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As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more
complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced
human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness. Recently, techniques
in Explainable Artificial Intelligence (XAI) are attracting considerable attention, and have tremendously helped
Machine Learning (ML) engineers in understanding AI models. However, at the same time, we started to
witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI,
how can we better empower ML engineers in steering their DNNs so that the model’s reasonableness and
performance can be improved as intended? This article provides a timely and extensive literature overview
of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs’ reasoning
process by adding regularization, supervision, or intervention on model explanations. In doing so, we first
provide a formal definition of EGL and its general learning paradigm. Secondly, an overview of the key factors
for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics
for EGL are provided. Finally, the current and potential future application areas and directions of EGL are
discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative
studies among existing EGL models in various popular application domains, such as Computer Vision (CV)
and Natural Language Processing (NLP) domains.
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2 Gao et al.

1 INTRODUCTION
In recent years, techniques in Explainable Artificial Intelligence (XAI) are attracting considerable
attention [2, 9, 58], and have gradually become the dominating ways that connect the way Deep
Neural Networks (DNNs) work and human reasoning [63, 86]. As DNNs cannot provide human
sensible “global structure” of how the model works unlike white-box models, XAI has become an
imperative tool that Machine Learning (ML) engineers always use to “make sense” of the way their
models work [52]. In recent years, many XAI techniques have been proposed in an effort to open
the “black box” of DNNs [58], such as techniques that provide saliency maps for understanding
which sub-parts (i.e., features) in an instance are most responsible for the model prediction [11, 101,
102, 127, 173]. Despite the recent fast progress on XAI techniques for DNNs, the majority of the
research body in XAI put focus on handling “how to generate the explanations” while showing less
attention to advanced questions like “whether the explanations are reasonable/accurate”, “what if
the explanations are unreasonable/inaccurate”, and most importantly, “how to adjust the model
to generate more reasonable/accurate explanations in the future”. We are starting to witness the
emerging need beyond XAI; based on the insights learned from XAI, how can we better steer DNNs
such that their future behavior can be improved from the insights learned from XAI techniques?
We argue that understanding how to convert insights learned from XAI-driven techniques to steer
DNNs would be the key to realizing the DNNs to be more powerful, fair, accountable, transparent,
unbiased, and trustworthy, unraveling many real-world application areas.
In recent years, several new areas have emerged which aim at gaining a thorough grasp of the

model behavior through the model explanation. Explanatory Debugging is one area of research
that has gained popularity [75, 83, 153]. Interactive techniques and systems were developed to
enable human users to interactively select features of interest and then investigate how the model
behaves in the resulting subspaces for debugging purposes. Another interesting area of research
compared the explanation provided by DNNs and the explanation provided by humans to gain a
better understanding of the models’ behavior [33, 142]. Although the aforementioned studies are
capable of providing more insights about whether the explanations are accurate or reasonable, they
are yet to be sufficient for further handling how we can learn from those mistakes, and consequently
adjust the model to get better quality explanations and enhance the model performance.

Recently, a new line of research that aims to intervene ML model’s behavior through XAI tech-
niques has started to emerge. In particular, the approaches jointly improve DNNs in terms of both
their explainability and generalizability by applying additional supervision signals or prior knowl-
edge onto the model reasoning process to direct the model explanation derived from established XAI
techniques. This direction is generally named Explanation Guided Learning (EGL) [65, 84, 123, 137],
while several other terms such as Explanation Supervision [50–52], Attention Supervision [116, 169],
Explanation Alignment [119, 165], as well as Learning from Explanation [22, 124, 162] are also
frequently used under the same umbrella.
Recently, there has been a surge of research that both proposes and applies new approaches in

numerous application areas, including Computer Vision (CV), Natural Language Processing (NLP),
and Visual Question Answering (VQA). Despite the fact that EGL techniques are generally still
in their early stage, the majority of existing studies have produced encouraging results, showing
that the main DNNs can generally benefit from the additional explanation objective in terms of
both model explainability and generalizability to unseen data across various application domains.
However, developing EGL frameworks can be difficult due to significant technical challenges caused
by its unique characteristics, including:

(1) Gap between the pattern ofmodel explanation and human explanation: The explanation
generated by model explainers is typically continuous values, whereas human annotations are
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typically binary. Therefore, it is difficult to align the human explanation directly with the model
explanation without significant efforts to fill the gap between the data domain and distributions.

(2) Difficulty in comprehensively evaluating the EGL models: unlike the conventional model
where the task performance is the main focus, the quality of EGL outcomes generally needs
sophisticated and carefully devised evaluation procedures that are often naturally subjective. For
example, human participants can be involved in the evaluation to assess the quality of the model
explanation. Moreover, beyond XAI explanation, EGL further requires the joint evaluation of the
accuracy of prediction, explanation, and their mutual relation towards the reflection of model
generalizability. Thus, we lack systematic standardization and comprehensive summarization
approaches with which to evaluate the various EGL methodologies that have been proposed.

(3) Noisiness in human annotation labels: Unlike predictive task labels, it is much more likely
for human annotators to unintentionally create noisy annotation labels where either the real
important features are missed or irrelevant features are mistakenly included in the explanation
annotation. For instance, when annotation the image data, some important object parts or even
the entire objects may be missed by the coarsely drawn boundary from human annotators. Thus,
applying naive supervision directly to train the model can lead to falsely excluded non-trivial
features from the input space that are important to the prediction [50].

(4) Difficulty in explicitly measuring the faithfulness of the explanation quality with re-
spect to the model generalizability: Due to the fact that EGL techniques are generally still in
their infancy, most existing works still primarily focus on merely evaluating the explanation
quality of the EGL model independently of the model task performance. The faithfulness of the
improved explanation quality with respect to the model prediction is yet to be explored explicitly
and can be a key research question to be answered for EGL techniques to further advance and
enhance the model performance and generalizability.

1.1 Contributions
As the majority of existing EGL approaches were built for a specific application domain, cross-
referencing these techniques across application domains serving different communities is prob-
lematic and challenging. Moreover, the lack of a comprehensive review and taxonomy of existing
techniques and applications in EGL creates substantial challenges for researchers working in the re-
lated field, since they lack clear information on existing bottlenecks, pitfalls, open-ended questions,
and potentially fruitful future research directions.
To this end, this paper provides a systematic survey of EGL models across various application

domains, including Computer Vision (CV) [37, 44, 84, 99, 119, 121, 139, 152], Natural Language
Processing (NLP) [8, 10, 15, 21, 22, 24, 26, 27, 36, 53, 55, 66, 82, 90, 91, 137, 138, 140, 162, 163, 168, 170,
172], Visual Question Answering (VQA) [25, 48, 109, 116, 155, 169], and more in Section 4. The goal
of the survey is to help interdisciplinary researchers build a better understanding of the existing
EGL techniques, and develop appropriate frameworks to solve the problems in their applications
domains. Besides, this survey also aims at helping researchers outside the AI communities to
understand the basic principles as well as identify interdisciplinary open research opportunities in
the EGL domain. As far as we know, this is the first comprehensive survey on explanation-guided
learning. This work’s contributions are as follows:

• We summarize a general learning paradigm of EGL based on existing works in this field to
provide overall guidance on identifying and designing new EGL techniques.

• We identify the key factors in terms of comprehensively evaluating the EGLmodel’s performance,
and then provided a summarization and categorization of the existing evaluation procedures and
metrics.
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4 Gao et al.

• We propose a taxonomy of explanation-guided learning categorized by the level of guidance and
methodologies. The advantages, drawbacks, as well as relations among different subcategories
of EGL techniques, are also introduced and compared.

• We introduce the broader application of EGL and detail the unique benefits and future opportu-
nities for each application domain.

• We conduct a comprehensive experimental analysis and comparative study among existing EGL
models in CV and NLP domains.

• We summarize the existing literature on EGL at the current stage, and then provide a set of open
problems and potential promising future research directions of EGL.

1.2 Relationship with Related Surveys
This section outlines previously published surveys that have some relevance to Explanation-Guided
Learning. These surveys can be classified into three topics: (1) XAI technique and evaluation, (2) AI
ethics, and (3) interactive machine learning, as introduced in detail below.

Explainablity Technique and Evaluation: The related surveys of interpretability techniques
provide a technical review and categorization of existing explanation techniques that can explain
the machine learning model, especially for the sophisticated ‘black box’ DNN models. Several
related surveys provide an in-depth classification of machine learning interpretability methods in
general [9, 58, 89, 120], while others focus on more specific fields of study. Specifically, Burkart et
al. [20] review the explainability methods of supervised machine learning models. Montavon et
al. [103] provide a survey that specifically focuses on the interpretability techniques designed for
explaining DNNs. Zhang et al. [166] research interpretability techniques for Convolutional Neural
Networks (CNN) and visual explanation. Tjoa et al. [146] summarized the XAI techniques that
have been adopted for explaining medical data. Along the line of interpretability techniques, many
recent surveys also review the methods and metrics for comprehensively validating the quality of
the explanation generated by the XAI techiniques [62, 100, 175].

AI Ethics: As the societal impact of AI grows, the goals for revising AI becomemore complex and
diverse, ranging from improving a conventional model accuracy metric to infusing advanced human
virtues such as fairness, accountability, transparency (FaccT), and unbiasedness [92]. Aligning to
such direction, recent surveys started to collect, synthesize, and structuralize the existing approaches
meant to be designed to handle several types of bias in AI [23, 95]. The most noteworthy finding in
our survey for the landmark surveys is that the approaches for detecting bias in ML are more than
the ways to mitigate the bias [17, 39]. The second important finding is that even though several
studies focus on showing the ways to detect bias, they also present a hint of how we can mitigate
them by showing some typical bias cases [95, 106]. Lastly, the existing survey also provides a
pressing field needs explaining why we need to improve the ways to steer models in the case of
witnessing the evidence of bias [63].

Interactive Machine Learning: Since Fails et al. [45] proposed the idea of interactive ML, the
HCI community has put a high priority on applying XAI techniques in developing interactive
techniques and systems meant to help ML engineers to better understand their models’ weaknesses
and strengths. Landmark surveys related to human factor and interaction can be categorized into
1) the interactive design–emphasizing how to design the feedback loop between humans and ML
models through system [40, 68] that are widely proposed in the human factor research communities,
such as SIGCHI, CSCW, and UIST, and 2) visual analytic–focusing on how to apply visualization
techniques to help ML engineers understanding complex ML model behavior [42, 161].
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1.3 Outline of the survey
The remaining part of the survey is organized as follows. In Section 2, we introduce the problem
formulation and performance evaluations of EGL models, as illustrated in Figure 1 and Table 1. In
Section 3, we provide the taxonomy of EGL categorized by the level of guidance and methodologies,
as illustrated in Figure 2.Moreover, the details of each EGL technique, alongwith their corresponding
advantages, drawbacks, and relations to other techniques in the same subcategories are provided. In
Sections 4 and 5, we first introduce the broader application of EGL and then conduct a comprehensive
experimental analysis and comparative study among existing EGL models in both CV and NLP
domains. Lastly, we conclude the current development of EGL techniques and suggest several open
problems and potential future research directions in Section 6.

2 PROBLEM FORMULATION AND PERFORMANCE EVALUATIONS
This section begins by introducing the generic denotation and formulation of the Explanation-
Guided Learning problem (Section 2.1) and then considers ways to categorize the performance
evaluation measures of Explanation-Guided Learning (Section 2.2).

2.1 Problem formulation
Consider a differentiable model 𝑓 parameterized by 𝜃 that learns to fit inputs 𝑋 ∈ R𝑁×𝐷 and the
corresponding one-hot class labels 𝑌 ∈ R𝑁×𝐾 , where 𝑁 denotes the total number of data samples,
𝐷 denotes the input dimension and 𝐾 denotes the number of classes. An explainer 𝑔 is considered
to extract the explanation𝑀 from the model 𝑓 given its parameter 𝜃 and a set of data points ⟨𝑋,𝑌 ⟩.
Generally speaking, the model explanation𝑀 represents the marginal contribution of each input
feature to the model’s decision after all possible combinations have been considered. Notice that in
this paper we use the terms rationale, attention, and saliency maps interchangeably as the specific
form of 𝑀 that is frequently used by the corresponding application domains. Depending on the
way the explanation is calculated,𝑀 can be generally represented by either local explanation𝑀 (𝐿)

where𝑀 (𝐿)
𝑖

is the local explanation of model 𝑓 with respect to sample ⟨𝑋𝑖 , 𝑌𝑖⟩, or a single global
explanation𝑀 (𝐺) of the model 𝑓 .

The Explanation-Guided Learning (EGL) paradigm. The general goal for Explanation-
Guided Learning is to boost both the task performance as well as the interpretability of the
backbone model by jointly optimizing model prediction as well as the explanation. Based on the
earlier exploration of explanation supervision frameworks design [50, 51, 99, 122], we introduce
the key objective function of Explanation-Guided Learning as follows:

min LPred (𝑓 (𝑋 ), 𝑌 )︸             ︷︷             ︸
task supervision

+𝛼LExp (𝑔(𝑓 , ⟨𝑋,𝑌 ⟩), 𝑀̂)︸                        ︷︷                        ︸
explanation supervision

+ 𝛽Ω(𝑔(𝑓 , ⟨𝑋,𝑌 ⟩))︸               ︷︷               ︸
explanation regularization

(1)

where 𝑀̂ explicitly incorporates the ‘right’ explanation, which can be typically realized by human
annotation masks [36, 52].
As shown in Equation (1), the key objective function of Explanation-Guided Learning mainly

consists of three terms, namely 1) task supervision term for the typical prediction loss (such as the
cross-entropy loss), 2) explanation supervision term for supervising the model explanation with
some explicit knowledge of what the ‘right’ explanation should be, and 3) explanation regularization
term for enforcing some general properties about the ‘right’ explanation (such as maintaining
the sparsity nature of the explanation). Notice that all three terms above can be defined and
implemented differently depending on each particular explanation-guided learning method.
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Fig. 1. The gaps in Explanation-Guided Learning performance evaluations.

Table 1. Detailed evaluation measures categorized by the gaps.

Category Evaluation Measure

Explanation Faithfulness Perturbation based [10, 27, 36, 38, 65, 99, 136, 165]
Explanation Consistency based [10, 136]

Explanation Correctness
Case study based [26, 38, 109, 168]

Human annotation based1 [22, 25, 36, 38, 48, 55, 60, 66, 84, 91, 99, 109, 136, 159]
User study based (user-perceived understandability) [27, 66, 112, 144]

2.2 Performance evaluations
Unlike the evaluation of conventional machine learning models that typically only focus on the
goodness of performance of the model, and the evaluation of traditional explainable AI models
that only focus on the quality of the generated model explanation, Explanation-Guided Learning
essentially jointly investigates the model prediction performance, the quality of model explanation,
and their relation. As illustrated in Figure 1, we identify and categorize two types of evaluations that
are essential in measuring the performance of EGLmodels, namely the faithfulness and correctness of
the model explanation. Here we summarize the existing evaluation metrics into the two categories
in Table 1 and introduce each type of metric in great detail in the following two subsections.

2.2.1 Metrics on evaluating explanation faithfulness. Here we introduce the metrics for explanation
faithfulness (model prediction v.s. model explanation) evaluation, which aims at evaluating how
the model-generated explanation influences the corresponding model’s prediction.

Perturbation-based evaluations: To evaluate the faithfulness of the model explanation, the
study of how different types of perturbations on the input space influence the model prediction
has become a very common and well-received approach in the literature [10, 27, 36, 38, 65, 99, 136,
165]. Existing measures can be mainly categorized into three groups, depending on the type of
perturbation as follows:
• Occlusion-based perturbation: These metrics basically study how much influence on the
model’s prediction if the important feature or rationale identified by the model explanation are
occluded or masked from the original sample [27, 36, 65, 99, 165]. One commonly used occlusion-
based metric is comprehensiveness [36], where the difference of the predicted probability from the
model 𝑓 (·) for the same class 𝑌𝑖 is compared between the original input 𝑋𝑖 and 𝑋𝑖\𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩),
where the operation ‘\’ represents the exclusion of the supporting rationales 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) from
input 𝑋𝑖 . Mathematically, Comprehensiveness can be defined as follows:

Comprehensiveness = 𝑓 (𝑋𝑖 )𝑌𝑖 − 𝑓 (𝑋𝑖\𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩))𝑌𝑖 (2)
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Besides the comprehensiveness score, many other intuitive methods are also used to evaluate the
quality of the explanation. Inspired by previous works [104, 128], a common intuitive strategy to
measure the faithfulness of the explanation used by existing works [27, 99, 165] is to track the
degradation of model performance by removing importance features (often in decreasing order)
from the input.

• Insertion-based perturbation: These metrics study howwell the prediction aligns between the
original sample and an artificially generated sample where only the important feature/rationales
are included [10, 36, 99, 136]. One popular metric is Sufficiency [36], which captures the degree
to which the snippets within the extracted rationales 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) are adequate for a model to
make a prediction. Concretely, it can be defined as follows:

Sufficiency = 𝑓 (𝑋𝑖 )𝑌𝑖 − 𝑓 (𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩))𝑌𝑖 (3)

Similarly, many other intuitive methods are also used following the insertion idea. A common
strategy used by existing works [10, 99] is to track the increase in model performance by gradually
inserting the important features (often in decreasing order) from the input.

• Adversarial perturbation: These metrics in general check whether the model explanation
is still faithful to the model prediction under adversarial attacks [38, 165]. For instance, [165]
leveraged the sanity check method originally proposed by [3] to check if attribution maps look
different when the deep network being explained is extremely perturbed or under adversarial
attacks. The intuition behind this measure is that a faithful attribution method should yield
different explanations for the randomized model.
Consistency-based evaluations: Besides the perturbation-based metrics which only focus on

evaluating each instance locally at a time, existing works also propose consistency-based evaluation,
where more global evaluation metrics have been proposed to validate how well the explanation
aligns across similar instances [10, 136]. More specifically, [10] proposed a metric called Data
Consistency that measures how similar the explanations for similar instances are. Although the
specific equation of the measurement in the paper is specifically designed for NLP and generative
explanation, the basic idea can be generally expressed as follows:

Data Consistency = |𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) − 𝑔(𝑓 , ⟨𝑋𝑖\𝑀,𝑌𝑖⟩) | (4)

where𝑀 is a random mask that masks out 𝐾 input features from 𝑋𝑖 ; 𝐾 will be treated as a hyper-
parameter depending on the dataset. In short, the general assumption behind this is that the model
explanation between very similar samples should also be close to each other, so higher values
represent better performance. Besides, the authors also suggested that it can also serve as an
additional regularisation term during training for the model to be consistent in the generated
explanations.

Similar to the above idea, another work employed Intersection over Union (IoU) score to measure
explanation stability across similar instances [136]. Specifically, they proposed to find similar
instances by searching for the nearest neighbors of 𝑋𝑖 in the dataset based on both the semantic
similarity – cosine of their BERT representations; and the lexical similarity – the ratio of overlapping
n-grams.

2.2.2 Metrics on evaluating explanation correctness. Here we introduce the metrics for explanation
correctness evaluation, which aims at evaluating how well the model-generated explanation aligns
with the human explanation annotation or how well can humans perceive the model-generated
explanation.

Case study: Case study has been widely used as a conventional method for qualitatively evalu-
ating the explanation generated by the model [26, 38, 109, 168], where a set of instances and their

, Vol. 1, No. 1, Article . Publication date: December 2022.



8 Gao et al.

Ex
pl

an
at

io
n 

G
ui

de
d 

Le
ar

ni
ng

Global Guidance

Global Explanation Supervision
Aggregation-based Global Supervision

Surrogate-based Global Supervision

Global Explanation Regularization Global Attribution Prior Injection

Local Guidance

Local Explanation Supervision

Visual Explanation Alignment

Rationale Attention Alignment

Feature Attribution Alignment

Local Explanation Regularization
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Fig. 2. Taxonomy of Explanation-Guided Learning problems and techniques.

corresponding model explanations are selected and investigated qualitatively. Although making
qualitative assessments and detailed analyses of just a few samples can be easily achieved, it is in
general less scientifically rigorous and the claims or conclusions are pruned to be biased due to the
author’s subjectivity.

User study (user-perceived understandability): User study, specifically user-perceived un-
derstandability, has been commonly used as a qualitative evaluation method to assess how humans
can understand the explanation generated by the model [24, 66, 112, 144]. The user-perceived
understandability methods are typically achieved by developing a user interface to show the model
explanations to human subjects, and collecting the rating of how likely the important features iden-
tified by the model explanation can lead to the correct prediction of the underlying ground-truth
label.

Human annotation-based evaluation: Explanation alignment is a unique yet commonly used
quantitative metric in Explanation-Guided Learning which measures how the human-annotated
ground truth explanation is aligned with the model generated explanation [22, 25, 36, 38, 48, 55, 60,
66, 84, 91, 99, 109, 136, 159]. The distance is commonly measured by the Intersection over Union
(IoU) score [36, 91, 136], precision, recall, and F-1 scores [55, 136].

2.2.3 Other general metrics. Besides measuring the faithfulness and correctness of model explana-
tion, most of the papers also included the conventional model task performance metrics to verify if
the Explanation-Guided Learning actually helped the generalizability of the backbone DNN models.
Like most papers working on classification tasks, the common metrics used to evaluate model
performance are accuracy, AUC (Area Under the ROC Curve) score, and F1 score.

3 EXPLANATION-GUIDED LEARNING TECHNIQUES
This section focuses on the taxonomy and representative techniques utilized for each category and
subcategory. According to the level at which the model explanation is obtained and supervised,
the technique types for EGL can be divided into global guidance and local guidance, as shown
in Figure 2. Specifically, global guidance focuses on the model’s global explanation and refines
the model’s overall decision-making process, while local guidance guides the model with each
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Global Explanation Supervision Global Explanation Regularization

ML
Model

Model Reasoning
Explanation

General 
Attribution Prior

ML
model

Model Reasoning 
Explanation

Regularizations

X

Predictions

Task Labels

Predictions

Task Labels

X

Fig. 3. Illustration of Global Guidance techniques. Specifically, global explanation supervision techniques
(left) aim at providing supervision in terms of model attribution, while global explanation regularization
techniques (right) aim at confining the model reasoning process with prior knowledge.

sample-specific explanation. The aforementioned techniques are then further categorized in terms
of the way explanation guidance is injected during the course of model training.

3.1 Global Guidance
Global explanation guidance focuses on injecting prior knowledge or adding supervision signals to
improve the model’s global explanation that explains the decision-making process of the model in
general. Based on the way explanation guidance is injected, global explanation guidance methods
can be categorized into two types: 1) Global Explanation Supervision: The ground truth explanation
labels are provided as an additional supervision signal to train the feature-wise explanation of
the model; and 2) Global Explanation Regularization: in which some regularization terms that
represent some general prior knowledge about the model explanation are added to regularize the
feature-wise explanation of the model, as illustrated in Figure 3.

3.1.1 Global Explanation Supervision. The techniques proposed in global explanation supervi-
sion [44, 90, 152] aim at providing a single feature-wise explanation of the model globally. Compared
with instance-level local explanation supervision where the explanation ground truth is provided
for each instance [50, 52, 99], global explanation aims to provide a more effective global guide to the
model’s behavior as a whole. Depending on the strategies to compute the global explanation of the
model, current literature can be mainly categorized in two directions: 1) aggregation-based [44, 90]
and 2) surrogate-based [32, 114, 148].

Aggregation-based Global Supervision: This type of method typically achieves explanation
supervision by first estimating the global feature attribution via aggregating local feature attribution
of each sample and aligning it with a single ground truth feature attribution vector 𝑚̂ as the
additional supervision signal to train the model jointly with the conventional task loss. The
common techniques used to calculate each sample’s feature attribution are integrated gradient [90]
and the expected gradient proposed by Erion et al. [44]. Specifically, the objective function for
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aggregation-based global supervision can be summarized as follows:

min LPred (𝑓 (𝑋 ), 𝑌 ) + 𝛼LExp (
1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩), 𝑀̂) (5)

This type of method has been utilized and shown promising results in many application do-
mains, such as text classification [90] and image classification tasks [44]. The advantage of the
aggregation-based global supervision methods is that they can easily adapt existing techniques
developed for local explanation with little to no extra effort. Besides, the acquisition of only one
single feature attribution vector as a class-wise explanation signal is much more affordable, as
compared with instance-wise supervision methods which require much more labor from human
annotators. However, the drawbacks of this type of technique also come from the aggregation of
local explanation, as the aggregated explanation is sensitive to the samples used to calculate, and
thus could bring the sample bias into the global explanation of the model estimated.

Surrogate-based Global Supervision: This branch of work achieves explanation supervision
by first estimating the global explanation of the target model via a surrogate model where the
model-level explanation is easy to obtain, and then human knowledge can be leveraged to guide the
global explanation and consequently supervise the model behavior. In this branch, the rule-based
explanation is commonly used as it can be easily understood and edited by practitioners [32, 114,
148].

Rule-based explanation supervision can be achieved from many different angles. For instance,
Vojíř et al. [148] proposed the editable rule-based models that enable the users to edit rules and
replace the underlying machine learning model; Popordanoska et al. [114] proposed the Explanatory
Guided Learning (XGL) framework that creates simple rules capturing the prediction of the target
model and allows the user to correct instances that are incorrect and the model is retrained. Besides,
the rule-based explanation is also used as a mechanism for feedback that supports user adjustments
without retraining themodel [32]; Cornec et al. [31] developed the AIModel Explorer and Editor tool
(AIMEE) that provides visualization of model decision boundaries using interpretable surrogates,
and allows for the real-time modification of the decision boundaries. More recently, Lee et al. [81]
proposed SELOR, a framework for upgrading a deep model with a Self-Explainable version with
LOgic rule Reasoning capability, inspired by neuro-symbolic reasoning [34] that integrates deep
learning with logic rule reasoning to inherit advantages from both. SELOR provides high human
precision by explaining logic rules while also maintaining high prediction performance, and does
not require predefined rule sets and can be learned in a differentiable way.

3.1.2 Global Explanation Regularization. Global explanation regularization is the method where
some regularization terms that incorporate general prior knowledge about the global explanation
are applied to the model. A good example of a preferred property of the model explanation is the
sparseness, as it can provide a better understanding of the model behavior by humans, and in the
meantime, serve as a regularizer of the explanation space to enhance model generalizability [49, 111,
129]. Concretely, the objective function for global explanation regularization can be summarized as
follows:

min LPred (𝑓 (𝑋 ), 𝑌 ) + 𝛽Ω(𝑀 (𝐺) ) (6)
where function Ω(·) represents the specific regularization function for regulating the model’s
global explanation, and 𝑀 (𝐺) represents the model’s global explanation vector calculated based on
intrinsic parameters of the model 𝑓 .

A commonly used prior knowledge to define Ω(·) is to ensure the sparseness of the explanation,
where a regularization term is proposed to penalize small magnitude weights of 𝑓 that connect
to the input features [49, 111, 129]. The existing studies suggest that this can result in a feature
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selection effect, and greatly enhance the model’s computational efficiency as well as generalizability.
In addition, Burkart et al. [19] proposed a batch-wise regularization technique to enhance the
interpretability of DNN models by means of a global surrogate rule list with a novel regularization
approach that yields a differentiable penalty term. In Wu et al. [156], the authors proposed the
regional tree regularization that encourages a DNN model to be well-approximated by several sep-
arate decision trees specific to predefined regions of the input space, yielding simpler explanations
without compromising model accuracy.

3.2 Local Guidance
Local explanation guidance focuses on applying supervision signals or regularization terms to the
model explanation of each local sample to guide the model learning. As shown in Figure 4, compared
with the global explanation guidance, local guidance is more commonly used and explored in the
current research communities thanks to the development of local explanation techniques, such
as GradCAM [127] and attention mechanism [12, 147]. Based on the way explanation guidance
is injected, local explanation guidance techniques can be categorized into three types: 1) Local
Explanation Supervision: The ground truth explanation labels for each individual sample are
provided as additional supervision signals to train the corresponding model explanation; 2) Local
Explanation Regularization: in which some regularization terms that represent some general prior
knowledge about the local model explanation are added to regularize all the local explanation of
the model; and 3) Explanation Guided Data Augmentation: where the local model explanations are
used to construct additional data samples for model training.

3.2.1 Local Explanation Supervision. Just as we supervise the model prediction via ground truth
labels, local explanation supervision methods add additional supervision signals to align the model
explanation with ground truth explanation labels (e.g. human annotation masks) during model
training. The explanation loss and the conventional prediction loss are typically jointly optimized
during model training. The general assumption behind this approach is that the model can benefit
from the explanation labels by learning to focus on the right features and consequently lead to
better generalizability to unseen instances. Depending on the data representation and application
domains, we further narrow down the techniques into three subcategories: 1) visual explanation
alignment, 2) rationale attention alignment, and 3) feature attribution alignment.

Visual Explanation Alignment: The visual explanation of image data is typically represented
by a heat map overlaid on top of the original image, and the ground truth explanation labels 𝑀̂ are
typically obtained by human annotation in the form of bounding boxes or fine-grained contours.

The first framework that can be applied to visual explanation alignment was proposed by Ross et
al. [122], where the authors defined a very generic explanation-guided learning loss called “Right
for the Right Reasons” loss (RRR) as follows:

min
𝑁∑︁
𝑖=1

−𝑌𝑖 log(𝑓 (𝑋𝑖 )) + 𝛼
𝑁∑︁
𝑛=1

(𝑀̂𝑖

𝜕

𝜕𝑋𝑖
log(𝑓 (𝑋𝑖 )))2 + 𝛽 ∥𝜃 ∥22 (7)

where 𝑀̂𝑖 denotes the ground truth explanation mask of a sample 𝑖; the task supervision loss
is implemented as the conventional cross-entropy loss, and the explanation supervision loss is
designed to enforce the alignment of the ground truth explanation mask 𝑀̂ and the gradient maps
via inner product operations.

Later on, the RRR loss is further extended by Schramowski et al. [125] and Dharma et al. [37]
regarding the definition of the explanation losses. Specifically, instead of regularizing the gradients
with respect to input 𝑋 , Schramowski et al. [125] proposed to regularize the gradients of the final
convolutional layer of the model that corresponds to GradCAM explanation and add a rescaling
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Fig. 4. Illustration of Local Guidance techniques. (left) Local Explanation Supervision: The ground truth
explanation labels for each individual sample are provided as additional supervision signals to train the
corresponding model explanation; (middle) Local Explanation Regularization: in which some regularization
terms that represent some general prior knowledge about the local model explanation are added to regularize
all the local explanation of the model; (right) Explanation Guided Data Augmentation: where the local model
explanations are used to construct additional data samples for model training.

weight 𝑐𝑘 to each class 𝑘 for handling the unbalanced dataset issue. In Dharma et al. [37], the
explanation loss is broken down into two terms to characterize the sensitivity of the gradient maps
differently based on the relationship between each pixel of input and the ground truth mask, as
shown below:

LExp = 𝛼1
∑︁
𝑗 ∈𝑀̂𝑖

𝜕LPred (𝑓 (𝑋𝑖 ), 𝑌𝑖 )
𝜕𝑋𝑖, 𝑗

+ 𝛼2
∑︁

𝑗 ∈[𝑑 ]\𝑀̂𝑖

𝜕LPred (𝑓 (𝑋𝑖 ), 𝑌𝑖 )
𝜕𝑋𝑖, 𝑗

(8)

where [𝑑]\𝑀̂𝑖 represent the complement subset of the explanation 𝑀̂𝑖 of the whole feature set.
Later, many more models that are designed for visual explanation alignment are proposed

[50, 52, 99, 139, 160]. Specifically, Stammer et al. [139] proposed a visual explanation alignment
model based on symbolic (concept) alignment, where The symbolic (concept) explanation is modeled
by a set transformer module. Mitsuhara et al. [99] proposed a visual explanation alignment objective
specifically designed for the Attention Branch Network (ABN) [47], where the attention branch
outputs are used as the model explanation. The limitation of this work is that it can only work under
ABN architecture. Ying et al. [160] proposed the Visual Feature Importance Supervision (VISFIS)
framework that optimizes four key model objectives: (1) accurate predictions given limited but
sufficient information (Sufficiency); (2) max-entropy predictions given no important information
(Uncertainty); (3) invariance of predictions to changes in unimportant features (Invariance); and
(4) alignment between model explanations and human explanations (Plausibility) to improve
model accuracy as well as performance. Nguyen et al. [105] proposed two novel architectures of
self-interpretable image classifiers that first explain, and then predict by harnessing the visual
correspondences between a query image and exemplars, and demonstrated the improvement
on out-of-distribution (OOD) dataset scenarios. Gao et al. [52] proposed a more generic visual
explanation alignment framework called GRADIA based on the GradCAM explanation. In addition,
they proposed the Reasonability Matrix that can better determine what samples need to be adjusted
to improve the model performance and explanation quality. More recently, Gao et al. [50] proposed
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a robust visual explanation alignment framework that can better handle the nosiness of human
annotation on image data. Specifically, the explanation loss is defined as follows:

LExp = min
𝜃,𝜆,𝜙

∑︁𝑁

𝑖
max{0, ∥𝑀̃𝑖 − 𝑀̂𝑖 ∥ − 𝜆} + (𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) − ℎ𝜙 (𝑀̂𝑖 ))2 (9)

where 𝜙 is the parameter set of the imputation function ℎ𝜙 (·). The imputation function can be
realized by applying multiple layers of convolution operations with learnable kernels over the raw
annotation labels; 𝑀̃𝑖 is a binary projection of the explanation 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) by a threshold 𝜆, as:

𝑀̃𝑖 =

{
1 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) ≥ 𝜆

−1 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) < 𝜆
(10)

Besides the application to general images, visual explanation alignment techniques have also
been applied to medical image domains [132, 133, 176]. Please refer to Applications Section for
more details.

Rationale Attention Alignment: The explanation of natural language data is typically repre-
sented by the rationales (e.g. word tokens) that highlight the most significant part of the data for
making specific task predictions. The ground truth explanation labels are typically obtained by
human annotation in the form of rationales or natural language format (sentences). In this domain,
the datasets collected by the ERASER benchmark [36] are commonly used as the datasets come
with ground truth rationales obtained from human annotators.

Many existing works have proposed to supervise the rationale attention of the model to improve
the model performance and quality of attention [22, 26, 55, 70, 138, 168, 172]. The explanation loss is
commonly realized by conventional losses, such as cross-entropy loss [26, 70], Mean Squared Error
(MSE) [137, 138], and KL-divergence loss [172]. Besides, Atanasova et al. [10] proposed several novel
ways to enforce the alignment, such as Data Consistency, Confidence Indication, and Faithfulness.

In addition to leveraging the model attention value itself, many existing works have also pro-
posed to directly generate rationales [15, 66, 82, 137, 162, 172] or natural language [21, 91] as the
‘explanation’ of the model to be aligned with ground truth labels via additional decoders, such as
Conditional Random Field (CRF) [76, 162], Gated Recurrent Unit (GRU) [28, 172], Transformer-based
models [35, 91, 137, 147].

Feature Attribution Alignment: Besides the specific domain of applications, local explanation
supervision can be generally applied to any dataset where the input feature importance can be
computed. Such feature importance is typically referred to as ‘Feature Attribution’, and can be also
treated as the model explanation to be aligned with human explanation ground Truth. For instance,
in Balayan et al. [13] the feature attribution is computed by a specific designed semantic layer (an
intermediate output that is the importance of each feature) and is aligned with human-labeled
feature masks by Cross-Entropy loss; in Singh et al. [134], feature attribution is calculated by
Contextual Decomposition, and is aligned with the ground truth human labels by ℓ1 distance [119].
Overall, the idea of local explanation supervision has been explored extensively in many ap-

plication domains in recent few years, primarily due to the fact that 1) it is straightforward for
human annotators to provide an instance-wise explanation with necessary domain knowledge, and
2) the development and popularity of local explanation techniques, such as GradCAM [127] and
attention mechanism [12, 147] to explain complex DNNs in high dimensional problem space (such
as image and text data). So far the results seem to be promising, as most existing works suggest that
applying the local explanation supervision during training can greatly enhance both the quality
of the explanation as well as the performance of the backbone DNNs model. However, as also
pointed out by several existing works, the scalability remains the biggest challenge for this kind of
approach, as the additional instance-wise human explanation labels may not be easily accessible
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and require non-trial effort from human annotator [50, 51]. Designing effective semi-supervised
or weakly-supervised explanation supervision frameworks, or even adapting the idea from active
learning can be promising future directions to further overcome this limitation. Nevertheless,
existing works also demonstrated the effectiveness of local explanation supervision under very
limited training sample sizes [50, 52], which could suggest the potential benefit of applying current
techniques to the domains where data samples are limited and hard to acquire, yet both model
performance and the explainability are on-demand, such as in medical domains.

3.2.2 Local Explanation Regularization. Local explanation regularization methods add additional
regularization terms to regularize each local explanation to ensure the generated model explana-
tions follow some general properties (such as smoothness, stability, and sparsity) or follow the
knowledge from other existing well-trained models. The additional explanation of regularization
loss is typically jointly optimized with the prediction loss during model training. Depending on
the type of regularization terms, we break down the existing techniques into two subcategories:
1)Property-based Regularization and 2) Explanation Distillation Regularization.

Property-based Regularization: The additional regularization terms are injected into the
model explanation to enforce some general properties (such as smoothness, stability, and sparsity).
Specifically, in Lei et al. [82] the authors proposed the continuity and sparsity regularization terms;
In Erion et al. [44] the authors proposed the smoothness Regularization (i.e. Laplace 0-mean prior)
on the model Explanation computed by expected gradient; In Halliwell et al. [59] the authors
proposed the Prediction-guided sparsity regularization (in Equations (5) and (6)) to penalize the
model to have small values in saliency maps (computed by GradCAM and guided BP) if the
prediction is incorrect; Alvarez et al. [5] proposed a gradient regularization approach for enforcing
explanation robustness/stability; Plumb et al. [113] apply the fidelity and stability regularization on
the explanation. Specifically, the explainer 𝑔(·) is realized by Local Interpretable Model-Agnostic
Explanations (LIME) [118] with a linear function 𝑙 (·), and the authors applied two regularization
terms on the model explanation: 1) neighborhood-fidelity and 2) stability based on the neighborhood
of input, as shown below:

Ω = E𝑋 ′∼N𝑋𝑖
[(𝑙 (𝑋 ′) − 𝑓 (𝑋 ′))2]︸                             ︷︷                             ︸

neighborhood-fidelity

+E𝑋 ′∼N𝑋𝑖
[∥𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩) − 𝑔(𝑓 , ⟨𝑋 ′, 𝑌𝑖⟩)∥22]︸                                                  ︷︷                                                  ︸

stability

(11)

where N𝑋𝑖
is a neighborhood of sample 𝑋𝑖 in the space of probability distributions over the whole

input data distribution 𝑋 , and 𝑋 ′ is sampled from the neighborhood N𝑋𝑖
. Intuitively, the fidelity

regularization enhanced the explanation to accurately convey which patterns the model used to
make this prediction, while the stability regularization will lead to more stable explanations, which
will improve the model’s trustworthiness [5, 6].

Explanation Distillation Regularization: Besides enforcing predefined properties of the
explanation, this line of work tries to distill explanation knowledge from other well-trained models
to guide the explanation of the target model. In Zeng et al. [165], the authors proposed to align the
explanation of a target model with another pre-trained adversarially counterpart model generated
explanation using ℓ2 distance loss. Singh et al. [135] proposed to align the target model’s Class
Activation Maps (CAM) [173] explanation with a pre-trained model’s explanation by minimizing
the overlap between each classes explanation. More specifically, the explanation loss consists of
two terms, 1) regularization loss which measures the distance between the target models’ and the
corresponding pre-trained model’s explanation of class 𝑖 , and 2) overlapping loss which calculates
the similarity between the target model’s explanation of different classes. As a result, the model can
be trained under the constraints that 1) the target model explanation should be as close as possible
to a pre-trained model, and 2) the model explanation of different classes should be as different as
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possible, leading to a batter explanation quality and higher accuracy. More recently, Fernandes
et al. [46] proposed Scaffold-Maximizing Training (SMaT) framework for directly optimizing
explanations of the model’s predictions to improve the training of a student simulating the said
model. The authors found that, across tasks and domains, explanations learned with SMaT both
lead to students that simulate the original model more accurately and are more aligned with how
people explain similar decisions.
While using the idea from model distillation to extract the knowledge to guide the model

explanation is an interesting direction, the potential positive effect is largely dependent on the
choice and quality of the pre-trained model and is prone to negative transfer, such as contextual
bias in pre-trained model explanation, that can hurt the target model performance. Thus additional
validation and guidelines are on demand for this type of technique to be applied to handle real-world
problems.

3.2.3 Explanation Guided Data Augmentation. Explanation Guided Data Augmentation is an emerg-
ing subdomain in the data augmentation domain, where the ground truth explanation (i.e. rationale)
of the prediction task is taken into account when building up additional augmented samples for
model training. The general formulation for generating explanation-guided data augmentation
samples can be summarized as follows:

𝑋 ′
𝑖 = aug(𝑋𝑖 , 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩)) (12)

Where aug(·) denotes the specific augmentation function based on the original input sample 𝑋𝑖
and the model’s explanation for the given input-output pair ⟨𝑋𝑖 , 𝑌𝑖⟩.
The underlying assumption is that training the model with the augmented samples 𝑋 ′ will

encourage the model to better learn to pay attention to the right rationales for the prediction tasks
and thus naturally enhances both the explainability aswell as the generalizability of themodel. Based
on the way explanation is used for the data augmentation, existing techniques can be categorized
into two directions: 1) Rationale Inclusion/Amplification and 2) Rationale Exclusion/Masking.

Rationale Inclusion/Amplification: This line of works typically emphasizes the right ratio-
nales and de-emphasize other irrelevant features. The inclusion/amplification-based augmentation
function can be generally defined as follows:

aug𝑖𝑛 (𝑋𝑖 , 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩)) = 𝑋𝑖 × (𝛾 + 𝜆𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩))) (13)

where 𝛾 is used to set a default offset value to preserve all the feature values regardless of the
importance; 𝜆 is the scale factor that controls the degree of amplification of the important features.
Specifically, Sharma et al. [131] proposed to amplify the feature values of the right rationales

relatively higher by a certain degree. In their experiments, 𝛾 is set to 0.01, and 𝜆 is set to 1 to
emphasize the rationale features in the augmented samples. The results demonstrated the general
effectiveness of the proposed method on several conventional ML models, such as Naive Bayes,
logistic regression, and SVM. In Saha et al. [123] only the important part of the image for network
prediction is selected using saliency-based explanations and stored in the episodic memory with the
corner coordinate for continual learning. Ismail et al. [65] proposed to minimize the KL divergence
between 𝑓 (𝑋 ) and 𝑓 (𝑋 ′), where𝑋 ′ is augmented by masking the features with low gradient values.
These types of methods can be seen as a special case of Equation (13) where 𝛾 is set to 0, and 𝜆 is
set to 1 to only include the rationale features in the augmented samples.

Besides the simple augmentation of the feature values, several other works have also proposed
some novel and unique ways to augment data to best leverage the extra information from the model
explanation. In Pillai et al. [112], the saliency map explanation of the original sample and other
samples as a composed image is aligned with the model explanation of the original input sample.
In Teso et al. [144], the irrelevant features are perturbed while the rationales and task labels are
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preserved as new samples to guide the model attending the ground truth rationales. In Schneider et
al. [124], the model explanation (generated by GradCAM) is treated as additional input for model
prediction and requires a specific change of the model architecture. In summary, the general idea
stays the same, which is to build additional samples and inform the model to better learn which
features are the right rationales to make the right prediction of the downstream tasks.

Rationale Exclusion/Masking: As opposite to inclusion/amplification, this line of works typ-
ically teaches the model not to attend irrelevant rationales by excluding/masking out the right
rationales, as summarized by the following equation:

aug𝑒𝑥 (𝑋𝑖 , 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩)) = 𝑋𝑖 × (𝛾 − 𝑔(𝑓 , ⟨𝑋𝑖 , 𝑌𝑖⟩))) (14)

where 𝛾 is typically set to be the maximum possible value of the importance, e.g. 1, to exclude
the value of the important features from 𝑋 , and thus serve as a masking function for the data
augmentation.

Specifically, in Zaidan et al. [163], the authors propose to construct some additional samples by
masking out those important features of some existing samples to simulate the loss of confidence
(uncertainty should raise) in predicting the right answer. A similar idea can be also found in Li et
al. [84], where the proposed self-guidance is basically using the model explanation as a mask to aug-
ment the original image and thus construct an unsupervised loss based on the augmented/masked
image.
Overall, the unique advantages of explanation-guided data augmentation techniques can be

summarized as follows: 1) it takes the model behavior (i.e. rationale for the prediction) into consid-
eration; 2) it can be model agnostic with respect to the specific explainability techniques used for
calculating the model explanation; 3) it can be used in combination with other conventional data
augmentation techniques, and in parallel with other EGL techniques for model training. However,
the effectiveness of the existing works is mainly supported by intuitions and empirical observations.
Thus further development of quantitative evaluation metrics as well as theoretical analysis and
justification of the techniques can be essential to further advance this field of research.

4 APPLICATIONS
4.1 Computer Vision (CV)
Applying EGL to solve image classification problems has become a hot and attractive research area
in recent years [50, 52, 99], largely thanks to the popularity and advancement of visual explanation
techniques [127, 166]. Depending on the nature of the image source, existing works can be further
categorized into (1) general image prediction and (2) medical image analysis.

4.1.1 General Image Prediction. The application of EGL on general images typically involves image
classification tasks on natural image data such as ImageNet [74], Caltech-UCSD Birds (CUB) [149],
Microsoft COCO [88], and Places365 [174], and some synthetic image data such as ToyColor [122],
MNIST [78], and many MNIST variants including Fashion-MNIST [158], Decoy-MNIST [122], and
Color-MNIST [85]. The typical EGL technique used in this application domain is local explanation
supervision and regularization, where the sample level visual explanation of the model is jointly
optimized together with the conventional prediction loss [37, 44, 50, 52, 84, 99, 119, 121, 139, 152].
When applying the explanation supervision techniques, the ground truth explanation labels are
typically collected from human annotators, and the additional attention loss is typically realized
by a distance loss between the ground truth and the model visual explanation at the sample
level. For model explanation assessment, case studies are most commonly used for qualitative
analysis [50, 52, 99], while IoU score is for quantitative evaluation [50, 52, 84].
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4.1.2 Medical Image Analysis. Besides generic image applications, EGL has also beenwidely studied
in the medical domain, thanks to the availability of domain-expert annotation on many medical
image datasets [29, 77, 151]. In general, we observed a variety of datasets studied by existing works,
including but not limited to ISIC Skin Cancer dataset [29], Iris-Cancer dataset [87], scaphoid fracture
detection dataset [77], Fundus image dataset (IDRiD) [115], and the pneumonia detection X-ray
dataset [151] for disease identification task [176]. Similar to most EGL frameworks on generic
image data, an additional explanation loss is added to the model objective and is typically realized
by a distance loss between the ground truth annotation collected from domain experts and the
model visual explanation. However, compared with generic image data, several unique challenges
have been identified by existing works when applying EGL to medical images, such as 1) difficulty
in assessing the quality of the model explanation, and 2) the scalability of the sample size of the
annotation labels of the datasets.

4.2 Natural Language Processing (NLP)
Interest has recently grown in applying EGL to designing NLP systems. Based on how the explana-
tion is acquired, we have two categories of the application: (1) using the attention mechanism as
the explanation and (2) using a generative model to generate the explanation.

4.2.1 Attention mechanism as the explanation. NLP systems generally use variants of attention
mechanisms to get explanations. To evaluate the explanation, the ground truth explanation labels
are typically collected from human annotators (Stacey et al. [138] use TextRank to get ground truth
labels), and the evaluation metric can be the F1 score and IoU score based on token or snippet level.
In addition to the agreement with human rationales, a faithful explanation is related to the down-
stream task performance, so rationale-level supervision is widely applied [26, 53, 138, 140, 168, 172].
Comprehensiveness and sufficiency are two main metrics regarding the influence of the explana-
tion on the downstream task, Faithfulness, Data Consistency, and Confidence Indication are other
diagnostic properties [10]. Attention mechanisms can learn to assign soft weights to token repre-
sentations so that one can extract highly weighted tokens as rationales [36]. While this is intuitive
for most of the NLP systems, the weights can be useless to give a faithful explanation because of the
complex interaction of tokens. Another strand of works [22, 55] hard-select tokens or snippets from
the input and only uses the selected part for the downstream task to get untangled explanation.
This strand can be further divided into pipeline approaches and reinforcement learning approaches
according to how the models are trained. Aligning the explanation with human annotators is not
necessarily the optimal objective for improving model accuracy, the various loss strategies are
proposed [22]. By e.g. masking out important explanation features of existing samples [163], one
can augment the data. Liu et al. [90] propose global supervision by adding feature attribution prior
to the total loss.

4.2.2 Generative model to generate the explanation. In addition to giving explanations directly by
the attention mechanism of NLP systems, a lot of works apply additional generative models to
generate natural language explanations [15, 66, 82]. Although the rationales acquired from attention
mechanisms provide concise and quick explanations, they may not have the means to provide
important details of the reasoning of a model. By using an additional natural language decoder,
one can generate a comprehensive description of the decision-making process behind a prediction,
some examples of the generative module include a conditional random field (CRF) [162], a natural
language decoder [21, 91], a GRU following an MLP [170], BiLSTM and Transformer [137]. The
commonly used datasets and corresponding tasks are ComVE [150] for commonsense validation,
e-SNLI [21] for natural language inference, COSe [117] for commonsense question answering,
e-SNLI-VE [71] for visual entailment, VCR [164] for visual commonsense reasoning. The ground
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truth is usually also natural language explanations provided by humans. To evaluate the quality of
natural language explanations, one can either use automatic metrics like METEOR [14], BERTScore
[167], and BLEURT [126], or use human evaluation with metrics like e-ViL score [71], confidence,
and readability. In terms of the faithfulness of the natural language explanations, Wiegreffe et al.
[154] provides two necessary conditions: feature importance agreement and robustness equivalence.

4.3 VisualQuestion Answering (VQA)
Attention and reasoning are two intertwined mechanisms underlying visual question-answering
(VQA) tasks. Thanks to the widely used attention mechanism in VQA, applying EGL to help improve
both the interpretability and performance of VQA tasks have become a hot and attractive research
area in recent years. The typical EGL technique used in VQA tasks is local explanation supervision
and regularization, where the sample-level visual explanation of the model is jointly optimized
together with the conventional prediction loss. When applying the explanation supervision tech-
niques, the ground truth explanation labels can be collected from human annotators[25, 48, 155],
or generated by another model[116, 169]. There have been a lot of VQA datasets with annotations,
some are annotated with human-generated questions and answers like MovieQA [143] and VQA
v1.0 dataset in [7], while others are developed with synthetic scenes and rule-based templates like
GQA [64], Clevr [69], and VCR [164]. VQA-2.0 [56] includes complementary images that lead to
different answers, reducing language bias by forcing the model to use visual information. The AiR-D
[25] is the first dataset of eye-tracking data collected from humans performing the VQA tasks. The
VQA-HAT dataset [33] is a visual explanation dataset that collects human attention maps by giving
human experts blurred images and asking them to determine where to deblur in order to answer a
given visual question. VQA-CP [4] contains QA pairs whose distribution is significantly different
between the training and test set. VQA-X [108] offers human textual explanations which can be
used to determine important objects and then are grounded to important regions in the image as
the explanation. The additional attention loss can be attention accuracy[25], false sensitivity rate
[155] rank correlation loss [116, 169] and IoU loss [48].

4.4 Healthcare
EGL techniques have also been well-explored in general healthcare applications, such as on gene
interaction graph [57], Adult Changes in Thought (ACT) [98], Mount Sinai Brain Bank (MSBB),
Religious Orders Study/Memory and Aging Project (ROSMAP) [1], and healthcare mortality pre-
diction [97]. Specifically, Erion et al. [43] studied the tissue-specific gene interaction graph for
the tissue most closely related to acute myeloid leukemia (AML, a type of blood cancer) in the
HumanBase database [57] on how penalizing differences between the attributions of neighbors in
an arbitrary graph connecting the features can be used to incorporate prior biological knowledge
about the relationships between genes, yield more biologically plausible explanations of drug
response predictions, and improve test error. They tested the model performance on a healthcare
mortality prediction dataset [97], where the model inputs are 35 features representing patients’
demographic information and medical data. Erion et al. [44] then further extended their previous
study and proposed to add a graph attribution prior regularization on explanation to a two-layer
neural network. Their experimental results show the proposed method can significantly outperform
all other methods. In addition, Weinberger et al. [152] extracted prior information from multiple
gene expression datasets of the Accelerating Medicines Partnership Alzheimer’s Disease Project
(AMP-AD) portal, incorporated meta-features in a gene-gene interaction graph and proposed a
deep attribution prior framework to Alzheimer’s disease biomarker prediction.
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4.5 Chemistry
EGL has also started to see emerging applications in the chemistry domain, especially for molecular
puppetry prediction tasks [93, 94, 141]. For instance, one recent work proposed an EGL framework
for Graph Neural Networks (GNNs) by supervising their node- and edge-level explanation to
align with domain expert annotation labels [51]. In this work, the authors studied three binary
classification molecular datasets2, namely 1) The Blood-brain barrier penetration (BBBP) dataset
comes from a recent study [93] on the modeling and prediction of barrier permeability, 2) the
BACE dataset provides quantitative (IC50) and qualitative (binary label) binding results for a set of
inhibitors of human b-secretase 1 (BACE-1) [141], and the “Toxicology in the 21st Century” (TOX21)
initiative created a public database measuring the toxicity of compounds [157]. The general goal
for each dataset is identifying functional groups on organic molecules for biological molecular
properties. Each dataset contains binary classifications of small organic molecules as determined
by the experiment. The experimental results suggest that the proposed GNES framework can
effectively improve the reasonability of the explanation while still keeping or even improving the
backbone GNNs model performance.

4.6 Crime
EGL has also been studied in the application of risk and crime-related applications, where it is
important to check if the model is leveraging reasonable features when predicting crime incidences
or assessing the future risk of crime suspects. For instance, several works have studied the Propub-
lica’s COMPAS Recidivism Risk Score datasets3, which contains data for predicting recidivism (i.e
whether a person commits a crime / a violent crime within 2 years) from many attributes [5, 119].
COMPAS dataset is designed for checking whether there exist biases in the mode explanation, such
as the model’s treatment of the person’s race attribute when making the prediction. Specifically,
Rieger et al. [119] proposed contextual decomposition explanation penalization (CDEP), a method
that enables practitioners to leverage explanations to improve the performance of a deep learning
model. In particular, CDEP enables inserting domain knowledge into a model to ignore spurious
correlations, and correct errors, and demonstrates the ability to increase performance on real
datasets; Alvarez et al. [5] proposed an EGL framework by explicitly enforcing three basic desider-
ata for interpretability—explicitness, faithfulness, and stability—during training to enhance the
robustness and interpretability of model explanations. Besides, Balayan et al. [13] studied a private
online retailer fraud detection dataset with the proposed JOEL framework, a neural network-based
framework to jointly learn a decision-making task and associated explanations that convey domain
knowledge. Specifically, JOEL is tailored to human-in-the-loop domain experts that lack deep
technical ML knowledge, providing high-level insights about the model’s predictions that very
much resemble the experts’ own reasoning. Moreover, they collect the domain feedback from a
pool of certified experts and use it to ameliorate the model (human teaching), hence promoting
seamless and better-suited explanations.

4.7 Potential Future Domains of Applications
Despite the recent attention and major advance of EGL in the aforementioned popular application
domains, there are still a number of open problems and potentially fruitful directions for future
research and application of EGL, as follows:

4.7.1 FaccT. Fairness, Accountability, and Transparency (FaccT) are becoming as important as–or
depending on application areas–more important than model accuracy as an evaluation metric.
2Available online at: http://moleculenet.ai/datasets-1
3Available online at: github.com/propublica/compas-analysis/

, Vol. 1, No. 1, Article . Publication date: December 2022.



20 Gao et al.

Since it is nearly not feasible to prepare an impeccable dataset that can equally represent every
possible feature related to a model’s task, blindly pursuing a model’s accuracy cannot exclude the
chance of causing “catastrophic consequences” in critical circumstances [63]. One of EGL’s crucial
application areas is to realize the balance between the model accuracy and FaccT by allowing
human users to elicit their perspectives on steering the model. In shaping the balance, one crucial
research direction is to understand how to maximize the case where reasonable human reasoning
can also cause accurate prediction. There are several arguments discussing when human reasoning
can cause a beneficial or detrimental effect on model prediction. While the debate is ongoing, we are
gradually seeing more evidence where human involvement can result in a positive effect [30, 54].
For example, Shao et al. find humans “arguing against” unreasonable explanation can benefit the
model [130]. At the end of the day, from the perspective of model accuracy and FaccT, a railroad
should not the reason for predicting a train [80], a snowboard cannot be a male class [61], and a
shopping cart should not only belong to a woman class [171].

4.7.2 Adversarial Learning. Adversarial perturbations can significantly drop the model’s accuracy.
In a dramatic situation, it can reach nearly to 0%. Current ML models are vulnerable to adversarial
attacks. Since the majority of adversarial attack shift model’s attention, applying EGL in detecting
unusual shifts could be one of the solutions for developing a more robust ML model against
adversarial attacks. However, in pursuing such a direction, the change of the attention map after
the attack can be subtle from human eyes [18]. In order to apply EGL in the area of adversarial
learning, we see devising better solutions in the following areas to be crucial. First, providing
additional signals other than model attention can help human users effortlessly detect the attacked
cases. Second, devising an advanced EGL mechanism that can (1) guide the users to generate
effective input (2) and applying such input to improve the model’s robustness would be essential.
Following this line of thought, very recently, Jeong et al. [67] proposed Generative Noise Injector
for Model Explanations (GNIME), a novel defense framework that perturbs model explanations to
minimize the risk of model inversion attacks while preserving the interpretabilities of the generated
explanations. Thus, we believe future studies on model explanation defense and attack can be one
of the key research sub-areas of EGL domain.

4.7.3 Continual & Active Learning. EGL’s core principle is motivating ML engineers’ iterative
training, such as continual learning [41, 123] and active learning [24, 70]; helping them to figure out
the vulnerability through explanation and fixing the issue by providing a human-level guideline.
In supporting such an iterative training, we believe one of the promising areas is “data iteration”,
a design that can help ML engineers to fortify the dataset by adding more examples based on
detected vulnerabilities through explanation. In such a direction, we believe understanding the
pros and cons of retraining and continual learning can be crucial. For example, there can be a case
where newly found data points can be stacked up on an existing dataset and be used in retraining.
Another case can be to iteratively update the last model through some of the existing techniques in
continual learning [107]. In general, in the world of EGL, understanding when to apply retraining or
continual learning and what are the pros and cons of each training strategy are not well understood.
Understanding which strategy can yield what strengths and weaknesses in the scenario of data
iteration would be one of the core future applications of EGL.

4.7.4 Contrastive Learning. Contrastive learning is a powerful self-supervised learning strategy
that encourages augmentations of the same input to have more similar representations compared
to augmentations of different inputs. In the field of EGL, we have started to see several works that
apply the contrastive objective to the model explanation between similar/dissimilar samples to
build up the explanation objective [38, 110, 135, 163]. The most significant advantage of leveraging
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Table 2. A list of publicly available datasets for EGL with human annotation labels.

Dataset Type Link Annotation Type

Gender Classification Vision https://github.com/YuyangGao/RES Pixel level
Scene Recognition Vision https://github.com/YuyangGao/RES Pixel level
Face Glasses Recognition Vision https://github.com/carriegu0818/EGL_benchmark Pixel level
Prohibited Item Detection Vision https://github.com/carriegu0818/EGL_benchmark Pixel level
ACT-X Vision https://github.com/Seth-Park/MultimodalExplanations Pixel level and Textual
Caltech-UCSD Birds Vision https://authors.library.caltech.edu/27452/ Pixel level(bounding box)
The PASCAL VOC Challenge 2007 Vision http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ Pixel level
The PASCAL VOC Challenge 2012 Vision http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ Pixel level
ISIC2018 Challenge Vision https://challenge.isic-archive.com/landing/2018/ Pixel level(bounding box)
Pneumonia Detection Vision https://www.kaggle.com/c/rsna-pneumonia-detection-challenge Pixel level(bounding box)

Movie Review NLP https://github.com/jayded/eraserbenchmark Span–level rationale
MultiRC NLP https://github.com/jayded/eraserbenchmark Single sentence-level rationale
FEVER NLP https://github.com/jayded/eraserbenchmark Sentence-level rationale
BoolQ NLP https://github.com/jayded/eraserbenchmark Token-level rationale
Evidence inference NLP https://github.com/jayded/eraserbenchmark Sentence-level rationale
e-SNLI NLP https://github.com/jayded/eraserbenchmark Token-level rationale
Commonsense Explanations (CoS-E) NLP https://github.com/jayded/eraserbenchmark Sentence-level rationale

VQA-HAT VQA https://computing.ece.vt.edu/~abhshkdz/vqa-hat/ Pixel level
GQA VQA https://cs.stanford.edu/people/dorarad/gqa/about.html Pixel level
VQA-X VQA https://github.com/Seth-Park/MultimodalExplanations Pixel level and Textual
VQS VQA https://github.com/Cold-Winter/vqs Pixel level

BBBP Graph https://github.com/YuyangGao/GNES Node- and edge–level
BACE Graph https://github.com/YuyangGao/GNES Node- and edge–level
TOX21 Graph https://github.com/YuyangGao/GNES Node- and edge–level

the contrastive learning paradigm for explanation guidance is that no ground truth explanation
annotation labels are required for model training. However, designing an appropriate contrastive
framework for EGL can be more challenging due to the lack of a standard form of model explanation
under different application domains. Besides, how to define and formulate the positive and negative
explanation samples to contrast with the anchor sample’s explanation can be challenging without
knowing the ground-truth labels. Thus, we believe the further development of the contrastive EGL
framework can be one of the core future directions in EGL, and it can lead to a significant leap in
the application of EGL to the domains where ground truth explanation labels are generally difficult
to obtain in large scale.

5 EXPERIMENTS
This section aims at providing an extensive and comprehensive experimental study among exist-
ing EGL models in various popular application domains. Specifically, the comparative studies of
four datasets from the Computer Vision (CV) domain, namely 1) Gender Classification, 2) Scene
Recognition, 3) Face Glasses Recognition, and 4) Prohibited Item Detection, and three datasets
from the Natural Language Processing (NLP), namely 1) Movie Review, 2) MultiRC, and 3) FEVER
are provided. The details about each dataset are included in Table 2, where a full list of publicly
available datasets for EGL is provided.

5.1 Visual Explanation Guided Learning
5.1.1 Gender Classification [50]. The gender classification task is derived from theMicrosoft COCO
dataset 4 [88] by extracting images that had the word “men” or “women” in their captions. The
dataset is further filtered by removing images with 1) both gender in the caption, 2) multiple people
present, or 3) not recognizable humans. A subset of the images is further manually annotated by
human annotators as factual and counterfactual masks. The dataset in total consists of 1,736 images
with human annotations, where the distribution of female to male is even. For data splitting, we
only randomly sampled 100 samples as the training set to better simulate a more practical situation

4Available at: https://cocodataset.org/
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where we only have limited access to the human explanation labels. The validation and test set is
set to 700.

5.1.2 Scene Recognition Dataset [50]. The scene recognition dataset is originally derived from the
Places365 dataset5 [174] and manually annotated by Gao et al. [50]. The task for this dataset is
a binary classification of scene recognition: nature vs. urban. Specifically, the categories used to
sample the data are listed below:

• Nature: mountain, pond, waterfall, field wild, forest broadleaf, rainforest
• Urban: house, bridge, campus, tower, street, driveway

The dataset consists of a total of 2086 images with human explanation labels. Similarly, we split the
data randomly with a sample size of 100/700/700 for training, validation, and testing.

5.1.3 Face Glasses Recognition. We construct the glasses recognition dataset from the CelebAMask-
HQ dataset 6 [79] by categorizing face images with and without glasses. In CelebAMask-HQ, masks
were manually annotated with 19 classes including all facial components and accessories. The
rationale of the task is that we are able to obtain factual annotation labels by the segmentation of
eyes and glasses directly. While the original dataset is highly imbalanced in the ratio between faces
with and without glasses, we randomly select an equal number of images in both classes, with a
total of 100/393/392 images for training/validation/testing respectively.

5.1.4 Prohibited Item Detection. The task is constructed from the Sixray dataset 7 [96] by splitting
images based on the presence of prohibited items. Sixray is highly imbalanced with 1,059,231 X-ray
images, including 6 classes of 8,929 prohibited items. Merging the 6 prohibited classes, the task
of the new dataset is a binary prohibited item detection. Bounding boxes of prohibited items are
included in all images. Due to data imbalance, the dataset is further filtered into 100/5296/5298
images for training, validation, and testing respectively.

5.1.5 Evaluation Metrics. We evaluate the model in terms of prediction performance as well as
in terms of explanation performance. For prediction performance, we use AUC and accuracy as
evaluation metrics. To evaluate explanation faithfulness, we employ the Matrix for comprehen-
siveness and sufficiency by ERASER [36]. For explanation correctness assessment, we compare
the saliency map generated by Grad-CAM with ground-truth annotation masks. Specifically, we
use the Intersection over Union (IoU) score [16], the bit-wise intersection and union operations
between the ground truth explanation and the binarized model explanation. We further evaluate
explanation performance with Explanatory F1, precision, and recall by bit-wise comparison between
ground-truth explanation and model explanation.

5.1.6 Comparison methods. : We compare the performance of several models as listed below:

• Baseline Baseline 1 and 2 are pre-trained ResNet50 and VGG16 model that trains only on
prediction loss without explanation loss.

• GRADIA [52]: A framework that trains the DNN model with both the prediction loss as well
as a conventional L1 loss that directly minimizes the distance between the continuous model
explanation and the binary positive explanation labels.

5Available at: http://places2.csail.mit.edu/index.html
6Available at: http://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
7Available online at: https://github.com/MeioJane/SIXray
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Table 3. The classification performance and explanation evaluation on Gender Classification. The results are
obtained from 3 individual runs and the best results of each metric are highlighted in boldface font.

Prediction Exp Faithfulness Exp Correctness

Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑
Baseline 1 ResNet50 0.680 0.664 0.048 0.105 0.147 0.470 0.554 0.525
Baseline 2 VGG16 0.637 0.671 0.048 0.051 0.058 0.155 0.340 0.132

Supervised

GRADIA[52] ResNet50 0.695 0.764 0.107 0.090 0.243 0.625 0.787 0.608

RES [50] ResNet50 0.690 0.744 0.108 0.097 0.240 0.614 0.742 0.621

RRR[125] VGG16 0.624 0.628 0.027 0.015 0.091 0.270 0.424 0.257

CDEP [119] VGG16 0.628 0.635 0.014 0.010 0.100 0.254 0.419 0.231

Unsupervised

SENN [5] SENN(CNN) 0.589 0.627 0.005 0.027 0.062 0.186 0.300 0.186

SGT [65] ResNet50 0.645 0.687 0.012 0.002 0.044 0.352 0.502 0.257

• RES [50]: A framework that trains the DNN with both factual and counterfactual annotations
with two imputation functions: 𝑔(·) as a fixed value Gaussian convolution filter and learnable
imputation function 𝑔𝜙 (·) via multiple layers of learnable kernels.

• CDEP [119]: A framework that incorporates Contextual Decomposition (CD) to penalize spurious
correlations and therefore correct errors.

• RRR [125]: A framework that was initially introduced by [122] and altered by [125], which aims
to regularize the model to be right for the right reasons.

• SGT [65]: A framework that introduces saliency-guided training for neural networks to reduce
noisy gradients in predictions.

• SENN [5]: A framework that applied two regularization terms on the model explanation: 1)
neighborhood-fidelity and 2) stability based on the neighborhood of input.

5.1.7 Implementation Details. : All models are trained for 50 epochs with the same train/val/test
split as mentioned above. We use the ADAM optimizer with a learning rate of 0.0001 [73]. The
architecture of each model is listed in Table 3. To better compare the performance on explainability,
the model explanations are generated by Grad-CAM [127]. When calculating the explanation
evaluation metrics, the explanation maps were further binarized by a fixed threshold of 0.5. We
use a batch size of 32 for training and 100 for testing. For GRADIA and RES, we set the slack
variable 𝛼 to 0.1 and 0.01, respectively, and the regularization factor to 0. For RRR, we set the
regularization parameter to 1. For CDEP, we set the regularizer rate to 0, 0.1, and 10. For SENN, we
set the robust regularization, sparsity regularization, and concept regularization hyperparameters
to 0.0001, 0.00002, and 1, respectively. For SGT, we set features dropped to 0.1 and 0.3.

5.1.8 Quantitative analysis . Model prediction performance and explanation quality in the domain
of computer vision are presented in Tables 3, 4, 5, and 6. We evaluate 6 models through gender
classification, scene recognition, glasses identification, and prohibited item discovery. We evaluate
two baseline model performances: ResNet50 and VGG16, as they are employed by the selected
paper. Overall, supervised models demonstrate better prediction power and higher explanation
quality than unsupervised models. ResNet50 seems to perform slightly better in prediction, and
significantly better in explanation quality compared with VGG16.
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Table 4. The classification performance and explanation evaluation on Scene Recognition. The results are
obtained from 3 individual runs and the best results of each metric are highlighted in boldface font.

Prediction Exp Faithfulness Exp Correctness

Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑
Baseline 1 ResNet50 0.947 0.965 0.068 0.255 0.397 0.702 0.906 0.628
Baseline 2 VGG16 0.953 0.988 0.134 0.117 0.191 0.324 0.890 0.226

Supervised

GRADIA [52] ResNet50 0.952 0.987 0.255 0.073 0.378 0.606 0.912 0.501

RES [50] ResNet50 0.956 0.988 0.189 0.002 0.435 0.722 0.909 0.647

RRR [125] VGG16 0.953 0.987 0.014 0.019 0.224 0.364 0.925 0.250

CDEP [65] VGG16 0.934 0.952 0.026 0.039 0.127 0.232 0.807 0.153

Unsupervised

SENN [119] SENN(CNN) 0.733 0.798 0.022 0.042 0.082 0.183 0.721 0.108

SGT [5] ResNet50 0.937 0.985 0.164 0.039 0.056 0.301 0.796 0.213

Table 5. The classification performance and explanation evaluation on the Face Glasses Recognition. The
results are obtained from 3 individual runs and the best results of each metric are highlighted in boldface
font.

Prediction Exp Faithfulness Exp Correctness

Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑
Baseline 1 ResNet50 0.991 0.999 0.302 0.163 0.134 0.971 0.998 0.954
Baseline 2 VGG16 0.996 0.864 0.183 0.039 0.299 0.873 0.987 0.804

Supervised

GRADIA [52] ResNet50 0.990 0.999 0.368 0.262 0.375 0.949 0.993 0.917

RES [50] ResNet50 0.991 0.999 0.396 0.128 0.302 0.932 0.997 0.887

RRR [125] VGG16 0.994 0.999 0.384 0.160 0.332 0.909 0.992 0.864

CDEP [119] VGG16 0.996 0.999 0.004 0.003 0.042 0.203 0.540 0.248

Unsupervised

SENN [5] SENN(CNN) 0.797 0.873 0.002 0.023 0.045 0.202 0.639 0.134

SGT [65] ResNet50 0.996 0.999 0.083 0.106 0.292 0.671 0.974 0.556

For gender classification, GRADIA generally has the best prediction performance and presents
the highest explanation quality, with the best scores in all metrics besides comprehensiveness
and Exp recall, and minimal differences of 0.9& and 2.1% in comprehensiveness and explanatory
recall. For models with ResNet50 as the backbone architecture, GRADIA and RES significantly
outperform SGT, since SGT is unsupervised. SGT presents a lower accuracy, comprehensiveness,
IoU, and explanatory F1 than the baseline model, which implies that the unsupervised model is not
improving model performance and explanation quality. Yet SGT achieves the lowest sufficiency,
which measures how well the prediction aligns between the original input and an explanation-
generated input. Models with VGG16 as the backbone report lower sufficiency than those with
ResNet50, while models with ResNet50 generally hold higher accuracy, comprehensiveness, IoU, and
explanatory F1. SENN, which develops its own architecture with a set of conceptizer, parametrizer,
and aggregator, underperforms in all metrics since the backbone is a simple CNN model.
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Table 6. The classification performance and explanation evaluation on the Prohibited Item Detection. The
results are obtained from 3 individual runs and the best results of each metric are highlighted in boldface
font.

Prediction Exp Faithfulness Exp Correctness

Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑
Baseline 1 ResNet50 0.961 0.992 0.161 0.053 0.195 0.823 0.870 0.784
Baseline 2 VGG16 0.917 0.988 -0.026 -0.010 0.147 0.330 0.788 0.241

Supervised

GRADIA [52] ResNet50 0.974 0.997 0.176 0.272 0.213 0.703 0.928 0.610

RES [50] ResNet50 0.962 0.995 0.152 0.295 0.235 0.837 0.964 0.776

RRR [125] VGG16 0.950 0.995 0.055 0.128 0.155 0.343 0.448 0.320

CDEP [119] VGG16 0.959 0.992 0.038 0.021 0.061 0.403 0.615 0.298

Unsupervised

SENN [5] SENN(CNN) 0.754 0.839 -0.026 0.095 0.042 0.152 0.584 0.098

SGT [65] ResNet50 0.962 0.993 0.027 0.066 0.062 0.552 0.648 0.481

For scene recognition, the baseline VGG16 achieves better accuracy, comprehensiveness, and
sufficiency, compared with the baseline ResNet50. VGG16 has a significantly low explanatory recall
and IoU, which results in 53.8% worse performance in explanatory F1. For the selected models, RES
yields the best performance on all metrics, slightly improving prediction performance and boosting
explanation quality significantly, with 1.0%, 2.4%, 177.9%, -99.2%, 9.6%, 2.8% changes in accuracy,
AUC, comprehensiveness, sufficiency, IoU, and explanatory F1, respectively. SENN consistently
underperforms in all metrics. Amongmodels with VGG16, RRR is able to maintain a similar accuracy
as the baseline while improving explanation correctness (IoU and Exp F1) by 17.3% and 12.3%,
while CDEP results in worse explanation correctness. RRR and CDEP both obtain a lower score in
comprehensiveness and sufficiency, which suggests that even stripping off the model-generated
explanations, the models are able to generate similar predictions. The stripped model-generated
explanations are useful in terms of prediction, but not all useful information is covered by the
saliency map. Moreover, baseline ResNet50 under-performs in terms of explanation faithfulness
but outperforms in terms of explanation correctness. This implies that while ResNet50 is able to
generate explanations that exhibit the pattern of human annotation, the generated explanations
are not useful for the model in terms of prediction.

In the task of the glasses identification, all models achieve high performance besides SENN, which
consistently results in worse performance in all metrics. In terms of explanation comprehensiveness
and faithfulness, GRADIA, RES, RRR, and CDEP show (21.9%, 60.7%), (31.1%, -21.5%), (109.8%, 310.3%),
and (-97.8%, -92.3%) changes with respect to the baseline. RES holds the highest comprehensiveness
score and CDEP holds the lowest sufficiency score. This implies that GRADIA, RES, and RRR
are successful at extracting all useful attention for prediction, while GRADIA and RRR sacrifice
the prediction power if solely using generated attention as the input. Among supervised models,
GRADIA has the highest IoU as well as the highest percentage increase, which implies that the
model successfully learns the pattern of human annotation and is able to produce saliency maps that
are most aligned with human annotation. However, since GRADIA also has the highest sufficiency
score, it further implies that learning from the human annotation may not be sufficient for the model
to make correct predictions. Meanwhile, SGT shows high accuracy and IoU even as an unsupervised
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Fig. 5. Selected explanation visualization results on four vision datasets: gender classification, scene recog-
nition, face glasses detection, and prohibited item identification. The model-generated explanations are
highlighted.

model. Yet it suffers from low Explanatory recall, low comprehensiveness, and high sufficiency
score, indicating that the model-generated attention is not successful in terms of prediction.
In the Prohibited Item Detection task, models generally exhibit a pattern of maintaining high

accuracy, better explanation correctness, and comprehensiveness, but worse sufficiency. ResNet50
baseline achieves higher prediction and explanation robustness compared with VGG16. While most
models’ accuracy ranges from 0.917 to 0.974, SENN yields an accuracy of 0.754, which implies that
a CNN model is insufficient for the dataset. All models with VGG16 as the backbone performs
well in terms of low sufficiency but poorly in comprehensiveness and explanatory recall. GRADIA
yields the highest accuracy (0.974), AUC (0.997) and comprehensiveness score (0.176), but poor
sufficiency score of 0.272 when the baseline has a sufficiency of 0.053. RES shows the worst good
performance on sufficiency but second to best score on comprehensiveness among EGL models.
The baseline model with VGG16 achieves the best sufficiency score of -0.010. This is because the
model sufficiency score is highly influenced by the size of generated annotation map, and the
VGG16 baseline model scarifies the sparseness of explanation to achieve a higher sufficiency and
consequently leads to the worst comprehensiveness score. To validate the above statement, we
further compute the proportion of attention map generated respectively to the entire image of the
VGG16 baseline, RES, and GRADIA models. We find that the average explanation map sizes of
the VGG16 baseline model are on average 84% and 33% greater than those of RES and GRADIA,
respectively. This additional observation provides additional support for our assumption that the
baseline model tends to generate larger explanation maps, leading to a much higher sufficiency
score but a much worse comprehensiveness score. In terms of explanation correctness, RES and
RRR are able to improve IoU from 0.195 to 0.101 and from 0.147 to 0.155, the best among each
architecture. RES improves explanatory F1 from 0.827 to 0.837 and CDEP improves explanatory F1
from 0.330 to 0.403. Overall, GRADIA achieves the best prediction accuracy and faithfulness while
RES achieves the best explanatory correctness among all models.
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5.1.9 Qualitative Case Study. Figure 5 displays the visualization results of the four vision tasks:
gender classification, scene recognition, face glasses detection, and prohibited item identification.
Overall, RES and GRADIA have more overlap with the ground truth. CDEP is more fine-grained.
SENN generates a saliency map that highlights all areas instead of focusing on a particular place.
In the gender classification task, RES and GRADIA perform well in identifying the human body,
even with distractions. RRR, CDEP, and SGT sometimes highlight areas that are disruptive, such
as phones and kitchen stoves. In terms of saliency map size, CDEP generates a saliency map that
focuses only on a small area, whereas SENN generates a thin layer of attention all over the image,
which explains their low performance in IoU and explanatory F1. In the scene recognition task,
RES, GRADIA, and SENN have the most overlapping areas with the ground truth label. RRR and
CDEP sometimes are biased. For example, in the last image, RRR considers the floor key elements
in scene recognition, whereas the ground truth label is the trees. SGT mostly attends to areas other
than the ground truth, which explains its low IoU compared with other models. For face glasses
detection, all models generate saliency maps focused on the face area. While the baseline model
focus on the entire face, RES, GRADIA, RRR, and SGT generate maps that are more specific to the
eye areas. CDEP focuses more on the lower half of the face and SENN attends to all face parts,
such as the eyes, mouth, etc. While all models are highly accurate at identifying the presence of
prohibited items, model-generated maps do not align with ground truth labels. Most models are
able to focus on some small objects, not necessarily the prohibited items. SGT focuses on the white
area outside of the baggage, which accounts for its low accuracy and low explanation performance.

5.2 Rationale Attention Guided Learning
To evaluate the performance of EGLmodels on NLP tasks, three datasets with explanation rationales
are selected for the experimental study [36], the details about each dataset are shown as follows:

5.2.1 Movie Review [50]. The movie review dataset includes binary sentiment labels as well as
rationale annotations at the span level. The task is to classify movies with positive sentiments from
those with negative sentiments. we randomly split the data with a sample size of 1600/150/200 for
training, validation, and testing. The explanation label is the sentiment ∈ {positive, negative}.

5.2.2 MultiRC [72]. MultiRC is a reading comprehension dataset originally composed of a series
of rationale/question/answer triplets. This is also a binary classification task where the prediction
label is True or False. The dataset is divided into 24029/3214/4848 for training, validation, and
testing. The ground truth for explanation indicates if the answer is correct.

5.2.3 FEVER [145]. FEVER is a fact verification dataset, where each claim can be classified into sup-
ported, refuted, or not enough information. DeYoung et al. [36] further took a subset of the dataset
and included only support and refuted claims. The dataset is further separated into 97957/6122/6111
images for training, validation, and testing respectively. For explanation rationales, the model has
to predict the veracity of a claim ∈ {support, refuse}.

5.2.4 Evaluation Metrics. : We evaluate the model in two categories: 1) prediction performance
and 2) explanation performance. For prediction performance, accuracy and AUC are computed
to evaluate the predictive power of the model. For explanation evaluation, we incorporated 6
matrices to fully examine the explanation robustness. Matrix for comprehensiveness and sufficiency
are derived from ERASER [36]. In addition, we measure the token level intersection over union
(IoU) [16] between ground truth rationale and predicted rationale through IoU, explanatory F1,
precision, and recall.

5.2.5 Comparison methods. : We compare the performance of several models listed below:
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Table 7. The classification performance and explanation evaluation on the Movie Review dataset. The best
results of each metric are highlighted in boldface font.

Prediction Exp Faithfulness Exp Correctness

Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑
Baseline 1 BERT+MLP 0.516 0.478 0.086 0.145 0.242 0.365 0.441 0.312

Baseline 2 BERT+LSTM 0.622 0.591 0.027 0.126 0.043 0.112 0.462 0.064

Baseline 3 BERT+BERT 0.756 0.703 0.112 0.113 0.085 0.188 0.411 0.122

ERASER [36] BERT+LSTM 0.826 0.805 0.128 0.093 0.598 0.749 0.734 0.765

Glockner et al.[55] BERT+MLP 0.564 0.511 0.114 0.103 0.541 0.702 0.693 0.712

Carton et al. [22] BERT+BERT 0.834 0.812 0.138 0.084 0.585 0.738 0.726 0.751

Expred [170] BERT+GRU+MLP 0.794 0.779 0.094 0.076 0.639 0.779 0.781 0.779

FRESH [66] BERT+LSTM 0.678 0.653 0.144 0.093 0.569 0.726 0.745 0.707

Table 8. The classification performance and explanation evaluation on the MultiRC dataset. The best results
of each metric are highlighted in boldface font.

Prediction Exp Faithfulness Exp Correctness

Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑
Baseline 1 BERT+MLP 0.564 0.511 0.012 0.188 0.235 0.459 0.534 0.402

Baseline 2 BERT+LSTM 0.593 0.573 0.081 0.205 0.106 0.280 0.471 0.199

Baseline 3 BERT+BERT 0.627 0.580 0.054 0.154 0.076 0.234 0.485 0.154

ERASER [36] BERT+LSTM 0.639 0.615 0.039 0.132 0.448 0.618 0.615 0.622

Glockner et al. [55] BERT+MLP 0.587 0.547 0.065 0.136 0.409 0.580 0.576 0.585

Carton et al. [22] BERT+BERT 0.647 0.613 0.074 0.076 0.473 0.642 0.633 0.651

Expred [170] BERT+GRU+MLP 0.638 0.622 0.032 0.061 0.447 0.618 0.602 0.635

FRESH [66] BERT+LSTM 0.607 0.586 0.096 0.113 0.437 0.608 0.613 0.604

• Baseline: Baselines 1, 2, and 3 are pre-trained models that train only using the prediction loss
without explanation loss. The pre-trained architecture for baselines 1, 2, and 3 are BERT+MLP,
BERT+LSTM, and BERT+BERT respectively.

• ERASER [36]: A pipeline model that first trains the encoder to extract rationales, and then trains
the decoder to perform prediction using only rationales.

• Glockner et al. [55]: A differentiable training–framework that aims to output faithful rationales
on a sentence level

• Carton et al. [22]: A model that applies sentence-level rationale supervision, non-occluding
“importance embeddings” on selective rationales with high sufficiency-accuracy.

• Expred [170]: A novel explanation generation framework work using multi-task learning that
is task-aware and can exploit rationales data for effective explanations.

• FRESH [66]: A model that aims to produce faithful rationales for neural text classification by
defining independent snippet extraction and prediction modules.

5.2.6 Implementation Details. : The data preprocessing follows the setting of ERASER [36]. We
train all the models equally for 20 epochs and Adam is used for optimization with a learning rate
of 2𝑒-5. To evaluate the explanation performance, the threshold for the calculated rationales is set
to be 0.5. We follow the hyperparameter settings reported in the papers of the above methods.
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Table 9. The classification performance and explanation evaluation on the Fever dataset. The best results of
each metric are highlighted in boldface font.

Prediction Exp Faithfulness Exp Correctness

Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑
Baseline 1 BERT+MLP 0.822 0.803 0.075 0.126 0.103 0.319 0.513 0.231

Baseline 2 BERT+LSTM 0.851 0.822 0.022 0.099 0.157 0.391 0.454 0.344

Baseline 3 BERT+BERT 0.872 0.856 0.017 0.117 0.036 0.145 0.612 0.082

ERASER [36] BERT+LSTM 0.874 0.867 0.036 0.053 0.679 0.808 0.805 0.812

Glockner et al. [55] BERT+MLP 0.835 0.813 0.122 0.066 0.672 0.803 0.833 0.776

Carton et al. [22] BERT+BERT 0.893 0.876 0.084 0.048 0.707 0.828 0.831 0.826

Expred [170] BERT+GRU+MLP 0.903 0.889 0.043 0.027 0.696 0.820 0.817 0.824

FRESH [66] BERT+LSTM 0.862 0.832 0.106 0.053 0.627 0.771 0.732 0.814

5.2.7 Quantitative analysis. Tables 6, 7, and 8 present the model prediction performance and
explanation quality of Movie Review, MultiRC, FEVER dataset respectively. The best results for
each dataset are highlightedwith boldface font. In general, when comparingwith baseline, all models
achieve a better accuracy and explanation correctness. The sufficiency score also decreases compared
with the baseline model, which implies that the model-generated rationale is representative of the
entire document.
For the Movie Review dataset, Carton et al. [22] yields the highest classification accuracy and

Expred [170] generates the explanations with the highest quality. Compared with the baseline
architecture BERT+LSTM, ERASER [36] improve the model accuracy and AUC by 32.8% and 36.2%,
and boost the explanation quality by 374.1%, -26.2%, 1290.7%, and 568.8% in terms of comprehen-
siveness, sufficiency, IoU, and explanatory F1 scores, respectively, while FRESH [66] improves
model accuracy, AUC, Sufficiency and Exp F1 by 9.0%, 10.5%, 433.3%, -26.2%, 1223.3%, and 548.2%
respectively. ERASER [36] has better performance in terms of both model performance as well
as explanation quality. Carton et al. [22], which employs the BERT+BERT architecture, increases
accuracy and AUC by 10.3%, and 15.5% and ERASER [36] achieves the second-best result with an
architecture of BERT+LSTM. Expred [170] obtain the highest explanation correctness and lowest
sufficiency with a model architecture of BERT+GRU+MLP, and FRESH [66](BERT+LSTM) holds the
highest comprehensiveness score among the selected models.
For the MultiRC dataset, Carton et al. [22] achieves the highest classification accuracy as well

as the highest explanation faithfulness and correctness. It improves the model accuracy and
AUC by 3.2%, 15.5%, lowers sufficiency score by 50.6%, and boost IoU and explanation F1 by
522.4%, and 174.4%, respectively, compared with the baseline. For all models with the architecture
BERT+LSTM, while they consistently obtain better results than baseline except for comprehen-
siveness ERASER [36], outperforms FRESH [66] by 5.3%, 4.9%, 2.5%, and 1.6% in terms of model
accuracy, AUC, IoU, and explanatory F1. FRESH [66] is more accurate when assessing explanation
faithfulness through the sufficiency and comprehensiveness score, with a 14.4% decrease and 146.2%
boost compared with ERASER [36].

The performance varies for the FEVER dataset, as FRESH [66] achieves the highest accuracy, AUC,
and sufficiency scores, and Expred [170] yields the highest comprehensiveness, IoU, Explanatory F1
and Explanatory Recall. All the models perform generally well in the fact verification task in terms
of accuracy, with a range of 0.835 to 0.903. In terms of explanatory faithfulness, FRESH [66] performs
worse than the baseline in comprehensiveness but reduces sufficiency by 46.5%. Expred [170] obtain
the greatest boost in comprehensive and sufficiency, with a change of 394.1% and -59.0% respectively.
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Fig. 6. Selected explanation visualization results on FEVER dataset. The model-generated explanations are
highlighted.

Fig. 7. Selected explanation visualization results on Movie Review dataset. The model-generated explanations
are highlighted.

The baseline models generally show poor performance in explanation faithfulness and correctness,
which are improved significantly across all five models. Expred [170] is able to improve IoU by
1863.9% and Explanatory F1 by 471.0%.

5.2.8 Qualitative Case Study. Figures 6, 7, and 8 provide examples of visualization results on FEVER,
Movie Review, and MultiRC dataset. The model-generated explanations are highlighted. In general,
the baseline model highlights areas that are scattered all around the corpus, whereas trained models
generate explanation rationales that are more aggregated. In Figure 6, ERASER [36] and Glockner
et al. [55] are highly aligned with ground truth, aligned with their high performance in IoU. While
Expred [170] obtains the highest accuracy and comprehensiveness, its generated-explanation does
not align with the ground truth annotations, which implies that the ground truth labels may not be
sufficient for the model to learn the prediction. FRESH [66] generates explanations that are poorly
aligned with the ground truth and outputs a wrong prediction label.
In Figure 7, while Carton et al. [22] aligns well with the ground truth, it focuses on a higher

percent of tokens, which explains why it slightly underperforms in explanatory precision and
comprehensiveness but outperforms in sufficiency. There exhibits a compromise between high
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Fig. 8. Selected explanation visualization results on MultiRC dataset. The model-generated explanations are
highlighted.

accuracy and high explanation quality, as Carton et al. [22] achieves the highest accuracy but
lowest comprehensiveness among the selected models. This examples shows how the amount
of attention may manipulate the result of explanation faithfulness. If a high amount of tokens
are considered important, sufficiency will be close to 0 and comprehensiveness will be relatively
high. Therefore, it’s necessary to consider both explanation faithfulness and correctness when
analyzing the explanation quality. This example also reveals the importance of a case study, to
visualize the quantitative results and understand how attention performs in terms of correctness
and faithfulness.

6 CONCLUSION
This survey has presented a comprehensive survey of existing methodologies developed in the field
of Explanation-Guided Learning (EGL), a group of techniques that applies XAI-driven insights to
steer the DNNs’ behavior in realizing iterative model revision. It provides an extensive overview of
the EGL challenges, techniques, applications, evaluation procedures, as well as extensive experi-
mental comparison among existing techniques under popular application areas. It summarizes the
findings of the research presented in more than 150 publications on EGL, the majority of which were
released in the last five years. Concretely, in this survey, the formal definition of EGL and its general
learning paradigm is first given, along with an overview of the key factors for EGL evaluation,
as well as summarization and categorization of existing evaluation procedures and metrics for
EGL are provided. Based upon the numerous historical and state-of-the-art works discussed in this
survey, the article concludes by discussing the current and potential future application areas of
EGL, and provides an extensive experimental study that aims at providing the first comprehensive
comparative study among existing EGL models in various popular application domains, such as
Computer Vision (CV) and Natural Language Processing (NLP) domains.
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