linearized behaviors were already possible
concretely.

Strong linearizability, therefore, clarifies in which sense objects are “not linearizable”. The ex-
changer object is not Herlihy-Wing linearizable because no atomic strategy νatomic

Exch
of type †Exch

satisfying ν ′
Exch

⊆ KConc ν
atomic
Exch

will satisfy νatomic
Exch

⊆ ν ′
Exch

. It is important to stress that as our
framework subsumes set-linearizability, it is possible to characterize ν ′

Exch
as strongly linearizable

to a less concurrent (in fact, set-sequential) strategy. We will see later on that strong linearizabil-
ity also helps clarify an apparent fault with the usual refinement theorem around linearizablity
(Section 5.5).

5.3 Linearizable Objects

At this point, we find it useful to fix our notion of object and linearizable object.

Definition 5.5. An object of type A is a strategy νA : 1 � †A.

Note that a strategy νA : 1 � †A is the same thing as a strategy νA : †A (recall that 1 = (, {ϵ})).
Then, we define a linearizable object simply as

Definition 5.6. A linearizable concurrent object of type A consists of a pair of objects

(ν ′A : †A ∈ Conc,νA : †A ∈ Conc) such that ν ′A ⊆ KConc νA.

It is called a strongly linearizable concurrent object when, moreover,

νA ⊆ ν ′A.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:22 A. Oliveira Vale et al.

5.4 Computational Interpretation of Linearizability

We just saw that linearizability can be characterized by the transformationKConc. We now offer yet
another perspective on linearizability by providing a computational interpretation of linearizabil-
ity proofs. Recall that in our discussion in Section 4.1 we observed that ccopy− is the denotation
of a concrete program. Interestingly, the plays of ccopy− correspond to proofs of linearizability.

Proposition 5.7. s1 ∈ PA linearizes to s0 ∈ PA if and only if there is a play s ∈ ccopyA such that

s�A0 = s0 s�A1 = s1

Proof. For this, one first proves that every play s ∈ ccopyA whose projections to the target and
source components are sequentially consistent to each other (their projection to each agent is the
same) satisfies s�A1 �A s�A0 . Then, prefix-closure and receptivity of ccopyA allow for linearizabil-
ity to be used instead of − �− −, similarly to the proof of Proposition 5.2. See Appendix E for a
detailed proof. �

What Proposition 5.7 essentially establishes is that proofs of linearizability encode executions
of the code in Figure 3, and that executions of the code in Figure 3 encode proofs of linearizability.
Intuitively, the reason for this is that in a play of ccopyA an O move followed by a P move in the
target component forms an interval around their corresponding moves in the source component.
So if we have two such pairs by different agents, one happening entirely before the other, then
their corresponding moves in the source must happen in the same order. This means that happens-
before order is preserved from the target component to the source component. See the figure below
depicting a play of ccopyΣ:

ααα:::q ααα:::a α ′α ′α ′:::q α ′α ′α ′:::a

ααα:::q ααα:::a α ′α ′α ′:::q α ′α ′α ′:::a

5.5 Interaction Refinement

One is often interested in implementing an interface of type B making use of some other interface
of type A by using an implementation specified as a saturated strategy of type σ : A � B. Now, the
game A appears in a negative position in the type A � B. Because of this there is a contravariant
effect to linearizability on � in that if s �A�B t then, while s�B is “more concurrent” than t�B,
s�A is “less concurrent” than t�A. This intuition leads to the following result, analogous to the
observational refinement equivalence of Filipovic et al. [2010].

Proposition 5.8 (Interaction Refinement). ν ′A : A ∈ Conc is linearizable to νA : A ∈ Conc if

and only if for all concurrent games B and σ : A � B ∈ Conc it holds that

ν ′A;σ ⊆ νA;σ

Proof. By Corollary 5.3, monotonicity of composition, and saturation of σ :

ν ′A;σ ⊆ KConc νA;σ = (ccopy1;νA; ccopyA);σ = (ccopy1;νA); (ccopyA;σ) = νA;σ

For the reverse direction, simply observe that

ν ′A ⊆ ν ′A; ccopyA ⊆ νA; ccopyA = ccopy1;νA; ccopyA = KConc νA �

An interesting remark at this point is that the direction of the refinement in Proposition 5.8 is not
intuitive. Usually, one would believe that having a client interact with less concurrent traces should
lead to fewer behaviors, not more, as Proposition 5.8 leads one to believe by the direction of the
refinement. Note that this artifact is already present in the original result by Filipovic et al. [2010].

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:23

Again, our treatment clarifies the source for this. As we have discussed in Section 5.2, linearizability
provides only an over-approximation. This means that by substituting ν ′A by νA one may introduce
behaviors that are not included in ν ′A (consider replacing a concurrent specification such as ν ′

Exch
,

which has no atomic traces, by one with only atomic traces as per our argument in Section 5.2). This
discussion suggests that the more precise criterion given by strong linearizability should guarantee
a stronger result. Indeed, the following is a straight-forward corollary of Proposition 5.8:

Corollary 5.9. ν ′A : A ∈ Conc is strongly linearizable w.r.t. to νA : A ∈ Conc if and only for all

B and σ : A � B ∈ Conc:

ν ′A;σ = νA;σ

5.6 Locality

We revisit the locality property from Herlihy and Wing [1990] by reformulating the notion of an
object system with several independent objects as the linear logic tensor ⊗. For this we start with
a faux definition of tensor.

Definition 5.10. If A = (MA, PA) and B = (MB , PB) are games in Conc, we define the game
A ⊗ B ∈ Conc as A ⊗ B = (MA⊗B , PA⊗B). We denote by 1 the game 1 = (M1, P1).

Given strategies σA : A and σB : B we define the strategy σA ⊗ σB : A ⊗ B as the set
(σA ‖ σB) ∩ PA⊗B, the set of sequentially consistent interleavings of σA and σB .

We call this a faux tensor because there is no reasonable definition of a monoidal semicategory

for lack of neutral elements with which to express the coherence conditions. Despite that, the−⊗−
operation does define a bi-semifunctor in Conc, which becomes a proper tensor when specialized
to Conc.

Proposition 5.11. (Conc,− ⊗ −, 1) assembles into a symmetric monoidal closed category.

This structure is obtained by mapping the corresponding structural maps in Seq through an
interleaving functor. In particular, Proposition 5.11 says that − ⊗ − is a bifunctor in Conc, so that

Proposition 5.12. For all concurrent games A, B:

ccopyA⊗B = ccopyA ⊗ ccopyB

This rather simple result is auspicious given the computational interpretation of ccopy− in terms
of linearizability proofs seen in Section 5.4. This property, together with the fact that − ⊗ − is a
bi-semifunctor, readily implies that KConc distributes over the tensor.

Proposition 5.13. Let σA : A � A′ and σB : B � B′. Then:

KConc (σA ⊗ σB) = KConc σA ⊗ KConc σB

Proof.

KConc (σA ⊗ σB) = ccopyA⊗B; (σA ⊗ σB); ccopyA′⊗B′ (Def.)

= (ccopyA ⊗ ccopyB); (σA ⊗ σB); (ccopyA′ ⊗ ccopyB′) (Proposition 5.12)

= (ccopyA; σA ; ccopyA′) ⊗ (ccopyB; σB ; ccopyB′) (bi-semifunctoriality of − ⊗ −)

= KConc σA ⊗ KConc σB (Def.)

�which gives as corollary a generalization of Herlihy and Wing [1990]’s locality theorem.

Corollary 5.14 (Locality). Let ν ′A : A, ν ′B : B ∈ Conc and νA : A, νB : B ∈ Conc. Then

ν ′ = ν ′A ⊗ ν ′B is linearizable w.r.t. ν = νA ⊗ νB

if and only if

ν ′A is linearizable w.r.t. νA and ν ′B is linearizable w.r.t. νB

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:24 A. Oliveira Vale et al.

Proof. By Propositions 5.13 and 5.2

ν ′ = ν ′A ⊗ ν ′B ⊆ KConc (νA ⊗ νB) = KConc νA ⊗ KConc νB

in particular,

ν ′A = (ν
′
A ⊗ ν ′B)�A ⊆ (KConc νA ⊗ KConc νB)�A = KConc νA

ν ′B = (ν
′
A ⊗ ν ′B)�B ⊆ (KConc νA ⊗ KConc νB)�B = KConc νB

For the reverse direction, we have:

ν ′ = ν ′A ⊗ ν ′B ⊆ KConc νA ⊗ KConc νB = KConc (νA ⊗ νB) �

We would like to observe that not only does our methodology yields a stronger result in Propo-
sitions 5.13 and 5.14, but also that it supports simpler, mostly algebraic proofs. Meanwhile, even
in the simpler case of atomic linearizability, Herlihy and Wing [1990]’s original proof is rather ad
hoc. Our result is also stronger in another way. The usual statement of locality relies on a projec-
tion: one assumes an object with many independent sub-objects and says that this large object is
linearizable if and only if the sub-objects are as well. Our treatment instead relies on a pre-defined
operation for composition objects together into larger objects (the tensor) and states the locality
theorem in terms of this operation. This biases the statement toward composing objects together
rather than decomposing them. The benefits of this become evident when one notes that, because
we show that the tensor makes our model into an enriched symmetric monoidal category, our lo-
cality theorem smoothly interacts with vertical composition and refinement, essentially extending
the symmetric monoidal structure of the model to linearizable objects.

6 KAROUBI ENVELOPE

In this section, we establish the main abstract tools we use to construct models of concurrent
computation, and sometimes compare them with each other. Most of it requires only basic knowl-
edge of enriched category theory (or merely the basic definitions around 2-categories), as well as
knowing the definition of a semicategory.

6.1 The Karoubi Envelope

Typically, given a semicategory C we can construct its Karoubi envelope as the category Kar C

which has as objects pairs

(C ∈ C, e : C → C)

of an object C and an idempotent e of C . Recall that an idempotent of an object is simply an
idempotent endomorphism of that object, in the sense that

e ◦ e = e

A morphism

f : (C, e) → (C ′, e ′)

in Kar C is a morphism f : C → C ′ of the underlying semicategory C that is invariant upon the
idempotents involved in the sense that

f ◦ e = f = e ′ ◦ f

or equivalently:

e ′ ◦ f ◦ e = f

which we call a saturated morphism of C. Observe that by construction the Karoubi envelope Kar C

is indeed a category by defining the neutral elements by the equation id(C,e) = e .

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:25

The following is folklore in the theory of semicategories. There is a forgetful functor

Semi : Cat → SemiCat

which given a category C assigns a semicategory Semi C by forgetting the data about the neutral
elements in C, which also determines its action of transforming functors into semifunctors by
similarly forgetting the fact that it maps neutral elements to neutral elements. Interestingly Semi

admits a right adjoint

Kar : SemiCat → Cat

which maps a semicategory C to its Karoubi envelope Kar C. Its action on a semifunctor

F : C → D
Kar

�−−−−−−−−−−−−→ Kar F : Kar C → Kar D

is defined by

(C, e)
Kar F

�−−−−−−−−−→ (F C, F e) f : (C, eC) → (C ′, e ′)
Kar F

�−−−−−−−−−→ F f : (F C, F e) → (F C ′, F e ′)

Typically in the literature, one studies the Karoubi envelope from the perspective of categories
by considering the monad associated to the adjunction. Instead, we put special focus on the
comonad associated to the adjunction, so that we may study the Karoubi envelope from the per-
spective of semicategories:

SemiKar : SemiCat → SemiCat

Note that this comonad assigns to a semicategory C the semicategory Semi Kar C, and acts as the
identity on semifunctors.

When C has neutral elements, so that it actually assembles into a category, one obtains a fully
faithful functor (of categories) into the Karoubi envelope by

C −−−−−→ Kar C C �−−−−−→ (C, idC)

which immediately makes any morphism f : C → C ′ into a morphism f : (C, idC) → (C ′, idC ′)

due to the unital laws. Note that this functor corresponds to selecting a family (eC : C → C)C ∈C

of idempotents eC for each objectC ∈ C, in this case eC = idC . The mapping of morphisms should
saturate any morphism f : C → D. Hence, it must be given by

f �−−−−−→ eD ◦ f ◦ eC

Unfortunately, for lack of neutral elements in the semicategory case, there is no obvious choice of
idempotents to construct such a functor. Worse yet, this mapping assembles into a functor if and
only if for any f : C → D and д : D → E we have

eE ◦ д ◦ eD ◦ f ◦ eC = eE ◦ д ◦ f ◦ eC

While this condition is trivial when C is a category and we take eC = idC , in the semicategory case,
given a family of idempotents (eC : C → C)C ∈C there is no canonical such semifunctor. Despite
that, there is always a forgetful semifunctor:

Emb : SemiKar C → C

given by the mapping

(C, e)
Emb

�−−−−−−−−→ C f : (C, e) → (D, e ′)
Emb

�−−−−−−−−→ f : C → D

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:26 A. Oliveira Vale et al.

6.2 Slivers of the Karoubi Envelope

We just saw that the canonical functor embedding a category inside its Karoubi envelope amounts
to a choice of an idempotent for each object of the category and that with semicategories there is
no canonical family we can choose. Intuitively, the Karoubi envelope “splits” an objectC ∈ C into
various versions of itself: one for each idempotent e of C . Meanwhile, morphisms f : C → D are
“classified” as morphisms f : (C, e) → (C ′, e ′) when they tolerate e and e ′ as neutral elements. So
choosing an idempotent for each object of C amounts to choosing a version of each object C ∈ C

to obtain a category. We take the intuition we get from these remarks to define the following
construction.

Let C be a semicategory enriched over Cat (in the sense of Moens et al. [2002]) and let

e− = {eC : C → C}C ∈C

be a family of idempotents. Any such family defines a full subcategory Ce of the Karoubi envelope
Kar C of C, obtained by restricting the objects to precisely the idempotents in e−. We call such a
subcategory of Kar C a sliver of the Karoubi envelope of C.

It is immediate that for any sliver Ce , the restriction

Embe : Semi Ce → C

of the forgetful functor Emb defines an embedding. There is also a candidate for a semifunctor in
the reverse direction:

Ke : C → Semi Ce

given by

C
Ke

�−−−−−−−→ (C, eC) f : C → D
Ke

�−−−−−−−→ eD ◦ f ◦ eC

Ke often fails to be a semifunctor, as we have noted. Despite that, semifunctoriality, even weak, is
not required for our purposes.

We are now ready to define abstract linearizability. For this, we will assume that C is an enriched
semicategory whose enrichment is cartesian. We denote the existence of a 2-morphism between
f ,д : C → D by as f ⇒ д. Note that the enrichment means that 1-morphism composition defines
a functor between hom-categories, a fact we frequently make use of

− ◦ − : C(C,D) × C(D,E) → C(C,E)

The same holds for the tensor.

Definition 6.1. Let C be an enriched semicategory equipped with a bi-semifunctor

− ⊗ − : C × C → C

and an object 1 such that (Ce , ⊗, 1) is a symmetric monoidal category.
We say a morphism f : 1 → C ∈ Ce is linearizable to a morphism д : 1 → C ∈ C when

f ⇒ Ke д

When the above 2-morphism is moreover an isomorphism, we say f is strongly linearizable to τ .

Since our proofs of locality and interaction refinement on Conc were abstract, relying on Propo-
sition 5.3, we can collect the necessary assumptions to obtain those results.

Proposition 6.2. In the following let C and Ce satisfy the conditions of Definition 6.1.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:27

Interaction Refinement Suppose for all C ∈ C and f : 1 → C ∈ C it holds that

f ◦ e1 = f

Then f : 1 → C is linearizable to д : 1 → C iff and only if for all D ∈ C and h : C → D ∈ Ce

it holds that

h ◦ f ⇒ h ◦ д

Locality Ke distributes over − ⊗ − in the sense that for all f : C → C ′ and д : D → D ′

Ke (f ⊗ д) = Ke f ⊗ Ke д

and if moreover, for all C,C ′,D,D ′ ∈ C

Ce (1,C) ⊗ Ce (1,D) � Ce (1,C) × Ce (1,D)

then f ′C : 1 → C and f ′D : 1 → D are linearizable to fC : 1 → C and fD : 1 → D if and only if

f ′C ⊗ f ′D is linearizable to fC ⊗ fD .

Proof. These are essentially the same proofs as the corresponding proofs we presented in Sec-
tions 5.5 and 5.6.

Interaction Refinement

h ◦ f ⇒ h ◦ Ke д = h ◦ (eC ◦ д ◦ e1) = (h ◦ eC) ◦ (д ◦ e1) = h ◦ д

For the reverse direction, simply observe that

f = eC ◦ f ⇒ eC ◦ д = eC ◦ д ◦ e1 = Ke д

Locality For the first claim:

Ke (f ⊗ д) = eC ′ ⊗D′ ◦ (f ⊗ д) ◦ eC⊗D (Def.)

= (eC ′ ⊗ eD′) ◦ (f ⊗ д) ◦ (eC ⊗ eD) (− ⊗ − is a bifunctor in Ce)

= (eC ′ ◦ f ◦ eC) ⊗ (eD′ ◦ д ◦ eD) (bi-semifunctoriality of − ⊗ −)

= Ke f ⊗ Ke д (Def.)

For the second claim observe first that

f ′C ⊗ f ′D ⇒ Ke fC ⊗ Ke fD = Ke (fC ⊗ fD)

for the reverse direction, observe that

f ′C ⊗ f ′D ⇒ Ke (fC ⊗ fD) = Ke fC ⊗ Ke fD

by assumption we have that

Ce (1,C) ⊗ Ce (1,D) � Ce (1,C) × Ce (1,D)

and hence we obtain that

f ′C ⇒ Ke fC f ′D ⇒ Ke fD �

Note that Proposition 6.2 does not require that Ke be functorial in any way. In practice, Ke is
often a(n) (op)lax semifunctor in that there is either a 2-morphism

Ke д ◦ Ke f ⇒ Ke (д ◦ f)

satisfying certain coherence conditions, in which case Ke is called lax, or, satisfying opposite co-
herence conditions, a 2-morphism

Ke (д ◦ f) ⇒ Ke д ◦ Ke f

in which case Ke is oplax.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:28 A. Oliveira Vale et al.

We now discuss a few examples of abstract linearizability.

Example 6.3 (The Degenerate Case). When the underlying semicategory C is a category already,
computing the sliver (C)id yields an equivalent category to C, as, by definition of a category, every
morphism is saturated under the identity morphisms. Abstract linearizability then amounts to

f ⇒ Kid д = д

so that abstract linearizability coincides with the underlying enrichment.

Example 6.4 (Sequential Games). Consider our model of sequential computation, Seq. Although
we did not emphasize that there, we defined it as the sliver (Seq)copy. As is well known, and as we
discussed in Section 3.1, strategies saturated with respect to copy are characterized precisely as
the O-receptive strategies. We can enrich Seq with subset containment ⊆ which yields as abstract
linearizability that σ : A ∈ Seq is linearizable to τ : A ∈ Seq when

σ ⊆ Kcopy τ

As before. It is not hard to see that in this context, given a (not necessarily O-receptive) strategy
τ : A � B ∈ Seq,

Kcopy τ = recep(τ)

that is, the receptive closure of τ . Moreover, abstract linearizability states that σ : A is linearizable
to τ : A when

σ ⊆ recep(τ)

It is folklore in game semantics that receptivity can be largely disregarded in the theory, which is
precisely what our abstract linearizability formalism retrieves, as we obtain locality and interaction
refinement between O-receptive sequential strategies, and not necessarily receptive sequential
strategies. It is also easy to see that the compatible notion of linearizability on traces is that a
sequential play s is linearizable to t when either: (1) s = t , or (2) s = t ·mO for someO-movemO , or
(3) there is a P movemP such that t = s ·mP . That is to say, sequential linearizability allows a trace
s with a pending operation (necessarily unique when it exists) to be either removed or completed.

Example 6.5 (Concurrent Games). The core of this article, through sections Sections 3, 4, and 5
provide our main example of abstract linearizability. In the language of abstract linearizability we
have introduced in Section 6 so far, we started by defining a concurrent game model Conc encod-
ing sequentially consistent concurrent computation, and then showed it defines a semicategory
(Proposition 3.16) and enriched it with a notion of refinement (Section 4.3). Then, we proved that
ccopyA is an idempotent for every game A (Proposition 4.2). This enabled us to define the category
Conc as the sliver (Conc)ccopy, which comes with a forgetful semifunctor EmbConc := Embccopy and
a saturation operation KConc := Kccopy. After showing that there is a bi-semifunctor

− ⊗ − : Conc × Conc → Conc

whose lift defines a symmetric monoidal category (Conc,− ⊗ −, 1) we obtain a notion of abstract
linearizability by Definition 6.1, which supports interaction refinement and a locality property by
Proposition 6.2. These abstract notions were shown to agree with the usual conception of lineariz-
ability in Section 5, a matter we discuss further in Sections 7 and 8.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:29

6.3 The Linearizability Galois Connection

The main result of Goubault et al. [2018] is that if Lin − is the operation taking some atomic
object specification S to the set of traces Lin S linearizable w.r.t. S , andU − is the operation taking
concurrent object specifications S ′ (in particular,�-closed) to the set of atomic traces U S ′ ⊆ S ′

contained in it, then Lin � U is a Galois connection (in fact, an insertion). In this section, we show
how our treatment accommodates this result at the level of abstract linearizability, which we will
later instantiate in Section 7 to obtain the result between our concurrent games and a notion of
atomic games.

For the sake of this section, we assume that our Cat-enriched semicategory C is such that every
hom-category C(A,B) is a thin category (it is posetal), and will write f ≤ д for the unique 2-
morphism _ : f → д, when it exists. We are then interested in comparing two slivers Ce and
Ce ′ of the same semicategory C. A particular example of this will be when Ce corresponds to
concurrent games and Ce ′ corresponds to atomic games. For the sake of brevity, we will call these
two categories K = Ce and K′ = Ce ′ and the corresponding mappings Emb, K and Emb′, K ′. Note
that we can readily consider the square:

K′

C C

K

Emb′K ′

KEmb

This suggests that we may define a pair of operations L and R defined as

L : K → K′ := K ′ ◦ Emb R : K′ → K := K ◦ Emb′

Which should be interpreted as canonical conversions from one concurrency model to the other.
Our key claim is that whenever it holds that for all A ∈ C, eA ≤ e ′A, the operations L and R
assemble into a pair of adjoint functors L � R : K(A,B) → K′(A,B), which in the context of the
assumed posetal enrichment essentially says they form a Galois connection. In addition, under
the same assumption, we also obtain that L : K → K′ is an oplax semifunctor and that R : K′ → K

is a lax semifunctor.

Proposition 6.6. If

e− = {eA}A∈C e ′− = {e
′
A}A∈C

are families of idempotents such that there are 2-morphisms:

eA ≤ e ′A

for every A ∈ C, then the mappings L and R defined by

L : Ce → Ce ′ := K ′ ◦ Emb R : Ce ′ → Ce := K ◦ Emb′

define an oplax functor and a lax functor, respectively.

Moreover, for every pair of A,B ∈ C, the associated functors of hom-categories:

L : Ce (A,B) → Ce ′ (A,B) R : Ce ′ (A,B) → Ce (A,B)

form an adjunction.

Proof. See Section A.2. �

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:30 A. Oliveira Vale et al.

This might seem like a rather weak result, but it readily gives as a corollary the main result of
Goubault et al. [2018], as we will see in Section 7, moreover refining it by providing an account
of the effect of linearizability on composition. Note also that in the above proposition, we do not
require K and K ′ to be even (op)lax semifunctors. Indeed, although in all our models they will be,
this is not required to show Proposition 6.6.

7 ATOMICITY

In this section, we show that our framework provides a conservative generalization of the the-
ory surrounding Herlihy-Wing linearizability, which always assumes the linearized specification
is atomic. In the process, we generalize the result by Goubault et al. [2018] that Herlihy-Wing lin-
earizability forms a Galois connection between concurrent and atomic specifications. We start by
defining a category of sequential atomic games Atomic in Section 7.1. Then, we show it can be seen
as a sliver of the Karoubi envelope Section 7.2 which exhibits linearizability as an approximation
of concurrent specifications. We then specialize the theory of linearizability developed in Section 5
to Herlihy-Wing linearizability. Proofs for this section can be found in Appendixes E.8 and E.9.

7.1 Sequential Atomic Games

To set the stage for atomicity, we start by defining a notion of atomic game.

Definition 7.1. Let A = (MA, PA) ∈ Seq be a sequential game. We define its associated atomic
game !A = (M!A, P!A) as follows:

MO
!A :=

∑
α ∈ϒ

MO
A MP

!A :=
∑
α ∈ϒ

MP
A P!A := {s ∈ Alt(MO

!A,M
P
!A) | ∀α ∈ ϒ.πα (s) ∈ PA}

These games are atomic in that an O move by α is always followed by a P move by the same
agent α , so that a typical play looks like:

α1α1α1:::m1 α1α1α1:::n1 α2α2α2:::m2 α2α2α2:::n2 α3α3α3:::m3 α3α3α3:::n3 . . . αkαkαk :::mk αkαkαk :::nk

where themi are O moves and the ni are P moves. We may take !A as an alternating version of A,
as any play of !A may be seen as an alternating play of A, a fact we frequently make use of. The
notation !− comes from the similarity of the definition with the exponential modality defined in
Hyland [1997], which is closely related to our definition.

Note that a strategy σ : !A � !B does not need to respect the names of the agents. For instance,
the following play is a valid play of !Σ � !Σ

ααα:::q

α ′α ′α ′:::q

even when α � α ′. This disagrees with our agent naming discipline on the concurrent games
setting, as there the names of the agents must be preserved across components. Because of this,
we must restrict the strategies σ : !A � !B so that they only allow agents to play moves that are
labeled by their names in both components. We call such a strategy an atomic strategy and write
the condition succinctly as

σ ∩ P!(A�B) = σ

by identifying plays of !(A � B) with plays of !A � !B in the obvious way. In a play of an atomic
strategy σ : !A � !B, if an α calls an O move in B then it cannot be preempted by another agent
until it responds to that O move. That is to say, the typical play of an atomic strategy looks like

α1α1α1:::m1 α1α1α1:::n1 α2α2α2:::m2 α2α2α2:::n2 . . .

α1α1α1:::m1
1 . . . α1α1α1:::n1

k1
α2α2α2:::m2

1 . . . α2α2α2:::n2
k2

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:31

we call plays of this form atomic plays.
It is important to note that the copycat strategy

copy!A : !A � !A

is atomic. Furthermore, it is easy to see that composition of atomic strategies is well-defined.

Definition 7.2. The category Atomic has atomic games !A, !B as objects and O-receptive atomic
strategies as morphisms. Composition is given by usual sequential strategy composition and the
identity is the sequential copycat copy!A.

7.2 Concurrent Atomic Games

Interestingly, Atomic can be seen as a sliver of the Karoubi envelope of Conc. Let

atocopyA : A � A := copy!A

that is, atocopyA is the concurrent strategy obtained by identifying the plays in copy!A as plays of
type A � A as discussed in Section 7.1. It is straight-forward to check that

Proposition 7.3. atocopyA : A � A is idempotent.

This means we can construct the sliver

KAtom := (Conc)atocopy

with associated (strict) semifunctors

EmbAtom : Semi KAtom −→ Conc KAtom : Conc −→ Semi KAtom

by following the construction in Section 6. Now, as

atocopyA ⊆ ccopyA

it immediately follows by Proposition 6.6 that if we define

LinAtom : KAtom → Conc := KConc ◦ EmbAtom

UAtom : Conc → KAtom := KAtom ◦ EmbConc

then we obtain a family of Galois connections:

Conc(A,B) KAtom(A,B)

UAtom

LinAtom

�

Note that, explicitly:

τ : A � B
LinAtom

�−−−−−−−−−−→ ccopyA;τ ; ccopyB σ : A � B
UAtom

�−−−−−−−−−→ atocopyA;σ ; atocopyB

By the results in Section 4.5, LinAtom is a closure operator computing the receptive-closure, and
then the�-closure. Meanwhile,UAtom, it turns out, is equivalent to taking the largest substrategy
of σ that plays only atomic plays:

UAtom σ = σ ∩ P!(A�B)

We can establish that Atomic is equivalent to KAtom.

Proposition 7.4. There is an equivalence of categories:

Atomic � KAtom

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:32 A. Oliveira Vale et al.

The equivalence is witnessed essentially by the identity functors, up to the conversion from
atomic plays in A � B to plays in !A � !B, and the reverse conversion.

So we have established a Galois connection (in fact, insertion) between atomic strategies and
saturated concurrent strategies:

Conc(A,B) Atomic(!A, !B)

UAtom

LinAtom

�

This faithfully enhances the results of Goubault et al. [2018]. There, they showed linearizability
may be seen as an approximation operation by proving a certain Galois connection between speci-
fications of concurrent objects. Here, we provide a compositional variant of their result. Note that,
explicitly, this means that for any saturated strategy σ : A � B and atomic strategy τ : !A � !B
the following equivalence holds:

LinAtom τ ⊆ σ ⇐⇒ τ ⊆ UAtom σ

and moreover
UAtom LinAtom τ = τ

Note that we have established this result by completely abstract means using our formalism in
Section 6. Meanwhile, Goubault et al. [2018]’s original argument is based on the concrete formu-
lation of linearizability in terms of their version of the rewrite relation −� −.

We find it useful to depict the results of this section along the lines of Section 6:

Conc

Conc Conc

KAtom

Atomic

EmbConc

UAtom

KConc

KAtomEmbAtom

LinAtom

We note that in particular, LinAtom decomposes as an embedding of atomic games into the semi-
category of concurrent games followed by closure under self-synchronization. An interesting fact
is that the forgetful functor

UAtom : Conc → Atomic

admits a characterization in terms of the rewrite system�.

Proposition 7.5. The irreducibles of�A are precisely the alternating plays of PA

This justifies the following definition.

Definition 7.6. Given a concurrent strategy σ : A we denote by ⇓ σ : A its set of irreducibles:

⇓ σ := {s ∈ σ | s is alternating}

With which we obtain the desired characterization of UAtom.

Proposition 7.7. For any saturated σ : A � B:

UAtom σ = {s ∈ σ | s�B ∈ ⇓ (σ�B)}

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:33

namely, the set of all s ∈ σ such that it plays an irreducible play in B.

Developing a characterization of LinAtom along these lines is what we endeavor in Section 7.3.

7.3 Atomic Linearizability

We now endeavor to show that our definition of linearizability is equivalent to Herlihy-Wing lin-
earizability. Parts of our proof of this equivalence are adapted from Goubault et al. [2018] and
Ghica and Murawski [2004]. In order to define Herlihy-Wing linearizability, we must exhibit the
happens-before ordering in our setting. We follow the approach of Goubault et al. [2018], which
readily generalizes to our stronger setting. The key idea is that local sequentiality allows us to pair
every Opponent move with a corresponding Proponent move by the same agent.

Definition 7.8. Indeed, we define an operation of a play s = m1 · . . . ·mk ∈ PA as a pair (p,q?)
such thatmp is an O move, and, moreover, either q? = q, ϒ(mq) = ϒ(mp) and

πϒ(mp)(s) = s1 ·mp ·mq · s2

or q? = ∞ and
πϒ(mp)(s) = s1 ·mp

In particular, q? is an element of the total order (N+∞, ≤) ordered in the obvious way. We say an
operation (p,q?) is by α ∈ ϒ when ϒ(mp) = α . We denote the set of operations of a play s by op(s).

With a notion of operation defined, we may define a partial order, the happens-before order,
associated with a play.

Definition 7.9. We define the happens-before order associated to a play s as the pair (op(s),≺s)

where
(p,q) ≺s (p

′,q′) ⇐⇒ q < p ′

Definition 7.10. We say two plays s, s ′ ∈ PA are compatible when

∀α ∈ ϒ.πα (s) = πα (s
′)

Any two compatible plays have an associated bijection associating the ith operation by α in s
with the ith operation by α in s ′, so we may implicitly apply it whenever needed and therefore as-
sume that op(s) = op(s ′)when convenient. We are now able to define Herlihy-Wing linearizability.

Definition 7.11. For a play s ∈ PA we call complete(s) the largest subsequence of s such that

∀α ∈ ϒ.πα (complete(s)) = p ·m ⇒ λA(m) = P

that is, the largest subsequence of s with no pending Opponent moves.
We say a play s ∈ PA is Herlihy-Wing linearizable to a play t ∈ P!A if there exists a sequence of

Proponent moves sP such that s ′ = complete(s · sP) is compatible with t and moreover

≺s ′ ⊆ ≺t

Now, we define an equivalence relation on plays based on −� −.

Definition 7.12. The relation − ≡A − on plays PA is the smallest relation satisfying:

s ≡A t ⇐⇒ s �A t using only OO and PP swaps

Observe that by Proposition 4.7 if σ : A is saturated and s ∈ σ then [s]≡A
⊆ σ , where [s]≡A

is
the equivalence class of s under ≡A.

The equivalence of our definition with their definition is predicated on the following two useful
facts.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:34 A. Oliveira Vale et al.

Proposition 7.13. If s, t ∈ PA then s ≡A t if and only if s and t are compatible and ≺s = ≺t .

Proposition 7.14. For plays s, t ∈ PA, there is a derivation

s �A t

if and only if s is compatible with t and

≺s ⊆ ≺t

These give the following important corollary.

Corollary 7.15. A play s ∈ PA is linearizable to a play t ∈ P!A if and only if s is Herlihy-Wing

linearizable to t .

Our characterization of KConc in terms of general linearizability also yields a characterization of
the functor LinAtom.

Corollary 7.16. For any atomic strategy τ : !A

LinAtom τ = {s ∈ PA | s is Herlihy-Wing linearizable with respect to τ }

Note that we arrived at the functor LinAtom through the abstract construction of the Karoubi
envelope, which can be understood as closing a computational model, represented by the semi-
category Conc, by a synchronization pattern, represented by the choice of ccopy− or atocopy−
as the unit. In this way, formally, Herlihy-Wing presents a solution to the problem of finding a
concurrent strategy in Conc matching a certain atomic strategy in Atomic.

Proposition 7.16 also gives an alternative definition for Herlihy-Wing Linearizability in terms
of the image of the functor LinAtom.

Corollary 7.17. A strategy σ : A is Herlihy-Wing linearizable to an atomic strategy τ : !A if and

only if

σ ⊆ LinAtom τ

7.4 Interaction Refinement and Locality

Herlihy-Wing linearizability admits its own computational interpretation of linearizability proofs,
as a corollary of Section 5.4. Proposition 5.7 suggests defining a strategy

intcopyA : A � A := {s ∈ ccopyA | s�A0 ∈ ⇓ PA}

That is, intcopyA is the substrategy of ccopyA that plays atomically in the source component of
A � A. By Propositions 5.7 and 7.16 the plays of intcopyA correspond to proofs of Herlihy-Wing
linearizability. Interestingly, intcopy− is idempotent, so that it admits its own theory along the
lines of Section 6. In Section 9, we make use of the angle provided by Proposition 5.7 to analyze
possibilities and other proof methodologies for linearizability.

Corollary 7.18 (Computational Interpretation of Herlihy-Wing Linearizability). s1 ∈

PA is Herlihy-Wing linearizable to s0 ∈ PA if and only if there exists a play s ∈ intcopyA such that

s�A0 = s0 s�A1 = s1

It is easy to see that the conditions of Proposition 6.2 are met by Atomic. In particular, we have
that

Proposition 7.19. (Atomic,KAtom ◦ (− ⊗ −), 1) assembles into a symmetric monoidal category.

which we discuss in Appendix B. We take the freedom of overloading −⊗− for the atomic tensor
as well (in particular omitting the use of KAtom). It should be obvious which tensor we mean from
context, as it will always be clear that the strategies involved are atomic. This readily gives that

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:35

Proposition 7.20 (Interaction Refinement). ν ′A : A ∈ Conc is Herlihy-Wing linearizable to

νA : A ∈ Atomic if and only if for all concurrent games B and σ : A � B ∈ Conc it holds that

ν ′A;σ ⊆ νA;σ

Locality is also obtained by the same method as in Section 5.6, except that the source category
is now Atomic and the oplax functor LinAtom plays the role of KConc.

Proposition 7.21 (Locality). Let ν ′A : A, ν ′B : B in Conc and νA : A, νB : B in Atomic. Then

ν ′ = ν ′A ⊗ ν ′B is linearizable w.r.t. ν = νA ⊗ νB

if and only if

ν ′A is linearizable w.r.t. νA and ν ′B is linearizable w.r.t. νB

8 INTERVAL-SEQUENTIAL LINEARIZABILITY

In this section, we compare interval-sequential linearizability with our notion of linearizability.
Goubault et al. [2018] noted, without proof, that their definition of linearizability is equivalent to
interval-sequential linearizability (although it is the restriction of interval-sequential linearizabil-
ity to total objects, in addition requiring strong linearizability). Here, we show that our definition of
linearizability in the context of our model of sequentially consistent concurrent computation cor-
responds to a generalization of interval-sequential linearization to handle blocking objects, which
the original definition cannot [Castañeda et al. 2015].

In Castañeda et al. [2015], a trace is called interval-sequential if it is of the form

〈I1,R1, . . . , In ,Rn〉

where the Ii are non-empty sets of invocations and the Ri are non-empty sets of responses, such
that

— Any two invocations in Ii are by different agents;
— Any two responses in Ri are by different agents;
— If r ∈ R j is a response by agent α , then there is c ∈ Ii by the same agent for some i ≤ j such

that for all k such that i < k < j, Ik has no invocations by α and Rk has no responses by α .

Interpreting O moves as invocations and P moves as responses we immediately see that the
equivalence classes of plays s ∈ PA under − ≡A − correspond precisely to plays of the form

〈O1, P1, . . . ,On , Pn〉

where similarly to before theOi are sets of Opponent moves and the Pi are sets of proponent moves.
Otherwise, the same kind of happens-before order preservation is used to define linearizability to
an interval-sequential trace.

Definition 8.1. A play s ∈ PA is interval-sequential linearizable to an equivalence class [t]≡ of
− ≡A − if for every t ′ ∈ [t]≡, s is linearizable to t ′.

The discussion above promptly lets us prove that

Proposition 8.2. s ∈ PA is linearizable to t ∈ PA if and only if s is interval-sequential linearizable

to [t]≡, the equivalence class of t under ≡A.

Proof. Suppose first that s is linearizable with respect to t . Then, there is sP a sequence of
Proponent moves and sO a sequence of Opponent moves such that.

s · sP �A t · sO

So let t ′ ∈ [t]≡. Then, note that in particular

t �A t ′

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:36 A. Oliveira Vale et al.

and, therefore,

s · sP �A t · sO �A t ′ · sO

Now, suppose s is interval-sequential linearizable to [t]≡. Then, s is linearizable to every t ′ ∈ [t]≡
and in particular to t . �

Observe that we already showed the equivalence with happens-before order formulations of
linearizability in Section 7.3. The key difference between our formulation of interval-sequential
linearizability and the original one is that we do not require that the linearization remove all
uncompleted pending invocations. This essentially means that our definition of linearizability can
handle blocking objects, while typical linearizability only handles non-blocking objects. This is
vital. Consider our yield example. The trace

ααα:::yield · α ′α ′α ′:::yield · ααα:::ok

linearizes to itself in our example. Now, suppose we were forced to either complete the pending
invocation α ′α ′α ′:::yield or remove it to linearize the trace. Then we have to use one of the following
traces as the linearization:

(1) ααα:::yield · α ′α ′α ′:::yield · ααα:::ok · α ′α ′α ′:::ok or any equivalent trace under ≡†Yield;
(2) ααα:::yield · ααα:::ok;
(3) ααα:::yield · ααα:::ok · α ′α ′α ′:::yield · α ′α ′α ′:::ok or α ′α ′α ′:::yield · α ′α ′α ′:::ok · ααα:::yield · ααα:::ok

Trace (1) does not make sense. Assume, without loss of generality, that α is the one that yielded
first. Then, α is able to return because α ′ yielded after. But now there is no call to yield that justifies
the return by α ′. Traces in (2) and (3) do not make sense because no one yielded to α (or α ′ in (3)).

To state it more broadly, when all pending invocations are required to be removed, the only way
to signal that an invocation has already taken effect is by adding a return. Meanwhile, with our
formulation, an invocation may be effectful by itself, even when it is impossible to choose a return
value for it.

9 AN ANALYSIS OF HERLIHY-WING POSSIBILITIES

Herlihy and Wing [1990] present a methodology for showing objects are Herlihy-Wing lineariz-
able, inspired by ideas from abstract interpretation. Their methodology has been influential in
later approaches for verifying linearizable objects, notably Khyzha et al. [2016, 2017]. The key
idea behind possibilities is to associate to a concurrent object ν ′ : A an abstraction function
a : ν ′ → P(SA) which assigns to a play s ∈ ν ′ a corresponding set of possible linearized val-
ues taken from a set SA. These values may be understood as an approximation for the set of states
that the object ν ′ can reach by executing the play s .

A possibility for a play s is then defined as a triple 〈v, I ,R〉 such that v ∈ a(s), R is a set of
responses to some of the pending invocations of s , and I are all the pending invocations in s that
would not be completed by any of the responses in R. The proof methodology then consists of
four axioms that allow one to derive that 〈v, I ,R〉 is a possibility for a play s ∈ ν ′ by induction on
the play s .

These axioms are justified by showing that there exists a derivation that 〈v, I ,R〉 is a valid pos-
sibility for a play s if and only if v ∈ a(s).3 In particular, when νA is the desired linearized specifi-
cation, then one can define SA = νA and a(s) as the set of plays t ∈ νA such that s is linearizable
to t . In this case, one obtains that s is linearizable with respect to νA if and only if there exists a

3More work is needed to justify why v being a linearized value is enough to obtain a linearizability proof, which we do
not go in detail here and refer the reader to the source for the full account.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:37

derivation that s admits some possibility. That is to say, there is an equivalence between possibility
derivations and proofs of linearizability.

The computational interpretation angle from Section 5.4 provides an alternative equivalence
of linearizability proofs with plays of ccopyA. This motivates analyzing Herlihy-Wing’s possibil-
ity methodology from the computational interpretation angle. To that end, we derive a transition
system encapsulating the behaviors of ccopy− using a notion of positions familiar in game seman-
tics. We then show that Herlihy-Wing possibilities correspond to the positions of ccopy− and that
the axioms of possibility derivations by Herlihy and Wing [1990] correspond to moves of ccopy−.
Later, in Section 12, this analysis motivates the design of our verification methodology: a program
logic inspired in the correspondence we develop here.

9.1 Positions

We are finally ready to define our generalization of the original notion of possibility. We start by
defining a notion of position, which, informally, allows to associate a canonical notion of state to
a strategy.

Definition 9.1. Given a concurrent game A ∈ Conc, we define a position of A as a non-empty
�-closed set ϱ ⊆ PA, that is

∀s, s ′ ∈ PA.s ∈ ϱ ∧ s ′�A s ⇒ s ′ ∈ ϱ

We denote by Pos(A) the set of positions associated to A. We take the freedom to write ϵ for the
position {ϵ} ∈ Pos(A).

Given a position ϱ ∈ Pos(A) and a move m ∈ MA, we denote by ϱ �m the position

s ′ ∈ ϱ �m ⇐⇒ ∃s ∈ ϱ .s ′�A s ·m

Every game A defines a transition system

T(A) = (Pos(A),→A⊆ Pos(A) ×MA × Pos(A))

whose transitionsm : ϱ → ϱ ′ are movesm ∈ MA such that ϱ ′ = ϱ �m.

Note that every play s =m1 ·m2 · . . . ·mk ∈ PA corresponds to a path in T(A) in the following
way:

ϵ
m1
−−→ ϵ �m1

m2
−−→ ϵ �m1 �m2

m3
−−→ · · ·

mk
−−→ ϵ �m1 �m2 � · · ·�mk

and that, moreover, every play of A corresponds to such a path starting at the position {ϵ} ∈ Pos(A).
Because of this, we call a path whose source is ϵ a play of T(A). We denote by s : ϱ � ϱ ′ a path
from position ϱ to ϱ ′ in T(A).

Definition 9.2. Given a strategy σ : A ∈ Conc, we define a position of σ as a position ϱ ∈ Pos(A)

such that there exists s ∈ σ satisfying s : ϵ � ϱ in Pos(A).
We denote by Pos(σ) ⊆ Pos(A) the set of positions of σ . The associated transition system T(σ)

has as state Pos(σ) and transitions the restriction of T(A) to the states Pos(σ) ⊆ Pos(A).

At this point, we emphasize that we can partition transitions in T(A � B) into four kinds
depending on the polarities and components of the corresponding moves. Namely, we identify a
transition ααα:::m : ϱ → ϱ ′ with one of the following four labels:

ααα:::Os ααα:::Ps ααα:::Ot ααα:::Pt

depending on, respectively, whether m is an O move in the source component, a P move in the
source component, an O move in the target component, or a P move in the target component.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:38 A. Oliveira Vale et al.

9.2 Possibilities

Consider a play s ∈ PA. We call a triple

(p ∈ PA, sO : ϒ → {ϵ} +MO
A , sP : ϒ → {ϵ} +MP

A)

a possibility for s when it satisfies that

s · 〈sP 〉�A p · 〈sO 〉

where 〈sO 〉 is any sequence such thatααα:::m appears in 〈sO 〉 if and only if sO (α) =m, and similarly for
sP (note that all such sequences are equivalent up to ≡A). We denote the set of all such possibilities
by Poss(s). We also define

Poss(A) :=
⋃

s ∈PA

Poss(s)

A possibility (p, sO , sP) ∈ Poss(s) should be understood as a representation of a situation where s
is a concrete play of an object (i.e., the moves as they actually occurred) and p a valid linearization
of s . sO represents those invocations that have happened concretely but that are removed in the
linearization, while sP represents those responses that have been added to obtain the linearization
but do not appear in the concrete play s .

We assemble Poss(A) into a transition system with states the possibilities of A and with transi-
tions given by

invokeα (m) : (p, sO , sP) → (p ′, s ′O , s
′
P) ⇐⇒ m ∈ MO

A ∧ p ′ = p ∧ s ′O = sO [α �→m] ∧ s ′P = sP

commitO
α (m) : (p, sO , sP) → (p ′, s ′O , s

′
P) ⇐⇒ m ∈ MO

A ∧p ′ = p ·ααα:::m ∧ s ′O [α �→m] = sO ∧ s ′P = sP

commitP
α (m) : (p, sO , sP) → (p ′, s ′O , s

′
P) ⇐⇒ m ∈ MP

A ∧ p ′ = p · ααα:::m ∧ s ′O = sO ∧ s ′P = sP [α �→m]

returnα (m) : (p, sO , sP) → (p ′, s ′O , s
′
P) ⇐⇒ m ∈ MP

A ∧ p ′ = p ∧ s ′O = sO ∧ s ′P [α �→m] = sP

Intuitively, each of these rules should be understood in the following way.

invokeα (m) models an invocation being made in the concrete play, but not committed to the
linearized play.

commitO
α (m) models an invocation that already exists in the concrete play being committed to

the linearized play.
commitP

α (m) models adding a response to the linearization that does not yet occur in the con-
crete play.

returnα (m) models the point where a response concretely happens, while requiring that the
linearization already features a matching response.

Note that Herlihy and Wing [1990] possibilities only have one commit rule, which simultane-
ously performs the action of commitO

α and commitP
α in sequence. Our more general setting, to-

gether with the factoring of complete operations into two separate steps (one played by Opponent
the other by Proponent) in the structure of game semantics plays, exposes that in reality there are
two different but similar steps that accomplish the atomic commit rule. It is easy to see that

invokeα (m) : (p, sO , sP) → (p ′, s ′O , s
′
P) ∧ (p, sO , sP) ∈ Poss(s) ⇒ (p ′, s ′O , s

′
P) ∈ Poss(s · ααα:::m)

returnα (m) : (p, sO , sP) → (p ′, s ′O , s
′
P) ∧ (p, sO , sP) ∈ Poss(s) ⇒ (p ′, s ′O , s

′
P) ∈ Poss(s · ααα:::m)

commitO
α (m) : (p, sO , sP) → (p ′, s ′O , s

′
P) ∧ (p, sO , sP) ∈ Poss(s) ⇒ (p ′, s ′O , s

′
P) ∈ Poss(s)

commitP
α (m) : (p, sO , sP) → (p ′, s ′O , s

′
P) ∧ (p, sO , sP) ∈ Poss(s) ⇒ (p ′, s ′O , s

′
P) ∈ Poss(s)

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:39

and, therefore, as {(ϵ,	,)} = Poss(ϵ), paths:

S : (ϵ,	,)� (p, sO , sP)

in Poss(A) may be seen as derivations that (p, sO , sP) is a possibility of some play s .
Interestingly, the graph Poss(A) faithfully captures the possible behaviors of ccopyA. The corre-

spondence is in essence given by identifying the different kinds of moves in ccopyA with each of
the possible edges in Poss(A) in the following way:

ααα:::Ot ↔ invokeα (−) ααα:::Pt ↔ returnα (−) ααα:::Os ↔ commitO
α (−) ααα:::Ps ↔ commitP

α (−)

We formalize this intuition as the following result.

Proposition 9.3. There is a bisimulation between Poss(A) and T(ccopyA).

This bisimulation result gives a novel formulation, and a generalization, of the fact that possi-
bility derivations correspond to proofs of linearizability, only possible because of the relationship
between linearizability proofs and ccopy−.

Corollary 9.4. t is a linearization for s if and only if there exists a path S : (ϵ,	,)� (t , sO , sP)

showing that (t , sO , sP) ∈ Poss(s).

This provides a complete and forward axiomatic proof method, like Herlihy and Wing [1990]’s
original approach, to write proofs of linearizability. In the remaining sections, we will develop a
more practical formalism for writing such proofs by means of a program logic which encodes the
possibility axioms conveniently.

10 LINEARIZATION POINTS

The possibilities of Herlihy and Wing [1990] are likely where the intuition for linearization points
originally came from. In the original possibilities framework, the commit rule is applied precisely
when the operation takes effect in the linearization of the concrete trace, which is then called a lin-
earization point. It is folklore that a trace can be linearized if and only if one can find linearization
points happening in the interval of each operation which, moreover, can be totally ordered.

Despite this understanding of linearization points which relates to the commit rule for possibil-
ities, the apocryphal formalization of the concept relies on showing that a trace is linearizable if
and only if there is a monotonic mapping from the operations of a play ordered by happens-before
ordering (as formalized in Section 7) to a dense total order such as R or Q. While this does provide
a sort of real time-based understanding of linearization points, it does not characterize them in
terms of the computational model itself.

In fact, there are other issues with the notion of linearization point. On one hand, a single trace
often admits many choices of linearization points. Once one considers a set of prefix-closed traces
that need to be annotated with their linearization points, there is no choice of linearization points
forp that guarantees that it is consistent with any s extending that trace (p � s). This is because the
new operations in s may invalidate the choice of linearization points made for p. This fact is noted
in a different form by Herlihy and Wing [1990] and justifies the use of sets of linearized values
in their proof methodology. Another issue comes when generalizing from atomicity. It turns out
that the point intuition is intrinsic to atomicity. In generalized linearizability, one has to settle for
a linearization interval instead, which may overlap with other linearization intervals.

The realization that ccopy− corresponds to linearizability proofs (Section 5.4) allows us to give
a straight-forward characterization of linearization intervals. The key idea is that given a strategy
σ : A � B we can annotate it with the linearization intervals by adding to its source the ability
to perform the operation from B in the source, obtaining, therefore, a strategy σlp : A ⊗ B � B

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:40 A. Oliveira Vale et al.

which behaves as σ when projected to A � B, but behaves as ccopyB when projected to B � B.
The equivalence between plays of ccopyB and linearizability proofs then allows us to see such
extended strategies σlp as a form of proof-carrying strategy.

This idea works just fine in the atomic case, where we are only allowed to annotate with plays
of intcopyB. In the general linearizability case, sequential consistency becomes a hindrance: some-
times an agent has to both perform a move in A and B of the same polarity, thus breaking sequential
consistency. So we cannot obtain a proper strategy σlp in general. We can, however, use labeled
transition systems over positions instead of formalizing this idea. We moreover specialize our con-
struction to the assumption that σ : A � B will be running on top of specification νA : A in an
attempt to implement a specification νB : B, which models the typical verification problem for
linearizability and is of importance later in justifying some of the choices in Section 12.

10.1 Punctual Extensions under Atomicity

Definition 10.1. A punctual extension of a strategy σ : (A, atocopyA) � (B, ccopyB) ∈ Kar Conc

is a strategy

σlp : A ⊗ B � B

such that

σlp�A,B1 = σ σlp�B0,B1 ⊆ intcopyB

The key idea behind a punctual extension is that σ marks in its source component the lineariza-
tion point of the current target operation by atomically reproducing the corresponding O move
(which has already happened in the target) and the P move (that will happen later in the target).
The following two results give a novel formulation of the usual equivalence between Herlihy-
Wing linearizability and linearization points. Notably, differently from typical approaches, we do
not have to introduce a notion of time (such as by considering intervals in the reals) to characterize
linearization points.

Proposition 10.2. Let νA : A ∈ KAtom and νB : B ∈ KAtom and

σ : A � B ∈ Conc

Then,

νA;σ ⊆ LinAtom νB

if and only if there exists a punctual extension σlp of atocopyA;σ such that

((νA ⊗ ccopyB);σlp)�B0 ⊆ νB

The following corollary provides the usual equivalence of linearization points with atomic lin-
earizability. It states that a concurrent strategy ν ′A is linearizable to an atomic specification νA if
and only if one can find a certain punctual extension ρ. By the definition of punctual extension,
by necessity, it must be that ρ is in fact a substrategy of intcopy.

Corollary 10.3. A strategy ν ′A : A ∈ Conc is linearizable to a strategy νA : A ∈ KAtom if and

only if ν ′A supports a punctual extension

ρ : 1 ⊗ A � A

such that

ρ�A0 ⊆ νA

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:41

10.2 Linearization Intervals and Punctual Extensions

As discussed earlier in this section, it proves necessary to generalize to intervals instead of points.
This makes it necessary to loosen the requirements on extensions, so that they no longer form
strategies.

Definition 10.4. Given a strategy σ : A � B and a strategy νA : A we define the strategy
νA |σ : A � B by

νA |σ := {s ∈ σ | s�A ∈ νA}

Given strategies νA : A, νB : B, and σ : A � B we define its punctual graph Tlp(νA,σ ,νB) obtained
as the pullback (in the category of labeled quivers):

Tlp(νA,σ ,νB) T (νA |σ)

T (νB |ccopyB) T (B)

pσ

pccopy

where pσ and pccopy are the corresponding projections from the target component B of νA |σ and
νB |ccopyB, respectively.

A punctual extension Σlp of σ over νA implementing νB is any subgraph of Tlp(νA,σ ,νB) such
that its canonical projection, obtained from the pullback diagram, is equal to T(νA |σ) and the set
of plays (in the sense of Section 9) of its projection to T(νB |ccopyB) is a substrategy of νB |ccopyB.

The central result around punctual extensions is the following characterization of linearizable
implementations.

Proposition 10.5. Let νA : A, νB : B, and σ : A � B. Then,

νA;σ ⊆ KConc νB

if and only if there exists a punctual extension Σlp of σ over νA implementing νB .

Let us briefly revisit what we saw in Section 10.1. In the atomic case we can in fact obtain actual
strategies σlp (as opposed to position graphs), as under atomicity the issue caused by sequential
consistency can be solved by choosing to perform the linearization point right after the operation
triggering it. Moreover, by taking σ to be the identity, we can obtain the folklore result that the
existence of totally ordered linearization points is equivalent to linearizability. Although we did
not discuss that there, punctual extensions for the atomic case compose.

We now give a concrete characterization of punctual extensions. It is not hard to see that if Σlp

is a punctual extension of a strategy σ : A � B over νA implementing νB then the states of Σlp

are pairs
(ϱ ∈ Pos(νA |σ), ρ ∈ Pos(νB |ccopyB))

such that ϱ�B = ρ�B1 , and thus by Proposition 5.7 this means that ϱ�B is linearizable with respect
to νB .

But note that similarly to what happens with possibilities, there can be many such pairs for a
single ϱ ∈ Pos(νA |σ). Because of this, we will take a kind of quotient and construct a transition
system Σinstr(νA,σ ,νB) (a version of σ instrumented with possibility axiom applications) which has
as states pairs

(ϱ ∈ Pos(νA |σ), ρ ∈ Pos(KConc νB))

the idea here is that ϱ�B should be linearizable with respect to ρ, which itself is linearizable with
respect to νB . So in effect, (ϱ, ρ) corresponds to several positions of Σlp. The edges of Tinstr(νA,σ ,νB)

fall into one of the following cases:

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:42 A. Oliveira Vale et al.

invokeα (m) : (ϱ, ρ) → (ϱ ′, ρ ′) ⇐⇒ m ∈ MO
B
∧ ϱ ′ = ϱ �m ∧ ρ ′ = ρ �m

returnα (m) : (ϱ, ρ) → (ϱ ′, ρ ′) ⇐⇒ m ∈ MP
B ∧ ϱ ′ = ϱ �m ∧ ρ ′ = ρ ∧ (∀t ∈ ρ .∃p ∈ PB .πα (t) =

p ·m)
commitα (m) : (ϱ, ρ) → (ϱ ′, ρ ′) ⇐⇒ m ∈ MA ∧ ϱ ′ = ϱ �m ∧ ρ � ρ ′

where

ρ � ρ ′ ⇐⇒ ∃tP ∈ (MB)
∗.ρ � tP ⊆ ρ ′

The intuition is that invoke and return perform the “real-time” moves of B. invoke performs an
O move in B and automatically adds it to the possibilities ρ. return performs P moves in B, at
which point it must be that the possibility has already seen that return. The commit transitions
both perform the moves of νA |σ in A (also in “real-time”) and also allows ρ to be updated by either
adding an early return, or performing some rewrites on the possibilities.

The relationship between punctual extensions and the transition system Tinstr(νA,σ ,νB) is cap-
tured by the following proposition.

Proposition 10.6. There is a bisimulation between Tinstr(νA,σ ,νB) and Tlp(νA,σ ,νB).

In Section 12, we use these ideas to construct an abstract program logic for layered games,
which we show is sound for general linearizability. This program logic is a generalization, and
an improvement over, Khyzha et al. [2017]. We also show that the program logic of Khyzha et al.
[2017] is not complete, and show how our program logic resolves the counterexample we give.

11 CONCURRENT OBJECT-BASED SEMANTICS AND LINEARIZABLE CONCURRENT

OBJECTS

In the next section, we present a programming language described by an operational semantics
together with a program logic for reasoning about linearizability. In order to state the soundness
theorem of our program logic using the formalism from our article, we find it useful to provide
a denotation for our programs. In particular, we find it convenient to develop a separate formal-
ism for code (as opposed to specifications). This has the benefit of providing a game semantics
which is more adequate to handle code, as proposed by Koenig and Shao [2020] and Oliveira Vale
et al. [2022], and amenable to mechanization. The formalism is based on a semantics framework
originally developed by Reddy [1996] called object-based semantics.

11.1 The Replay Modality

We start by recalling the definition of the replay modality on sequential games, which originally
appears in Oliveira Vale et al. [2022].

Definition 11.1. Let A be a game. We define the replay of the game A, the game †A as †A =
(M†A, P†A) where

MO
†A :=

∑
i ∈N

MO
A MP

†A :=
∑
i ∈N

MP
A P†A := {s1 · . . . · sn ∈ Alt(MO

†A,M
P
†A) | ∀i .si ∈ ιi PA}

where, for a play s , ιi s labels all the moves m ∈ s as ιi m, and for a set of plays S the set of plays
ιi S is obtained by applying ιi s to every play s ∈ S .

The key intuition for the replay modality is that it allows the gameA to be replayed sequentially.
By sequentially, we mean that once a new instance of the game starts, the previous instance cannot
be returned to. A key property of the sequential †− modality is that it is a comonad over Seq.

Proposition 11.2. †− : Seq → Seq defines a comonad.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:43

Similarly to our approach to other operators on concurrent games, we define the concurrent †−
as the lifting of the sequential one.

Definition 11.3. For a concurrent game A = (MA, PA) we define the concurrent game †A as
†A := (M†A, P†A).

While it is possible to define a comonad † − directly on Conc, we have found that it leads to
an awkward notion of Kleisli morphism that does not provide a straight-forward calculus for our
notion of code. We instead take a different approach, and specialize the † − to the subcategory of
Conc obtained by restricting morphisms to parallel strategies, in the following sense:

Definition 11.4. We say a strategy σ : A � B ∈ Conc is a parallel strategy when there is a
collection (σα : A � B)α ∈ϒ of strategies σα : A � B ∈ Seq such that σ = ‖α ∈ϒ ια (σα).

We call Parallel the subcategory of Conc obtained by restricting it to parallel strategies.

Some of the practical convenience with parallel strategies comes from the fact that composition
of parallel strategies can be computed agent-wise, in that

(‖α ∈ϒ ια (σα)); (‖α ∈ϒ ια (τα)) = ‖α ∈ϒ ια (σα ;τα)

which reduces concurrent strategy composition to sequential strategy composition. This benefit
is amplified once we focus on the Kleisli category of † −, which we now define over parallel.

Definition 11.5. Given a parallel strategy σ = ‖α ∈ϒ ια (σα) over A � B, we define †σ : †A � †B

by the formula:
†σ = ‖α ∈ϒ † ια (σα)

It is easy to show that †− inherits the structure of the sequential dagger.

Proposition 11.6.
†− : Parallel → Parallel

defines a comonad.

We take this chance to define effect signature games formally, which we have used throughout
in our examples.

Definition 11.7. An effect signature is given by a collection of operations, or effects, E = (ei)i ∈I

together with an assignment ar(−) : E → Set of a set for each operation in E. This is conveniently
described by the following notation:

E = {ei : ar(ei) | i ∈ I }

Every effect signature defines a very simple sequential game Seq(E) with moves given by

MO
E := E MP

E := ∪e ∈E ar(e)

and plays
PE := ↓{e · v | e ∈ E ∧v ∈ ar(e)}

We will often denote Seq(E) simply as E.
We define its associated concurrent game Conc(E) as (ME , PE)which we often will denote simply

by E.

Let us mull over what an effect signature game entails. In the sequential case, the game E has
plays of the form:

e v

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:44 A. Oliveira Vale et al.

consisting of an invocation of an effect e ∈ E followed by a responsev ∈ ar(e). Its replay †E merely
allows for several such interactions to be performed in sequence, like so

e1 v1 e2 v2 . . . en vn

where each ei ∈ E and eachvi ∈ ar(eI). Its concurrent version allows each thread to play †E locally.
Most objects appearing in concrete systems can be modeled by an effect signature, and we have
already provided many such examples in Section 2.2.

11.2 Concurrent Object Implementations

Typically, in the sequential case, we would use as object implementations strategies

M̂ : †A � †B

which are moreover regular in the sense that they are †-coalgebra morphisms between the free
†-coalgebras associated with A and B:

M̂ : (†A,δA) → (†B,δB)

We emphasize the −̂ on M because as M̂ lives in the co-Kleisli category of †− it may instead be
described as a strategy

M : †A � B

and composition is as in the co-Kleisli category. This gives a minimal description of the associ-
ated coalgebra morphism M̂ and simplifies the process of specifying implementations. See any of
Oliveira Vale et al. [2022] and Reddy [1993, 1996] for more details on the framework.

We extend that formulation to model concurrent object implementations as morphisms of the
form

‖α ∈ϒ ια (�M[α]) : †A � †B

or, equivalently, ⊗
α ∈ϒ

strat(ια (�M[α])) : †A � †B

where each M[α] is a sequential strategy of type †A � B. Alternatively, we may characterize
concurrent implementations as collections

(M[α] : †A � B)α ∈ϒ

which define a concurrent implementation by the formula above. The intuition here is that each
agent α ∈ ϒ locally runs a sequential object implementation. In practice, it is often the case that
all agents run the same sequential implementation M in which case we can use

Conc M̂ : †A � †B.

We note that

Proposition 11.8. Concurrent object implementations are free co-algebra morphisms of † −.

We now observe that for effect signatures E and F , any sequential object implementation:

M : †E � F

decomposes as a collection of implementations (M f : †E � { f : ar(f)})f ∈F where

M f := ϵ ∪ { f · s ∈ M | f ∈ F }

that is, M f is the set of plays of M starting with the operation f . Then

M =
⋃
f ∈F

M f

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:45

Moreover, any collection of strategies (M f : †E � { f : ar(f)})f ∈F defines an implementation
M : †E � F by the formula above.

The computational interpretation is quite simple here. Along the lines of Oliveira Vale et al.
[2022], every implementation M[α]f corresponds to some code implementing the effect f using
the effects in E. A full sequential implementation M[α] corresponds to all of the implementations
for each f ∈ F bundled together, such as in a file containing the code for all of those methods. The
concurrent object implementation then is analogous to the usual syntactic linking appearing in
the syntactic approaches to concurrent computation.

Again, let us consider what an implementation for an object with type given by an effect signa-
ture consists of. Locally, the implementation M[α]f : E � { f : ar(f)} of an effect f ∈ F using
events in E by α ∈ ϒ is a strategy consisting of plays of the following shape:

f v

e1 v1 e2 v2 . . . en vn

the implementation M[α] : †E � F of F using E by α is simply the collection of the implemen-
tations M[α]f for each f ∈ F by α , so that it is able to issue the right implementation on an

environment request for any effect from F . Its regular extension �M[α] replays the implementation
M[α] in order to be able to handle several requests for effects in F by the environment. In this way,
its plays are of the following shape:

f1 v1 f2 v2 . . . fn vn
M [α] M [α] M [α]

s1 s2 sn

where each sequence fi · si ·vi is a play of M[α], and in particular a play of M[α]fi . The concurrent
implementation M : E � F is simply the result of having each α ∈ ϒ playing their corresponding
implementationsM[α] in parallel. All the implementations discussed in Section 2.2 can be encoded
as layer implementations.

It remains to give an account of when an implementation correctly implements an object. This
is captured by the following definition.

Definition 11.9. A certified linearizable object implementation M : (ν ′A,νA) → (ν ′B ,νB) is an im-
plementation M : †A � †B which moreover satisfies:

ν ′B ⊆ ν ′A;M

It’s immediate to see that linearizable concurrent objects, together with certified linearizable
object implementations, assemble into a category. This definition is readily adapted to strong lin-
earizability. Such linearizable objects, together with certified linearizable object implementations,
provide the denotational account of the programming language and program logic that we will
now define.

12 PRAGMATICS

Now that we have established the core results of the article, we revisit the example in Section 2.2.
We start by outlining a program logic for showing that certain concurrent programs implement
linearizable objects. Then, we outline how the theory we develop can be used to reason about the
example from Section 2.2. Our program logic is adapted from Khyzha et al. [2017], but contains
significant modifications. Proofs for this section are found in Appendix C.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:46 A. Oliveira Vale et al.

12.1 Programming Language

12.1.1 Syntax. For our language we find it useful to slightly generalize effect signatures to be
of the form:

E = {e : par(e) → ar(e) | e ∈ E}

here, par(e) is some finite product of sets and stands as the parameter set of e , and ar(e) ∈ Set is
its arity, as usual. These are interpreted as standard effect signatures of the form:

E = {e(p) : ar(e) | e ∈ E ∧ p ∈ par(e)}

namely, e : par(e) → ar(e) stands for a par(e)-indexed family of effects all with arity ar(e).
We start by defining a language Com for commands over an effect signature E:

Prim := x ← e(a) | assert(ϕ) | ret v Com := Prim | Com; Com | Com + Com | Com∗ | skip

Prim stands for primitive commands while Com is the grammar of commands. The most important
commands work as follows:

— x ← e(a) executes the effect e ∈ E with argument a ∈ par(e), which might contain variables
defined in a local environment.

— ret v stores in a reserved variable the value v , and may only be called once in a program.
— assert(ϕ) takes a Boolean function over the local environment and terminates computation

if ϕ evaluates to False. assert(−) can be used to implement a while loop and if conditionals
in the usual way.

The remaining commands are per usual in a Kleene algebra.
An implementation M[α] of type E → F , where E and F are effect signatures, is then given by

a collection M[α] = (M[α]f)f ∈F indexed by F , so that for each f ∈ F we have M[α]f ∈ Com; we
denote the set of implementations by Mod.

Meanwhile, a concurrent module M[A] is given by a collection of implementations M[A] =
(M[α])α ∈A indexed by a set A ⊆ ϒ of active agents, so that M[α] ∈ Mod is an implementation for
each active agent α ∈ A; we denote the set of concurrent modules by CMod.

12.1.2 Operational Semantics. Each primitive command B receives an interpretation as a state
transformer

�B�α : UndState → P(UndState)

over a set of states

UndState := Env × P†E

and returning a new set of states. A state (Δ, s) ∈ UndState contains a local environment Δ ∈ Env

(a partial map from a set of variable names Var to the set of possible values) and a state represented
canonically as a play of s ∈ †E. Concretely, s is the history of operations on the underlying object.
The state transformer �B�α depends on α only in that it tags the events it adds to the underlying
state with an identifier for α .

The interpretation �B�α of B ∈ Prim must satisfy moreover that for all (Δ, s) ∈ UndState, if
(Δ′, s ′) ∈ �B�α (Δ, s) then

∃t .s ′ = s · t ∧ πϒ\α (t) = ϵ

That is to say, a language primitive may only advance the state further, and only by adding events
for the corresponding agent. Notice that we can split the interpretation function �B�α into �B�O

α ,
which is defined only on states where α ’s next move is an invocation, and �B�P

α , which is defined
only on states where α has a pending invocation (the remaining states).

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:47

Fig. 6. Command Reduction Rules (�), Local Operational Semantics (−→), and Concurrent Module Opera-

tional Semantics (−�).

We lift this interpretation function to a local small-step operational semantics
〈C,Δ, s〉 −→α 〈C ′,Δ′, s ′〉 encoding how α steps on commands in a mostly standard way fol-
lowing the Kleene algebra structure of commands. The key difference is that, as we do not assume
the underlying object of type E is atomic, primitive commands execute in two separate steps,
one for the invocation and the other for the return. This can be seen in the definition of the
command reduction relation (�) which reduces a command by executing a primitive command.
See Figure 6 for the operational semantics rules. There, skip stands for a primitive command that
behaves just like skip but is used exclusively to define the operational semantics.

This small step operational semantics can be lifted to a concurrent module operational semantics

− −�− − ⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

Here a continuation c ∈ Cont consists of a mapping c : ϒ → {idle} + {skip} + Com and a module
state ModState := (ϒ → Env)×P†E�†F containing the local environments for all the agents, as well
as the global trace of the system (see Figure 6). The concurrent semantics models all the agents
running their local implementations concurrently under a non-deterministic scheduler. The three
rules correspond, in order, to a target component invocation, a step in the source component, and
a return in the target component.

It is important to note that in our operational semantics, following the object-based semantics
approach, which we develop in detail in Section 11, all shared state is encapsulated in the under-
lying object of type E. One of the many consequences of this is that the local environments can
only be modified by their corresponding agents, and are initialized on a call on F and emptied on
a return. This limits the lifetime of variables to a single execution of the body of a method.

A program M can be linked with a specification νE for its source component given by a strategy
νE : †E, which we denote by Link νE ;M . The operational semantics of Link νE ;M is given in
Figure 6. Observe that

− −�M − = − −�M
P†E

−

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:48 A. Oliveira Vale et al.

12.1.3 Semantics. We give a concurrent module a denotation by the formula

�M� = {s | ∃c ∈ Cont.∃Δ ∈ (ϒ → Env).〈c0,Δ0, ϵ〉 −�M 〈c,Δ, s〉}

where the initial continuation c0 is the mapping such that c0(α) = idle for all α ∈ ϒ. The initial
environment Δ0 is defined as the empty mapping Δα = 	 for every agent α ∈ ϒ. The interpretation
�M� essentially collects all traces that the implementationM might generate. Note that these traces
include events of both the source component E and the target component F, as well as events by
several agents.

From a linked program Link νE ;M we can obtain a corresponding strategy �Link νE ;M� : †F

similarly to before

�Link νE ;M� = {s | ∃c ∈ Cont.∃Δ ∈ (ϒ → Env).〈c0,Δ0, ϵ〉 −�M
νE
〈c,Δ, s〉}

The interpretation of the linked library merely specializes the semantics of �M� to only the traces
that execute according to νE in the source component. This is done by using the operational se-
mantics specialized to follow the specification νE (defined in Figure 6).

The following result allows us to connect the programming language back with the theory we
have developed so far.

Proposition 12.1. For any M ∈ CMod, �M� : †E � †F is a strategy (in fact, a concurrent object

implementation) and given νE : †E,

�Link νE ;M� = νE ; �M�
12.1.4 Language Primitives. We now introduce the language primitives we will use for our pur-

poses. First, we have a command skip with interpretation given by

�skip�α (Δ, s) = {(Δ, s)}

which makes no modification to the state.
A command ret − with interpretation:

�ret v�α (Δ, s) =

{
(Δ[ret : v], s), Δ(ret) = ⊥

	, Δ(ret) � ⊥

ret − reserves a location for returns to be written to. Observe that a return may only be called once
in any execution.

A more interesting primitive is a primitive of the form x ← e(a)where e ∈ E and a ∈ Var+par(e)
and x ∈ Var with interpretation �x ← e(a)�α (Δ, s) given by

— If even(πα (s)) then �x ← e(a)�α (Δ, s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(Δ, s · ααα:::e(a))}, a ∈ par(e)

{(Δ, s · ααα:::e(Δ(a)))}, a ∈ Var ∧ Δ(a) ∈ par(e)

	, otherwise
— If πα (s) = p · e(a

′) where either a′ = a or a′ = Δ(a) then

�x ← e(a)�α (Δ, s) := {(Δ[x : v], s · ααα:::v) | v ∈ ar(e)}

— Otherwise, �x ← e(a)�α (Δ, s) := 	.

This models the fact that the implementation may call effects from its source component E. x ←
e(a) executes the effect e ∈ E with argument a, which might contain variables defined in a local
environment Δ ∈ Env.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:49

Finally, to implement branching, we have a command assert(ϕ), where ϕ : Env → Bool,
interpreted by

�assert(ϕ)�α (Δ, s) :=

{
{(Δ, s)},ϕ(Δ) = True

	, Otherwise

assert(−) can be used to implement a while loop and if conditionals in the usual way.

12.2 Program Logic

Our program logic is motivated by a careful analysis of proof methodologies for linearizability
developed in Section 10. There we show that possibilities, and the inner workings of program logics
such as Khyzha et al. [2017], can be seen to be simulating moves of ccopy− in their proof steps,
and that the proof states correspond to positions of ccopy−. In particular, we define a notion called
punctual extension which provides the theoretical ground for our program logic. Here, we present
the resulting simple, bare bones, program logic. Despite its simplicity, it is expressive enough to
reason about our notion of linearizability, and we believe it to be extensible.

Recall (from Section 5.3) that we encapsulate the information necessary to define a linearizable
concurrent object in a pair

(ν ′ : †A,ν : †A) s.t. ν ′ ⊆ KConc ν

Throughout, we assume the following situation. We have a linearizable concurrent object
(ν ′E : †E,νE : †E) and would like to show that an implementation M : E → F is correct in that
when it runs on top of ν ′E it linearizes to a specification νF : †F. When reasoning about Link ν ′E ;M
it will be useful to restrict it with some invariants about its client. For example, usually when us-
ing a lock, one assumes that every lock user strictly alternates between calling acq and rel. So if
all clients to the lock politely follow the lock policy, it is enough to verify only those traces. This
policy of strict alternation is encoded in a strategy ξF : †F in our approach.4

All in all, the program logic establishes that (ν ′E ; �M� ∩ ξF ,νF) is a linearizable con-
current object. For this purpose our program logic uses as proof configurations triples
(Δ, s, ρ) ∈ Config := ModState × Poss where Poss is a set of possibilities. While Herlihy and Wing
[1990] use sets of, so-called, linearized values, as possibilities, and Khyzha et al. [2017] uses an in-
terval partial order, we use a play of Poss := KConc νF . This means that our program logic rules are
designed to enforce that, if (Δ, s, ρ) is a configuration, s�F is linearizable to ρ and ρ is linearizable to
νF . Pre-conditions P are given by sets of configurations, while post-conditions Q , rely conditions
R, guarantee conditions G are specified as relations over the configurations. We define stability
requirements on pre-conditions P and post-conditions Q :

stable(R, P) = R ◦ P ⊆ P stable(R,Q) = R ◦Q ⊆ Q ∧Q ◦ R ⊆ Q

There are three ways through which a configuration can be modified: through a relational pred-
icate invokeα (−) which makes an invocation in F, and simultaneously adds it to the state and the
possibility; a commit rule G �α {P} B {Q}, where B ∈ Prim, which allows one to modify the
state by executing primitive commands over E, but also to add early returns to ρ and to rewrite it
according to −�F −; and a pair of post-conditions returnedα (−) and returnα (−) that check if at
the end of execution there is a valid return in the possibility, and then adds it to the state.

4Note that such a client specification should be P -receptive, in that if s ∈ ξF , n ∈ ∪f ∈F ar(f), and s · n ∈ P†F, then

s · n ∈ ξF .

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:50 A. Oliveira Vale et al.

Fig. 7. Program logic rules for commands.

Formally, the commit rule, which is the crux of the verification task, is defined below:

G �α {P} B {Q} ⇐⇒

∀(Δ, s, ρ). ∀(Δ′, s ′). (Δ, s, ρ) ∈ P ∧ (Δ′, s ′) ∈ �B�α (Δ, s) ∧ s ′�E ∈ νE ⇒

∃ρ ′.(Δ, s, ρ) Q (Δ′, s ′, ρ ′) ∧ (Δ, s, ρ) G (Δ′, s ′, ρ ′) ∧ ρ � ρ ′

ρ � ρ ′ ⇐⇒ ∃tP ∈ (MP
F)
∗.ρ · tP �†F ρ ′

The rule considers every state (Δ′, s ′) reachable by executing the primitive command B on be-
half of α from a proof state (Δ, s, ρ) satisfying: the pre-condition P and the source component’s
linearized specification νE . The proof obligation is then to choose a new possibility ρ ′ and show
that the step into the new proof configuration (Δ′, s ′, ρ ′) satisfies the post-condition Q and the
guarantee G. This new possibility ρ ′ must be shown to satisfy ρ � ρ ′, which enforces that ρ ′

only differs from ρ by adding some returns tP to ρ, and potentially linearizing the trace more
by performing some rewrites (ρ · tp �†F ρ ′). Prim merely adds typical stability requirements on
the operation. Lifting this rule to a Hoare-style judgment R,G |=α {P} C {Q} over any command
C ∈ Com is straight-forward (See Figure 7), which will be the program logic judgment for function
bodies such as M[α]f .

Meanwhile, invokeα (−), returnedα (−) and returnα (−) are formally defined below, where idleα

is a predicate that checks if α is idle in a given state.

(Δ, s, ρ) ∈ idleα ⇐⇒ Δα = 	 ∧ even(πα (s�F)) ∧ even(πα (ρ))

(Δ, s, ρ) invokeα (f (a)) (Δ
′, s′, ρ′) ⇐⇒

(Δ, s, ρ) ∈ idleα ∧ s′�F ∈ ξF ∧ (Δ
′(α) = [arg : a] ∧ ∀α ′ � α .Δ′(α ′) = Δ(α ′)) ∧ s′ = s · ααα :::f ∧ ρ′ = ρ · ααα :::f

(Δ, s, ρ) returnedα (f) (Δ
′, s′, ρ′) ⇐⇒

(Δ′, s′, ρ′) = (Δ, s, ρ) ∧ (∃v ∈ ar(f).Δ(α)(ret) = v ∧ (∃p .πα (ρ
′) = p · v))

(Δ, s, ρ) returnα (f) (Δ
′, s′, ρ′) ⇐⇒

Δ′ = 	 ∧ ρ′ = ρ ∧ ∃v ∈ ar(f).∃p .πα (ρ) = p · v ∧ s′ = s · ααα :::v

Now, given a concurrent module M = (M[α])α ∈ϒ where the local implementations are given by
M[α] = (M[α]f)f ∈F verification is finalized by the following two rules:

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:51

∀f ∈ F .(Δ0, ϵ, ϵ) ∈ P [α]f ∀f ∈ F .P [α]f ⊆ idleα

R[α], G[α] |=α {invokeα (f) ◦ P [α]f } M [α]f {returnedα (f) ◦Q [α]f }

∀f , f ′ ∈ F .returnα (f
′) ◦ returnedα (f

′) ◦Q [α]f
′
◦ invokeα (f

′) ◦ P [α]f
′
⊆ P [α]f

R[α], G[α] |=α {∩f ∈F P [α]f } M [α] {∪f ∈F Q [α]f }
Local Impl

∀α ∈ A.R[α], G[α] |=α {P [α]} M [α] {Q [α]}

∀α, α ′ ∈ A.α � α ′ ⇒ G[α] ∪ invokeα (−) ∪ returnα (−) ⊆ R[α ′]

R[A], G[A] |=A {∩α ∈AP [α]} M [A] {∪α ∈AQ [α]}
Conc Impl

where

invokeα (−) :=
⋃
f ∈F

invokeα (f) returnα (−) :=
⋃
f ∈F

returnα (f)

and given relies R[α] and guarantees G[α] for every α ∈ A, we define

R[A] :=
⋂
α ∈A

R[α] G[A] :=
⋃
α ∈A

G[α]

Several of the premises of Local Impl and Conc Impl are typical of rely-guarantee reasoning, and
the remaining ones are very similar to those found in Khyzha et al. [2016, 2017]. Of note, is the
premise highlighted in blue in LocalImpl, which makes sure that the pre and post-conditions
are defined in such a way that after executing a method f ′ ∈ F the system satisfies all the
requirements to safely execute any other method f ∈ F . Meanwhile, the premise highlighted in
blue in ConcImpl makes sure that the rely condition is stable not only under the guarantee but
also under invocations and returns by other agents. These two program logic rules are justified
by the following soundness theorem.

Proposition 12.2 (Soundness). If R[A],G[A] |=A {P[A]} M[A] {Q[A]} and (ν ′E : †E,νE : †E)

is a linearizable concurrent object then

ν ′E ; �M[A]� ∩ ξF ⊆ KConc νF

It is worthy noting that this program logic supports the usual parallel composition rule:

A ∩ B = 	 R[A],G[A] |=A {P[A]} M[A] {Q[A]} G[A] ∪ invokeA(−) ∪ returnA(−) ⊆ R[B]
R[B],G[B] |=B {P[B]} M[B] {Q[B]} G[B] ∪ invokeB (−) ∪ returnB (−) ⊆ R[A]

R[A] ∩ R[B],G[A] ∪ G[B] |=A B {P[A] ∩ P[B]} M[A B] {Q[A] ∪Q[B]}
PComp

The program logic can be extended with quality-of-life features like ghost state, and fancier
notions of possibilities such as using a set of plays of KConc νF , instead of a single play, for
added flexibility. Another point is that, other than paradigmatic modifications, our programming
language and program logic are close to those of Khyzha et al. [2017]. There are two major differ-
ences. First, our program logic is built to reason about our notion of linearizability (Definition 5.1),
while theirs focuses on Herlihy-Wing linearizability. In particular, their operational semantics
can assume that operations in the source component are atomic, while we cannot. The second
is that we maintain that there exists a valid linearization of the possibility, while they maintain
that every linearization is valid. There are linearizable concurrent objects for which the stronger
invariant on possibilities cannot be maintained, see Appendix C. This means that our program
logic is strictly more expressive, and therefore any proof achievable with theirs should admit a
straight-forward adaption to ours.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:52 A. Oliveira Vale et al.

12.3 Example Revisited

We now revisit the example of Section 2.2. We start by assuming we have concurrent objects
ν ′fai : †FAI, ν ′counter : †Counter and ν ′yield : †Yield assembling into linearizable objects

(ν ′fai : †FAI,νfai : †FAI) (ν ′counter : †Counter,νcounter : †Counter) (ν ′yield : †Yield,νyield : †Yield)

where νfai is the atomic FAI object specification, νcounter is the semi-racy counter specification, and
νyield is the less concurrent Yield specification, all as described in Section 2.2. Using the locality

property, we can combine these linearizable objects into a composed linearizable object, written
as (ν ′E ,νE):

(ν ′E ,νE) := (ν ′fai ⊗ ν ′counter ⊗ ν ′yield,νfai ⊗ νcounter ⊗ νyield)

Observe that the code for Mlock appearing in Figure 1 can be encoded in the programming lan-
guage of Section 12.1. We wish therefore to show that Mlock correctly implements a linearizable
object (ν ′lock : †F,νlock : †F) as described in Section 2.2 except for one extra assumption: that locally
in ν ′lock, each agent alternates between invoking acq and rel. This extra assumption becomes avail-
able in our program logic. Because of the interaction refinement property, we need only consider
linearized traces, those in νE , for the source component. Because of that, it does not really matter
what the actual concurrent object ν ′E is! It only matters that it linearizes to νE . For example, ν ′counter
could very well be an atomic Counter provided by hardware somehow, or a Counter implementa-
tion that misbehaves when two increments occur at the same time. Even then, it still linearizes to
the semi-racy counter specification, so the proof of correctness of Mlock will remain valid.

Verification with the program logic is straight-forward. The main invariant maintains that the
possibility ρ satisfies ρ = p · ρO where p ∈ νlock is an atomic trace representing the already
linearized operations, while ρO is a sequence of pending invocations yet to be linearized. When
an agent leaves the while loop in the code of acq, or executes the inc command in the body of rel

we add the corresponding return ok and linearize the operation to the end of p, like so

ρ = p · ρ1 · ααα :::acq · ρ2 p · ααα :::acq · ααα :::ok · ρ1 · ρ2 = ρ′

ρ = p · ρ1 · ααα :::rel · ρ2 p · ααα :::rel · ααα :::ok · ρ1 · ρ2 = ρ′

assert(cur_tick = my_tick)

inc()

Please check Appendix D for details. We denote the fact that Mlock is correct as

�Mlock� : (ν ′E ,νE) −→ (ν ′lock,νlock)

Along the same lines, we can verify that

�Msqueue� : (ν ′lock ⊗ ν ′queue,νlock ⊗ ν ′queue) −→ (ν ′squeue,νsqueue)

At this point, the two implementations can be composed together by using the tensor of concur-
rent games, the locality property and strategy composition. First, we use ccopy†Queue : †Queue →

†Queue to “pass-through” the queue object to Mlock, obtaining therefore an implementation
Mlock ⊗ ccopy by using the code for ccopy− shown in Section 4.1. This implementation satisfies
that �Mlock ⊗ ccopy� = �Mlock� ⊗ ccopy†Queue and, therefore, that

�Mlock ⊗ ccopy� : (ν ′E ⊗ ν ′queue,νE ⊗ ν ′queue) −→ (ν ′lock ⊗ ν ′queue,νlock ⊗ ν ′queue)

By composing the two implementations together, we obtain that

�Mlock ⊗ ccopy�; �Msqueue� : (ν ′E ⊗ ν ′queue,νE ⊗ ν ′queue) −→ (ν ′squeue,νsqueue)

immediately from the fact that each of the two implementations is known to be correct.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:53

13 RELATED WORK AND CONCLUSION

Herlihy and Wing [1990]. We revisit many, if not all, of the major points of their now classical
article. In particular, we generalize their definition and provide a new proof of locality. Overall, we
present new foundations to their original definition of linearizability.

Ghica [2023], Ghica and Murawski [2004], and Murawski and Tzevelekos [2019]. Our concurrent
game model is heavily inspired by the model appearing in Ghica and Murawski [2004] and Ghica
[2023], and the genesis of our key result lies in the observation we outlined in Section 2.1.2. Despite
that, our game model both simplifies and modifies the one appearing there. It simplifies it in that
they use arena-based games, relying on justification pointers. They also have more structure on
their plays around a second classification of moves into questions or answers, in order to model
ICA precisely. We believe that our formulation of linearizability readily extends to other, more
sophisticated formulations of concurrent games, including theirs. Our choice of this simple game
semantics is justified in Section 1.2. We also make a significant modification to their game model
in that we change the strategy composition operation. Theirs always applies a non-linear self-
interleaving operation on the left strategy so to obtain a Cartesian category. We instead use a
linear composition operation that leaves the left strategy as is, and fits our purposes better. Another
difference is that theirs is single-threaded (a single opening O move) while ours is multi-threaded.
They do use a multi-threaded model to explain the categorical structure of their model, but they
do not use the multi-threaded model as extensively as we do.

The fact that the category defined in Ghica and Murawski [2004] is a Karoubi envelope was
observed in a manuscript by Ghica [2023], but was not explored in detail. In particular, none of the
material in Section 6 appears in their work. Neither of these works deal with linearizability in any
way, nor observe the relationship between their rewrite relation and happens-before preservation.

The authors likely noticed that the rewrite relation in Ghica [2023] and Ghica and Murawski
[2004] is related to linearizability, as a variation of it appears in Murawski and Tzevelekos [2019]. In
this article, they revisit a higher-order variation of linearizability originally introduced in Cerone
et al. [2014] and strengthen the results from there. Meanwhile, we only address the more traditional
first-order linearizability, though we believe it could be generalized to a higher-order setting. De-
spite that, they use a trace semantics, which, though inspired by game semantics, still relies on
syntactic linking operations and lacks a notion of composition beyond syntactic linking at the sin-
gle layer level. The approach fits into the typical approach we outline in Section 1. None of these
works observe the relationship between ccopy− and the Karoubi envelope with linearizability.

Goubault et al. [2018]. As we described in Section 2.1.2, Goubault et al. [2018] is another major
reference for our work. Many of our results are significant generalizations of theirs. They focus
just on concurrent object specifications, and use untyped specifications. We go beyond that by
considering a compositional model, featuring linear logic types, and strategy composition. Given
the definition of concurrent specification they use, and the background of the authors, they were
likely inspired by game semantics, and leave for future work a compositional variant of their re-
sults, which our work addresses. Moreover, they only model non-blocking total objects, while we
assume neither restriction on our objects. Some of our results are generalizations of their results
along several lines, as our model is compositional, typed and does not assume totality (this last
one is explicitly used to simplify several of their proofs). Several of these generalizations are estab-
lished using our novel techniques, such as the algebraic characterization in terms of the Karoubi
envelope, as opposed to proofs involving the rewrite system. In particular, they establish a Ga-
lois connection related to linearizability, which we reproduce using our abstract formulation, as
opposed to their proofs, which used a concrete formulation of linearizability. They also do not
discuss horizontal composition and locality.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:54 A. Oliveira Vale et al.

Other Works. There are other approaches to concurrent game semantics such as Abramsky and
Mellies [1999] and Melliès and Mimram [2007] (this later one also involving a rewrite system), and
Castellan et al. [2017] and Rideau and Winskel [2011]. The notion of saturation in games traces
back to Laird [2001]. Our treatment of concurrent objects, appearing in Section 2.2, in Section 12.3
and in Section 11 traces back to Reddy [1993, 1996], which has been recently brought back to
attention by Oliveira Vale et al. [2022]. More broadly, our motivations seem to fit into a program
started by Koenig and Shao [2020]. Game semantics has been used to analyze concurrent program
logics in Melliès and Stefanesco [2020] to a much larger extent than what we endeavor in Section 12
and Appendix C.

Semicategories have been studied extensively in the context of theory of computation in order to
provide category theoretical formulations for models of the λ-calculus, notably in Hayashi [1985]
and Hyland et al. [2006]. Our notions of semi-biadjunction and enriched semicategories trace back
to Hayashi [1985] and Moens et al. [2002] respectively. Semifunctors have been thoroughly studied
in Hoofman and Moerdijk [1995]. The Karoubi envelope often appears in the context of concurrent
models of computation beyond the already mentioned Ghica and Murawski [2004]; for instance in
Ghica [2013] to model delay insensitive circuits, in Gaucher [2020] on the flow model of concurrent
computation, in Piedeleu [2019] to give a graphical language to distributed systems, or in Castellan
et al. [2017] and Rideau and Winskel [2011] (though not explicitly mentioned).

As we noted in Section 2.2 there are numerous works that discuss variations of linearizability
[Castañeda et al. 2015; Haas et al. 2016; Hemed et al. 2015; Neiger 1994]. Notable is that in defin-
ing a criterion for linearizability in the context of crashes and abortions, Aguilera and Frølund
[2003] make use of a rewrite system not unlike the one used by us and [Goubault et al. 2018]. Cru-
cially, our methodology and formulation differ widely from previous works. In particular, we do
not propose a notion of linearizability. Instead, we define a model of concurrent computation and
derive the appropriate definition of linearizability intrinsic to the model. As far as we are aware,
the only work that has developed a relationship between the copycat and linearizability is Lesani
et al. [2022], which likely happened concurrently with our own discovery. Despite that, they only
discuss atomic linearizability, and do not explore the theory surrounding their definition of lin-
earizability. In particular, they do not prove the equivalence of their definition to original Herlihy-
Wing linearizability, which we address in depth in Section 7. In this way, our work generalizes
their development around linearizability and, moreover, formally explains why their definition of
linearizability is appropriate. In terms of methodology, our work still differs widely and subsumes
their model of computation, especially when considering the object-based semantics model ap-
pearing in Section 11. The main contribution of their article is in showing how linearizability can
elegantly model transactional objects, a matter which is orthogonal to our development and read-
ily adaptable to our setting. All the works cited supra are strictly less expressive than the notion of
linearizability we derive. Our notion of linearizability corresponds to a generalization of interval-
sequential linearizability [Castañeda et al. 2015] (the most expressive notion of linearizability prior
to our work) to potentially blocking concurrent objects (while they only model non-blocking ob-
jects, as is typical in the linearizability literature). See Section 8 for a detailed comparison.

For our results on proof methods for proving linearizability, we must mention Herlihy and
Wing [1990], Khyzha et al. [2017], and Schellhorn et al. [2014]. In particular, our program logic
and programming language are adapted from Khyzha et al. [2017, 2016], but with some substantial
modifications: instead of interval partial orders, we use just a concurrent trace as our notion of
possibility; we follow the object-based semantics paradigm and, therefore, encapsulate all state
in objects instead of having programming language constructs that directly modify the shared
state; while they maintain as an invariant that every linearization of their possibility is valid,
we only maintain that there exists at least one valid linearization. We speculate that this last

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:55

modification should make our program logic complete, while theirs is not (see Appendix C for a
counterexample). Since our program logic strictly generalizes theirs, we can translate to our pro-
gram logic any proof using Khyzha et al. [2017]. Although we use the particular program logic in
Section 12, we do not see our program logic as a major contribution of our work. Rather, it serves
the purpose of illustrating the interaction of the theory with a concrete verification methodology
and that objects linearizable under our notion of linearizability are verifiable. We believe that
other program logics, and other proof methodologies can be connected with our framework.

There has been much work in building program logics for reasoning about concurrent programs
[da Rocha Pinto et al. 2014; Dinsdale-Young et al. 2010; Feng et al. 2007; Fu et al. 2010; Jung et al.
2018; Nanevski et al. 2014; Svendsen and Birkedal 2014; Turon et al. 2013; Vafeiadis et al. 2006;
Vafeiadis and Parkinson 2007]. Most of these works only prove soundness with respect to the
particular combination of Rely/Guarantee, Separation Logic and/or Concurrent Separation Logic
involved, but not against linearizability. This sometimes happens even when a proof method
for establishing linearizability is presented, which they justify by citing Filipovic et al. [2010]
and by claiming that they can show observational refinement. This is despite the fact that their
programming language, and hence their notion of refinement, differs from that in Filipovic et al.
[2010]. Notable exceptions in this matter are Birkedal et al. [2021], Khyzha et al. [2017], and Liang
and Feng [2016].

A close relative to linearizability is logical atomicity [da Rocha Pinto et al. 2014; Jung et al. 2019,
2015]. Logical atomicity does address some of the biases delineated in Section 1, and Jung et al.
[2015]’s framework, Iris, is compositional, although only within the confines of Iris. In fact, logi-
cal atomicity is intimately tied to a program logic. Strictly speaking, it only characterizes objects
realizable in a particular operational semantics, and expressible in a particular program logic. It
was invented to make it easier to prove linearizability in Hoare logics. Until recently, there was
no formal account of the relationship between the two. It has been recently shown [Birkedal et al.
2021] that logical atomicity implies Herlihy-Wing linearizability. There is no reason to believe
the reverse implication is provable. It is, moreover, tied to atomicity. Meanwhile, linearizability
(both in our treatment and in the original Herlihy-Wing article) is not tied to a particular logical
framework, or to realizability under a programming language. In the original Herlihy-Wing arti-
cle, it characterizes any non-blocking sequentially consistent concurrent object that behaves as if
their operations happened atomically. The concrete part of our article characterizes sequentially
consistent concurrent objects whose operations behave as if they had linearization intervals.

Conclusion. We believe that linearizability beyond atomicity is currently underdeveloped in the
theory, and hope that our analysis contributes to divorcing linearizability from atomicity as it
presents a strong argument that preservation of happens-before order is the core insight of lin-
earizability. Along these lines, there are both practical (relaxed memory models and architectures)
and theoretical (characterizing concurrent objects under weak consistency) reasons to consider
models that are not sequentially consistent. We believe the framework presented here readily gen-
eralizes to many contexts, which we intend to explore in the future.

APPENDICES

SUMMARY OF THE APPENDICES

A includes a few omitted proofs from Section 6.
B gives a detailed account of the symmetric monoidal closed structure on concurrent games,

and provides the proof of the key results (Proposition 5.12 and bi-semifunctoriality) required
to show the generalized locality property.

C contains the proof of soundness of the program logic from Section 12 and an example to
help compare with the program logic of Khyzha et al. [2017].

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:56 A. Oliveira Vale et al.

D gives detailed proofs of the examples on Section 2 using the program logic presented in
Section 12.

E collects proofs omitted elsewhere in the text.

A KAROUBI ENVELOPE

A.1 2-Karoubinization

In Section 6, in order to categorify linearizability, we found it necessary to work with enriched
semicategories. In particular, we assumed we have a (strict) 2-semicategory (a Cat-enriched semi-
category in the sense of Moens et al. [2002]). While it is certainly the case that the Karoubi envelope
of an ordinary semicategory is a category, one might wonder if the Karoubi envelope of a (strict)
2-semicategory is a (strict) 2-category. We briefly discuss the situation, and start by clarifying what
we mean by the Karoubi envelope of an enriched semicategory.

Definition A.1. Let C be a 2-semicategory. We define its Karoubi envelope Kar C to be the 2-
semicategory described by

Objects Pairs (C ∈ C, e : C → C) of an object C ∈ C and a 1-morphism e ∈ C(C,C) which is
moreover idempotent in that e ◦ e = e .

Hom-Categories For (C, eC) and (D, eD) we define the category Kar C((C, eC), (D, eD)) to
be the subcategory of C(C,D) obtained by restricting its objects (1-morphisms) to those
1-morphisms f ∈ C(C,D) stable under composition with eC and eD in that eD ◦ f ◦ eC = f .

Composition Composition is obtained as the restriction of−◦− : C(D,E)×C(C,D) → C(C,E)
to the relevant subcategories, as per the definition of the Hom-Categories.

Identity Morphisms For an object (C, eC) its identity is the 1-morphism eC ∈ C(C,C).

It is straight-forward to see that 1-morphism composition is well-defined, that is to say, that
1-morphisms in its image are always stable under the relevant idempotents making it a functor
between the Hom-Categories involved. Associativity, therefore, must still hold. The unital laws
hold by essentially the same argument as in the ordinary category theory case.

A.2 Proof of Proposition 6.6

Proposition A.2. If

e− = {eA}A∈C e ′− = {e
′
A}A∈C

are families of idempotents such that there are 2-morphisms:

eA ≤ e ′A

for every A ∈ C, then the mappings L and R defined by

L : Ce → Ce ′ := K ′ ◦ Emb R : Ce ′ → Ce := K ◦ Emb′

define an oplax functor and a lax functor, respectively.

Moreover, for every pair of A,B ∈ C, the associated functors of hom-categories:

LA,B : Ce (A,B) → Ce ′ (A,B) RA,B : Ce ′ (A,B) → Ce (A,B)

form an adjunction.

Proof. For convenience we let

K = Ce K′ = Ce ′

and
K = Ke Emb = Embe K ′ = Ke ′ Emb′ = Embe ′

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:57

We also find that it causes no confusion to refer to the objects

eA ∈ K e ′A ∈ K′

as simply A, since there is a single object of K and K′ that corresponds to an idempotent of A ∈ C.
First, we show the weak functoriality results. We start with L. Note first that

L e = e ′ ◦ e ◦ e ′ ≤ e ′ ◦ e ′ ◦ e ′ = e ′

moreover

L (д ◦ f) = e ′ ◦д ◦ f ◦ e ′ = e ′ ◦д ◦ e ◦ f ◦ e ′ ≤ e ′ ◦д ◦ e ′ ◦ f ◦ e ′ = e ′ ◦д ◦ e ′ ◦ e ′ ◦ f ◦ e ′ = L д ◦ L f

For R, we have
e = e ◦ e ◦ e ≤ e ◦ e ′ ◦ e = R e ′

moreover

R д ◦ R f = e ◦ д ◦ e ◦ e ◦ f ◦ e = e ◦ д ◦ e ◦ f ◦ e ≤ e ◦ д ◦ e ′ ◦ f ◦ e = e ◦ д ◦ f ◦ e = R (д ◦ f)

The enrichment of R and L follows from the fact that they are defined as formulas involving
only composition.

Now, for the adjunction result, we simply note that that for any f : A → B ∈ K and any
f ′ : A→ B ∈ K′:

f = eB ◦ f ◦ eA = eB ◦ eB ◦ f ◦ eA ◦ eA ≤ eB ◦ e
′
B ◦ f ◦ e ′A ◦ eA = R L f

and
L R f ′ = eB ◦ e

′
B ◦ f ′ ◦ e ′A ◦ eA ≤ e ′B ◦ e

′
B ◦ f ′ ◦ e ′A ◦ e

′
A = e ′B ◦ f ′ ◦ e ′A = f ′

the naturality squares, and triangle identities follow simply from being well-typed as K(A,B) and
K′(A,B) are both posetal. �

B TENSORS

In Section 5.6, we briefly discussed a notion of tensor on Conc. We noted there that this notion
of tensor lifts to a symmetric monoidal closed structure in Conc, what we develop in detail here.
Moreover, we gave most, but omitted the proof of Proposition 5.12.

Proposition B.1.
ccopyA⊗B = ccopyA ⊗ ccopyB

Proof. Observe first that

ccopyA⊗B = Φ(copyA⊗B) = Φ((copyA ⊗ copyB))

Now, assuming that s is sequentially consistent, observe that

s ∈ ccopyA⊗B = Φ((copyA ⊗ copyB))

if and only if for every α ∈ ϒ:

πα (s�A) ∈ copyA πα (s�B) ∈ copyB

which is the case if and only if

s�A ∈ ccopyA s�B ∈ ccopyB

if and only if (as we have assumed sequential consistency):

s ∈ ccopyA ⊗ ccopyB

Now, if s ∈ ccopyA⊗B then s is sequentially consistent, and if s ∈ ccopyA ⊗ ccopyB the same holds.
Hence, the assumption is justified. �

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:58 A. Oliveira Vale et al.

Proposition B.2.
− ⊗ − : Conc ⊗ Conc → Conc

is a bi-semifunctor.

Proof. Let
σ : A1 � A2 σ ′ : A2 � A3

τ : B1 � B2 τ ′ : B2 � B3

Suppose first that
s ∈ ((σ ;σ ′) ‖ (τ ;τ ′)) ∩ P(A1�A3)⊗(B1�B3)

then
sA = s�A1�A3 ∈ σ ;σ ′ sB = s�B1�B3 ∈ τ ;τ ′

Hence, there are tA ∈ int(σ ,σ ′) and tB ∈ int(τ ,τ ′) such that

tA�A1,A3 = sA tB�B1,B3 = sB

But then, notice that
s ∈ sA ‖ sB

it is straight-forward to check that we can construct an interleaving

t ∈ tA ‖ tB

such that
t�A1⊗B1,A3⊗B3 = s

and moreover
t�A1,A2,A3 = tA t�B1,B2,B3 = tB

so that
s ∈ (σ ‖ τ); (σ ′ ‖ τ ′)

Now, suppose
s = t�A1⊗B1,A3⊗B3 ∈ (σ ‖ τ); (σ ′ ‖ τ ′)

Then,
t�A1⊗B1,A2⊗B2 ∈ σ ‖ τ t�A2⊗B2,A3⊗B3 ∈ σ ′ ‖ τ ′

hence,
t�A1,A2 ∈ σ t�A2,A3 ∈ σ ′

and
t�B1,B2 ∈ τ t�B2,B3 ∈ τ ′

Hence,
t�A1,A2,A3 ∈ σ ;σ ′ t�B1,B2,B3 ∈ τ ;τ ′

therefore,
t ∈ (σ ;σ ′) ‖ (τ ;τ ′)

The enrichment is obvious. First, if σ ⊆ σ ′ and τ ⊆ τ ′ it follows immediately from the definition
that

σ ‖ τ ⊆ σ ′ ‖ τ ′

Unions are handled in the same way. �

Proposition B.3. (Conc, ⊗, 1) is symmetric monoidal.

Proof. We’ve already proven bi-semifunctoriality in Proposition B.2.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:59

To obtain bifunctoriality, note that

ccopyA ‖ ccopyA = Φ(copyA) ‖ Φ(copyA) = Φ(copyA) = ccopyA

We now move to the monoidal structure.

Lemma B.4. (Conc,KConc ◦ − ⊗ −, 1) is a symmetric monoidal closed categorie.

Proof. We start by showing that the structural morphisms assemble into natural isomorphisms:

A ⊗ (B ⊗ C) (A ⊗ B) ⊗ C

A′ ⊗ (B′ ⊗ C′) (A′ ⊗ B′) ⊗ C′

σA⊗(σB ⊗σC)

αA,B,C

(σA⊗σB)⊗σC

αA′,B′,C′

�

1 ⊗ A A

1 ⊗ B B

1⊗σ

λA

σ

λB

�

A ⊗ 1 A

B ⊗ 1 B

σ ⊗1

ρA

σ

ρB

�

The left and right unital are straight-forward. Indeed, they are simply the identity on the corre-
sponding sequential games so that

λA = Φ(λA) = Φ(copyA) = ccopyA

ρA = Φ(ρA) = Φ(copyA) = ccopyA

Meanwhile,
1 ⊗ σ = {ϵ} ‖ σ = σ

Therefore, we easily check that

(1 ⊗ σ); λB = σ ; ccopyB = σ = ccopyA;σ = λA;σ

(σ ⊗ 1); ρB = σ ; ccopyB = σ = ccopyA;σ = ρA;σ

Now, for the associator, the equation essentially follows from the fact that

πα (σA ⊗ (σB ⊗ σC));αA′,B′,C ′ = (πα (σA) ⊗ (πα (σB) ⊗ πα (σC)));αA′,B′,C ′

= αA,B,C ; ((πα (σA) ⊗ πα (σB)) ⊗ πα (σC))

= αA,B,C ;πα ((σA ⊗ σB) ⊗ σC)

this is the key step to establish that the naturality square commutes. The reverse direction follows
similarly.

The coherence diagrams follow from functoriality of Conc, the fact that the structural mor-
phisms are defined by lifting the sequential ones through Conc. Moreover,

Conc σ ⊗ Conc τ = Conc (σ ⊗ τ)

as is easily checked.
The same argument shows that the braiding morphism is a natural transformation, that it is

invertible and the functoriality of Conc implies that the hexagonal diagram commutes. �

Finally, we establish that Conc is closed.

Lemma B.5. The symmetric monoidal category (Conc, ⊗, 1) is closed.

Proof. We start by noting that there is an isomorphism:

A ⊗ B � C � A � (B � C)

Indeed, it immediately follows from the fact that the underlying sequential arenas are

A ⊗ B � C � A � (B � C)

which induces the necessary natural isomorphism of hom-sets. �
�

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:60 A. Oliveira Vale et al.

The argument for (Atomic,KAtom ◦ − ⊗ −, 1) is analogous except that we construct an atomic
interleaving functor

Atom : Seq −−−−−→ Atomic

that plays the same role as Conc plays in the proof of B.3.

C PROGRAM LOGIC

C.1 The Middle Queue Concurrent Object

Consider a concurrent object with signature

MidQueue := {middeq : N, enq : N→ 1}

Its semantics is similar to a regular queue. An enq(n) adds n to the end of the queue, like the usual
enq in a queue object. middeq(), on the other hand, instead of dequeuing the front element of the
queue, dequeues the center element of the queue (if the queue is even-length, it returns the nearest
of the two elements to front of the queue).

We argue now that Khyzha et al. [2017]’s methodology cannot prove the middle queue object
is linearizable. The issue is in that they keep as invariant that every linearization of their possi-
bility, represented as an interval partial order, is valid (in the sense that it satisfies the linearized
specification). Consider the trace:

s = α1α1α1:::enq(1) · α2α2α2:::enq(2) · α3α3α3:::enq(3) · α1α1α1:::ok · α2α2α2:::ok · α3α3α3:::ok · α4α4α4:::middeq · α4α4α4:::2

We will write:

tx,y,z = αxαxαx :::enq(x) · αxαxαx :::ok · αyαyαy:::enq(y) · αyαyαy:::ok · αzαzαz:::enq(z) · αzαzαz:::ok · α4α4α4:::middeq · α4α4α4:::2

The only two valid linearizations of s are t1,2,3 and t3,2,1. Because of happens-before ordering, the
least ordered interval partial order that can be kept at this point is

α1α1α1:::enq(1) α1α1α1:::ok

α2α2α2:::enq(2) α2α2α2:::ok α4α4α4:::middeq α4α4α4:::2

α3α3α3:::enq(3) α3α3α3:::ok

This partial order does not satisfy their invariant as t2,1,3, t2,3,1, t1,3,2, t3,1,2 are not valid lineariza-
tions but are a linearization of this partial order. We must, therefore, use a more ordered partial
order that orders the enq(2) between the enq(1) and the enq(3) to rule out these linearizations. So
we must choose between

α1α1α1:::enq(1) α1α1α1:::ok α2α2α2:::enq(2) α2α2α2:::ok α3α3α3:::enq(3) α3α3α3:::ok α4α4α4:::middeq α4α4α4:::2

and

α3α3α3:::enq(3) α3α3α3:::ok α2α2α2:::enq(2) α2α2α2:::ok α1α1α1:::enq(1) α1α1α1:::ok α4α4α4:::middeq α4α4α4:::2

But no choice is sound at this point, as we can invalidate each choice by extending the trace with
α4α4α4:::middeq ·α4α4α4:::2 orα4α4α4:::middeq ·α4α4α4:::1, respectively. As our invariant merely requires us to guarantee
that there exists a valid linearization for our possibility, we are able to keep the least ordered
interval partial order we showed without harm. We believe our program logic to be complete due
to its relationship with the development in Section 10, but we do not give a proof of this.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:61

C.2 Soundness Proof

We briefly outline the key reasons why the operational semantics agrees with the denotation.

Proposition C.1. For any M ∈ CMod, �M� is a strategy of type †E � †F and given νE : †E,

�Link νE ;M� = νE ; �M�
Proof. The proof for this is straight-forward, but tedious, and therefore we merely give the

outline. �M� is well-defined, as by definition of ModState, the play in the state is a play of P†E�†F.
Moreover, it is prefix-closed and receptive by definition. Now, that

�M� =‖α ∈ϒ ια (πα �M�)
follows from the fact that in the concurrent semantics, in any state, any agent can take a step. More-
over, a step either does not modify the underlying state s (in the case of skip, ret − or assert(−)),
or, in the case of x ← e(a) it either adds the move ααα:::e (O-position case) or some response ααα:::v
(P-position case). Hence, any (sequentially consistent) interleaving of the projections can be pro-
duced. So it remains to prove that πα (�M�) is always a sequential implementation. Was it not for
the local environment, this would be immediate, as between anO-move f ∈ F and its response the
executed code is generated from the same command M[α]f . Now, the local environment is emp-
tied on every response in F, hence on everyO move in F it is empty prior to the invocation. Hence,
under the same arguments, the same traces are produced by M[α]f every time, which implies
regularity. That

�Link νE ;M� = νE ; �M�
can be observed from the fact that the operational semantics merely restricts steps to those that
play as νE in the source component, which is the same as composing with νE . �

Our proof of soundness is adapted from that from Khyzha et al. [2017]. Define rely(R, P) of a
pre-condition P by a rely R:

rely(R, P) = P ∪ R ◦ P

Given a unary predicate P and a binary predicate R, we define the binary predicate:

x (P | R) y ⇐⇒ x ∈ P ∧ x R y

Then, we define the judgment

safeα (R,G, P ,C,Q)

inductively as follows:

rely(R, P) | ID ⊆ Q

safeα (R,G, P , skip,Q)
Done

∀C ′.C �X
B C ′ ⇒ ∃P ′.R,G |=α {rely(R, P)} B {P ′} safeα (R,G, P

′ ◦ rely(R, P),C ′,Q)

safeα (R,G, P ,C,Q)
Step

A straight-forward proof by induction shows that.

Lemma C.2. If

R,G |=α {P} C {Q}

then

safeα (R,G, P ,C,Q)

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:62 A. Oliveira Vale et al.

Proposition C.3 (Soundness). If R[A],G[A] |=A {P[A]} M[A] {Q[A]} and (ν ′E : †E,νE : †E) is

a linearizable concurrent object then

ν ′E ; �M[A]� ∩ ξF ⊆ KConc νF

Proof. Start by noting that by assumption and Proposition 5.8 it follows that if

νE ; �M[A]� ∩ ξF ⊆ KConc νF

then
ν ′E ; �M[A]� ∩ ξF ⊆ νE ; �M[A]� ∩ ξF ⊆ KConc νF

so it is enough to show
νE ; �M[A]� ∩ ξF ⊆ KConc νF

By definition

P[A] =
⋂
α ∈A

P[α] Q =
⋃
α ∈A

Q[α]

where for each α ∈ A

P[α] =
⋂
f ∈F

P[α]f Q[α] =
⋃
f ∈F

Q[α]f

moreover, for every α ∈ A such that

R[α],G[α] |=α {P[α]} M[α] {Q[α]}

and hence for every f ∈ F :

R[α],G[α] |=α {P[α]f } M[α]f {Q[α]f }

We prove the result by induction on the length of

〈c0,Δ0, ϵ〉 −�M
νE
〈c,Δ, s〉

for which we maintain the invariant that

s�F ∈ ν ′F

and that there is a position ρF such that

s�F � ρF

and that there are pre-conditions Pα for every α ∈ A such that

(Δ, s, ρF) ∈ Pα stable(R[α], Pα)

and moreover:
c(α) = idle ⇒ Pα ⊆ idleα ∧ Pα ⊆ P[α]

¬idleα (h) ⇒ ∃f ∈ F .safeα (R[α],G[α], Pα , c(α), returnedα (f) ◦Q[α]
f)

We note at this point that if this invariant holds about p = s then in particular

s�F � ρF

and by the definition of possibility and Proposition 5.3 it follows that

s�F ∈ KConc νF

We now start the proof proper. We will not bother with the invariant s�F ∈ ν ′F from the defini-
tions of invoke, return and Prim. In the case where

〈c,Δ, s〉 = 〈c0,Δ0, ϵ〉

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:63

we set Pα = P[α] and ρF = ϵ . Most of the invariants are easily established. We stress the invariants
around Pα . Note that in this case c(α) = idle. Now note that (Δ,p, ρF) ∈ idleα for every α ∈ A by
definition. Moreover

Pα = P[α] = ∩f ∈FP[α]
f ⊆ idleα

by assumption that ConcImpl holds. By definition:

Pα = P[α] ⊆ P[α]

Furthermore,
(Δ,p, ρF) ∈ Pα stable(R[α], Pα)

by ConcImpl, and P[α] is stable by ConcImpl.
For the inductive step we have that

〈c0,Δ0, ϵ〉 −�M
νE
〈c,Δ, s〉 −�M

νE
〈c ′,Δ′, s ′〉

Moreover, we have
s�F � ρF

and a pre-condition Pα for each agent α ∈ A such that

(Δ, s, ρF) ∈ Pα stable(R[α], Pα)

and moreover:
c(α) = idle ⇒ Pα ⊆ idleα ∧ Pα ⊆ P[α]

¬idleα (h) ⇒ ∃f ∈ F .safeα (R[α],G[α], invokeα (f) ◦ P[α]
f , Pα , c(α), returnedα (f) ◦Q[α]

f)

We split the proof into cases depending on the continuation for the agent α that modifies the
state in the last step.

c(α) = idle Note that in this case, c ′ = c[α : M[α]f] for some f ∈ F , s ′ = s · ααα:::f . By the
invariant, Pα ⊆ idleα , and in particular (Δ, s, ρF) ∈ idleα . Let (Δ′, s ′, ρ ′F) be such that ρ ′F is
any ρ ′F such that

(s, ρF) invokeα (f) (p
′, ρ ′F)

Note that as (Δ, s, ρF) ∈ idleα it immediately follows that there is exactly one such ρ ′F (given
by just appending ααα:::f to ρF). We argue that

{s ′�F} � ρ ′F

By definition,
ρ ′F = ρF · ααα:::f

Now, by induction there is tP such that

s�F · tP �†F ρF

but then
s�F · ααα:::f · tP �†F s�F · tP · ααα:::f �†F ρF · ααα:::f = ρF

it follows that
{s ′�F} � ρ ′F

Note moreover that as (Δ, s, ρF) ∈ Pα , by induction

(Δ,p, ρF) ∈ Pα ⊆ P[α] ⊆ P[α]f

and by construction
(Δ,p, ρF) invokeα (f) (Δ

′,p ′, ρ ′F)

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:64 A. Oliveira Vale et al.

so that
(Δ′,p ′, ρ ′F) ∈ invokeα ′ (f) ◦ P[α ′]f

In addition, by assumption

R[α],G[α] |=α {invokeα (f) ◦ P[α]
f } M[α]f {returnedα (f) ◦Q[α]

f }

By Lemma C.2 it follows that

safeα (R[α],G[α], invokeα (f) ◦ P[α]
f ,M[α]f , returnedα (f) ◦Q[α]

f)

and
stable(R[α], invokeα (f) ◦ P[α]

f)

so if we let
P ′α = rely(R, invokeα (f) ◦ P[α]

f)

Then it is almost immediate from the definition of safe that

safeα (R[α],G[α], P
′
α ,M[α]

f , returnedα (f) ◦Q[α]
f)

Moreover, by definition P ′α is stable. Hence, P ′α satisfies all the necessary invariants.
Now, for α ′ ∈ A such that α � α ′ we set P ′α ′ = Pα ′ . We must show that (Δ′, s ′, ρ ′F) ∈ Pα ′ . For
that, note that by induction Pα ′ is stable and by assumption R[α ′] contains invokeα (f) ⊆
invokeα (−) so that Pα ′ is stable under invokeα (f). Now, (Δ′, s ′, ρ ′F) ∈ idleα ⇐⇒ (Δ, s, ρF) ∈

idleα by definition. It is obvious that if (Δ′, s ′, ρ ′F) ∈ idleα then all the conditions are still
satisfied by induction. Finally, if (Δ′, s ′, ρ ′F) � idleα then there is an operation f ′ for which
it holds that

safeα ′ (R[α ′],G[α ′], Pα ′, c(α ′), returnedα ′ (f ′) ◦Q[α ′]f
′

)

But then, it is immediate that c ′(α ′) = c(α ′) so that

safeα ′ (R[α ′],G[α ′], Pα ′, c ′(α ′), returnedα ′ (f ′) ◦Q[α ′]f
′

)

c(α) = skip In this case it must be that c ′ = c[α : idle], s ′ = s · ααα:::v for some v ∈ ar(f) and
Δ′ = Δ[α :]. By induction there exists f ∈ F such that

safeα (R[α],G[α], Pα , c(α), returnedα (f) ◦Q[α]
f)

In this case safeα consists of a Done rule, and, therefore,

rely(R, Pα) ⊆ returnα (f) ◦Q[α]
f

In particular

(Δ, s, ρF) ∈ Pα ⊆ rely(R, Pα) ⊆ returnedα (f) ◦Q[α]
f

Therefore, ρF already has the return v to f for α . Then, we have that if we let ρ ′F = ρF then

(Δ, s, ρF) returnα (f) (Δ
′, s ′, ρ ′F)

Moreover, by induction
s�F � ρF

and therefore there is tP proving the above derivation. Now,

s ′�F = s�F · ααα:::v

Hence
s ′�F �νF

ρ ′F = ρF

by choosing t ′P = tP \ααα:::v . So, we set

P ′α = P[α]

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:65

Then, by construction and by LocalImpl:

(Δ′,p ′, ρ ′F) ∈ returnα (f) ◦ returnedα (f) ◦Q[α]
f ◦ invokeα (f) ◦ P[α]

f ⊆ P ′α

stable(R[α], P ′α)

Moreover,
P ′α = P[α] ⊆ idleα

and
P ′α = P[α] ⊆ P[α]

For the other agents α ′ ∈ A the invariants all hold by induction by setting P ′α ′ = Pα ′ . Indeed,
the point of pressure is showing that (Δ′, s ′, ρ ′F) ∈ P ′α ′ but P ′α ′ is stable under returnα ′ (−) by
assumption (Δ,p, ρF) ∈ Pα ′ so that (Δ′,p ′, ρ ′F) ∈ P ′α ′ .

c(α) = C and C � skip In this case, we have that C �X
B C ′ and (Δ′, s ′) ∈ �B�α (Δ, s). The

interesting case is when B is an command issuing an effect from E, so we assume s ′ = s ·ααα:::m
wherem is the move resulting from B. Moreover, there is some f ∈ F

safeα (R[α],G[α], Pα ,C, returnedα (f) ◦Q[α]
f)

Now, notice that it follows by safeα that

∃P ′.R,G |=α {rely(R[α], Pα)} B {P
′}

and
safeα (R[α],G[α], P

′ ◦ rely(R, Pα),C
′, returnedα (f) ◦Q[α]

f)

Now, by assumption (Δ,p, ρF) ∈ Pα and s�E · ααα:::m ∈ νE . Therefore, by

R[α],G[α] |=α {rely(R[α], Pα)}m {P}

it follows that there is some ρ ′F such that

(Δ,p, ρF) P
′ (Δ′, s · ααα:::m, ρ ′F) (Δ, s, ρF) G (Δ′, s · ααα:::m, ρ ′F) ρF � ρ ′F

by assumption
s�F � ρF

so that
s ′�F = s�F � ρF � ρ ′F

Moreover, if we set P ′α = P ′ then

safeα (R[α],G[α], P
′
α ,C

′, returnedα (f) ◦Q[α]
f)

and moreover
(Δ′, s ′, ρ ′F) ∈ P ′α

which meets all of the necessary invariants.
For agents α ′ ∈ A such that α � α ′, the invariants all still hold by induction, except for
perhaps (Δ′,p ′, ρ ′F) ∈ Pα ′ . But as

(Δ,p, ρF) G[α
′] (Δ′,p ′, ρ ′F)

and
(Δ,p, ρF) ∈ Pα ′

it follows from assumption that

G[α] ⊆ R[α ′]

and by stability that
(Δ′,p ′, ρ ′F) ∈ Pα ′

as desired. �

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:66 A. Oliveira Vale et al.

D VERIFICATION OF A TICKET LOCK AND SHARED QUEUE IMPLEMENTATIONS

In this section, we give detailed proofs, using the program logic from Section 12, that the compo-
nents in Section 2 assemble into certified linearizable object implementations. In D.1, we show the
proof for the ticket lock implementation Mlock, and in D.2 for Msqueue.

For practical purposes it is often useful to assume ν ′F is not receptive. This does not affect the
result as if ν ′F ⊆ KConc νF then strat(ν ′F) ⊆ KConc νF , and similarly for νE ; �M�.

D.1 Ticket Lock

Here, we assume that

(ν ′fai : †FAI,νfai : †FAI) (ν ′counter : †Counter,νcounter : †Counter) (ν ′yield : †Yield,νyield : †Yield)

are linearizable objects. Therefore, by locality

(ν ′E ,νE) := (ν ′fai ⊗ ν ′counter ⊗ ν ′yield,νfai ⊗ νcounter ⊗ νyield)

is a linearizable object. We, therefore, seek to show that

�Mlock� : (ν ′E ,νE) −→ (strat(ν ′lock),νlock)

by using our program logic. By the remarks at the beginning of this section, here ν ′lock is the set of
plays s ∈ P†Lock such that

∀α ∈ ϒ.∃t ∈ (acq · ok · rel · ok)∗.πα (s) � t

we are allowed to take this ν ′lock, which is not receptive, because of the remarks in the beginning
of this section. With the proof setup explained, we proceed to the proof proper.

We apply the program logic developed in Section C on the ticket lock implementation discussed
in Section 2.2.2. In particular, we concern ourselves to the adapted implementation in Figure 8,
written in the language introduced in Section 12.1, and already de-sugared.

Fig. 8. Ticket lock implementation in language developed in Section 12.1.

Before go into details, we briefly describe the intuition behind ticket locks. Each agent tries to
acquire a lock first by atomically fetching a ticket number and incrementing its value, making sure
the next agent will get a greater ticket number. Afterward, each agent waits for the “now serving”
counter to become its ticket number, at which point they are granted access to the shared resource
protected by the lock. When the lock holder tries to release the lock, it simply (non-atomically)
increments the counter value. Part of the correctness proof is to establish that write-write will
never happen on the counter, otherwise, it would lead to undefined behavior.

Formally, we need to prove the following judgment,

R[ϒ],G[ϒ] |=ϒ {P[A]} MLock[ϒ] {Q[A]}

according to the Conc Impl and Local Impl rule and symmetry, in addition to other obligations,
we need to find a definition of P[α]f and Q[α]f for f ∈ {acq, rel}, R[α], and G[α] (same for every

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:67

α ∈ ϒ) such that the following three judgments holds,

R[α],G[α] |=α {P[α]
acq} MLock[α]

acq {Q[α]acq}

R[α],G[α] |=α {P[α]rel} MLock[α]
rel {Q[α]rel}

∀α ,α ′ ∈ ϒ.α � α ′ =⇒ G[α] ∪ invokeα (−) ∪ returnα (−,−) ⊆ R[α
′]

To define preconditions and postconditions of acquire and release and rely/guarantee conditions,
it would be helpful to have access to the current counter value, ticket value, lock owner, and so
on in addition to the history. To this end, we define a set of functions that take different types of
plays to calculate these state values.

We first define three functions over lock events,

linowner : P!Lock → ϒ + {	} + {⊥} lin : P†Lock → P!Lock owner : P†Lock → ϒ + {	} + {⊥}

linowner(p) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
	 p = ϵ

α p = p ′ · ααα:::acq · ααα:::ok ∧ linowner(p ′) = 	

	 p = p ′ · ααα:::acq · ααα:::ok · ααα:::rel · ααα:::ok ∧ linowner(p ′) = 	

⊥ otherwise

lin(p) := p′ s.t. p′ ∈ P!Lock ∧ p′ � p ∧ linowner(p′) � ⊥ ∧ (∀p”.p” � p ∧ linowner(p”) � ⊥ =⇒ p” � p′)

owner(p) := linowner(lin(p))

linowner takes an atomic play of Lock as input. It checks for the lock invariant (acquire is always
followed by release of the same thread) and returns the current owner agent. The function lin takes
a concurrent play of Lock and returns the longest prefix of it that is atomic and satisfies the lock
invariant. Finally, the function owner takes any concurrent play of Lock and returns the owner
calculated by linowner ◦ lin.

We then define three functions over underlay events ctrval : P†Counter⊗†FAI⊗†Yield → N + {⊥},
mytkt : P†Counter⊗†FAI⊗†Yield → N + {	}, and newtkt : P†Counter⊗†FAI⊗†Yield → N.

ctrval(p) :=

{⌈
|(p�Counter)�{inc:1} |

2

⌉
(p�Counter)�{inc:1} ∈ P!{inc:1}

⊥ otherwise

ctrval accepts any trace that contains only atomic {inc : 1} sequences for the Counter object. It
returns the number of inc calls in the trace, which is also the return value of get if invoked at the
time, according to νCounter.

mytktα (p) :=

{
n ∃p ′,p”.πα (p) = p

′ · fai · n · p” ∧ p” � (yield · ok · get · n′)∗ · inc

	 otherwise

newtkt(p) :=

⌈ ��(p�FAI)�{fai:N}

��
2

⌉
mytktα returns the current ticket for a particular agent. It will only return if the ticket is still active,
i.e., the agent has already acquired a ticket in acq but haven’t reached the linearization point in
the matching rel. On the other hand, newtkt always returns the next ticket to be issued.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:68 A. Oliveira Vale et al.

With the helper functions defined, we can now state the preconditions and postconditions as
follows:

acqed[α](Δ, s, ρ) ⇐⇒ I (Δ, s, ρ) ∧ owner(ρ) � α

reled[α](Δ, s, ρ) ⇐⇒ I (Δ, s, ρ) ∧ owner(ρ) = α

P[α]acq := reled[α] ∩ idleα

(Δ, s, ρ) Q[α]acq (Δ′, s ′, ρ ′) ⇐⇒ acqed[α](Δ′, s ′, ρ ′)

P[α]rel := acqed[α] ∩ idleα

(Δ, s, ρ) Q[α]rel (Δ′, s ′, ρ ′) ⇐⇒ reled[α](Δ′, s ′, ρ ′)

One may notice that postconditions, while being an relation, is only predicated over the post-
state. This is true for most of the reasoning except for the linearization point as we shall see later.
All predicates (relations) are composed of a shared invariant I and an ownership assertion. The
definition of I is given below:

mytick[α](Δ, s) ⇐⇒ Δ(α)(my_tick) � ⊥ =⇒ Δ(α)(my_tick) = mytktα (s)

curtick[α](Δ, s) ⇐⇒ Δ(α)(cur_tick) � ⊥ =⇒ ∃s ′.s ′ � s ∧ ctrval(s ′) = Δ(α)(cur_tick)

I [α](Δ, s, ρ) ⇐⇒

��������������

owner(ρ) � ⊥ ∧ ctrval(s) � ⊥ ∧

mytktα (s) � 	 =⇒ ctrval(s) ≤ mytktα (s) ∧

ctrval(s) ≤ newtkt(s) ∧

mytktα (s) = ctrval(s) =⇒ owner(ρ) ∈ {	,α } ∧

newtkt(s) = ctrval(s) =⇒ owner(ρ) = 	 ∧

owner(ρ) = α =⇒ mytktα (s) = ctrval(s) ∧

mytick[α](Δ, s) ∧ curtick[α](Δ, s)

��������������
The invariant I not only relates the local environment to the shared objects, it also specify the
expected behavior of shared objects, such as the current value of the counter object is never greater
than the next ticket to be dispensed. As we shall describe later, we also maintain I during execution
inside the functions.

To prove R[α],G[α] |=α {P[α]f } MLock[α]
f {Q[α]f }, we need such a R[α] that both

stable(R, P[α]f) and stable(R,Q[α]f) holds. We define R[α] in such a way that the stability is
trivial to prove,

(Δ, s, ρ) R[α] (Δ, s ′, ρ ′) ⇐⇒

��������������������������

(Δ, s, ρ) invokeA\α (−) (Δ, s
′, ρ ′)∨

(Δ, s, ρ) returnA\α (−) (Δ, s
′, ρ ′)∨

���������������������

owner(ρ ′) � ⊥ ∧ ctrval(s ′) � ⊥ ∧((
mytktα (s) � 	 =⇒ ctrval(s) ≤ mytktα (s)

)
=⇒(

mytktα (s
′) � 	 =⇒ ctrval(s ′) ≤ mytktα (s

′)
)) ∧

ctrval(s ′) ≤ newtkt(s ′) ∧((
mytktα (s) = ctrval(s) =⇒ owner(ρ) ∈ {	,α }

)
=⇒(

mytktα (s
′) = ctrval(s ′) =⇒ owner(ρ ′) ∈ {	,α }

)) ∧
newtkt(s ′) = ctrval(s ′) =⇒ owner(ρ ′) = 	 ∧

owner(ρ) = α =⇒ (lin(ρ) = lin(ρ ′) ∧ ctrval(s) = ctrval(s ′)) ∧

owner(ρ) � α =⇒ owner(ρ ′) � α

���������������������

��������������������������
J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:69

while the stability of the invariant I is mostly self-evident, we will present the stability argument
for the ownership assertions below:

— If owner(ρ) = α , we can rely on that lin(ρ) = lin(ρ ′), through the definition of owner we can
deduce that owner(ρ ′) = owner(ρ) = α . With a similar argument we can also deduce that
mytktα (s

′) = ctrval(s ′) assuming ownership of the lock,
— If owner(ρ) � α , the last conjunct of R[α] enforces that we won’t become the owner by any

other agent’s action.

In addition to R[α], we also need to define G[α] such that G[α] ∪ invokeα (−)∪ returnα (−,−) ⊆
R[α] holds. Similar to the design of R[α], we define G[α] in such a way that the subset relation is
trivial,

(Δ, s, ρ) G[α] (Δ, s ′, ρ ′) ⇐⇒

�����������������������

owner(ρ ′) � ⊥ ∧ ctrval(s ′) � ⊥ ∧

∀α ′.
((

mytktα ′ (s) � 	 =⇒ ctrval(s) ≤ mytktα ′ (s)
)
=⇒(

mytktα ′ (s ′) � 	 =⇒ ctrval(s ′) ≤ mytktα ′ (s ′)
)) ∧

ctrval(s ′) ≤ newtkt(s ′) ∧

∀α ′.
((

mytktα ′ (s) = ctrval(s) =⇒ owner(ρ) ∈ {	,α ′}
)
=⇒(

mytktα ′ (s ′) = ctrval(s ′) =⇒ owner(ρ ′) ∈ {	,α ′}
)) ∧

newtkt(s ′) = ctrval(s ′) =⇒ owner(ρ ′) = 	 ∧

owner(ρ) � {	,α } =⇒ lin(ρ) = lin(ρ ′) ∧

owner(ρ) � α =⇒ ctrval(s) = ctrval(s ′) ∧

owner(ρ ′) ∈ {	,α , owner(ρ)}}

�����������������������
Most conjuncts in R have direct correspondence in G, and we will present a short argument for
those doesn’t. Assuming α is the rely agent and α ′ is the actor (guarantee) agent,

— if owner(ρ) = α and therefore owner(ρ) � α ′, by the second and third last conjuncts in
G[α ′], we know that lin(ρ) = lin(ρ ′) and ctrval(s) = ctrval(s ′),

— if owner(ρ) � α , we know from the last conjunct that owner(ρ) can only be 	, α ′, or
owner(ρ), none of which is α .

Even though the R[α] and G[α] are defined in such a way that the stability and subset relation
are easy to verify, it remains to be proven that G[α] is correct with respect to the implementation,
though G[α] is held trivially at steps that don’t update s or ρ.

Now that we have all the proof obligations defined, we will prove that

R[α],G[α] |=α {P[α]f } MLock[α]
f {Q[α]f }

using the primitive rule and structure rules. The general idea is to prove that, in the case for acquire
and symmetric for release, reled[α]f is maintained at every step, in the form of

{reled[α](Δ, s, ρ)} B {reled[α](Δ′, s ′, ρ ′)}

before linearization. While acqed[α] is maintained at every step after linearization in the form of

{acqed[α](Δ, s, ρ)} B {acqed[α](Δ′, s ′, ρ ′)}

At linearization points (line 6 for acq and line 2 for rel), the precondition is transformed into
corresponding postcondition while updating the possibility ρ according to the commit functions

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:70 A. Oliveira Vale et al.

defined below:

commit[α](ρ)acq :=

{
lin(ρ) · ααα:::acq · ααα:::ok · p1 · p2 ρ = lin(ρ) · p1 · ααα:::acq · p2

⊥ otherwise

G �α {reled[α](Δ, s, ρ)} assert(cur_tick = my_tick) {acqed[α](Δ′, s ′, ρ ′) ∧ commit[α]acq(ρ) � ρ ′}

commit[α]rel(ρ) :=

{
lin(ρ) · ααα:::rel · ααα:::ok · p1 · p2 ρ = lin(ρ) · p1 · ααα:::rel · p2

⊥ otherwise

G �α {acqed[α](Δ, s, ρ)} inc() {reled(Δ′, s ′, ρ ′) ∧ commit[α]rel(ρ) � ρ ′}

notice we can only obtain a prefix relation in the postcondition, this is due to stability requirement
as other agents might changes ρ ′ after linearization, but at least the linearized prefix is kept the
same. while the commit functions may return ⊥, the invariant I and concurrent specification ν ′

Lock
makes sure that this won’t happen during execution.

Figure 9 provides a more detailed proof sketch of acq. The green component in each assertions
are already complete for the reasoning, we highlight the crucial conjuncts inside the invariant in
the blue component to better illustrate the reasoning. We also discuss in details the crucial steps
below

(1) on line 2, the local variable my_tick is updated to be the value of newtkt(s)while simultane-
ously increasing the value of newtkt(s ′) by 1. In case of newtkt(s) = ctrval(s), the invariant
in the precondition implies empty ownership of the lock maintaining itself. This operation
also increment newtkt, but all guarantee conditions and invariants are justified after the
update,

(2) on line 5, the local variable cur_tick is updated to be the value of ctrval(s). While the trace
s will grow in the future, we have the knowledge that there exists a prefix s ′ of s such that
ctrval(s ′) = Δ(cur_tick). On the other hand, since ctrval(s) is non-decreasing w.r.t. s , we
know a lower bound of the value for the future ctrval(s),

(3) on line 6, we compare the value of my_tick and cur_tick, which is equal to the current
value of mytktα (s) and a lower bound of the current value ctrval(s) respectively. If the val-
ues coincides, we can deduce that mytktα (s) = ctrval(s). According to the invariant in the
precondition, it implies the lock is either owned by α or nobody. On the other hand, we
know that α is not the owner at the beginning of the function, and it is maintained by R[α].
Therefore, we know the lock is free. We then linearize the acq event at this point by updat-
ing ρ with commit[α]acq. G[α] is justified at this step since the only change is owner(ρ ′)
becoming α , which doesn’t fit in any premises of G[α].

Similarly, Figure 10 provides a proof sketch of rel and we highlight the crucial steps below,

(1) on line 2, we know that we currently holds the lock, and that currently ctrval(s) =
mytktα (s) < newtkt(s) from the invariant, which also implies the invariant between
newtkt(s ′) and ctrval(s ′) will be maintained after incrementing the counter. Furthermore,
we can linearize the rel event by updating ρ with commit[α]rel. G[α] may be easily verified
except for the second conjunct, whose proof would benefit from the following lemma,

∀α ,α ′ ∈ ϒ.mytktα (s) � 	 ∧mytktα ′ (s) � 	 =⇒ mytktα (s) � mytktα ′ (s)

in other words, no two agents share the same ticket. This is provable by the underlay spec.
νFAI. Combined with the fact that ctrval(s) = mytktα (s), we know ctrval(s) � mytktα ′ (s)
for all other agent α ′ in the system. Assuming the premise of the second conjunct, we can
derive that for any other agent α ′ such that mytktα ′ (s) � 	, it must be that ctrval(s) <

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:71

Fig. 9. Proof for acq.

mytktα ′ (s) = mytktα ′ (s ′). After the increment, we would still have ctrval(s ′) ≤ mytktα ′ (s ′),
therefore maintaining the same assertion.

Fig. 10. Proof for rel.

Gathering together all the resources we have collected so far, we have proven,

— (Δ0, ϵ, ϵ) ∈ P[α]f for f ∈ {acq, rel}, since ctrval(ϵ) = newtkt(ϵ) = 0, mytktα (ϵ) = 	, and
owner(ρ) = 	,

— stable(R[α], P[α]f) ∧ stable(R[α],Q[α]f) for f ∈ {acq, rel} by construction,
— R[α],G[α] |=α {invokeα (f)◦P[α]

f }MLock[α]
f {returnα (f)◦Q[α]

f } verified using the logic,

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:72 A. Oliveira Vale et al.

— ∀f , f ′ ∈ F .returnα (f
′) ◦ returnedα (f

′) ◦Q[α]f
′
◦ invokeα (f

′) ◦ P[α]f
′
⊆ P[α]f for f , f ′ ∈

{acq, rel}, since the only traces that doesn’t satisfy the subset relation will be rejected by the
ν ′

Lock
.

With the Local Impl rule, we can derive the following judgment

F = {acq, rel} ∀f ∈ F .(Δ0, ϵ, ϵ) ∈ P[α]f ∀f ∈ F .P[α]f ⊆ idleα stable(R[α], P[α]f)

stable(R[α],Q[α]f) R[α],G[α] |=α {invokeα (f) ◦ P[α]
f } MLock[α]

f {returnα (f) ◦Q[α]
f }

∀f , f ′ ∈ F .returnα (f
′) ◦ returnedα (f

′) ◦Q[α]f
′

◦ invokeα (f
′) ◦ P[α]f

′

⊆ P[α]f

R[α],G[α] |=α {∩f ∈FP[α]
f } MLock[α] {∪f ∈FQ[α]

f }

We furthermore have G[α] ∪ invokeα (−) ∪ returnα (−) ⊆ R[α ′] for α ,α ′ ∈ ϒ and α � α ′ by
construction. We then can obtain the top level theorem by invoking Conc Impl rule,

∀α ∈ ϒ.R[α],G[α] |=α {P[α]} MLock[α] {Q[α]}
∀α ,α ′ ∈ ϒ.α � α ′ ⇒ G[α] ∪ invokeα (−) ∪ returnα (−) ⊆ R[α

′]

R[ϒ],G[ϒ] |=ϒ {∩α ∈ϒP[α]} MLock[ϒ] {∪α ∈ϒQ[α]}

In other words, we have proven that MLock is a linearizable lock object w.r.t. νLock for the entire
system.

D.2 Concurrent Queue

In this subsection, we present a short proof that the concurrent queue implementation is correct
using the same program logic. The intuition behind the correctness is that the sequential queue is
protected by the lock. Formally, we will relate the history of the sequential queue to the ownership
of the lock. The set up is as follows. We have linearizable concurrent objects

(ν ′lock : †Lock,νlock : †Lock) (ν ′queue : †Queue,ν ′queue : †Queue)

by locality we can construct the linearizable object

(ν ′lock ⊗ ν ′queue,νlock ⊗ ν ′queue)

We therefore seek to show that

�Msqueue� : (ν ′lock ⊗ ν ′queue,νlock ⊗ ν ′queue) → (ν ′squeue,νsqueue)

is a linearizable object implementation. Similar to verification of the lock, we will define several
helper functions.

We first define a function

owner : P†Lock⊗†Queue → ϒ + {⊥} + {	}

to denote the ownership of the lock object, defined as follows:

owner(p) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
	 p�Lock = ϵ · ααα:::acq?

α p�Lock = p
′ · ααα:::acq · ααα:::ok · ααα:::rel? ∧ owner(p ′) = 	

	 p�Lock = p
′ · ααα:::acq · ααα:::ok · ααα:::rel · ααα:::ok · α ′α ′α ′:::acq? ∧ owner(p ′) = 	

⊥ otherwise

while this owner function looks similar to the other owner function defined in the proof for the
lock, there is a major differences between them: we can now assume Lock is linearized to an atomic
specification, we no longer need to reason about interleaving between acquires and releases.

We also define a function lin : P†Queue → P!Queue to denote the longest linearized prefix of ρ,

lin(p) = p0 ⇐⇒ p0 ∈ P!Queue ∧ p0 � p ∧ ∀p ′ ∈ P!Queue.p
′ � p =⇒ p ′ � p0

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:73

Finally, we define a function queue : P!Queue → list N + {⊥} + {	}, which is the functional
specification for both the sequential queue and shared queue.

queue(p) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[] p = ϵ · e?

q ++ [n] p = p ′ · enq(n) · ok · e? ∧ queue(p ′) = q

q p = p ′ · deq · n · e? ∧ queue(p ′) = n :: q

[] p = p ′ · deq · 	 · e? ∧ queue(p ′) = []

⊥ otherwise

We can now prove the correctness using the program logic. We start by defining the shared
invariant I , rely condition R[α], and guarantee condition G[α],

I (Δ, s, ρ) ⇐⇒

(
owner(s) � ⊥ ∧ queue(lin(ρ)) � ⊥ ∧(
owner(s) = 	 =⇒ (lin(ρ) = s�Queue0

)
))

(Δ, s, ρ) R[α] (Δ′, s ′, ρ ′) ⇐⇒
����

invokeA\α (−) ∨ returnA\α (−) ∨(
owner(s ′) � ⊥ ∧ queue(lin(ρ ′)) � ⊥ ∧

owner(s) = α =⇒
(
s�Queue0

= s ′�Queue0
∧ lin(ρ) = lin(ρ ′)

))����
(Δ, s, ρ) G[α] (Δ′, s ′, ρ ′) ⇐⇒

(
owner(s ′) � ⊥ ∧ queue(lin(ρ ′)) � ⊥ ∧

owner(s) � α =⇒
(
s�Queue0

= s ′�Queue0
∧ lin(ρ) = lin(ρ ′)

))
We can then give the same precondition and postcondition to enq and deq,

P[α]f (Δ, s, ρ) ⇐⇒ idleα ∧ I (Δ, s, ρ) ∧ owner(s) � α

(Δ, s, ρ) Q[α]f (Δ′, s ′, ρ ′) ⇐⇒ I (Δ′, s ′, ρ ′) ∧ owner(s ′) � α

Finally, we can define the commit functions to linearize the enq and deq events,

commit[α]enq(ρ) :=

{
lin(ρ) · enq(n) · ok · p1 · p2 ∃p1,p2.ρ = lin(ρ) · p1 · ααα:::enq(n) · p2

⊥ otherwise

commit[α]deq(ρ,n) :=

{
lin(ρ) · deq · n · p1 · p2 ∃p1,p2.ρ = lin(ρ) · p1 · ααα:::deq · p2

⊥ otherwise

The proof for deq is sketched in Figure 11. The proof for enq is ommited as it’s symmetric to
deq. We highlight the crucial steps below:

(1) when the agent successfully acquires the lock, we know from νLock that the pre-state of
L.acq() must satisfy that owner(s) = 0, which allows us to open the invariant and infer that
lin(ρ) = s�Queue0

. We also know that owner(s ′) = α , which allows us to temporarily break
the lock invariant while holding the lock,

(2) while holding the lock, we can safely access the sequential queue. This is justified by R[α],
specifically owner(s) = α =⇒

(
s�Queue0

= s ′�Queue0
∧ lin(ρ) = lin(ρ ′)

)
,

(3) when it’s time to release the lock, we linearize the lock with commit[α]deq. This is justified
because commit[α]deq(ρ,Δ(α)(r)) = s�Queue0

, and we also know that queue(s�Queue0
) � ⊥ by

ν ′queue and the fact that s�Queue0
= ρ · deq · Δ(α)(r) ∈ P!Queue,

(4) G[α] is easily justified since the agent only modifies the sequential queue or the linearized
shared queue while holding the lock.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:74 A. Oliveira Vale et al.

Fig. 11. Proof for deq.

E PROOF COMPENDIUM

E.1 Proof of 3.5

Proposition E.1. Strategy composition is well-defined and associative.

Proof. Well-Defined Indeed, suppose σ : A � B and τ : B � C. Since ϵ ∈ σ and ϵ ∈ τ it
follows that taking

ϵ ∈ int(A,B,C)

we have that

ϵ�A,B = ϵ ϵ�B,C = ϵ

And, therefore,

ϵ�A,C = ϵ ∈ σ ;τ

from which it follows that σ ;τ is non-empty.
Now, suppose s ∈ σ ;τ and that p � s . Then, there exists s ′ ∈ int(σ ,τ) such that s ′�A,C = s .
In particular p � s ′�A,C. Hence, there is prefix p ′ � s ′ such that p ′�A,C = p. Now, consider
p ′. Since s ′�A,B ∈ σ and σ is prefix-closed it follows that because p ′�A,B � s ′�A,B ∈ σ we
have that p ′�A,B ∈ σ . Similarly, p ′�B,C ∈ τ . Hence, it follows that p ′ ∈ int(σ ,τ) and therefore
p ∈ σ ;τ .
Suppose s ∈ σ ;τ and that s ·o ∈ PA�C and o is an Opponent move. Then, there is s ′ ∈ int(σ ,τ)
such that s ′�A,C = s . If o is a move in A then note that since s ′ ∈ int(A,B,C) it is such that
s ′�A,B ∈ σ ⊆ PA�B. Now, suppose o is a move by agent α ∈ ϒ and consider sα = πα (s

′�A,B).
By the switching condition of the sequential game A = (MA, PA) and the fact that sα�A · o ∈
ια (PA) it follows that sα had its last move inA. But then, s ′�A,B ·o ∈ PA�B and hence, since σ
is receptive and s ′�A,B ∈ σ it follows that s ′�A,B ·o ∈ σ . Again, by switching, πα (s

′)must have
had its last move in A. Hence, s ′ · o ∈ int(A,B,C) from which it follows that s ′ · o ∈ int(σ ,τ)
and, therefore, s · o ∈ σ ;τ as desired. The argument for o a move in C is dual appealing to
the receptivity of τ .

Associative Indeed, suppose σ : A � B, τ : B � C, and ν : C � D. Let s�A,D ∈ (σ ;τ);ν
where s ∈ int((σ ;τ),ν). Then, there is t ∈ int(σ ,τ) such that s�A,C = t�A,C ∈ σ ;τ .
Then, because s�A,C = t�A,C we can definev a sequence of moves such thatv�A,C,D = s and
v�A,B,C = t . Finally, since v�B,C = t�B,C it follows that v�B,C ∈ τ . Similarly, v�C,D = s�C,D
implies v�C,D ∈ ν . Hence, v�B,C,D ∈ int(τ ,ν) and v�B,D ∈ τ ;ν . Now, v�A,B = t�A,B ∈ σ , it

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:75

follows then that v�A,B,D ∈ int(σ , (τ ;ν)) and hence

s�A,D = v�A,D ∈ σ ; (τ ;ν)

The other inclusion is symmetric. �

E.2 Order Enrichment

Lemma E.2. Let A = (MA, PA), B = (MB , PB) and C = (MC , PC) be concurrent games and σ : A �
B and τ : B � C be concurrent strategies. Then, for every α ∈ ϒ:

πα (σ ;τ) ⊆ πα (σ);πα (τ)

Proof. Suppose s�A,C ∈ σ ;τ where s ∈ int(σ ,τ). Then

πα (s)�A,B = πα (s�A,B) ∈ πα (σ)

and similarly
πα (s)�B,C = πα (s�B,C) ∈ πα (τ)

and hence
πα (s) ∈ int(πα (σ),πα (τ))

so that
πα (s)�A,C ∈ πα (σ);πα (τ) �

Proposition E.3.
Conc : Semi Seq → Conc

defines a semifunctor.

Proof. Let σ : A � B. It is straight-forward to see that Conc σ is well-defined. Indeed, as ϵ ∈ σ
it follows that ϵ ∈ Conc σ . Now, suppose s ∈ Conc σ and p � s . Then, p is still an interleaving of
plays of σ as σ is prefix-closed. For receptivity note that if s ∈ Conc σ and s · o ∈ PA�B where o
is an Opponent move then πα (o)(s) · o ∈ PA�B by definition and by receptivity of σ it follows that
πα (o)(s) · o ∈ σ and, therefore, s · o is still an interleaving of σ plays. Therefore, Conc σ is indeed a
concurrent strategy of the appropriate type.

It remains to show that Conc (σ ;τ) = Conc σ ; Conc τ . By definition and Lemma E.2

∀α ∈ ϒ.πα (Conc σ ; Conc τ) ⊆ πα (Conc σ);πα (Conc τ) = σ ;τ

and hence
Conc σ ; Conc τ ⊆ Conc (σ ;τ)

Now suppose s ∈ Conc (σ ;τ). This means that

∀α ∈ ϒ.πα (s) ∈ σ ;τ

In particular, for all α ∈ ϒ there is a a play sα ∈ int(σ ,τ) such that

sα�A,C = πα (s)

while
sα�A,B ∈ σ sα�B,C ∈ τ

It is straight-forward to show that one can construct a sequence s ′ ∈ int(Conc σ ,Conc τ) by
interleaving the sα such that

s ′�A,C = s �

Proposition E.4. ccopyA is idempotent for every A.

Proof. By Proposition E.3

ccopyA; ccopyA = Conc copyA; Conc copyA = Conc (copyA; copyA) = Conc copyA = ccopyA �

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:76 A. Oliveira Vale et al.

E.3 Proposition 4.4

Proposition E.5. For strategies

σ : A � B τ : B � C

the following all hold:

(1) If

σ ⊆ σ ′ : A � B τ ⊆ τ ′ : B � C

then

σ ;τ ⊆ σ ′;τ ′

(2) Given a family

σi : A � B

it holds that (⋃
i ∈I

σi

)
;τ =

⋃
i ∈I

(σi ;τ)

(3) Given a family

τi : B � C

it holds that

σ ;
⋃
i ∈I

τi =
⋃
i ∈I

(σ ;τi)

Proof. (1) Suppose s�A,C ∈ σ ;τ . Then

s�A,B ∈ σ ⇒ s�A,B ∈ σ ′

s�B,C ∈ τ ⇒ s�B,C ∈ τ ′

hence
s ∈ int(σ ′,τ ′) ⇒ s�A,C ∈ σ ′;τ ′

(2) One direction is simple as we have that

σi ⊆
⋃
i ∈I

σi

so that

σi ;τ ⊆

(⋃
i ∈I

σi

)
;τ

by monotonicity and hence ⋃
i ∈I

(σi ;τ) ⊆

(⋃
i ∈I

σ

)
;τ

For the other direction, suppose

s�A,C ∈

(⋃
i ∈I

σ

)
;τ

then
s�A,B ∈

⋃
i ∈I

σ s�B,C ∈ τ

so there is j ∈ I such that
s�A,B ∈ σj

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:77

and, therefore,
s�A,C ∈ σj ;τ

so that
s�A,B ∈

⋃
i ∈I

(σj ;τ)

(3) One direction is simple as we have that

τi ⊆
⋃
i ∈I

τi

so that
σ ;τi ⊆ σ ;

⋃
i ∈I

τi

by monotonicity and hence ⋃
i ∈I

(σ ;τi) ⊆ σ ;
⋃
i ∈I

τi

For the other direction, suppose

s�A,C ∈ σ ;
⋃
i ∈I

τi

then
s�A,B ∈ σ s�B,C ∈

⋃
i ∈I

τi

so there is j ∈ I such that
s�B,C ∈ τj

and, therefore,
s�A,C ∈ σ ;τj

so that
s�A,C ∈

⋃
i ∈I

(σ ;τi) �

E.4 The strat(−) Embedding

Proposition E.6.
strat(−)

is a closure operator on sets of plays.

Proof. Let S ∈ PA�B and recall that

strat(S) = {s · sO ∈ PA�B | sO is a sequence of O moves and s ∈ ↓S}

extensive Note that S ⊆ ↓S . Hence, by always taking sO = ϵ it follows that S ⊆ strat(S).
monotone Suppose S ⊆ T . Then ↓S ⊆ ↓T . Now, suppose s ∈ ↓S and s · sO ∈ PA�B. It is

immediate that s ∈ ↓T and hence s ∈ strat(T).
idempotent By extensiveness and monotonicity:

S ⊆ strat(S) ⇒ strat(S) ⊆ strat(strat(S))

So we show that strat(strat(S)) ⊆ strat(S). Indeed, let p · sO ∈ strat(strat(S)). Then, there is
p ′ · s ′O ∈ strat(S) such that p � p ′ · s ′O and p ′ ∈ S . If p � p ′ then p · sO ∈ strat(S) by definition.
Otherwise, p decomposes as p ′ · sO ”. But then, as p ′ ∈ S it follows that p · sO = p ′ · sO ∈

strat(S). �

Lemma E.7. The closure operator strat(−) is join-preserving.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:78 A. Oliveira Vale et al.

Proof. Let

{Si ⊆ PA}i ∈I

We show that

strat(∪i ∈ISi) = ∪i ∈I strat(Si)

One direction follows from monotonicity (recall that strat(−) is a closure operator), as if

s ∈ ∪i ∈I strat(Si)

then there exists j for which

s ∈ strat(S j)

and hence

s ∈ strat(S j) ⊆ strat(∪i ∈ISi)

so

strat(∪i ∈ISi) ⊇ ∪i ∈I strat(Si)

On the other hand, suppose

s ∈ strat(∪i ∈ISi)

Then, there exists t ∈ ∪i ∈ISi and a sequence of O moves sO and a prefix p � s such that

s = p · sO and p � t

in particular, there is j for which

t ∈ S j

and hence

s ∈ strat(S j) ⊆ strat(∪i ∈ISi)

and, therefore,

strat(∪i ∈ISi) ⊆ ∪i ∈I strat(Si) �

Lemma E.8. If

s · sO ∈ PA�B

is such that

s�A ∈ P!A

and sO only contains Opponent moves then there is at most one move from sO in A. In particular,

s · sO�A is alternating.

Proof. If s · sO ∈ PA�B and m is a move in sO played in A then by local sequentiality, there
must be a pending P move by α(m) in s . But in the alternating play s�A there can only be at most
one pending P move, and the result follows. �

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:79

E.5 KConc is an oplax semifunctor

Proposition E.9. For any σ : A � B and τ : B � C:

KConc(σ ;τ) ⊆ KConc(σ);KConc(τ)

Proof. The argument is quite simple, we just verify the following sequence of equalities and
inclusions taking note of the use of Lemma E.15, Proposition 4.4, Proposition 4.2 and associativity
of interaction:

KConc(σ ;τ) = ccopyA;σ ;τ ; ccopyC

⊆ ccopyA;σ ; ccopyB;τ ; ccopyC

= ccopyA;σ ; ccopyB; ccopyB;τ ; ccopyC

= KConc(σ);KConc(τ) �

Proposition E.10. KConc is monotonic and join-preserving.

Proof. Suppose σ ⊆ σ ′. Then

KConc σ = ccopyA;σ ; ccopyB ⊆ ccopyA;σ ′; ccopyB = KConc σ
′

by Proposition 4.4.
Similarly, if we have a collection

{σi }i ∈I

we have

KConc

(⋃
i ∈I

σi

)
= ccopyA;

(⋃
i ∈I

σi

)
; ccopyB =

⋃
i ∈I

ccopyA;σi ; ccopyB =
⋃
i ∈I

KConc σi

by Proposition 4.4. �

Corollary E.11.

KConc : Conc → Semi Conc

defines an oplax semifunctor.

Lemma E.12. If

e− = {eA}A∈S e ′− = {e
′
A}A∈S

are families of idempotents such that there are 2-morphisms:

eA ⇒ e ′A

for every A ∈ S , then the mappings L and R defined by

L : C̃e → C̃e ′ := K ′ ◦ Emb R : C̃e ′ → C̃e := K ◦ Emb′

define an oplax functor and a lax functor, respectively.

E.6 Proofs for Section 4.5

Proposition E.13 (Synchronization Lemma). Let s = p · ααα:::m · α ′α ′α ′:::m′ · p ′ be a play of A � B.

Let σ = strat(p ·m ·m′ · p ′). Then,

p ·m′ ·m · p ′ ∈ ccopyA;σ ; ccopyB ⇐⇒ m′ ·m�A�B m ·m′

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:80 A. Oliveira Vale et al.

Proof. We need to consider all possibilities for the polarity and components of the moves m
and m′, between O and P and A or B respectively. A lot of cases are very similar to each other, so
we will reference previous cases when that happens.

Just so we take another component of variation out of the way, note that if α(m) = α(m′) then it
is immediate thatp ·m′ ·m ·p ′ cannot be in ccopyA;σ ; ccopyB asp ·m′ ·m ·p ′ is not locally alternating
and hence is not in PA�B. On the other hand, in that case no rewrite rule applies, as all of them
assume the agents are distinct. Therefore, assume in the remaining cases that α(m) � α(m′).

The key idea is to consider how the copying is happening in ccopyA : A0 � A1 and ccopyB :
B0 � B1. If m is a move in A then it appears in a play of ccopyA;σ ; ccopyB as a result of the
projection to A0. It has a corresponding copy in A1 which is the move that actually appeared in
some play of σ . The key point is that the fact that α(m) is locally alternating and running the
sequential copycat strategy means that if λA(m) = O then its copy appeared earlier in A1, while
if it was a P move then its copy will appear later in A1. Meanwhile, if m is a move in B then it
appears as a result of the projection to B1. Hence, if λB(m) = O its copy will appear later in B0,
while if it is a P move then its copy has already appeared earlier in B0.

m,m′ ∈ MB

λA�B(m) = O and λA�B(m
′) = O Note that in this case we have that

λB0�B1 (m) = λB0�B1(m
′) = P

so that by the reasoning above their copy appeared earlier in B0 asO moves. Since ccopyB

allows for both orderings. In particular,

p ·m′ ·m · p ′ ∈ ccopyA;σ ; ccopyB

λA�B(m) = P and λA�B(m
′) = P The reasoning here is analogous to the previous case, ex-

cept that in this case the corresponding moves appear later in ccopyB but both orderings
are still allowed.

λA�B(m) = O and λA�B(m
′) = P In this case λB0�B1(m) = P and λB0�B1 (m

′) = O . Hence,m
is the copy of an earlier move in ccopyB and m′ is copied later in ccopyB. But m already
occurs beforem′ so that so will their copies in B1. Hence, the only order possible ism before
m′, giving the only negative case. But notice that it does not hold thatm′ ·m�A�B m ·m′

in this case either.
λA�B(m) = P and λA�B(m

′) = O In this case, In this case λB0�B1 (m) = O and λB0�B1(m
′) =

P . So that the copy of m in B1 appears later while the copy of m′ appears earlier. In par-
ticular, there is a play of ccopyB where the copy of m′ appears earlier then the copy of m
and therefore

p ·m′ ·m · p ′ ∈ ccopyA;σ ; ccopyB

m,m′ ∈ MA

λA�B(m) = O and λA�B(m
′) = O Similarly to before, the polarities are dualized once we

consider the move within the game A0 � A1 so that

λA0�A1 (m) = λA0�A1 (m
′) = P

and their respective copies in A1 therefore appear earlier in the ccopyA play. Other than
that, ccopyA does not prescribe any particular ordering between them, so both are allowed.

λA�B(m) = P and λA�B(m
′) = P As before the polarities switch so that

λA0�A1 (m) = λA0�A1(m
′) = O

and hence their copies in A0 appear later with no particular order required.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:81

λA�B(m) = O and λA�B(m
′) = P In this case

λA0�A1 (m) = P and λA0�A1(m
′) = O

in this case the copy of m in A0 appears earlier in ccopyA while the copy of m′ appears
later. Hence their order cannot be changed, and this is precisely the only case in this group
where it does not hold thatm′ ·m�A�B m ·m′.

λA�B(m) = P and λA�B(m
′) = O In this case we have

λA0�A1 (m) = O and λA0�A1 (m
′) = P

So that the copy of m in A0 appears later than m in ccopyA while the copy of m′ appears
earlier. In particular, both orders are allowed.

m ∈ MB andm′ ∈ MA

λA�B(m) = O and λA�B(m
′) = O In this case

λB0�B1 (m) = P and λA0�A1 (m
′) = P

but asm occurs in B0 whilem′ occurs in A1 the copy ofm in B1 so that both copies appear
earlier in the respective plays of ccopyB and ccopyA so that both orderings are possible.

λA�B(m) = P and λA�B(m
′) = P The situation in this case is analogous to the previous case

except that the copies ofm andm′ appear later.
λA�B(m) = O and λA�B(m

′) = P In this case we are in a situation where

λB0�B1 (m) = P and λA0�A1 (m
′) = O

so that m’s copy appears earlier while m′’s copy appears later. Hence, the ordering must
still bem preceded bym′ in ccopyA;σ ; ccopyB so that

p ·m′ ·m · p ′ � ccopyA;σ ; ccopyB

but this is the only case where it does not holdm′ ·m�A�B m ·m′.
λA�B(m) = P and λA�B(m

′) = O In this case

λB0�B1 (m) = O and λA0�A1 (m
′) = P

that means that the copy of m in B1 appears later in ccopyB as well as the copy of m′ in
A0, and, therefore, no order is imposed on them.

m ∈ MA andm′ ∈ MB

λA�B(m) = O and λA�B(m
′) = O We have the polarities:

λA0�A1(m) = P and λB0�B1 (m
′) = P

so that the copy of m in A0 happens earlier as does the copy of m′ in B1. No order is
required between them and, therefore, both orderings is possible.

λA�B(m) = P and λA�B(m
′) = P This case works as before, except that the corresponding

copies into A0 and B1 happen later, but still no particular order is required.
λA�B(m) = O and λA�B(m

′) = P We have the polarities

λA0�A1(m) = P and λB0�B1 (m
′) = O

which means that the copy ofm in A0 happens earlier while the copy ofm′ in B1 happens
later. Hence, the only possible order allowed is for m to precede m′. But this is the only
negative case, wherem′ ·m�A�B m ·m′ does not hold.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:82 A. Oliveira Vale et al.

λA�B(m) = P and λA�B(m
′) = O In this case

λA0�A1 (m) = O and λB0�B1 (m
′) = P

so that m’s copy in A0 happens later while m′’s copy in B1 happens earlier. No order is
required between them. �

Corollary E.14. Let s ∈ PA�B and that t is a play such that

∀α ∈ ϒ.πα (t) = πα (s)

and moreover

t ∈ ccopyA; strat(s); ccopyB

then,

t �A�B s

Proof. Note that as s is the only play of strat(s) satisfying the sequential consistency condition
on t . By the Synchronization Lemma (Proposition 4.8) it follows that any play that can be obtained
by a single move swap from s is in ccopyA; strat(s); ccopyB if and only if that swap is allowed by
�A�B. So let

σ0 = strat(s)

and
σi = {t

′ ∈ PA�B | ∃s ′ ∈ σi .t
′�1

A�B s ′ ∨ t ′ = s ′}

Then, note that by the Synchronization Lemma (Proposition 4.8) t ′ ∈ σi if and only if there is a
derivation of length at most i such that

t ′�i
A�B s ′

where s ′ ∈ σ0. Note moreover that if t ′ is sequentially consistent with s then

t ′�i
A�B s

Now, we argue that there exists k such that

σk+1 = σk

Indeed, it is easy to observe that
σi ⊆ σi+1

As strategies form a complete partial order it follows that there is σ ′ such that

σ ′ = ∪i ∈Nσi

but note that there are finitely many plays t ′ such that

∃s ′ ∈ strat(s).t ′�A�B s ′

as there are finitely many permutations for any play in strat(s). Therefore, there must be a k such
that

σk = σ ′

but note that, by the Synchronization Lemma (Proposition 4.8), ccopyA; strat(s); ccopyB is a fixed
point of the chain and, therefore,

σ ′ = ccopyA; strat(s); ccopyB

from which the result follows. �

Lemma E.15. For every strategy σ : A � B:

σ ⊆ ccopyA;σ ; ccopyB

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:83

Proof. Suppose s ∈ σ . We inductively construct a play of t ∈ int(A0,A1,B0,B1) such that

t�A0,A1 ∈ ccopyA t�A,B ∈ σ t�B0,B1 ∈ ccopyB t�A0,B1 = s

Indeed, if s = ϵ we simply take t = ϵ . Otherwise, let t be the current play satisfying the invariants
above with the last one modified to

t�A0,B1 � s

If t = s we are done. Otherwise, there is a movem such that

t�A0,B1 ·m � s

Suppose m is a move in A in s . If it is an O move we simply append to t a copy of m in A0 and m
as a move in A1 as in that case the last move by α(m) in t was a P move in component A0. If it is
a P move then the last move by α(m) was in B0. In that case we append the move m in A1 and its
copy in A0.

Otherwise, m is a move in B in s . In that case if it is an O move we add a B1 copy to it and the
move m in B0. If it is a P move then we add the move m in B1 and a copy in B0.

It is straight-forward to check that this builds a play with all the desired conditions. �

Lemma E.16. For every strategy σ : A it holds that

σ =
⋃
s ∈σ

strat(s)

Proof. Since strat(s) contains {s} by definition it follows that if s ∈ σ then s ∈ strat(s) and
hence

s ∈
⋃
s ′ ∈σ

strat(s ′)

proving one containment.
For the other direction if

s ∈
⋃
s ′ ∈σ

strat(s ′)

then either s is in strat(t) for some t ∈ σ . But then, either s � t or s is obtained from some prefix
p � t by appending Opponent moves. In the first case s ∈ σ because σ is prefix-closed, and in the
later we simply apply prefix-closure and receptivity of σ to obtain that s ∈ σ . �

Proposition E.17. A strategy σ : A � B is saturated if and only if it is:

O-receptive: If s ∈ σ , o an Opponent move and s · o ∈ PAAA, then s · o ∈ σ .

�-closed: ∀s ∈ σ .∀t ∈ PA�B.t �AAA�BBB s ⇒ t ∈ σ , and

Proof. Suppose σ is saturated.
Note that if o is an O-move and s ∈ σ is such that s · o ∈ PA�B then it is easy to construct by

induction plays sA ∈ ccopyA and sB ∈ ccopyB such that s ∈ sA; s; sB . But then, as s · o ∈ PA�B then
it is readily seen that either s · o ∈ (sA · o); s; sB or s · o ∈ sA; s; (sB · o) depending on whether o is a
move in A or B.

Now, for�-closure, note that it follows that if s ∈ σ = ccopyA;σ ; ccopyB and t �A�B s then
there is a sequence of single steps:

t = t0 �A�B t1 �A�B · · ·�A�B tn = s

then by applying the Sychronization Lemma (Proposition 4.8) starting with

tn−1 �A�B s

to conclude that
tn−1 ∈ ccopyA; strat(s); ccopyB ⊆ σ

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:84 A. Oliveira Vale et al.

in a finite number of applications we obtain that

t = t0 ∈ ccopyA; strat(t1); ccopyA ⊆ ccopyA; strat(s); ccopyB ⊆ σ

as desired.
Now, assume σ is O-receptive and�-closed. Note that for every strategy σ : A � B it holds

that
σ =

⋃
s ∈σ

strat(s)

by Lemma E.16. Then

ccopyA;σ ; ccopyB =
⋃
s ∈σ

ccopyA; strat(s); ccopyB

by the fact that composition is join-preserving. Hence,

t ∈ ccopyA;σ ; ccopyB ⇐⇒ ∃s ∈ σ .t ∈ ccopyA; strat(s); ccopyB

moreover, by the definition of ccopy−, s can be chosen so that

∀α ∈ ϒ.πα (t) = πα (s)

by corollary to the Synchronization Lemma (Proposition 4.8) it follows that

t ∈ ccopyA; strat(s); ccopyB ⇐⇒ t �A�B s

And hence
t ∈ ccopyA;σ ; ccopyB ⇐⇒ ∃s ∈ σ .t �A�B s

So, suppose t ∈ ccopyA;σ ; ccopyB. Then, there is some s ∈ σ such that t �A�B s and hence by
assumption t ∈ σ . Hence,

ccopyA;σ ; ccopyB ⊆ σ

the reverse containment is exactly Lemma E.15 so that it follows that

ccopyA;σ ; ccopyB = σ

and hence σ is saturated. �

E.7 Computational Interpretation Proof

Lemma E.18. Let s ∈ PA. Then, there exists t an alternating play and sO a sequence of Opponent

moves such that

s �A t · sO

Proof. We prove the result by induction. If s = ϵ we let t = sO = ϵ and the result follows.
Otherwise, let

s = p ·m

by induction there is an alternating play p ′ and sequence of Opponent moves pO such that

p �A p ′ · pO

Hence,
s = p ·m�A p ′ · pO ·m

Note that without loss of generality we may assume that the last move in p ′ is a Proponent move,
as otherwise we can add that last O move to pO without harm. We now split into cases depending
on whether m is an Opponent or Proponent move. If m is an Opponent move. then we let sO =

pO ·m and t = p ′ and the result follows immediately. Otherwise,m is a Proponent move. By local
sequentiality, ti follows that the last move by α(m) is an Opponent move, and moreover, as p ′ is
alternating and its last move is a P move it follows that the last O move m′ by α(m) is in pO . So

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:85

we let t = p ′ ·m′ ·m, and if pO = p1 ·m
′ · p2 then we let sO = p1 · p2, that is, the subsequence of

pO obtained by removing the move m′. Note that there is a single move by α(m) in pO because of
local sequentiality. This, together with the inductive hypothesis justifies the following derivation.

s = p ·m�A p ′ ·pO ·m = p
′ ·p1 ·m

′ ·p2 ·m�A p ′ ·m′ ·p1 ·p2 ·m�A p ′ ·m′ ·m ·p1 ·p2 = t · sO �

Lemma E.19. Let s ∈ PA�B. Then, for any s ′A ∈ PA and s ′B ∈ PB such that

s ′B �B s�B s�A �A s ′A

then there exists an

s ′ ∈ PA�B

such that

s ′�A�B s s ′�A = s ′A s ′�B = s ′B

Proof. We let sA = s�A and sB = s�B.
Suppose first that sA �A s ′A. We construct by induction on the length of the derivation sA �A

s ′A an s ′ such that s ′�A = s ′A and s ′�B = sB . If the length of the derivation is 0 then sA = s
′
A and the

result is immediate by taking s ′ = s . Now, Suppose

sA �A s1 ·m · n · s2 �A s1 · n ·m · s2 = s
′
A

By induction we have s ′�A�B s such that s ′�A = s1 ·m · n · s2 and s ′�B = sB . Then, we have that

s ′ = t1 ·m · t2 · n · t3

where t2 only has moves in B and t1�A = s1 and t3�A = s2. We split into cases depending on the
polarity ofm,n in A. Note that since we can swapm and n in A it follows that either λA(m) = λA(n)
or λA(m) = O and λA(n) = P .

m is O and n is P Then, in A � B m is P and n is O . Now, since m is P the next move by its
agent is O and therefore must also happen in A. Hence, there is no move by the same agent
asm in t2. Therefore

s” = t1 · t2 · n ·m · t3 �A�B t1 · t2 ·m · n · t3 �A�B t1 ·m · t2 · n · t3 = s
′

m is O and n is O Then, in A � B m is P and n is P . Then, as before, there is no move by the
same agent asm in t2 justifying the sequence of derivations below

s” = t1 · t2 · n ·m · t3 �A�B t1 · t2 ·m · n · t3 �A�B t1 ·m · t2 · n · t3 = s
′

m is P and n is P Then, in A � B m is O and n is O . Now, the previous move by the same
agent as n must have been a P move in the same component as n. But there is no A move
betweenm and n so must be that there is no move in t2 by the same agent as n. Then

s” = t1 · n ·m · t2 · t3 �A�B t1 ·m · n · t2 · t3 �A�B t1 ·m · t2 · n · t3 = s
′

in all cases, since s”�A�B s ′� s . Furthermore, in all cases

s”�A = t1�A · n ·m · t3�A = s1 · n ·m · s2 = s
′
A s”�B = s ′�B = sB

as desired.
Now, suppose s ′B �B sB . We construct by induction on the length of the derivation s ′B �B sB

an s ′ �A�B s such that s ′�A = sA and s ′�B = s ′B . If the length of the derivation is o then sB = s ′B
and the result is immediate by taking s ′ = s . Now, suppose

s ′B = s1 ·m · n · s2 � s1 · n ·m · s2 � sB

By induction we have s ′�A�B s such that s ′�A = sA and s ′�B = s1 · n ·m · s2. Then, we have that

s ′ = t1 · n · t2 ·m · t3

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:86 A. Oliveira Vale et al.

where t2 only has A moves and t1�B = s1 and t3�B = s2. We split into cases depending on the
polarity of m,n in B. Note that since we can swap m and n in B we have that λB(m) = λB(n) or
λB(m) = O and λB(n) = P . In all cases the polarity is preserved as B is positive in A � B.

m is O and n is P Since m is an O move there can’t be any moves by the same agent as m in
t2. Hence

s” = t1 ·m · n · t2 · t3 �A�B t1 · n ·m · t2 · t3 �A�B t1 · n · t2 ·m · t3 = s
′

m is O and n is O This goes the same as the previous case. Since m is an O move there can’t
be any moves by the same agent asm in t2. Hence

s” = t1 ·m · n · t2 · t3 �A�B t1 · n ·m · t2 · t3 �A�B t1 · n · t2 ·m · t3 = s
′

m is P and n is P In this case, as n is a Proponent move there can’t be any moves by the same
agent as n in t2. Hence, the following derivation is justified

s” = t1 · t2 ·m · n · t3 �A�B t1 · t2 · n ·m · t3 �A�B t1 · n · t2 ·m · t3 = s
′

In all cases, since s ′�A�B s it follows that s”�A�B s ′�A�B s . Furthermore, in all cases

s”�A = s ′�A = sA s”�B = t1�B ·m · n · t3�B = s1 ·m · n · s2 = s
′
B

as desired.
The claim follows from applying the two arguments above in sequence. �

Lemma E.20. If

s �A�B t

then

s�B �B t�B t�A �A s�A

Proof. We prove the result by induction on the length of the derivation

s �A�B t

If the derivation has length 0 then s = t and hence

s�A = t�A s�B = t�B

and in particular
s�B �B t�B t�A �A s�A

Otherwise, suppose
s = s1 ·m · n · s2 �1

A�B s1 · n ·m · s2 �A�B t

By induction there are derivations

(s1 · n ·m · s2)�B �B t�B t�A �A (s1 · n ·m · s2)�A

We split into cases depending on the components in whichm and n are played:

m is a move in B and n is a move in B In this case

s�B = s1�B ·m · n · s2�B �B s1�B · n ·m · s2�B = s1 · n ·m · s2�B �B t�B

and
t�A �A (s1 · n ·m · s2)�A = (s1 · s2)�A = s�A

m is a move in B and n is a move in A Note that in this case

s�B = s1�B ·m · s2�B = (s1 · n ·m · s2)�B �B t�B

t�A �A (s1 · n ·m · s2)�A = s1�A · n · s2�A = s�A

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:87

m is a move in A and n is a move in B

s�B = s1�B · n · s2�B = (s1 · n ·m · s2)�B �B t�B

t�A �A (s1 · n ·m · s2)�A = s1�A ·m · s2�A = s�A
m is a move in A and n is a move in A In this case we have that asm andn have the opposite

polarity in A � B than they have in A, so that

n ·m�A m · n

This justifies that

s�B = s1�B · s2�B = s1 · n ·m · s2�B �B t�B

and

t�A �A (s1 ·n ·m ·s2)�A = s1�A ·n ·m ·s2�A �A s1�A ·m ·n ·s2�A(s1 ·s2)�A = (s1 ·m ·n ·s2)�A = s�A

In all cases we obtain derivations

s�B �B t�B t�A �A s�A �

Lemma E.21. For plays s0, s1 ∈ PA such that

∀α ∈ ϒ.πα (s0) = πα (s1)

there is a derivation

s1 �A s0

if and only if there is a play s ∈ ccopyA such that

s�A1 = s1 s�A0 = s0

Proof. For the forward direction, note that by the definition of ccopyA there is at least one play
s ′ ∈ ccopyA such that

s ′�A0 = s0 s ′�A1 = s0

By Lemma E.19 it follows that there is a play s such that

s�A0 = s0 s�A1 = s1 s �A�A s ′

and then, by Proposition 4.7 it follows that

s ∈ ccopyA

For the reverse direction, we prove the result by induction. Let p be the largest even-length
prefix of s such that p is alternating and

p�A0 = p�A1

If p = s then, In particular,

s0 = s�A0 = s�A1 = s1

Otherwise,
For the reverse direction, first note that if a play t ∈ ccopyA is alternating then

t�A0 = t�A1

Indeed, by Lemma E.30, it follows that if

t = t1 ·m1 ·m2 · t2

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:88 A. Oliveira Vale et al.

and λA�A(m1) = O then α(m1) = α(m2). But as every agent plays according to copyA that it
follows thatm2 is the counterpart form1 in the other component. A simple argument by induction
on the even-length prefixes of t shows that then

t�A0 = t�A1

Now, note that by Lemma E.18 there exists t an alternating play and sO a sequence of Opponent
moves such that

s �A�A t · sO

We start by arguing that we can take sO = ϵ . Indeed, note that as�− never swaps moves by the
same agent we have that

πα (t · sO) = πα (s) ∈ copyA

Note that in particular, t can be taken to be an even-length play, as

∀α ∈ ϒ.πα (s0) = πα (s1)

But then, suppose sO =m · s ′O . As

∀α ∈ ϒ.πα (s0) = πα (s1)

it follows that m has a counterpart m′ that appears after m in t · sO . Hence, m′ must appear in s ′O .
But s ′O only has Opponent moves, andm′ is a Proponent move, a contradiction. Hence, sO = ϵ . But
now, note that we have that

s �A�A t

In particular, by Lemma E.20,

s�A1 �A t�A1 t�A0 �A s�A0

but then
s1 = s�A1 �A t�A1 = t�A0 �A s�A0 = s0

as desired. �

Proposition E.22. s1 linearizes to s0 if and only if there exists a play s ∈ ccopyA such that

s�A0 = s0 s�A1 = s1

Proof. If s1 linearizes to s0 then there are sequences of Opponent and Proponent moves, respec-
tively, sO and sP , such that

s1 · sP �A s0 · sO

But then, note that
s1/sO · sP �A s0

by Lemma E.36. Hence, there is a play s of ccopyA such that

s�A0 = s1/sO · sP s�A1 = s0

Now, notice that as sP only has Proponent moves, by the switching condition, ifm is a move in sP

then there are no moves by α(m) afterm in s . Hence,

s/sP · sP �A�A s

so that s/sP (the subsequence of s where the moves in sP have been removed) is in ccopyA by
Proposition 4.7 and prefix-closure. Note that

(s/sP)�A1 = s1/sO (s/sP)�A0 = s0

Now, letm be a move in sO . Because,

s1 · sP �A s0 · sO

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:89

it follows that m does not appear in s0. Moreover, the last move by α(m) in s must be a P move
in A1, and, therefore, by the switching condition the last move by α(m) is that P move. Therefore,
there must be s ′ such that

s ′�A�A s/sP · sO

and moreover
s ′�A0 = s1

constructed by reversing the swaps involving sO up to the swaps with A0 moves and the removal of
the swaps that involve sP , which is possible by the remarks above. By Proposition 4.7 s ′ ∈ ccopyA.
Moreover, as the derivation above does not involve swaps between two moves of A0 it follows that

s ′�A0 = (s/sP)�A0 = s0

And, therefore, s ′ is the desired play.
Conversely, suppose there exists such a play s ∈ ccopyA. Then, note that for any α ∈ ϒ,

πα (s) ∈ copyA

so that in particular there is a sequence of at most one Opponent move sα such that either

πα (s)�A0 · sα = πα (s)�A1

or
πα (s)�A0 = πα (s)�A1 · sα

Let then
s ′O = ·α ∈ϒsα

that is, the concatenation of all the sα . Notice that this is a finite sequence as there are at most
finitely many α ∈ ϒ for which sα � ϵ . Then, we note that the play s/s ′O satisfies

∀α ∈ ϒ.πα ((s/sO)�A0) = πα ((s/s
′
O)�A1)

so let p = s/s ′O and note that by Lemma E.21 it follows that

p�A1 �B p�A0

Now, note that s ′O�A0 is a sequence of P moves in A while s ′O�A1 is a sequence of O moves in A.
We claim that

(p · s ′O)�A1 · s
′
O�A0 �A (p · s

′
O)�A0 · s

′
O�A1

Indeed, note that

(p · s ′O)�A1 · s
′
O�A0 = p�A1 · s

′
O�A1 · s

′
O�A0 �A p�A1 · s

′
O�A0 · s

′
O�A1 = p�A0 · s

′
O�A0 · s

′
O�A1 = (p · s

′
O)�A0 · s

′
O�A1

is valid as long as
s ′O�A1 · s

′
O�A0 �A s ′O�A0 · s

′
O�A1

As s ′O�A1 only contains O moves and s ′O�A0 only contains P moves the reduction is valid as long
as no agent that appears in s ′O�A1 , appears in s ′O�A0 . But note that in s , all of the moves in s ′O are
Opponent, and as agents are locally sequential no two moves can be by the same agent. So the
derivation is indeed valid. Now, notice that

s1 = s�A1 �A (s/s
′
O)�A1 · s

′
O�A1 = (s/s

′
O · s ′O)�A1 = (p · s

′
O)�A1

and that
(p · s ′O)�A0 = (s/s

′
O · s ′O)�A0 = (s/s

′
O)�A0 · s

′
O�A0 �A s�A0 = s0

Hence, by finally taking
sP = s

′
O�A0 sO = s

′
O�A1

s1 = s�A1 · sP �A (p · s
′
O)�A1 · s

′
O�A0 �A (p · s

′
O)�A0 · s

′
O�A1 = s�A0 · sO �A s0 · sO

so that s1 linearizes to s0. �

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:90 A. Oliveira Vale et al.

E.8 Proofs for Section 7

Proposition E.23. Composition of atomic strategies is well-defined.

Proof. Suppose σ : !A � !B and τ : !B � !C are atomic. It follows from sequential composition
that σ ;τ : !A � !C . It remains to show that it is atomic. So let s�A,C ∈ int(σ ,τ). First, let s�C =
p1 ·m ·m′ ·p2 where α(m) = α(m′) and λC(m) = O . Then, since τ is atomic, s�B,C = p ′1 ·m ·s ′ ·m′ ·p ′2
is such that every move in s ′ is by α(m). By the same reasoning, every move between two moves in
s ′ is by α(m). Hence, if s�A,C = p1” ·m · s” ·m′ ·p2” then every move in s” is by α(m). The argument
is analogous for s�C = p ·m with λC(m) = O . �

Lemma E.24. Let s ∈ PA�B. Then if s�B ∈ P!B then s ∈ P!A�!B .

Proof. We argue by induction by keeping track of a prefix p �even s such that p ∈ P!A�!B and
such that every agents last move was in B. For the base case we note that if s = ϵ then we are done
(we also consider this case as a case where every agents last move is B). Otherwise, let p �even s be
such that p ∈ P!A�!B . If p = s we are also done. Otherwise, there ism a move in B (by the switching
condition and the inductive hypothesis) such that p ·m � s . Suppose first that

p ·m · s ′ = s

is such that every move in s ′ happens in A. As at p every agent had its last move in B at p ·m only
α(m) can move in A, and since α(m) plays as in A � B it follows then that s = p ·m · s ′ ∈ P!A�!B

as desired. Otherwise, there are s ′ a sequence of moves in A and a move m′ in B such that

p ·m · s ′ ·m′ � s

By alternation in B it follows thatm′ is a move by α(m). By the same reasoning as above, it follows
that s ′ only involves moves by α(m) and since every agent behaves sequentially it follows that
p ·m · s ′ ·m′ ∈ P!A�!B . It is easy to check that all the other invariants still hold. �

Lemma E.25. For sets of plays

S ⊆ PA�B T ⊆ PB�C

and

(S ∩ P!A�!B); (T ∩ P!B�!C) = (S ;T) ∩ P!A�!C

Proof. For simplicity we will use the following notation:

U = (− ∩ P!−�!−)

First, suppose s ∈ U (S);U (T). Then, there is

t ∈ int(U S,U T)

such that
t�!A, !B ∈ U (S) t�!B, !C ∈ U (T) t�!A, !C = s

in particular, seen as a play of int(S,T), we have

t�A,B ∈ S t�B,C ∈ T t�A,C = s

and hence
s ∈ S ;T

so that
U (S);U (T) ⊆ U (S ;T)

Now, for the reverse inclusion let s�!A, !C ∈ U (S ;T). Then, s�C ∈ P!C so that by Lemma E.24 it
follows that s�B,C ∈ P!B�!C and therefore s�B,C ∈ U (T). In addition, we now have that s�B ∈ P!B .

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:91

Another application of Lemma E.24 then gives that s�A,B ∈ P!A�!B and hence s�A,B ∈ EmbAtom(S).
Hence, s�A,C ∈ U (S);U (T). Therefore,

U (S ;T) = U (S);U (T) �

For the remainder of this section, let recep(−) be the receptive closure operation in Atomic.

Lemma E.26.
recep(−) : Semi Atomic → Conc

defines a semifunctor.

Proof. Let τ : !A � !B and σ : !B � !C be atomic strategies. It is easy to see that

recep(τ ;σ) ⊆ recep(recep(τ); recep(σ)) = recep(τ); recep(σ)

For the reverse direction, let t · o ∈ recep(τ) and s · o′ ∈ recep(σ) where o, o′ are either ϵ or an
Opponent move, such that moreover they are composable. Notice that by the switching condition,
either

— o =m is a move in !A and o′ = ϵ ,
— o = ϵ and o′ =m is a move in !C ,
— o =m is a P move in !B and o′ = ϵ ,
— o′ =m is an O move in !B and o = ϵ ,

The first two cases are easily handled as in both cases the addedO-move must appear at the end of
the interaction sequence (by the switching condition) so that (t ; s) ·m ∈ recep(τ ;σ). For the third
case, observe that if the matching move to m appears in the middle of t , then the following move
must be in !B as well. But then, that move must also appear in s , a contradiction. Therefore, m is
the last move of t so that t = t ′ ·m and hence t ′; (s ·m) = t ′; s ∈ τ ;σ ⊆ recep(τ ;σ) already. The
last case is handled similarly. �

Lemma E.27. For any σ : A � B

KAtom σ = recep(σ ∩ P!A�!B)

Proof. It is straight-forward to see that by E.24

KAtom σ = atocopyA;σ ; atocopyB = atocopyA; (σ ∩ P!A�!B); atocopyB

But (σ ∩ P!A�!B) is just an atomic strategy, and atocopy is just the sequential copycat, so

atocopyA; (σ ∩ P!A�!B); atocopyB = recep(σ ∩ P!A�!B) �

Proposition E.28.
KAtom : Conc −→ KAtom

defines an enriched semifunctor.

Proof. By monotonicity of composition, Lemmas E.27 and E.25 and Proposition E.26

KAtom(σ);KAtom(τ) = recep(σ ∩ P!A�!B); recep(τ ∩ P!B�!C)

= recep(σ ∩ P!A�!B); (τ ∩ P!B�!C))

= recep((σ ;τ) ∩ P!A�!B)

= LinAtom(σ ;τ)

Now, suppose σ ⊆ σ ′, then

KAtom(σ) = atocopyA;σ ; atocopyB ⊆ atocopyA;σ ′; atocopyB = KAtom(σ
′)

by monotonicity of composition.

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:92 A. Oliveira Vale et al.

Similarly,

KAtom(∪i ∈Iσi) = atocopyA;∪i ∈Iσi ; atocopyB = ∪i ∈I atocopyA;σi ; atocopyB = ∪i ∈IKAtom(σi) �

Proposition E.29. There is an equivalence of categories:

Atomic � KAtom

Proof. The fact that both E and E−1 are semifunctors is immediate, both are essentially the
identity functor.

It is immediate to see that

E E−1 A = A E−1 E !A = !A

moreover, let
τ : !A � !B

be an atomic strategy. Then,

E−1 E τ = E−1 τ = τ ∩ P!A�!B = τ

that
E−1 E σ = σ

follows similarly. �

Lemma E.30. If s ∈ PA is alternating then if s = p ·m ·m′ ·p ′ is such that λA(m) = O and λA(m
′) = P

then α(m) = α(m′).

Proof. We prove the result by induction over the size of the play s , where we also maintain
that if p �even s then for every α ∈ ϒ, πα (p) is even-length. If s = ϵ the result is vacuously true.
So suppose p �even s satisfies the lemma. If p = s we are done. Otherwise there are is at least
one move m such that p ·m � s . Since s is alternating and p is even it follows that λA(m) = O .
If p ·m = s we are done, as the move preceding m is by Proponent (so that the claim does not
apply) and p already satisfies it. Otherwise, there is another move m′ such that p · m · m′ � s .
Again, by alternation, λA(m

′) = P . So we must show that α(m) = α(m′). But notice that for every
α ∈ ϒ, πα (p) is even-length, by induction. Therefore, by local alternation it follows that in every
α Opponent is to move. Hence, it must be that α(m′) = α(m). In particular, it is still the case that
every agent’s play is even-length. �

Proposition E.31. The irreducibles of�A are precisely the alternating plays of PA

Proof. Let s ∈ PA. Note that by definition the projection πα (s) is alternating for every α ∈ ϒ.
So suppose

s = p ·m ·m′ · p ′�A p ·m′ ·m · p ′

and m � m′. Then, note that if λA(m) = λA(m
′) then the play is not alternating. Otherwise, the

only rule that applies is when α(m) � α(m′) and λA(m) = O and λA(m
′) = P . By Lemma E.30 it

follows that s is not alternating.
This shows that every alternating play is irreducible. We now argue that every irreducible s is

alternating. Indeed, suppose that no rule can be applied. It follows then that if

s = p ·m ·m′ · p ′

then eitherα(m) = α(m′) or λA(m) = P and λA(m
′) = O . We argue by induction that s is alternating.

ϵ is trivially alternating, so letp �even s be such thatp is alternating. Ifp = s we are done. Otherwise,
there is somem such that p ·m � s . Since p is alternating and s is locally alternating by Lemma E.30
it follows that λ(m) = O (otherwise it breaks local alternation for α(m)) and in particular p ·m is

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:93

alternating. If p ·m = s we are done, otherwise there is some m′ such that p ·m ·m′ � s . As no
rule applies either α(m) = α(m′) or λA(m) = P and λA(m

′) = O . In the first case, again, by local
alternation, λA(m

′) = P and alternation follows for p ·m ·m′. The second case can’t apply as we
already argued that λA(m) = O . �

Proposition E.32. For any saturated σ : A � B:

UAtom σ = {s ∈ σ | s�A ∈ ⇓ (σ�A)}

Proof. After unrolling the definition of ⇓ (σ�A) and UAtom this follows from Lemma E.24 to-
gether with Proposition 7.5. �

E.9 Proofs for Section 7.3

Proposition E.33. If s, t ∈ PA then s ≡A t if and only if s and t are compatible and ≺s = ≺t .

Proof. (⇒) Since all the swaps allowed by�A are between agents, it immediately follows that
s and t are compatible. Moreover, no swap OO � OO or PP � PP swap modifies the happens
before order as the happens before order is defined by comparing the position of a P move with
the position of an O move.
(⇐) For the reverse direction, suppose s and t are compatible but s �A t . Then, there must be

moves m, and Opponent move, and n a Proponent move such that

s = s1 ·m · s2 · n · s3

but
t = t1 · n · t2 ·m · t3

or
t = t1 ·m · t2 · n · t3

and
s = s1 · n · s2 ·m · s3

Without loss of generality, we assume the first situation (otherwise, reverse the roles of s and t).
Let o be the operation corresponding to m and o′ the operation corresponding to n. Then,

o′ ≺t o

by definition. Meanwhile, in s either e and e ′ are not comparable, or o ≺s o′, which contradicts
that ≺t=≺s . �

Proposition E.34. For plays s, t ∈ PA, there is a derivation

s �A t

if and only if s is compatible with t and

≺s ′ ⊆ ≺t

Proof. (⇒) Note that if
s �1

A t

then either ≺s=≺t by Proposition 7.13 or the derivation is a OP � PO swap. We argue that

≺s⊆≺t

in that case. Indeed, suppose

s = s1 ·m · n · s2 �1
A s1 · n ·m · s2 = t

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:94 A. Oliveira Vale et al.

Let o be the operation associated to m and o′ the operation associated to n. Note first that for any
o1,o2 where at least one of o1 and o2 are distinct from o and o′ it is the case that

o1 ≺s o2 ⇐⇒ ρ(o1) ≺t ρ(o2)

where ρ is the associated bijection. Indeed, if they are both distinct from o and o′ then in fact

ρ(o1) = o1 ρ(o2) = o2

and the equivalence holds. Otherwise, consider the four possible cases:

o1 = o Then, we have that
o1 = (p,q) o2 = (p

′,q′)

moreover
ρ(o1) = (p + 1,q) ρ(o2) = (p

′,q′)

hence
o1 ≺s o2 ⇐⇒ q < p ′ ⇐⇒ ρ(o1) ≺t ρ(o2)

o1 = o
′ Then, we have that

o1 = (p,q) o2 = (p
′,q′)

moreover
ρ(o1) = (p,q − 1) ρ(o2) = (p

′,q′)

hence

o1 ≺s o2 ⇐⇒ q < p ′ ⇐⇒ q − 1 < q < p ′ ⇐⇒ ρ(o1) ≺t ρ(o2)

where the middle equivalence holds because o2 is not o.
o2 = o Then, we have that

o1 = (p,q) o2 = (p
′,q′)

moreover
ρ(o1) = (p,q) ρ(o2) = (p

′ + 1,q′)

hence

o1 ≺s o2 ⇐⇒ q < p ′ ⇐⇒ q < p ′ < p ′ + 1 ⇐⇒ ρ(o1) ≺t ρ(o2)

where the second equivalence holds because o1 is not o′.
o2 = o

′ Then, we have that
o1 = (p,q) o2 = (p

′,q′)

moreover
ρ(o1) = (p,q) ρ(o2) = (p

′,q′ − 1)

hence
o1 ≺s o2 ⇐⇒ q < p ′ ⇐⇒ ρ(o1) ≺t ρ(o2)

Finally, note that o and o′ are not comparable in ≺s . Meanwhile, in ≺t we have o′ ≺t o.
(⇐) By Proposition 7.13, if ≺s=≺t we are done, so suppose ≺s�≺t . We construct a play s ′ such

that ≺s⊂≺s ′⊆≺t and s �A s ′. Because ≺s is strictly contained in ≺t there is a pair o ≺t o′ but o
and o′ are incomparable in s . Hence, if

o = (p,q) o′ = (p ′,q′)

in s , we may choose the pair of o and o′ incomparable in s such that q −p ′ is minimal. Letm be the
O move associated to o′ and n the P move associated to o. Then

s = s1 ·m · s2 · n · s3

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:95

Note that by minimality, s2 decomposes as

s2 = sO · sP

where sP is a sequence of P moves and sO a sequence of O moves. Indeed, otherwise we have

s2 = s
′
1 · n

′ · s ′2 ·m
′ · s ′3

where n′ is a P move and m′ an O move. Let o1 be the operation associated to m′ and o2 the
operation associated to n′. Then note that

s = s1 ·m · s ′1 · n
′ · s ′2 ·m

′ · s ′3 · n · s3

Note that if

o1 = (p1,q1) o2 = (p2,q2)

then,

p ′ < q2 < p1 < q

Note then that

q − p1,q2 − p ′ < q − p ′

So as long as either the pair o,o1 is incomparable or o2,o
′ is incomparable then it breaks minimality.

Hence,

q1 < p and q′ < p2

But then

q′ < p2 < q2 < p1 < q1 < p

and, therefore,

o′ ≺s o

a contradiction. Hence, it must be that

s = s1 ·m · sO · sP · n · s3

and, therefore:

s = s1 ·m · sO · sP · n · s3 ≡A s1 · sO ·m · sP · n · s3 ≡A s1 · sO ·m · n · sP · s3 �A ·sO · n ·m · sP · s3

So we let

s ′ = sO · n ·m · sP · s3

By the argument from the forward direction we have that

≺s⊂≺s ′

Moreover, by our choice of o and o′

≺s ′⊆≺t

We may continue this procedure until s ′ = t , which must happen as there are finitely many
partial orders over the finite set op(s). �

The following couple of lemmas are straight-forward.

Lemma E.35. If

s ·m · t �A s ′ ·m

then

s · t �A s ′

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:96 A. Oliveira Vale et al.

Lemma E.36. Let s, s ′ ∈ PA, sP a sequence of Proponent moves and sO a sequence of Opponent

moves. If

s · sP �A s ′ · sO

then let (s \ sO) ∈ PA be the subsequence of s obtained by removing the pending Opponent moves that

appear in sO , then

s · sP �A (s \ sO) · sP · sO �A s ′ · sO

Proposition E.37. A play s ∈ PA is linearizable to an atomic play t ∈ P!A if and only if s is

Herlihy-Wing linearizable to t .

Proof. (⇒) By assumption there is a sequence of Opponent moves sO and a sequence of Pro-
ponent moves sP such that

s · sP �A t · sO

If there are no pending O moves in t then, sO contains all pending moves in s · sP so that by
Lemma E.36

s · sP �A complete(s · sP) · sO � t · sO

and then by Lemma E.35 we have that

complete(s · sP)� t

so that by Proposition 7.14 the result follows. Now, suppose there is a pending Opponent move o
in t . Then, o must be the last move of t . Indeed, suppose otherwise. Then, t = u ·o ·v for non-empty
v . Since o is pending, no move in v is by the same agent as that of o. But since t is sequential, the
first move ofv must be a Proponent move by the same agent as o, a contradiction. Hence, t = t ′ ·o
for some pending Opponent move o. We argue that complete(s ·sP)� t ′. By Lemma E.36 we have
that there is s ′ such that

s · sP �A s ′ · sP · sO �A t · sO

but then, by the reasoning above, there is at most one pending Opponent move in s ′ so that

s ′ · sO · sP �A s ′ · sP · sO �A t · sO = t ′ · (o · sO)

implies by E.36 that there is s” ∈ PA such that

s ′ · sO · sP �A s” · sP · (o · sO)�A t ′ · (o · sO)

But, s” is s ′ with o removed, and s ′ is s with all moves in sO removed. Moreover, s” has no pending
Opponent moves, as t ′ does not. Therefore, s” · sP = complete(s · sP). By the previous reasoning,
the result follows.

(⇐) By Proposition 7.14 it follows that there is a reduction complete(s · sP)�A t . Now, let sO

be a sequence containing all the Opponent moves removed by complete(−). Note that there is at
most one move per agent in sO , and, moreover, that any agent that appears in sO does not appear
in sP . Then

s · sP �A complete(s · sP) · sO �A t · sO

proving that s is linearizable to t . �

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:97

E.10 Proof of 10.2

Proposition E.38. Let

νA : 1 � A νB : 1 � B

and

σ : A � B

Then, if there exists a punctual extension σlp of σ such that

((νA ⊗ PB);σlp)�B0 ⊆ νB

then

νA;σ ⊆ KConc νB

Proof. Suppose that

((νA ⊗ PB);σlp)�B0 ⊆ νB

and let s�1,B ∈ νA;σ . Now, as

σlp�A,B1 = σ

it follows that for any play s” ∈ σ there is a play s ′ ∈ σlp such that

s”�A,B1 = s
′

So let s ′ be the play in σlp corresponding to s�A,B, in particular

s ′�A,B1 = s s ′�A = s�A ∈ νA

By assumption,

s ′�B0 ∈ νB

Moreover, because σlp is punctual,

σlp�B0,B1 ⊆ ccopyB

so that

s ′�B0,B1 ∈ ccopyB

by Proposition 5.7 it follows that s ′�B1 = s�1,B is linearizable to s ′�B0 . Hence, by Proposition 5.2,

s�1,B ∈ KConc νB �

Proposition E.39. Let

νA : 1 � (A, atocopyA) νB : 1 � (B, atocopyB)

and

σ : (A, atocopyA) � (B, ccopyB)

Then,

νA;σ ⊆ LinAtom νB

if and only if there exists a punctual extension σlp of σ such that

((νA ⊗ PAtom
B);σlp)�B0 ⊆ νB

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:98 A. Oliveira Vale et al.

Proof. The reverse direction is immediate from Proposition 10.2. Hence, we only prove the
forward direction.

Suppose that
νA;σ ⊆ LinAtom νB

we will construct a punctual extension σlp of σ such that

((νA ⊗ PB);σlp)�B0 ⊆ νB

We will do this by assigning a play lp(s) ∈ PA⊗B�B for every play s ∈ σ such that

lp(s)�A,B1 = s lp(s)�B0,B1 ∈ ccopyB

and moreover, if s�A ∈ νA then
lp(s)�B0 ∈ νB

and then we will finish by defining

σlp = strat({lp(s) | s ∈ σ })

First, note that if s ∈ σ and s�A � νA then there is no constraint on how we may construct the
corresponding play of σlp other than that the projection to the B components must play as ccopyB.
Now, by definition of ccopyB there is a play ccopyB(s) of ccopyB such that

ccopyB(s)�B1 = s�B

Now, if s�A ∈ νA we must ensure that lp(s)�B0 ∈ νB . By assumption,

s�B ∈ LinAtom νB

therefore, there is t ∈ νB such that s is linearizable to νB by Proposition 5.2. By Proposition 5.7 it
follows that there is a play ccopyB(s) such that

ccopyB(s)�B1 = s�B ccopyB�B0 = t

Either way, we proceed by constructing lp(s) by using s and ccopyB(s). We do so inductively and
keep track of suffixes sA and sB of s and ccopyB(s) with moreover the invariant that

sA�B = sB�B1

and that the first move in sA is in B, and the first move in sB is the same move in B1. Initially we
let sA = s and sB = ccopyB(s), and at any point we have s = pA · sA and ccopyB(s) = pB · sB . This
justifies the last invariant in that we keep track of a play lp(pA) satisfying:

lp(pA)�A,B1 = pA lp(pA)�B0,B1 = pB lp(pA)�A,B0 is atomic

Moreover, we will maintain that for every α ∈ ϒ, the last move by α in pB is a P move in B1, if it
exists, and that no agent’s next move in sB�B0 is a Proponent move. If sA = ϵ or sB = ϵ then in fact
sA = sB = ϵ as

sA�B = sB�B1 = ϵ

and the first move in both is in B and B1, respectively. In this case, we let

lp(s) = lp(s · sA) = lp(pA) · ϵ

which serves as our base case. Otherwise,

sA =m · s ′A sB =m · s ′B

Suppose first that there are no more moves in B in s ′A. Then, there are also no more moves in B1

in s ′A. Hence, all the moves in s ′A are moves in A and all the moves in s ′B are in B0. Then, we let

lp(pA · sA) = lp(pA) ·m · s ′A

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:99

Note that at this is a terminal case for the induction as we have

lp(s)�A,B1 = lp(pA · sA)�A,B1 = lp(pA) ·m · s ′A�A,B1 = lp(pA)�A,B1 ·m · s ′A�A,B1 = pA ·m · s ′A = s

lp(s)�B0,B1 = lp(pA · sA)�B0,B1 = lp(pA) ·m · s ′A�B0,B1 = lp(pA)�B0,B1 ·m · s ′A�B0,B1

= pB ·m � pB · sB = ccopyB(s)

In particular, by prefix-closure,
lp(s)�B0,B1 ∈ ccopyB

and in the case where s�A ∈ νA

lp(s)�B0,B1 � ccopyB(s) ∈ ccopyB

so that by prefix-closure again
lp(s)�B0 � t ∈ νB

Now, suppose there is some move n in component B in s ′A, and let moreover n be the first such
move. Then

sA =m · sA,1 · n · sA,2 sB =m · sB,1 · n · sB,2

If there is a pending Opponent move in sB,1�B0 = sB,1, it can’t be by the same agent as n. Hence,
in case there is such an Opponent move, so that

sB,1 = s
′
B,1 ·mO

Then, either α(mO) has no further moves in n · sB,2, in which case we modify sB to no harm as

s ′B =m · s ′B,1 · n · sB,2 ·mO

Or there is a responsemP (and by atomicity that is at most one such pending Opponent move with
a later response) so that

sB,2 = s
′
B,2 ·mP · sB,2”

we modify sB to no harm as

s ′B =m · s ′B,1 ·mO ·mP · n · s
′
B,2 · sB,2”

these changes cause no trouble as all the invariants are still satisfied with this modified sB , and the
modifications are essential to maintain that for every agent the next move is Opponent in B0 for
our next suffix. We, therefore, assume from now on that there are no pending Opponent moves in
sB,1. Moreover, sA,1�A has at most one pending O move. If there is no such move, we let

lp(pA ·m · sA,1 · n) = lp(pA) ·m · sA,1 · sB,1

which is a valid play by the modifications to sB made above and from the fact that sB,1 is atomic.
Otherwise,

sA,1 = sA,1′ ·mO

for some movemO , Opponent in A. In that case, we let

lp(pA ·m · sA,1) = lp(pA) ·m · s ′A,1 · sB,1 ·mO

We know show the invariants are maintained. In the first case, we have

lp(pA ·m · sA,1)�A,B1 = lp(pA) ·m · sA,1 · sB,1�A,B1 = lp(pA)�A,B1 ·m · sA,1 = pA ·m · sA,1

lp(pA ·m · sA,1)�B0,B1 = lp(pA) ·m · sA,1 · sB,1�B0,B1 = lp(pA)�B0,B1 ·m · sB,1 = pB ·m · sB,1

while in the second case we have

lp(pA ·m · sA,1)�A,B1 = lp(pA) ·m · s ′A,1 · sB,1 ·mO · n�A,B1 = lp(pA)�A,B1 ·m · s ′A,1 ·mO = pA ·m · sA,1

lp(pA ·m · sA,1)�B0,B1 = lp(pA) ·m · s ′A,1 · sB,1 ·mO�B0,B1 = lp(pA)�B0,B1 ·m · sB,1 = pB ·m · sB,1

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:100 A. Oliveira Vale et al.

At this point, it is justified to define the new instances p ′A,p
′
B , s

′
A, s

′
B of pA,pB , sA, sB as

p ′A = pA ·m · sA,1 s ′A = n · sA,2

p ′B = pB ·m · sB,1 s ′B = n · sB,2

the remaining invariants follow readily from this definitions and the remarks above.
Finally, at the end of this inductive procedure we note that we obtain lp(s) satisfying all the

desired claims. Finally, we let
σlp = strat({lp(s) | s ∈ σ })

which is our desired punctual extension. �

E.11 Proof of 9.3

Proof. We starting by defining the bisimulation relation L. On nodes, it is given by

ϱ L (p, sO , sP) ⇐⇒ ∃s ∈ ccopyA.ϱ = Pos(s) ∧ (p, sO , sP) ∈ Poss(s�A1) ∧ p = s�A0

and on edges by the correspondence we just saw:

— If ααα:::m is a move of type ααα:::Ot then ααα:::m L invokeα (m)
— If ααα:::m is a move of type ααα:::Pt then ααα:::m L returnα (m)
— If ααα:::m is a move of type ααα:::Os then ααα:::m L commitO

α (m)
— If ααα:::m is a move of type ααα:::Ps then ααα:::m L commitP

α (m)

Note that in particular,
ϵ L (ϵ,	,)

In both cases we observe that since ϱ L (p, sO , sP) there is s ∈ ccopyA such that

ϱ = Pos(s) ∧ (p, sO , sP) ∈ Poss(s�A1) ∧ p = s�A0

and in particular
s�A1 · 〈sP 〉�A p · 〈sO 〉

Without loss of generality suppose ααα:::m : ϱ → ϱ ′ is the edge under consideration.

— Note that, as
ϱ ′ = ϱ �ααα:::m

it follows that if s ′ ∈ ϱ ′ then there is s” ∈ ϱ such that

s”�A s ′ · ααα:::m�A s · ααα:::m

where the last derivation follows from the fact that ϱ = Pos(s). In particular, ϱ ′ = Pos(s ·ααα:::m).
Now we consider each possible case for the type of the move ααα:::m.
ααα:::Ot In this case the last move by α in s is a Pt move. As

s�A1 · 〈sP 〉�A p · 〈sO 〉

it follows that sP (α) = ϵ and sO (α) = ϵ . So let

p ′ = p s ′O = sO [α �→m] s ′P = sP

we show that
ϱ ′ L (p ′, s ′O , s

′
P)

We already saw that ϱ ′ = Pos(s ·ααα:::m). Notice moreover that (p ′, s ′O , s
′
P) ∈ Poss(s ·ααα:::m�A1).

Indeed:

(s ·ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 ·ααα:::m · 〈s ′P 〉 ≡A s�A1 ·ααα:::m · 〈sP 〉�A s�A1 · 〈sP 〉 ·m�A p · 〈sO 〉 ·m ≡A p · 〈s ′O 〉

and hence (p ′, s ′O , s
′
P) ∈ Poss((s · ααα:::m)�A1). Finally:

(s · ααα:::m)�A0 = s�A0 = p = p
′

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:101

It is readily seen that

invokeα (m) : (p, sO , sP) → (p ′, s ′O , s
′
P)

ααα:::Pt In this case the last move by α in s is a Ps move. But then, as s ∈ ccopyA it follows that
the last move by α in s�A1 is an O move. Therefore, as

s�A1 · 〈sP 〉�A p · 〈sO 〉

and s�A0 = p it must be that sP (α) =m and moreover sO (α) = ϵ . So let

p ′ = p s ′O = sO s ′P [α �→m] = sP

we argue that
ϱ ′ L (p ′, s ′O , s

′
P)

We have already seen that ϱ ′ = Pos(s · ααα:::m). Moreover:

(s · ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 · ααα:::m · 〈s ′P 〉 ≡A s�A1 · 〈sP 〉�A�A p · 〈sO 〉 ≡A p · 〈s ′O 〉

and hence (p ′, s ′O , s
′
P) ∈ Poss((s · ααα:::m)�A1). Moreover,

(s · ααα:::m)�A0 = s�A0 = p = p
′

Finally, it is readily seen that

returnα (m) : (p, sO , sP) → (p ′, s ′O , s
′
P)

ααα:::Os In this case the last move by α in s is an Ot move. As

s�A1 · 〈sP 〉�A p · 〈sO 〉

and s�A0 = p it must be that sO (α) = ααα:::m and sP (α) = ϵ . So let

p ′ = p · ααα:::m s ′O [α �→m] = sO s ′P = sP

Then, we show that
ϱ ′ L (p ′, s ′O , s

′
P)

We already saw that ϱ ′ = Pos(s ·ααα:::m). Notice moreover that (p ′, s ′O , s
′
P) ∈ Poss((s ·ααα:::m)�A1).

Indeed:

(s · ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 · 〈s

′
P 〉 ≡A s�A1 · 〈sP 〉�A p · 〈sO 〉 ≡A p · ααα:::m · 〈s ′O 〉 = p

′ · 〈s ′O 〉

so that (p ′, s ′O , s
′
P) ∈ Poss((s · ααα:::m)�A1). And finally:

(s · ααα:::m)�A0 = s�A0 · ααα:::m = p · ααα:::m = p ′

Finally, it is readily seen that

commitO
α (m) : (p, sO , sP) → (p ′, s ′O , s

′
P)

ααα:::Ps In this case the last move by α in s must be an Os move and the last move by α in s�A1

is an O move.
s�A1 · 〈sP 〉�A p · 〈sO 〉

and s�A0 = p it follows then that sO (α) = ϵ and that sP (α) = ϵ . So let

p ′ = p · ααα:::m s ′O = sO s ′P = sP [α �→m]

Then, we show that
ϱ ′ L (p ′, s ′O , s

′
P)

We already saw that ϱ ′ = Pos(s ·ααα:::m). Notice moreover that (p ′, s ′O , s
′
P) ∈ Poss((s ·ααα:::m)�A1).

Indeed:

(s · ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 · 〈s

′
P 〉 ≡A s�A1 · 〈sP 〉 · ααα:::m�A p · 〈sO 〉 · ααα:::m�A p · ααα:::m · 〈sO 〉 = p

′ · 〈sO 〉 ≡A p ′ · 〈s ′O 〉

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:102 A. Oliveira Vale et al.

so that (p ′, s ′O , s
′
P) ∈ Poss((s · ααα:::m)�A1). And finally:

(s · ααα:::m)�A0 = s�A0 · ααα:::m = p · ααα:::m = p ′

Finally, it is readily seen that

commitP
α (m) : (p, sO , sP) → (p ′, s ′O , s

′
P)

this covers all cases for ααα:::m.
— Again, we consider all cases of the edge e .

invokeα (m) In this case sO (α) = ϵ and s ′O (α) =m and

p ′ = p s ′P = sP

Moreover, as (p ′, s ′O , s
′
P) ∈ Poss(A) there is some s ′1 ∈ PA such that

s ′1 · 〈s
′
P 〉�A p ′ · 〈s ′O 〉

but note that
s ′1 · 〈sP 〉 ≡A s ′1 · 〈s

′
P 〉�A p ′ · 〈s ′O 〉 = p · 〈s

′
O 〉

In particular, as s ′O (α) = m it must be that the last move by α in p is a P move and that
s ′P (α) = sP (α) = ϵ . But, as

s�A1 · 〈sP 〉�A p · 〈sO 〉

we obtain that the last move by α in s�A1 is a P move. So define ϱ ′ = ϱ � ααα:::m. By the
argument in the previous case we obtain that ϱ ′ = Pos(s · ααα:::m). By construction

ααα:::m : ϱ → ϱ ′

moreover, as ααα:::m is an Ot move in s · ααα:::m it follows that ααα:::m L invokeα (m). It remains to
argue that

ϱ ′ L (p ′, s ′O , s
′
F)

By construction s · ααα:::m ∈ ccopyA and ϱ ′ = Pos(s · ααα:::m). Then, notice that

(s · ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 · ααα:::m · 〈s ′P 〉�A s�A1 · 〈s

′
P 〉 · ααα:::m ≡A s�A1 · 〈sP 〉 · ααα:::m�A p · 〈sO 〉 · tααα:::m ≡ p · 〈s ′O 〉 = p

′ · 〈s ′O 〉

moreover
(s · ααα:::m)�A0 = s�A0 = p = p

′

and the claim follows.
returnα (m) In this case s ′P (α) = ϵ and sP (α) =m and

p ′ = p s ′O = sO

Now, as (p ′, s ′O , s
′
P) ∈ Poss(A)s there must be some s ′1 ∈ PA such that

s ′1 · 〈s
′
P 〉�A p ′ · 〈s ′O 〉

but observe that

s ′1 · 〈sP 〉 · ααα:::m ≡A s ′1 · 〈s
′
P 〉�A p ′ · 〈s ′O 〉 = p · 〈s

′
O 〉 ≡A p · 〈sO 〉

Now, it follows that both p and p ′ end with a P move by α . We also observe that it must
be that sO (α) = s

′
O (α) = ϵ . But then, as

s�A1 · 〈sP 〉�A p · 〈sO 〉

and sP (α) =m, the last move by α in s�A1 must be an O move. Moreover, as s�A0 = p, the
next move in s must by α must be a ααα:::Pt move and it follows that s ·ααα:::m ∈ ccopyA. So let
ρ ′ = ρ �ααα:::m so that in particular ρ ′ = Pos(s · ααα:::m). By construction

ααα:::m : ρ → ρ ′

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

A Compositional Theory of Linearizability 14:103

and ααα:::m L returnα (m). It remains to argue that

ρ ′ L (p ′, s ′O , s
′
F)

for which we observe that

(s · ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 · ααα:::m · 〈s ′P 〉 ≡A s�A1 · 〈sP 〉�A p · 〈sO 〉 = p

′ · 〈sO 〉 ≡A p ′ · 〈s ′O 〉

and moreover
(s · ααα:::m)�A0 = s�A0 = p = p

′

commitO
α (m) In this case we have s ′O (α) = ϵ , sO (α) =m and

p ′ = p · ααα:::m s ′P = sP

Now, there is s ′1 such that (p ′, s ′O , s
′
P) ∈ Poss(s ′1) so that

s ′1 · 〈sP 〉 ≡A s ′1 · 〈s
′
P 〉�A p ′ · 〈s ′O 〉 = p · ααα:::m · 〈s ′O 〉 ≡A p · 〈sO 〉

In particular, sP (α) = s
′
P (α) = ϵ . But then, as

s�A1 · 〈sP 〉�A p · 〈sO 〉

Then, note that

πα (s�A1) = πα (s�A1 · 〈sP 〉) = πα (p · 〈sO 〉) = πα (p) ·m

and
πα (s�A0) = πα (p)

Meaning that that target component in s is ahead of the source component. So for α , Os

is to move in s ∈ ccopyA. So we are justified in letting ϱ ′ = ϱ � ααα:::m, and in particular
ϱ ′ = Pos(s · ααα:::m). By the above argument, s · ααα:::m ∈ ccopyA and by construction

ααα:::m : ϱ → ϱ ′ ααα:::m L commitO
α (m)

So to argue
ρ ′ L (p ′, s ′O , s

′
P)

we note that as we saw before:

(s · ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 · 〈s

′
P 〉 ≡A s�A1 · 〈sP 〉�A p · 〈sO 〉 ≡A p · ααα:::m · 〈s ′O 〉 = p

′ · 〈s ′O 〉

and
(s · ααα:::m)�A0 = s�A0 · ααα:::m = p · ααα:::m = p ′

and the result follows:
commitP

α (m) In this case sP (α) = ϵ , s ′P (α) =m and

p ′ = p · ααα:::m s ′O = sO

Now, there is s ′1 ∈ P†A such that

s ′1 · 〈sP 〉 · ααα:::m ≡A s ′1 · 〈s
′
P 〉�A p ′ · 〈s ′O 〉 = p · ααα:::m · 〈s ′O 〉 ≡A p · ααα:::m · 〈sO 〉

and in particular, sO (α) = s
′
O (α) = ϵ . But then, as

s�A1 · 〈sP 〉�A p · 〈sO 〉

then, observe that

πα (s�A1) = πα (s�A1 · 〈sP 〉) = πα (p · 〈sO 〉) = πα (p)

and of course
πα (s�A0) = πα (p)

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

14:104 A. Oliveira Vale et al.

As in addition we know that the last move in p must be anO move, it follows that s is a Ps

position for α . So we are justified in defining ρ ′ = ρ �ααα:::m, so that ρ ′ = Pos(s · ααα:::m). As
we just saw, s · ααα:::m ∈ ccopyA and by construction

ααα:::m : ρ → ρ ′ ααα:::m L commitP
α (m)

Finally, note that

(s · ααα:::m)�A1 · 〈s
′
P 〉 = s�A1 · 〈s

′
P 〉 ≡A s�A1 · 〈sP 〉 · ααα:::m�A p · 〈sO 〉 · ααα:::m�A p · ααα:::m · 〈sO 〉 = p

′ · 〈sO 〉 ≡A p ′ · 〈s ′O 〉

and moreover

(s · ααα:::m)�A0 = s�A0 · ααα:::m = p · ααα:::m = p ′

and the result follows. �

ACKNOWLEDGMENTS

This article is an extended version of Oliveira Vale et al. [2023]. We would like to thank the anony-
mous reviewers of the original version, and this journal version for their helpful and attentive
feedback. We would also like to express our gratitude to Eashan Hatti, Zhongye Wang, and Peixin
You, whose diligent reading of this article led to several corrections and improvements.

REFERENCES

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full abstraction for PCF. Information and Computation

163, 2 (2000), 409–470. DOI:https://doi.org/10.1006/inco.2000.2930
Samson Abramsky and Guy McCusker. 1999. Game semantics. In Proceedings of the Computational Logic. Ulrich Berger and

Helmut Schwichtenberg (Eds.), Springer, Berlin, 1–55. DOI:https://doi.org/10.1007/978-3-642-58622-4_1
S. Abramsky and P.-A. Mellies. 1999. Concurrent games and full completeness. In Proceedings of the 14th Symposium on

Logic in Computer Science (Cat. No. PR00158). IEEE Computer Society, USA, 431–442. DOI:https://doi.org/10.1109/LICS.
1999.782638

Marcos K. Aguilera and Svend Frølund. 2003. Strict Linearizability and the Power of Aborting. Technical Report HPL-2003-
241.

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021.
Theorems for free from separation logic specifications. Proceedings of the ACM on Programming Languages 5, ICFP,
Article 81 (2021), 29 pages. DOI:https://doi.org/10.1145/3473586

Andreas Blass. 1992. A game semantics for linear logic. Annals of Pure and Applied Logic 56, 1–3 (1992), 183–220. DOI:https:
//doi.org/10.1016/0168-0072(92)90073-9

Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. 2015. Specifying concurrent problems: Beyond linearizability
and up to tasks. In Proceedings of the 29th International Symposium on Distributed Computing - Volume 9363 (DISC 2015).
Springer-Verlag, Berlin, 420–435. DOI:https://doi.org/10.1007/978-3-662-48653-5_28

Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. 2017. Games and strategies as event structures.
Logical Methods in Computer Science 13, 3 (2017), 49. DOI:https://doi.org/10.23638/LMCS-13(3:35)2017

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2014. Parameterised linearisability. In Proceedings of the Automata,

Languages, and Programming. Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.), Springer,
Berlin , 98–109. DOI:https://doi.org/10.1007/978-3-662-43951-7_9

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.
In Proceedings of the ECOOP 2014 – Object-Oriented Programming. Richard Jones (Ed.), Springer Berlin, Heidelberg, 207–
231. DOI:https://doi.org/10.1007/978-3-662-44202-9_9

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent
abstract predicates. In Proceedings of the ECOOP 2010 – Object-Oriented Programming. Theo D’Hondt (Ed.), Springer,
Berlin, 504–528. DOI:https://doi.org/10.1007/978-3-642-14107-2_24

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the relationship between concurrent separation logic and assume-
guarantee reasoning. In Proceedings of the Programming Languages and Systems. Rocco De Nicola (Ed.), Springer, Berlin,
173–188. DOI:https://doi.org/10.5555/1762174.1762193

Ivana Filipovic, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. 2010. Abstraction for concurrent objects. Theoretical

Computer Science 411, 51–52 (2010), 4379–4398. DOI:https://doi.org/10.1016/j.tcs.2010.09.021

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1007/978-3-642-58622-4_1
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1145/3473586
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1007/978-3-662-48653-5_28
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1007/978-3-662-43951-7_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.5555/1762174.1762193
https://doi.org/10.1016/j.tcs.2010.09.021

A Compositional Theory of Linearizability 14:105

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about optimistic concurrency using a program
logic for history. In Proceedings of the CONCUR 2010 - Concurrency Theory. Paul Gastin and François Laroussinie (Eds.),
Springer, Berlin, 388–402. DOI:https://doi.org/10.1007/978-3-642-15375-4_27

Philippe Gaucher. 2020. Flows revisited: The model category structure and its left determinedness. Cahiers de Topolo-

gie et Géométrie Différentielle Catégoriques LXI, 2 (2020), 208–226. Retrieved from https://hal.archives-ouvertes.fr/hal-
01919037

Dan R. Ghica. 2013. Diagrammatic reasoning for delay-insensitive asynchronous circuits. In Proceedings of the Computation,

Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky: Essays Dedicated to Samson Abramsky

on the Occasion of His 60th Birthday. Bob Coecke, Luke Ong, and Prakash Panangaden (Eds.), Springer, Berlin, 52–68.
DOI:https://doi.org/10.1007/978-3-642-38164-5_5

Dan R. Ghica. 2023. The far side of the cube. In Samson Abramsky on Logic and Structure in Computer Science and Beyond,
Alessandra Palmigiano and Mehrnoosh Sadrzadeh (Eds.). Springer International Publishing, Cham, 219–250. DOI:https:
//doi.org/10.1007/978-3-031-24117-8_6

Dan R. Ghica and Andrzej S. Murawski. 2004. Angelic semantics of fine-grained concurrency. In Proceedings of the Foun-

dations of Software Science and Computation Structures. Igor Walukiewicz (Ed.), Springer, Berlin, 211–225. DOI:https:
//doi.org/10.1016/j.apal.2007.10.005

Éric Goubault, Jérémy Ledent, and Samuel Mimram. 2018. Concurrent specifications beyond linearizability. In Proceed-

ings of the 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Jiannong Cao, Faith
Ellen, Luis Rodrigues, and Bernardo Ferreira (Eds.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 125,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 28:1–28:16. DOI:https://doi.org/10.4230/LIPIcs.
OPODIS.2018.28

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. 2015. Deep specifications and certified abstraction layers. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’15). Association for Computing Machinery,
New York, NY, USA, 595–608. DOI:https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS:
An extensible architecture for building certified concurrent OS kernels. In Proceedings of the 12th USENIX Conference on

Operating Systems Design and Implementation (OSDI’16). USENIX Association, USA, 653–669.
Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David

Costanzo, and Tahina Ramananandro. 2018. Certified concurrent abstraction layers. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018). Association for Computing
Machinery, New York, NY, USA, 646–661. DOI:https://doi.org/10.1145/3192366.3192381

Rachid Guerraoui and Eric Ruppert. 2014. Linearizability is not always a safety property. In Proceedings of the Networked

Systems. Guevara Noubir and Michel Raynal (Eds.), Springer International Publishing, Cham, 57–69. DOI:https://doi.
org/10.1007/978-3-319-09581-3_5

Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch, Michael Lippautz, Hannes Payer, Ali Sezgin,
Ana Sokolova, and Helmut Veith. 2016. Local linearizability for concurrent container-type data structures. In Proceedings

of the 27th International Conference on Concurrency Theory (CONCUR 2016). Josée Desharnais and Radha Jagadeesan
(Eds.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 59, Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 6:1–6:15. DOI:https://doi.org/10.4230/LIPIcs.CONCUR.2016.6

Susumu Hayashi. 1985. Adjunction of semifunctors: Categorical structures in nonextensional λ calculus. Theoretical Com-

puter Science 41 (1985), 95–104. DOI:https://doi.org/10.1016/0304-3975(85)90062-3
Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular verification of concurrency-aware linearizability. In Pro-

ceedings of the 29th International Symposium on Distributed Computing - Volume 9363 (DISC 2015). Springer-Verlag, Berlin,
371–387. DOI:https://doi.org/10.1007/978-3-662-48653-5_25

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems 12, 3 (1990), 463–492. DOI:https://doi.org/10.1145/78969.78972
Raymond Hoofman and Ieke Moerdijk. 1995. A remark on the theory of semi-functors. Mathematical Structures in Computer

Science 5, 1 (1995), 1–8. DOI:https://doi.org/10.1017/S096012950000061X
Martin Hyland. 1997. Game semantics. In Proceedings of the Semantics and Logics of Computation. Andrew M. Pitts

and P. Editors Dybjer (Eds.), Cambridge University Press, Cambridge, UK, 131–184. DOI:https://doi.org/10.1017/
CBO9780511526619.005

Martin Hyland, Misao Nagayama, John Power, and Giuseppe Rosolini. 2006. A category theoretic formulation for engeler-
style models of the untyped λ-calculus. Electronic Notes in Theoretical Computer Science 161 (2006), 43–57. DOI:https:
//doi.org/10.1016/j.entcs.2006.04.024

Martin Hyland and C. H. Luke Ong. 2000. On full abstraction for PCF: I, II, and III. Information and Computation 163,
2 (2000), 285–408. DOI:https://doi.org/10.1006/inco.2000.2917

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

https://doi.org/10.1007/978-3-642-15375-4_27
https://hal.archives-ouvertes.fr/hal-01919037
https://doi.org/10.1007/978-3-642-38164-5_5
https://doi.org/10.1007/978-3-031-24117-8_6
https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.4230/LIPIcs.OPODIS.2018.28
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1007/978-3-319-09581-3_5
https://doi.org/10.4230/LIPIcs.CONCUR.2016.6
https://doi.org/10.1016/0304-3975(85)90062-3
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1145/78969.78972
https://doi.org/10.1017/S096012950000061X
https://doi.org/10.1017/CBO9780511526619.005
https://doi.org/10.1016/j.entcs.2006.04.024
https://doi.org/10.1006/inco.2000.2917

14:106 A. Oliveira Vale et al.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28
(2018), e20. DOI:https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.
2019. The future is ours: Prophecy variables in separation logic. Proceedings of the ACM on Programming Languages 4,
POPL, Article 45 (2019), 32 pages. DOI:https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and invariants as an orthogonal basis for concurrent reasoning. ACM SIGPLAN Notices 50, 1 (2015), 637–650.
DOI:https://doi.org/10.1145/2775051.2676980

Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson. 2017. Proving linearizability using partial orders.
In Proceedings of the Programming Languages and Systems: 26th European Symposium on Programming, ESOP 2017, Held

as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22–29,

2017. Springer-Verlag, Berlin, 639–667. DOI:https://doi.org/10.1007/978-3-662-54434-1_24
Artem Khyzha, Alexey Gotsman, and Matthew Parkinson. 2016. A generic logic for proving linearizability. In Proceedings of

the FM 2016: Formal Methods. John Fitzgerald, Constance Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.), Springer
International Publishing, Cham, 426–443. DOI:https://doi.org/10.1007/978-3-319-48989-6_26

Jérémie Koenig and Zhong Shao. 2020. Refinement-based game semantics for certified abstraction layers. In Proceedings of

the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’20). Association for Computing Machinery,
New York, NY, USA, 633–647. DOI:https://doi.org/10.1145/3373718.3394799

James Laird. 2001. A game semantics of idealized CSP. Electronic Notes in Theoretical Computer Science 45 (2001), 232–257.
DOI:https://doi.org/10.1016/S1571-0661(04)80965-4

Xavier Leroy. 2009. Formal verification of a realistic compiler. Communications of the ACM 52, 7 (2009), 107–115. DOI:https:
//doi.org/10.1145/1538788.1538814

Mohsen Lesani, Li-Yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C. Pierce, and Steve Zdancewic.
2022. C4: Verified transactional objects. Proceedings of the ACM on Programming Languages 6, OOPSLA1, Article 80
(2022), 31 pages. DOI:https://doi.org/10.1145/3527324

Hongjin Liang and Xinyu Feng. 2016. A Program Logic for Concurrent Objects under Fair Scheduling. In Proceedings of

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’16). Association for
Computing Machinery, New York, NY, USA, 385–399. DOI:https://doi.org/10.1145/2837614.2837635

Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-guarantee-based simulation for compositional verification of concur-
rent program transformations. ACM Transactions on Programming Languages and Systems 36, 1, Article 3 (2014), 55 pages.
DOI:https://doi.org/10.1145/2576235

Paul-André Melliès and Samuel Mimram. 2007. Asynchronous games: Innocence without alternation. In Proceedings of the

CONCUR 2007 – Concurrency Theory. Luís Caires and Vasco T. Vasconcelos (Eds.), Springer, Berlin, 395–411. DOI:https:
//doi.org/10.1007/978-3-540-74407-8_27

Paul-André Melliès and Léo Stefanesco. 2020. Concurrent separation logic meets template games. In Proceedings of the 35th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’20). Association for Computing Machinery, New York,
NY, USA, 742–755. DOI:https://doi.org/10.1145/3373718.3394762

Marie-Anne Moens, Ugo Berni-Canani, and Francis Borceux. 2002. On regular presheaves and regular semi-categories.
Cahiers de Topologie et Géométrie Différentielle Catégoriques 43, 3 (2002), 163–190. Retrieved from http://www.numdam.
org/item/CTGDC_2002__43_3_163_0/

Andrzej S. Murawski and Nikos Tzevelekos. 2019. Higher-order linearisability. Journal of Logical and Algebraic Methods in

Programming 104 (2019), 86–116. DOI:https://doi.org/10.1016/j.jlamp.2019.01.002
Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating state transition

systems for fine-grained concurrent resources. In Proceedings of the Programming Languages and Systems. Zhong Shao
(Ed.), Springer, Berlin, 290–310. https://doi.org/10.1007/978-3-642-54833-8_16

Gil Neiger. 1994. Set-linearizability. In Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing

(PODC’94). Association for Computing Machinery, New York, NY, USA, 396. DOI:https://doi.org/10.1145/197917.198176
Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2022. Layered and object-based

game semantics. Proceedings of the ACM on Programming Languages 6, POPL, Article 42 (2022), 32 pages. DOI:https:
//doi.org/10.1145/3498703

Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen. 2023. A compositional theory of linearizability. Proceedings of the

ACM on Programming Languages 7, POPL, Article 38 (2023), 32 pages. DOI:https://doi.org/10.1145/3571231
Robin Piedeleu. 2019. Picturing Resources in Concurrency. Ph.D. Dissertation. University of Oxford.
Uday S. Reddy. 1993. A Linear Logic Model of State. Technical Report. Dept. of Computer Science, UIUC, Urbana, IL.
Uday S. Reddy. 1996. Global state considered unnecessary: An introduction to object-based semantics. Lisp and Symbolic

Computation 9, 1 (1996), 7–76. DOI:https://doi.org/10.1007/978-1-4757-3851-3_9

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-319-48989-6_26
https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1016/S1571-0661(04)80965-4
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3527324
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2576235
https://doi.org/10.1007/978-3-540-74407-8_27
https://doi.org/10.1145/3373718.3394762
http://www.numdam.org/item/CTGDC_2002__43_3_163_0/
https://doi.org/10.1016/j.jlamp.2019.01.002
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/3498703
https://doi.org/10.1145/3571231
https://doi.org/10.1007/978-1-4757-3851-3_9

A Compositional Theory of Linearizability 14:107

Silvain Rideau and Glynn Winskel. 2011. Concurrent strategies. In Proceedings of the 2011 IEEE 26th Annual Symposium on

Logic in Computer Science. IEEE Computer Society, USA, 409–418. DOI:https://doi.org/10.1109/LICS.2011.13
Gerhard Schellhorn, John Derrick, and Heike Wehrheim. 2014. A sound and complete proof technique for linearizability

of concurrent data structures. ACM Transactions on Computational Logic 15, 4, Article 31 (2014), 37 pages. DOI:https:
//doi.org/10.1145/2629496

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In Proceedings of the Programming

Languages and Systems. Zhong Shao (Ed.), Springer, 149–168. DOI:https://doi.org/10.1007/978-3-642-54833-8_9
Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and hoare-style reasoning in a logic for higher-

order concurrency. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming

(ICFP’13). Association for Computing Machinery, New York, NY, USA, 377–390. DOI:https://doi.org/10.1145/2500365.
2500600

Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. 2006. Proving correctness of highly-concurrent linearis-
able objects. In Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’06). Association for Computing Machinery, New York, NY, USA, 129–136. DOI:https://doi.org/10.1145/1122971.
1122992

Viktor Vafeiadis and Matthew Parkinson. 2007. A marriage of rely/guarantee and separation logic. In Proceedings of the

CONCUR 2007 – Concurrency Theory. Luís Caires and Vasco T. Vasconcelos (Eds.), Springer, Berlin, 256–271.

Received 2 December 2022; revised 28 December 2023; accepted 9 January 2024

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.

https://doi.org/10.1109/LICS.2011.13
https://doi.org/10.1145/2629496
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/1122971.1122992

