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Efficient High-Resolution Deep Learning: A Survey

ARIAN BAKHTIARNIA, Ql ZHANG, and ALEXANDROS IOSIFIDIS, DIGIT, Aarhus University,

Aarhus, Denmark

Cameras in modern devices such as smartphones, satellites and medical equipment are capable of capturing
very high resolution images and videos. Such high-resolution data often need to be processed by deep learn-
ing models for cancer detection, automated road navigation, weather prediction, surveillance, optimizing agri-
cultural processes and many other applications. Using high-resolution images and videos as direct inputs for
deep learning models creates many challenges due to their high number of parameters, computation cost, in-
ference latency and GPU memory consumption. Simple approaches such as resizing the images to a lower res-
olution are common in the literature, however, they typically significantly decrease accuracy. Several works
in the literature propose better alternatives in order to deal with the challenges of high-resolution data and
improve accuracy and speed while complying with hardware limitations and time restrictions. This survey
describes such efficient high-resolution deep learning methods, summarizes real-world applications of high-
resolution deep learning, and provides comprehensive information about available high-resolution datasets.
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1 INTRODUCTION

Many modern devices such as smartphones, drones, augmented reality headsets, vehicles and other
Internet of Things (IoT) devices are equipped with high-quality cameras that can capture high-
resolution images and videos. With the help of image stitching techniques, camera arrays [126,
157], gigapixel acquisition robots [110] and whole-slide scanners [41], capture resolutions can be
increased to billions of pixels (commonly referred to as gigapixels), such as the image depicted in
Figure 1. One could attempt to define high-resolution based on the capabilities of human visual
system. However, many deep learning tasks rely on data captured by equipment which behaves
very differently compared to the human eye, such as microscopes, satellite imagery and infrared
cameras. Furthermore, utilizing more detail than the eye can sense is beneficial in many deep
learning tasks, such as in the applications discussed in Section 2. The amount of detail that can be
captured and is useful if processed varies greatly from task to task. Therefore, the definition of high-
resolution is task-dependent. For instance, in image classification and computed tomography

This work was funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 957337, and by the Danish Council for Independent Research under Grant No. 9131-00119B..

Authors’ address: A. Bakhtiarnia, Q. Zhang, and A. Iosiidis, DIGIT, Aarhus University, 5125 Edison, Finlandsgade 22, Aarhus,
Midtjylland, Denmark, 8200; e-mails: arianbakh@ece.au.dk, qz@ece.au.dk, ai@ece.au.dk.

@ BY
This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 0360-0300/2024/04-ART181
https://doi.org/10.1145/3645107

ACM Comput. Surv., Vol. 56, No. 7, Article 181. Publication date: April 2024.


https://orcid.org/0000-0001-8624-8661
https://orcid.org/0000-0001-5303-9804
https://orcid.org/0000-0003-4807-1345
https://doi.org/10.1145/3645107
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3645107
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3645107&domain=pdf&date_stamp=2024-04-09

181:2 A. Bakhtiarnia et al.

Efficient High-
Resolution
Processing Methods

I

) ¥ v ¥ v

Non-Uniform Selective Zooming Lightweight Scanner Task-Oriented Input Vi::?nh:rsae::fl::lrzgrs
Downsampling (NUD) and Skipping (SZS) Networks (LSNs) Compression (TOIC) (HR-ViTs)

Key Techniques Key Techniques Key Techniques Key Techniques Key Techniques
Saliency Detection Image Partitioning Task-Specific Architecture Compressed Representations Attention Approximation
External Supervision Signal Saliency Detection Neural Architecture Search Use of Encoders from Neural Hierarchical Processing

Image Compression
Nonlinear Sampling Grids Reinforcement Learning Utilizing Multiple Models Graph Representation Learning
Graph Neural Networks Processing across Multiple Multi-Modal Attention

Zoom Levels

Frequency-Domain
Representations

Fig. 1. Example of a gigapixel image, taken from the PANDA-Crowd dataset [144], captured using an array
of micro-cameras; (a) original image with a size of 26,558 X 14,828 pixels, and (b) zoomed in to the location
specified by the red rectangle in the original image, with a size of 2,516 X 1,347 pixels, which is more than
100 times smaller than the original image, yet still approximately 5 times larger than the image size processed
by state-of-the-art deep learning models for crowd counting such as SASNet [116], which is 1024 x 768, and
around 50 times larger than the standard image size processed by image classification models, which is 224
X 224.

(CT) scan processing, a resolution of 512 X 512 pixels is considered to be high [17, 37]. In visual
crowd counting, datasets with High-Definition (HD) resolutions or higher are common [45],
and whole-slide images (WSIs) in histopathology, which is the study of diseases of the tissues,
or remote sensing data, which are captured by aircrafts or satellites, can easily reach gigapixel
resolutions [134, 135].

Moreover, with the constant advancement of hardware and methodologies, what deep learning
literature considers high-resolution has shifted over time. For instance, in the late 1990s, processing
the 32x32-pixel MNIST images with neural networks was an accomplishment [78], whereas in
early 2010s, the 256x256-pixel images in ImageNet were considered high-resolution [76]. This
trend can also be seen in the consistent increase of the average resolution of images in popular deep
learning datasets, such as crowd counting [45] and anomaly detection [101] datasets. Therefore, the
definition of high-resolution is also period-dependent. Based on the task- and period-dependence
properties, it is clear that the term “high-resolution” is technical, not fundamental or universal.
Therefore, instead of trying to derive such a definition, we shift our focus to resolutions that create
technical challenges in deep learning at the time of this writing.

Using high-resolution images and videos directly as inputs to deep learning models creates
challenges during both training and inference phases. With the exception of fully-convolutional
networks (FCNs), the number of parameters in deep learning models typically increases with
larger input sizes. Moreover, the amount of computation, which is commonly measured in terms
of floating point operations (FLOPs), and therefore inference/training time, as well as GPU
memory consumption increase with higher-resolution inputs, as shown in Figure 2. This issue is
especially problematic in Vision Transformer (ViT) architectures, which use the self-attention
mechanism, where the inference speed and number of parameters scale quadratically with input
size [37, 122]. These issues are exacerbated when the training or inference needs to be done on
resource-constrained devices, such as smartphones, that have limited computational capabilities
compared to high-end computing equipment, such as workstations or servers.

Even though methods such as model parallelism can be used to split the model between multiple
GPUs during both the training [113, 146] and inference [39] phases, and thus avoid memory and
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Fig. 2. As the resolution of the input image increases, so does (a) the amount of computation, (b) inference
time, (c) GPU memory usage in the EfficientNet-B7 [121], and (d) the number of parameters in the ViT-
B16 [37] architecture. The last layer of EfficientNet-B7 was removed to form a fully-convolutional feature
extractor. Since accuracy is not considered in these figures, there is no need to use real images, thus randomly
generated images are given to the models as input. All experiments were conducted on an Nvidia A6000 GP U.

latency issues, these methods require a large amount of resources, such as a large number of GPUs
and servers, which can incur high costs, especially when working with extreme resolutions such
as gigapixel images. Furthermore, in many applications, such as self-driving cars and drone image
processing, there is a limit for the hardware that can be mounted, and offloading the computation
to external servers is not always possible because of unreliability of the network connection due to
movement and the time-critical nature of the application. Therefore, the most common approach
for deep learning training and inference is to load the full model on each single GPU instance.
Multi-GPU setups are instead typically used to speed up the training by increasing the overall
batch size, to test multiple sets of hyper-parameters in parallel or to distribute the inference load.
Consequently, in many cases, there is an effective maximum resolution that can be processed by
deep learning models. As an example, the maximum resolution for inference using SASNet [116],
which is the state-of-the-art model for crowd counting on the Shanghai Tech dataset [162] at the
time of this writing, is around 1024 X 768 (less than HD) on Nvidia 2080 Ti GPUs which have 11
GBs of video memory.
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Fig. 3. Trend of the maximum resolutions captured by smartphones (Apple iPhone and Samsung Galaxy S),
drones (D]l Phantom), augmented reality headsets (Microsoft HoloLens) and loT devices (Raspberry Pi) over
time. Details and data sources are available in Appendix A.

Although newer generations of GPUs are getting faster and have more memory available, the
resolution of images and videos captured by devices is also increasing. Figure 3 shows this trend
across recent years for multiple types of devices. Therefore, the aforementioned issues will likely
persist even with advances in computation hardware technology. Furthermore, current imaging
technologies are nowhere near the physical limits of image resolutions, which is estimated to be
in petapixels [11].

Whether or not capturing and processing a higher resolution leads to improvements depends on
the particular problem at hand. For instance, in image classification, it is unlikely that increasing
the resolution for images of objects or animals to gigapixels would reveal more beneficial details
and improve the accuracy. On the other hand, if the goal is to count the total number of people in
scenes such as the one presented in Figure 1, using an HD resolution instead of gigapixels would
mean that several people could be represented by a single pixel, which significantly increases the
error. Similarly, it has been shown that using higher resolutions in histopathology can lead to
better results [89].

Assuming there is an effective maximum resolution for a particular problem due to hardware
limitations or latency requirements, there are two simple baseline approaches for processing the
original captured inputs which are commonly used in deep learning literature [21, 30, 102]. The
popularity of these baselines can be attributed to the simplicity of their implementation. The first
one is to resize (downsample) the original input to the desired resolution, however, this will lead to
a lower accuracy if any important details for the problem at hand are lost. This approach is called
uniform downsampling (UD) since the quality is reduced uniformly throughout the image. The
second approach is to cut up the original input into smaller patches that each have a maximum
resolution, process the patches independently, and aggregate the results, for instance, by summing
them up for regression problems and majority voting for classification problems. We call this ap-
proach cutting into patches (CIP). There are two issues with this approach. First, many deep
learning models rely on global features which will be lost since features extracted from each patch
will not be shared with other patches, leading to decreased accuracy. For instance, crowd counting
methods typically heavily rely on global information such as perspective or illumination [45, 116],
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Table 1. Performance of Baseline Approaches on the Shanghai Tech Part B Dataset

Input Size Shanghai Tech Part B PANDA
Uniform Downsampling Cutting Into Patches | Uniform Downsampling Cutting Into Patches
MAE Time (ms) MAE  Time (ms) MAE Time (ms) MAE  Time (ms)

Original 6.31 7.02 6.31 7.02 262.21 30.91 262.21 30.91
Reduced 4x 9.01 2.00 6.40 7.11 335.81 8.16 203.51 31.68
Reduced 16X | 16.06 1.14 6.67 7.48 440.46 2.21 193.36 31.99

and in object detection, objects near the boundaries may be split between multiple patches. Sec-
ondly, since multiple passes of inference are performed, that is, one pass for each patch, inference
will take much longer. This issue is worse when patches overlap.

To highlight these issues, we test the two baseline approaches (UD and CIP) on the Shanghai
Tech Part B dataset [162] for crowd counting, which contains images of size 1024 X 768 pixels,
as well as the PANDA dataset [144], which contains gigapixel images. However, we resize the
gigapixel images to 2,560x1,440 in order to comply with our hardware limitations. We reduce the
original image size by factors of 4 and 16 and measure the mean absolute error (MAE) for both
baselines. To test UD, we take pre-trained a SASNet model [116] and fine-tune it for the target
input size using the AdamW optimizer [88]. Note that the original SASNet paper uses the Adam
optimizer [71]. We train the model for 100 epochs with batch size of 12 per GPU instance using
3xNvidia A6000 GPUs for Shanghai Tech Part B experiments, and a batch size of 1 for PANDA
experiments. We empirically found that fine-tuning does not improve the accuracy of cutting into
patches, therefore, we cut the original image into 4 and 16 patches, and obtain the count for each
patch using the pre-trained SASNet mentioned above, then aggregate the results by summing up
the predicted count for each patch.

The results of these experiments are shown in Table 1. It can be observed that uniform down-
sampling significantly increases the error compared to processing the original input size. Keep in
mind that even though the increase in error is not as drastic with cutting into patches, and there
are even improvements in some cases, the inference time of this approach is increased by the same
factor (i.e., 4 and 16) when using the effective maximum resolution possible for hardware. This is
due to the fact that patches cannot be processed in parallel, as the entire hardware is required to
process a single patch. Indeed, with the PANDA experiments, which are close to the maximum
effective resolution of our hardware, we can see this drastic increase in computation time when
using CIP compared to UD.

Since these baseline approaches are far from ideal, in recent years, several alternative methods
have been proposed in the literature in order to improve accuracy and speed while complying with
the maximum resolution limitation caused either by memory limitations or speed requirements.
The goal of this survey is to summarize and categorize these contributions. To the best of our
knowledge, no other survey on the topic of high-resolution deep learning exists. However, there
are some surveys that include aspects relevant to this topic. A survey on methods for reducing the
computational complexity of Transformer architectures is provided in [122], which discusses the
issues related to the quadratic time and memory complexity of self-attention and analyzes vari-
ous aspects of efficiency including memory footprint and computational cost. While reducing the
computational complexity of Transformer models can contribute to efficient processing of high-
resolution inputs, in this survey, we only include Vision Transformer methods that explicitly fo-
cus on high-resolution images. Some application-specific surveys include high-resolution datasets
and methods that operate on such data. For instance, a survey on deep learning for histopathol-
ogy, which mentions challenges with processing the giga-resolution of WSIs, is provided in [118];
a survey of methods that achieve greater spatial resolution in computed tomography (CT) is
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Fig. 4. Schematic illustration of a multi-column architecture. If the original input to the DNN is a patch
taken from a larger image, such as in [167], in addition to zooming in, it is also possible to zoom out.

provided in [111], which highlights improved diagnostic accuracy with ultra high-resolution CT,
and briefly discusses deep learning methods for noise reduction and reconstruction; a survey on
crowd counting where many of the available datasets are high-resolution is provided in [45]; a sur-
vey on deep learning methods for land cover classification and object detection in high-resolution
remote sensing imagery is provided in [161]; and a survey on deep learning-based change detection
in high-resolution remote sensing images is provided in [66].

It is important to mention that some methods operate on high-resolution inputs, yet do not
make any effort to address the aforementioned challenges. For instance, multi-column (also known
as multi-scale) networks [45, 116] incorporate multiple columns of layers in their architecture,
where each column is responsible for processing a specific scale as shown in Figure 4. However,
since the columns process the same resolution as the original input, most of these methods in fact
require even more memory and computation compared to the case where only the original scale
is processed. The primary goal of these methods is instead to increase the accuracy by taking into
account the scale variances that occur in high-resolution images, although there are some multi-
scale methods that improve both accuracy and efficiency [15, 138, 164]. Therefore, these methods
do not fall within the scope of this survey, unless they explicitly address the efficiency aspect for
high-resolution inputs. ZoomCount [109], Locality-Aware Crowd Counting [167], RAZ-Net [86]
and Learn to Scale [149] are all examples of multi-scale methods in crowd counting, and DMMN
[57] and KGZNet [139] in medical image processing.

The primary purpose of this survey is to collect and describe methods that exist in deep
learning literature, which can be used in situations where the high resolution of input images and
videos creates the aforementioned technical challenges regarding memory, computation and time.
The rest of this paper is organized as follows: Section 2 lists applications where high-resolution
images and videos are processed using deep learning. Section 3 categorizes efficient methods for
high-resolution deep learning into five general categories and provides several examples for each
category. This section also briefly discusses alternative approaches for solving the memory and
processing time issues caused by high-resolution inputs. Section 4 lists existing high-resolution
datasets for various deep learning problems and provides details for each of them. Section 5
discusses the advantages and disadvantages of using efficient high-resolution methods belonging
to different categories and provides recommendations about which method to use in different
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situations. Finally, Section 6 concludes the paper by summarizing the current state and trends in
high-resolution deep learning as well as suggestions for future research. The code for experiments
conducted in this survey is available at https://gitlab.au.dk/maleci/high-resolution-deep-learning.

2 APPLICATIONS OF HIGH-RESOLUTION DEEP LEARNING

In this section, we list some real-world applications where high-resolution images are processed
with deep learning. Most of these methods do not focus on the efficiency angle, however, some of
the methods address issues encountered with high-resolution images. For instance, [91] mentions
that “it was not possible to train the model with the original 6,000 x 4,000 pixel images because of
GPU memory limitation” and [151], which uses the cutting into patches approach, states that “a
raw remote image has millions of pixels and is difficult to process directly”.

2.1 Medical and Biomedical Image Analysis

Multi-gigapixel whole-slide pathology images can be processed with deep learning in order to
detect breast cancer [87], skin cancer [140, 147], prostate cancer [147], lung cancer [147], cervical
cancer [22], and cancer in the digestive tract [128]. Some methods are even able to detect the
cancer subtypes [147] or detect the spread of cancer to lymph nodes (metastasis) [83]. Semantic
segmentation of such images can be useful in neuropathology [77], which is the study of diseases
of the nervous system, and identifying tissue components such as tumor, muscle, and debris in
medical images [65].

Moreover, the processing of high-resolution computed tomography (CT) scans with deep
learning is becoming more prevalent. The studies in [153] and [17] detect COVID-19 in high-
resolution CT scans of the lung, and [3] uses deep learning to improve the quality of captured
ultra-high-resolution CT scans. In addition, the study in [70] performs semantic segmentation
on high-resolution electron microscopy images from hearts and brains of mice, which is useful
for fundamental biomedical research. Additionally, high-resolution deep learning can be used
for reconstruction of CT images and reduction of image noise, which has been shown to obtain
results similar to other conventional methods with clinically feasible speed [43, 95].

Even though medical image analysis methods primarily focus on improving the accuracy of
particular tasks, inference speed can be crucial in some applications, for instance, speed might
be a requirement in clinical practice [83]. Furthermore, real-time augmented reality under mi-
croscopes can provide suitable human-computer interaction for Al-assisted slide screening [22].
Finally, there might be situations where the speed for processing a single input is acceptable, how-
ever, the sheer number of input data is so high that inputs collectively cannot be processed within
a deadline. For instance, 55,000 high-resolution images are taken during the examination of a sin-
gle patient using wireless capsule endoscopy, where a tiny wireless camera is swallowed to take
pictures of the digestive tract, which can be used to detect lesions and inflammation [148].

2.2 Remote Sensing

Processing high-resolution aerial and satellite imagery with deep learning has various applica-
tions [7], such as detecting buildings [133], which is useful for urban planning and monitoring;
detecting airplanes [4], which can be used for defense and military applications as well as airport
surveillance; extracting road networks [151], which has applications in automated road navigation
with unmanned vehicles, urban planning and real-time updating of geospatial databases; detecting
areas in a forest that are damaged due to natural disasters such as storms [52]; identifying weed
plants, which can be used for targeted spraying of pesticides in agricultural fields; semantic seg-
mentation of satellite data which can help with crop monitoring, natural resource management
and digital mapping [31]; and remote sensing image captioning which is useful for applications
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Fig. 5. Overlap in the field of view for multi-camera setups, which can result in duplicates in tasks such as
crowd counting,.

such as image retrieval and military intelligence generation [165]. Moreover, significant accuracy
improvements can be obtained by taking low-resolution weather data as input and interpolating
high-resolution data using super-resolution [106]. The motivation behind this approach is that
high-resolution data are only available with a few days delay, and this method can be used to
more accurately process low-resolution but up-to-date data.

2.3 Surveillance

Capturing and processing gigapixel images for surveillance is becoming increasingly widespread,
and such images can be processed with deep learning for searching and identifying people [42, 117]
as well as detecting pedestrians [26, 80] which can be used for human behavior analysis and intelli-
gent video surveillance such as enforcing social distancing restrictions during a pandemic [1, 2]. It
should be noted that capturing gigapixel images for surveillance has several advantages over cap-
turing lower resolutions with multiple cameras at different locations of the scene. First, cameras in
a multi-camera setup typically have some overlap in their fields of view to avoid blindspots. This
may result in errors for many applications, such as crowd counting, due to duplicates, as shown in
Figure 5. Reducing this error is not an easy task, since it requires information about the geometry
of the scene and the use of re-identification methods for identifying and deduplicating people in
multiple views of the same scene. Secondly, tracking the trajectory of people, vehicles and other
moving objects is difficult with multiple cameras, since it also requires identifying them in multiple
views of the scene. Finally, in many deep learning applications such as crowd counting, incorporat-
ing global information from the entire scene, such as illumination and perspective, improves the
accuracy of the task [45, 116]. Note that images captured from drastically different locations and
perspectives, such as the ones in in Figure 5, cannot be stitched together to form a single image.

2.4 Other Applications

High-resolution deep learning can be beneficial in many other applications and various domains
of science. For instance, the study in [91] estimates the density of wheat ears, which are the
grain-bearing parts of the plant, from high-resolution images taken from grain fields, which
aids plant breeders in optimizing their yield; and the study in [59] introduces a deep learning
method for segmentation of high-resolution electron microscopy images, which has applications
in material science such as understanding the degradation process of industrial catalysts. [84]
proposes a method for real-time high-resolution background replacement, which is useful in
video calls and conferencing.

3 METHODS FOR EFFICIENT PROCESSING OF HIGH-RESOLUTION INPUTS WITH
DEEP LEARNING

We classify deep learning methods for efficient processing of high-resolution inputs into five
categories, as summarized in Figure 6. First, non-uniform downsampling methods use the result
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Fig. 6. Overview of methods for efficient processing of high-resolution inputs.

of saliency detection methods to define a nonlinear sampling grid, and downsample the image in
a non-uniform fashion. These methods often rely on external supervision functions and custom
loss functions for optimal training. Second, selective zooming and skipping methods partition
the high-resolution image into several patches. These patches are then prioritized using saliency
detection or reinforcement learning. Alternatively, the relationship between the patches can be
modeled using graph neural networks, which can help determine patch priority. High-priority
patches are then processed using computationally expensive high-performance DNNs, whereas
low-priority patches are either processed using lightweight DNNs or discarded entirely. Third,
lightweight scanner networks design one or more ultra-lightweight architectures tailored to the
specific task at hand. Neural architecture search can be used to aid the design of such architectures.
Furthermore, multiple models may be designed to process the image across multiple scales and
resolutions, which are then combined to produce a final result. Fourth, task-oriented input com-
pression methods use encoders, graph representation learning or frequency-domain transforms
to obtain compressed representations for high-resolution images, which require less computation
to process. Multi-modal attention can also be used to reduce the size of representations for
high-resolution modalities. Finally, high-resolution Vision Transformers reduce the quadratic
cost of the attention operation by various approximation approaches. High-resolution images can
also be processed with ViTs in a hierarchical manner to alleviate the quadratic cost imposed as a
result of large input sizes.

3.1 Non-Uniform Downsampling

Non-uniform downsampling (NUD) is based on the idea that for any deep learning task, some
locations of an input image are more important than others. For instance, in gaze estimation, where
the goal is to detect where a person is looking given an image including the person’s face, the image
locations depicting the person’s eyes are much more important than other parts of the image.
Therefore, when reducing the resolution of the image, it might be beneficial to sample more pixels
from salient areas and less pixels from non-salient locations, resulting in a warped and distorted
image. This operation requires salient areas to be determined before introducing the downsampled
image to the task DNN. Therefore, a small saliency detection network is utilized in order to obtain
this saliency map. Figure 7 provides a schematic illustration of the non-uniform downsampling
approach. Note that non-uniform downsampling is a broad process that encompasses any method
that downsamples the input image in any manner other than uniform. [102] further subdivides
non-uniform downsampling into three categories: attention mechanisms, saliency-based methods
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Fig. 7. Schematic illustration of the non-uniform downsampling approach. The saliency detector detects the
cat’s right eye as a salient area, therefore, the non-uniform resampler samples more pixels from that area.

and adaptive image sampling methods. However, as the authors point out, there is a lot of overlap
between these categories and it is difficult to draw a clear border between them.

Formally, the saliency map S can be obtained by applying saliency detection network f;(-) on a
uniformly downsampled image Ij, that is, S = f;(I;). The input to the saliency detection network
is downsampled in order to keep the overhead of the saliency detection process low. The non-
uniformly downsampled image J can then be obtained based on | = ¢g(I,S), where ¢(-) is the
non-uniform resampler and I is the original image. Essentially, the resampler should compute a
mapping J(x,y) = I(uc(x,y), v.(x,y)) from the original image to the downsampled one. Functions
uc(+) and v (+) need to map pixels proportionally to the weight assigned to them in the saliency map.
Assuming the saliency map is normalized and Vx,y : 0 < uc(x,y) < 1and Vx,y : 0 < vq(x,y) < 1,
this problem can be written as

uc(x,y)  poc(x.y)
/ / S(x’,y")dx'dy’ = xy. (1)
0 0

However, methods for determining this transformation based on Equation (1) are not efficient
[102]. An alternative approach is to presume each pixel (x’, y’) is pulling all other pixels with a
force proportional to its saliency S(x’, y’), which can be formulated as

Yy S Y k((x,y), (¢, y"))x

Sy S YK((x.y). (. y")
Dy SOy k((x, ), (x, Y)Yy’
Yoy Sy k(e y), ()

where k((x,y), (x",y")) is a distance kernel, for instance, the Gaussian kernel. Using this formula-
tion, salient areas will be sampled more, since they attract more pixels. Moreover, based on this
formulation, u.(-) and v.(-) can be computed with simple convolutions. Therefore, this operation
can be easily plugged into neural network architectures as a layer, and has the added benefit of
preserving the differentiability, which is a requirement for training neural networks with the back-
propagation algorithm. The overall result is that the entire module, including the saliency detection
network and the task network, can be trained end-to-end. The method in [102] uses this approach
to improve the performance of gaze estimation as well as fine-grained classification, which is the
task of differentiating between hard-to-distinguish objects such as different species of animals.

uc(x, y) = @)

ve(x,y) = (3)
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The method in [92] applies the idea of non-uniform downsampling to semantic segmentation.
If the input image I = I;; has a size H X W and must be downsampled to size h X w, the first step
is to generate ideal sampling tensors from ground truth (GT) labels based on

E(@) = D Mgy = bwip)lP+ 4 > gy = pry (4)

i,j li=i'|+]j-j'=1

where ¢ € [0, 1]”"*? is the sampling tensor to be determined, E(¢) is the (energy) cost function
to minimize, u € [0, 1]**? is the uniform downsampling tensor and b(u; ;) is the coordinates of
the closest point to pixel u;; on semantic boundaries in the GT labels. Equation (4) corresponds to
a least squares problem with convex constraints that can be efficiently solved using a set of sparse
linear equations. The first term in Equation (4) ensures the sampling locations are close to the
semantic boundaries, and the second term ensures that the distortion is not excessive by forcing the
transformations of adjacent pixels to be similar. Equation (4) is also subject to covering constraints
that ensure the sampled locations cover the whole image. The contribution of the second term is
controlled by a parameter A which is empirically set to 1. The next step is to train a neural network
to generate sampling tensors from input images. The images are then downsampled based on the
output of this neural network and introduced to the task network. Finally, the segmentation output
is upsampled to remove distortions and match the original resolution.

Similarly, the method in [68] utilizes non-uniform downsampling for semantic segmentation.
However, in contrast with the previous method, the saliency detector in this method is optimized
based on the performance of semantic segmentation rather than external supervision signals. This
method is similar to [102], however, applying a straightforward adaptation of [102] to seman-
tic segmentation does not perform well. To improve the performance, an edge loss is added as a
regularization term, which is calculated by using the mean squared error (MSE) between the
deformation map d obtained by the saliency detector and target deformation map d; calculated
based on segmentation labels. To combat trivial solutions, the target deformation map has denser
sampling around object boundaries and is formulated by d; = fedge(fgauss(Yir)), where Yj, is the
uniformly downsampled segmentation label, feqge is an edge detection filter by convolution with
a specific 3 x 3 kernel, and fyauss is Gaussian blur with o = 1.

Since the distortions caused by the customized grids defined in Equations (2) and (3) can be
severe, the method in [148] introduces structured grids that can be combined with customized
grids to obtain a more subtle spatial distortion effect for wireless capsule endoscopy (WCE)
image classification. These structured grids ensure that pixels that were in the same row/column
in the input image are also in the same row/column in the output image, and can be obtained

by
D SOk (x, x")x’
u(x) = 9
Zx/ S(x’)k(x, x,)
2y Sk, y)x’
u(y) = p —,
2y SWk(y,y")
where S(x) = max, S(x,y) and S(y) = max, S(x,y). u(x) and v(y) are then copied and stacked to
form us(x, y) = u(x) and vs(x, y) = v(y). Finally, the combined deformation grids can be computed
by

®)

(6)

u(x’ y) = Aus(x’ y) + (1 - A)uC(x’ y)7 (7)
U(X, y) = /I’US(X, y) + (1 - A)vc(x, y)’ (8)

where parameter A is empirically set to 0.5.
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Fig. 8. Architecture of the spatial transformer module [64].

Similarly, FOVEA [124] discards custom grids and solely relies on structured grids for object
detection in autonomous driving use cases. It also introduces anti-cropping regularization to com-
bat cropping which may result in missing objects, by using reflect padding on the saliency map.
In [102], the saliency detector is trained end-to-end along with the task network, however, as
mentioned, finding saliency maps in object detection is more difficult. Therefore FOVEA uses in-
termediate supervision to train the saliency detection network.

Even though the primary goal of the spatial transformer module in spatial transformer net-
works (STNs) [64] is to learn invariance to translation, scale, rotation and warping in order to
improve performance, in the special case where the module is the first layer of the network, it can
learn to crop the raw high-resolution input to a lower resolution and increase computational effi-
ciency, thus it could be considered a form of NUD. Figure 8 shows the architecture of the spatial
transformer module, where the localization network determines the parameters 0 for the trans-
formation 7y from input features U. 7¢(-) can be a 2D affine transformation, a more constrained
transformation such as

s 0 tx]’ )

Ao = [0 s by
which only allows cropping, translation and scaling, or a more general transformation such as
plane projective transformation with 8 parameters, piecewise affine, thin plate spline [40], or any
transformation as long as it is differentiable with respect to its parameters.

SALISA [8] uses spatial transformer modules to perform non-uniform downsampling for object
detection in high-resolution videos. In SALISA, the output of a video frame is used to determine the
saliency map for the next frame. Figure 9 shows this method, where the first frame is introduced
to a high-performing detector without any downsampling. The detected objects are subsequently
used to create a saliency map, which is then given to the resampling module. The resampling
module contains a spatial transformer module with a thin plate spline transformation, where the
localization network receives the saliency map as input. The downsampled image provided by
the resampling module is then introduced to a lightweight detector. Since the lightweight detector
detects objects in the warped image, the detected bounding boxes need to be transformed back into
the original grid. Therefore, an inverse transformation is applied before generating the saliency
map. To prevent cascading errors, the method is reset to use the original high-resolution frame
and high-performing detector every few frames.

3.2 Selective Zooming and Skipping

Selective zooming and skipping (SZS) methods take a more efficient approach to cutting into
patches by only zooming into regions of the input image that are important. The zoom level may
differ across different patches, and some patches may be entirely skipped. Reinforced Auto-Zoom
Net (RAZN) [35] uses reinforcement learning to determine where to zoom in WSIs for the task
of breast cancer segmentation. RAZN assumes the zoom-in action can be performed at most m

ACM Comput. Surv., Vol. 56, No. 7, Article 181. Publication date: April 2024.



Efficient High-Resolution Deep Learning: A Survey 181:13

High
—>» Performing —>»
Detector

Frame 1

Saliency Map
Generator

\ 4
Resampling —>» Detector —>»
Module

Frame 2

Inverse

Saliency Map
Generator @ Transform

Fig.9. Overview of SALISA [8]. The second frame is slightly different from the first frame (in this case, slightly
rotated clockwise), therefore, the detection result obtained from the first frame can be used to estimate the
saliency of objects in the second frame.

times and the zooming rate is a constant r. At each zoom level i, there is a different segmentation
network fp, and a different policy network gy, . Initially, policy network gg, takes a cropped image
xo € REXW>3 a5 input and determines whether to zoom-in or to break. If there is no need to zoom
in, x is given as input to segmentation network fg, which produces the output, otherwise, a higher-
resolution image %, € R™X"">3 s sampled from the same area and will be cut into r? patches
of size H x W x 3. Each patch is then given to policy network gg, and this process is recursively
repeated until all policy networks break or the maximum zoom level is reached. RAZN achieves
an improved performance over other state-of-the-art methods while reducing the inference time
by a factor of ~2. Similarly, the methods in [46] and [132] use reinforcement learning for efficient
object detection and aerial image classification, respectively.

Instead of reinforcement learning, the method in [38] uses a hierarchical graph neural network
to classify whether a mammogram (X-ray image of a breast) is normal/benign (contains a tumor
that is not cancerous) or malignant (contains a tumor that is cancerous). At each zoom level i, the
graph G' is defined by the adjacency matrix A’ € RN>*Ni where there is an edge between each
zoomed-in patch and its original image. The feature matrix of the graph is defined as X; € RN*P*D,
and the maximum zoom level is R. The features on the nodes are zoomed-in regions of the input
image, resized to D x D. A pre-trained CNN is used to extract feature vectors H; € RN from X;.
GAT ode(+) is a graph attention network [136] used to classify whether to zoom in for each node.
Therefore, the output of the i-th level in the hierarchical graph is

17 | = 13
P = ’ (10)
softmax(GATode(Ai, Hi)), 1<i<R,

where P; € RNi*2 represents the decision to zoom or not for each node of the i-th level. At the final
zoom level R, another graph attention network GATgaph(+) is used to perform the final classifica-
tion for the entire mammogram based on Y = softmax(GATgraph(Ar, Hr)W), where W is a train-
able weight matrix. The loss function contains both node losses and graph losses, with the zoom

ACM Comput. Surv., Vol. 56, No. 7, Article 181. Publication date: April 2024.



181:14 A. Bakhtiarnia et al.

Skipped
Skipped
Expensive
NN Cheap NN
Cheap
NN
Cheap NN - Skipped
Expensive NN

Fig. 10. Partitioning in REMIX [67]. Some parts of the image are skipped, some processed by computationally
cheap DNNs, and some by computationally expensive DNNs.

labels for nodes being obtained from lesion segmentation labels. This method achieves an accuracy
comparable to the state of the art, however, it is unclear how much it improves the inference speed.

GigaDet [18] achieves near real-time object detection in gigapixel videos. At the core of Gi-
gaDet is the Patch Generation Network (PGN). PGN takes a uniformly downsampled image as
input and outputs a dense regression map which counts the number of objects that are completely
contained within the corresponding area in the image, referred to as the patch candidate. PGN is ap-
plied at different scales in order to obtain patch candidates of varying scales. The patch candidates
selected by the PGN go through post-processing which includes non-maximum suppression
(NMS), and are subsequently sorted based on their count. The top K patch candidates are then se-
lected to be processed by the Decorated Detector (DecDet) to detect objects. VGG [114] and YOLO
[103] are used for the PGN and DecDet networks, respectively. Given gigapixel videos, GigaDet is
capable of running 5 FPS on a single Nvidia 2080 Ti GPU, which is 50X faster than Faster RCNN
[104], yet obtains a comparable performance in terms of average precision.

REMIX [67] detects pedestrians in high-resolution videos within a latency budget given by the
user. The input frame is partitioned into several blocks, where more salient blocks are processed
using a computationally expensive but accurate network, whereas less salient blocks are processed
using a computationally cheap network or even skipped, as shown in Figure 10. REMIX uses his-
torical frames to determine the object distribution, and establishes the optimal partition using a
dynamic programming algorithm that takes into account the given latency budget, the estimated
object distribution, as well as the accuracy and speed of available neural networks for object detec-
tion. REMIX achieves up to 8.1X inference speedup with an accuracy comparable to state-of-the-art
methods.

3.3 Lightweight Scanner Networks

Lightweight scanner networks (LSNs) are lightweight fully convolutional neural networks
(FCNs) that efficiently scan the entire high-resolution input. To achieve a lightweight architecture,
LSNs are typically designed and trained for very specific tasks. Moreover, as opposed to the cutting
into patches approach, FCNs are inherently efficient in a sliding-window setting since they share
the computation in overlapping regions [112].

VGG-720p and VGG-1080p [129, 130] are LSNs capable of running in real-time on drones and
provide heatmaps for input images of size 1280 X 720 and 1920 X 1080 pixels, respectively, that
specify whether or not there are people, faces, or bicycles at each location in the input image. Both
models take patches of size 32 X 32 or 64 X 64 pixels as input. The architectures of VGG-720p and
VGG-1080, shown in Tables 2 and 3, respectively, contain only 5 convolutional layers with only 2
to 24 output channels. In contrast, the original VGG architectures have 11 to 19 layers with up to
512 output channels in some layers [114].

Similarly, the study in [131] proposes an architecture with 6 convolutional layers for the same
problem of generating a crowd heatmap from high-resolution images. The study in [127] proposes
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Table 2. Architecture of VGG-720p

Layer Kernel Stride Pad’ (X/Y)" Max Pool (X/Y) Channels

convl 1 3x3 1/1 1/1 -/ = 16
convl 2 3%X3 1/1 1/1 V= 16
conv2_ 1 3X3 1/1 1/1 -/ = 24
conv2_2 3%x3 1/4 1/1 VIV 16
conv_last 8x38 1/1 0/0 -/ - 2
Zero padding.

*X and Y represent the horizontal and vertical axes.

Table 3. Architecture of VGG-1080p

Layer Kernel Stride Pad’ (X/Y)" Max Pool (X/Y) Channels

convl_1 3X3 2/1 0/0 -/ - 8
convl 2 3x3 1/2 0/0 VI 8
conv2_ 1 3x3 1/1 0/0 -/ = 6
conv2 2 3x3 1/2 0/0 -/ = 6
conv_last 8x8 1/1 0/0 -/ - 2
fZero padding.

*X and Y represent the horizontal and vertical axes.

lightweight FCNs for face detection with 7 convolutional layers and 76K parameters, for facial
parts detection (such as eyes, nose and mouth) with 4 convolutional layers and 20K parameters,
and for combined face and parts detection with 9 convolutional layers and 101K parameters.

You only look twice (YOLT) [135] is a method that detects objects of different scales in Digi-
talGlobe satellite images which have a size of over 250 megapixels. The architecture of YOLT is
based on the YOLO architecture [103], however, it reduces the number of layers from the origi-
nal 30 down to 22. Furthermore, YOLT trains two separate models: one which processes images
that correspond to areas of 200 X 200m? for detecting relatively small objects such as cars, air-
planes, boats and buildings, and another which processes images that correspond to areas of 2500
x 2500m? for detecting large objects such as airports. YOLT has an inference speed of 32km?/min
for the former model and 6000km?/min for the latter on an Nvidia Titan X GPU.

Fast ScanNet [83] converts VGG16 [114] to a fully convolutional network by replacing the last
fully-connected layers in VGG16 with convolutional layers of kernel size 1 X 1. Fast ScanNet is
applied to patches of size 2800 x 2800 pixels, a size which is dictated by GPU memory limitations,
taken from WSIs, which have ~400 patches on average. It takes about one minute for Fast ScanNet
to process a WSI on a workstation with 8xNvidia Titan X GPUs.

ICNet [164] takes advantage of both the efficiency of processing lower resolutions and the accu-
racy of processing higher ones by uniformly downsampling the input image to two smaller scales,
processing each scale separately, and fusing the result of processing lower resolutions with higher
ones. Lower resolutions are processed with more convolution layers and higher resolutions with
less, which makes the entire architecture efficient, as shown in Figure 11. In addition, some of
the layers share weights in order to increase the efficiency. ICNet is able to perform semantic seg-
mentation on 2048 X 1024 images at 30 frames per second with high accuracy on a Titan X GPU.
Even though ICNet does not obtain state-of-the-art accuracy, it is ~ 15X faster than methods with
similar performance.

ESPNet [96] relies on efficient spatial pyramid (ESP) modules which reduce the amount of
computation by decomposing standard convolutions with n X n kernels into two steps. The first
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Fig. 11. ICNet architecture. CFF blocks perform the fusion operation and consist of convolution and upsam-
ple layers. CFF blocks get supervision signals using downsampled annotations during the training process.

step applies a 1 X 1 convolution to project feature maps with dimension N to feature maps with

dimension % The second step applies K dilated convolutions with kernel size n X n and dilation
rates 2871 k € {1,...,K} to the new feature maps simultaneously, and combines the results. Con-

catenating the outputs of dilated convolutions creates checkerboard artifacts, therefore, a simple
solution is used where the outputs of dilated convolutions are hierarchically added to each other
before concatenation. ESPNet can perform semantic segmentation on 2048 X 1024 images at 54
frames per second with an accuracy comparable to the state of the art.

Neural architecture search (NAS) techniques can be used for designing better LSNs. Since
LSNs need to be lightweight and contain few layers and parameters, the search space is relatively
small, making NAS easier. HR-NAS [32] is one such method that searches for network architectures
that can contain both convolutions and lightweight Transformers, and may have parallel branches.
HR-NAS obtains state-of-the-art results in the trade-off between efficiency and accuracy in se-
mantic segmentation, human pose estimation and 3D object detection tasks with high-resolution
inputs.

3.4 Task-Oriented Input Compression

Task-oriented input compression (TOIC) methods compress high-resolution inputs into light-
weight representations. These representations are then given to the task DNN as input instead
of the high-resolution images or videos. The exact nature of the lightweight representations and
the compression procedure varies from method to method and is often highly dependent on the
underlying task.

There is an important distinction between this approach and neural image compression methods
such as SHImCAE [152]. The goal of neural image compression is to learn optimal compression
algorithms for the task at hand, in order to reduce the size of stored or transmitted data. Therefore,
the network that compresses and decompresses this data may be very large and inefficient. More-
over, neural image compression aims to reconstruct the input from the compressed representations,
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whereas TOIC does not reconstruct the input data and strives to extract compact representations
that are suitable for the second part of the network, which is responsible for performing the task.

Slide Graph [89] recognizes the loss of visual context that comes with using the cutting into
patches method, and fixes this issue by building and processing a compact graph representation of
the cellular architecture in breast cancer WSIs in order to predict the status of human epidermal
growth factor receptor 2 (HER2) and progesterone receptor (PR), which are proteins that
promote the growth of cancer cells. Slide Graph has four stages: The first stage uses a HoVer-
Net [48], which is a CNN for segmentation and classification of cellular nuclei, trained on the
PanNuke dataset [44] to extract features of the tissue cells. The second stage uses agglomerative
clustering [99] to group neighboring nuclei to further reduce the computational cost. The third
stage constructs a graph where each vertex corresponds to a cluster and contains features extracted
in the previous stage. Graph edges are constructed based on Delauney triangulation where vertices
are represented by the geometric center of their corresponding cluster, which results in a planar
graph. In the final stage, HER2 and PR status predictions are obtained from the constructed graph
using a graph convolutional network (GCN) [73]. Slide graph is more accurate than state-of-
the-art methods and reduces the average inference time from 1.2 seconds of the baseline down
to 0.4 milliseconds. However, these measurements do not include the graph construction phase.
Therefore, the end-to-end improvement in efficiency obtained by Slide Graph is unclear.

The method in [123], shown in Figure 12, compresses gigapixel histopathology WSIs down to a
size that can be processed with a CNN on a single GPU. This compression is obtained by training
an autoencoder (either VAE [72] or bidirectional GAN [34]) on image patches of size P X P X 3. The
WSI image of size M X N X 3 is then cut into patches of the aforementioned size, and compressed
embeddings of size 1X1XC are obtained from the patches using the encoder part of the autoencoder.
These embeddings are then concatenated to form a compressed image of size [%'l X f%‘l X C, which
can be given as input to the CNN. In experiments where M = N = 50,000 and P = C = 128, the
input size is reduced by a factor of ~43.

MCAT [20] uses a combination of WSIs and genomics data for cancer survival outcome predic-
tion. At the core of MCAT is the Genomic-Guided Co-Attention (GCA) layer which reduces the
spatial complexity of processing WSIs. MCAT processes the input in data structures known as bags,
which are unordered sets of objects of varying size without individual labels. MCAT constructs one
bag (Hpag) from multiple WSIs in order to utilize the entire tissue microenvironment, and another
bag (Gpag) from genomic features. Hp,g is constructed by cutting the WSIs into non-overlapping
256 x 256 pixel patches and processing each patch with a ResNet50 CNN [55] pre-trained on the
ImageNet dataset [29] to obtain di-dimensional feature embeddings. Gpag is constructed by catego-
rizing genes into N different sets based on similarity and applying a fully-connected (FC) layer to
obtain genomic embeddings. GCA then takes these two bags as input and performs the co-attention
operation

KT
CoAttngy(G,H) softmax (Q—) Vv (11)

Vi
W,GHT W] -
\

where Q = W, G is the query matrix, K = Wi H is the key matrix, V = W, H is the value matrix, and
Wy, Wi, W, € R9>dk are trainable weights. The output of this operation, as shown in Figure 13,
has a dimension of N X di. Therefore, the subsequent self-attention layers in the MCAT network
are quadratic with respect to N instead of M. Since on average M = 15,231 and N = 6, this results
in a massive reduction in complexity.

softmax (
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Fig. 13. Genomic-Guided Co-Attention (GCA) layer.

A subcategory of TOIC methods are frequency-domain DNNs, which convert input RGB pixels to
frequency domain representations with the help of operations such as discrete cosine transform
(DCT) or wavelet transform. The intuition behind this approach is that the first few layers in CNNs
often learn filters that resemble such transforms. Therefore, not only are image representations
more compact in the frequency domain, but also a lower number of layers is required for processing
such representations.

The method in [50] uses the DCT coefficients obtained in the middle of JPEG encoding as inputs
to a modified ResNet50 CNN [55] for the image classification task. JPEG encoding consists of three
stages. The first stage converts the input 3-channel 24-bit RGB image to the YCbCr color space by

Y 0.299 0.587 0.114 R
Cb| =|-0.168935 —0.331665  0.50059 | |G|. (12)
Cr 0.499813  —0.418531 -—0.081282| |B

The luma component (Y) represents the brightness, and the chroma components (Cb and Cr) rep-
resent color. The resolution of chroma components is then reduced by a factor of 2 due to the fact
that the human eye is less sensitive to fine color detail than fine brightness. Figure 14 shows an
example image and its corresponding Y, Cb and Cr components. The second stage is a blockwise
DCT, where each of the three components is partitioned into 8 X 8 blocks that undergo a 2D DCT.
The amplitude values of the frequency domain are the input representations used by this method.
The DCT representations of Cb and Cr are upsampled by a factor of two and concatenated with
the DCT representation of Y before being given as input to the task DNN, as shown in Figure 15.
The rest of the JPEG encoding process contains the quantization of these representations as well
as lossless compression techniques such as Huffman coding. However, this method uses the repre-
sentations obtained before quantization and lossless compression.
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Fig. 14. (a) Original color image, taken from the Shanghai Tech Part B dataset [162]; (b) luma component
Y, which is essentially a grayscale version of the color image; (c) chroma component Cb; and (d) chroma

component Cr.
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Fig. 15. Initial stages of JPEG encoding, used by [50] to obtain frequency-domains representations of the
RGB input.

With the help of these input representations, this method obtains DNNs that are both more
accurate and up to 1.77X faster than ResNet50. Moreover, [50] includes experiments attempting to
learn convolutions behaving like DCT, however, they find that this learned DCT transform leads
to higher error compared to the conventional DCT transform.

The method in [150] uses the same idea for image classification and semantic segmentation
tasks using ResNet50 and MobileNetV2 architectures. However, this method also prunes the 192
DCT channels with the help of a gating module that generates a binary decision for each channel.
Furthermore, this study discovers that some channels are consistently pruned regardless of the
particular task, and develops a static frequency channel selection scheme based on these results.
This scheme prunes up to 87.5% of the channels with little accuracy drop, if any. The method in
[141] uses the same approach for image classification, however, it uses several variants of dis-
crete wavelet transform (DWT) instead of DCT. The advantage of DWT over DCT is that it can
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obtain a better compression ratio without loss of information, however, it is more computationally
expensive [69]. Experiments show that using DWT instead of DCT can lead to higher accuracy,
however, the impact of DWT on inference time is unclear.

Finally, similar to images, DNNs can directly process the compressed representations obtained
by video compression formats. MMNet [143] performs efficient object detection on H.264/MPEG-4
Part 10 compressed videos [105], one of the most commonly used video compression formats, by
taking advantage of the motion information already embedded in the video compression format.
It only runs the complete feature extractor DNN on a few reference frames in the video and ag-
gregates the visual information from the subsequent frames with the help of an LSTM [58]. H.264
has two types of frames: I-frames which contain a complete image, and P-frames, also known as
delta frames, which store the offset to previous frames using motion vectors and residual errors. In
MMNet, the extracted motion vectors and residual errors for each P-frame following an I-frame
are passed on to the LSTM. MMNet is 3x to 10X faster than competing models with minor loss in
accuracy.

3.5 High-Resolution Vision Transformers

As previously mentioned, the self-attention operation in Transformers has a high complexity that
increases in a quadratic fashion with respect to the number of input tokens. This operation is
formulated by

oK' )
Z = softmax | —|V, 13
pimax | $ (13
where query O = XWQ € R™% key K = XWK € R™% and value V = XW" € R™% are
obtained from a sequence of input tokens X = (xy,...,x,) € R™4 and W9, WK and WV are
learnable weight matrices. Due to this quadratic complexity, naive approaches, such as ViT [37],
that create a long sequence of input tokens from a high-resolution image will lead to massive com-
plexity. On the other hand, if X contains few tokens, each input token represents a large area of the
original image, leading to loss of detailed information that might be crucial to some applications.

Vision Longformer (ViL) [160] is a variant of Longformer [9] which has a linear complexity
with respect to the number of input tokens, and is capable of processing high-resolution images.
This linear complexity is achieved by adding n, global tokens, which include the classification
token cls, that serve as global memory by attending to all input tokens. Input tokens are only
allowed to attend to the global tokens as well as their neighbors within a 2D window. If the number
of input tokens are n; and the 2D window size is w, then the memory complexity is O(ny(ny +
ny) +nyw?). When ny < ny, the complexity is significantly reduced from the original n"lz in ViT. By
using ViL in a multi-scale architecture, multi-scale Vision Longformer is able to obtain superior
performance compared to the state-of-the-art in image classification, object detection and semantic
segmentation while requiring less computation in terms of FLOPs in some cases.

High-Resolution Transformer (HRFormer) [158] reduces the computational complexity of
self-attention by partitioning the input representations into non-overlapping patches, and per-
forming the self-attention only within each patch. Figure 16 shows the building block of HRFormer,
which contains a depth-wise convolution that facilitates information exchange between patches.
By utilizing this augmented self-attention in a multi-scale architecture, HRFormer obtains supe-
rior performance in human pose estimation and semantic segmentation with fewer parameters
and FLOPs.

Multi-Scale High-Resolution Vision Transformer (HRViT) [49] uses cross-shaped self-
attention [36] and parameter sharing to decrease the computational cost of self-attention. Cross-
shaped self-attention, shown in Figure 17, splits the K self-attention heads present in multi-head

ACM Comput. Surv., Vol. 56, No. 7, Article 181. Publication date: April 2024.



Efficient High-Resolution Deep Learning: A Survey 181:21

——MHSA—>

—MHSA—>

1x1 Conv 1x1 Conv

——MHSA—>

3x3
“ow Conv_>

——MHSA—>»

Fig. 16. HRFormer block. Multi-head self-attention (MHSA) is applied only within each patch. The
patches are then concatenated and followed by a depth-wise (DW) convolution.
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Fig. 17. Cross-shaped self-attention.

attention into two groups: {h,. .., h%} and {h§+1’ ..., hk}. These groups perform self-attention
in horizontal and vertical strips in parallel. Strip width sw can be adjusted to achieve a trade-off
between efficiency and performance. The linear projections for key and value tensors are shared in
HRViT’s blocks to save computation and parameters. In addition to efficient self-attention, HRViT
employs a convolutional stem to reduce the spatial dimension of the input. HRViT achieves the best
performance-efficiency trade-off compared to state-of-the-art models for semantic segmentation.

Instead of restricting self-attention to patches that are neighbors in the 2D grid, Glance and
Gaze Transformer (GG-Transformer) [156], shown in Figure 18, performs the self-attention
within dilated partitions. Since these dilations create holes in the receptive field, a parallel branch
containing depth-wise convolution is added to compensate for the local interactions with negligi-
ble cost. GG-Transformer achieves superior performance in image classification, object detection
and semantic segmentation and reduces the parameters or FLOPs in some cases.

Hierarchical Image Pyramid Transformer (HIPT) [19] processes gigapixel WSIs for the task
of cancer subtyping and survival prediction. Since the input WSIs are as large as 150,000 x 150,000
pixels, processing them with a normal ViT and small patch size, such as 16 X 16, results in a massive
number of parameters and computational cost requirements, and using large patch sizes such as
4,096 X 4,096 pixels directly would result in loss of cellular information. Therefore, HIPT takes a
hierarchical approach, shown in Figure 19, where an initial ViT processes patches of 16 X 16 in an
area of size 256 X 256 pixels. A second ViT then takes the aggregated tokens from the previous

ACM Comput. Surv., Vol. 56, No. 7, Article 181. Publication date: April 2024.



181:22 A. Bakhtiarnia et al.
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Fig. 18. GG-Transformer block.
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Fig. 19. Hierarchical Image Pyramid Transformer (HIPT). The notation ViT, — I means a Vision Transformer
that operates on size L X L with patch size of I X I. ViT\ys| operates on the entire WSI.

ViT and processes an area of size 4096 X 4096 pixels. A final ViT takes the aggregated tokens from
the second ViT and processes the entire image.

Recent works on efficient ViTs and Transformers reduce memory consumption as well as la-
tency, allowing for more efficient processing of high-resolution images. Even though most of these
developments do not explicitly include experiments on high-resolution images, benefits obtained
on low-resolution images are likely to be useful for high-resolution images as well. Furthermore,
most works on efficient Transformers include experiments on long sequences of text, therefore,
the memory and computation improvements are probably beneficial for high-resolution images as
well, which are processed as long sequences of image patches.

Conventional model compression techniques have been successfully applied to Vision Trans-
formers. For instance, Q-ViT [82] quantizes Vision Transformers down to 3-bytes without sig-
nificant reduction in performance, MiniViT [159] applies knowledge distillation to compress the
parameters of Vision Transformers by up to 9.7x, and SPViT [54] prunes the Vision Transformer ar-
chitecture to achieve a 52% reduction in terms of FLOPs, while slightly increasing the performance.

FlashAttention [27] enhances the attention process by incorporating [O-awareness, that is, tak-
ing into account the total number of read and write operations between different levels of GPU
memory. By reducing the number of read and write operations in GPU memory using tiling, which
is the incremental application of softmax reduction, FlashAttention is able to speed up the compu-
tation by up to 7.6X and reduce the memory requirement to linear with respect to the input size.
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Table 4. List of Popular High-Resolution Datasets
Name Applications Resolution (Pixels) # of Samples Annotations Splits Year  Availability
Supervisely Persons* Person Segmentation 800 X 1116 to 9933 X 6622 5,711 images Pixel Mask None 2018 Public
PANDA [144] Person Detection >25K x 14K 555 frames’ Person Bounding Box ~ None 2020 Upon Request
UCF_CC_50 [62] Crowd Counting 2888 x 2101 on average 50 images Head Annotations” None 2013 Public
Shanghai Tech Part A [162] Crowd Counting 868 X 589 482 images Head Annotations Train & Test 2016 Public
Shanghai Tech Part B [162] ~ Crowd Counting 1024 x 768 716 images Head Annotations Train & Test 2016 Public
UCF-QNRF [63] Crowd Counting 2902 x 2013 on average 1,535 images Head Annotations Train & Test 2018 Public
PANDA Crowd [144] Crowd Counting 25,151 X 14,151 to 26,908 X 15,024 45 images Person Bounding Box ~ None 2020 Upon Request
JHU-CROWD-++ [115] Crowd Counting 1430 X 910 on average 4,372 images Head Annotations Train, Val & Test 2020 Public
NWPU-Crowd [142] Crowd Counting 3209 X 2191 on average 5,109 images Head Annotations Train, Val & Test 2020 Public
DISCO [60] Audio-Visual Crowd Counting 1920 x 1080 (Full HD) 1,935 images Head Annotations Train & Test 2020 Public
CityScapes [25] Autonomous Driving 2048 x 1024 5K images Pixel Mask Train, Val & Test 2016 Upon Request
SYNTHIA-RAND [107] Autonomous Driving 1280 x 720 (HD) ~13K images Pixel Mask Train & Test 2016 Public
ApolloScape [61] Autonomous Driving 3384 X 2710 ~113K images  Pixel Mask Train & Test 2020 Upon Request
Argoverse-HD [81] Autonomous Driving 1920 x 1200 89 videos Bounding Box Train, Val & Test 2020 Public
BDD100K [155] Autonomous Driving 1280 x 720 (HD) 100K videos Bounding Box Train, Val & Test 2020  Upon Request
nuScenes [13] Autonomous Driving 1600 x 900 1,000 videos 3D Bounding Box Train, Val & Test 2020 Upon Request
Waymo Open [119] Autonomous Driving 1920 X 886 to 1920 X 1280 1,150 videos 2D & 3D Bounding Box Train, Val & Test 2020  Upon Request
PASCAL-Context [98] Scene Understanding 500 x 375 to 500 X 500 10,103 images Pixel Mask Train & Test 2014 Public
ADE20K [166] Scene Understanding 683 X 512 to 2100 x 2100 27,574 images Pixel Mask Train & Test 2017 Upon Request
COCO-Stuff 10K [14] Scene Understanding ~640 X 480 10K images Pixel Mask Train & Test 2018 Public
DeepGlobe [28] Land Cover Classification 2448 X 2448 1,146 images Pixel Mask Train, Val & Test 2018 Public
Copernicus [12] Land Cover Classification 20,160 x 20,160 94 images Pixel Mask None 2015-2019  Public
fMoW [24] Aerial Image Classification up to 16,032 x 14,840 1,047,691 images  Classes Train, Val & Test 2018 Public
KID [75] Capsule Endoscopy 360 X 360 ~2,500 frames Pixel Mask None 2017 Public (N/A)
CAD-CAP [79] Capsule Endoscopy 576 x 576 25,124 frames  Pixel Mask Train & Test 2020 Upon Request
CAMELYON16 [154] Pathology up to 200,000 x 100,000 400 images Pixel Mask Train & Test 2016 Public
TUPAC16 [137] Pathology ~50,000 x 50,000 821 images Proliferation Score’ Train & Test 2016 Public
BACH Part B [5] Pathology (39,980-62,952) X (27,972-44,889) 40 images Pixel Mask Train & Test 2019 Public
TCGA-BRCA [74] Pathology up to 150,000 X 100,000 709 images Classes None 2020 Public
PCa-Histo [68] Pathology (1968+216) X (9392+4794) 266 images Pixel Mask Train, Val & Test 2021  Private
INbreast [97] Breast Cancer Detection 2560 X 3328 to 3328 X 4084 410 images Pixel Mask Train & Test 2012 Public
UA-DETRAC [145] Video Object Detection 960 x 540 140K frames Bounding Box Train & Test 2015 Public
ImageNet-VID [108] Video Object Detection 176 X 132 to 1280 x 720 (HD) 5,354 videos Bounding Box Train, Val & Test 2015 Public
FAIRIM [120] Fine-Grained Object Detection 600 X 600 to 10,000 X 10,000 40,000 images Bounding Box Train & Test 2021 Public (N/A)
€OCO [85] Object Detection ~640 X 480 200K images  Lixel Mask Train, Val & Test 2014  Public
Human Pose Estimation Keypoints

8 A frame is a single image in a sequence representing a video.

*“The location for the center of each human head in the image is specified.
A measure of the number of cells in a tumor that are dividing.
*https://github.com/supervisely-ecosystem/persons

The authors also introduce block-sparse FlashAttention, an approximate extension of FlashAtten-
tion, which is up to 4 faster than the original FlashAttention, while obtaining competitive results
on several tasks.

In practice, the implementation of dynamic sparse attention algorithms typically leads to slower
inference times compared to the full attention algorithm using the FlashAttention framework.
Therefore, [100] modifies FlashAttention to facilitate various attention sparsity patterns such as
hash-based attention mechanisms as well as query/key dropping attention. Their method obtains
speedups for both inference and training on long sequences of text by up to 3.3x.

4 HIGH-RESOLUTION DATASETS

Table 4 lists popular datasets used in high-resolution deep learning literature and provides infor-
mation about their attributes, such as the deep learning application they are primarily used for,
the number of images/videos in the dataset and their resolution, the type of available annota-
tions, whether they specify training/validation/test set splits, the year of publication, and whether
they are publicly available. It is important to note that studies reported in some papers create cus-
tomized datasets. For instance, [46] constructs a dataset from YFCC100M [125]; [129] constructs
datasets from AFLW [93], MTFL [163] and WIDER FACE [154]; and [135] constructs datasets from
DigitalGlobe satellites, Planet satellites, and aerial platforms.

The Cancer Genome Atlas (TCGA) program is a collaboration between National Cancer
Institute (NCI) and National Human Genome Research (NHGRI)'. Since 2006, TCGA has
generated over 2.5 petabytes of publicly available data which has led to improvements in cancer

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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Table 5. Summary of Applications and Limitations of Efficient High-resolution Methods

‘ Method ‘ Applications ‘ Limitations ‘
NUD
— Tasks with small salient areas (e.g., gaze | — Not applicable to tasks with large salient ar-
estimation, object detection, hand ges- eas (e.g., crowd counting, monocular depth
ture recognition, facial expression recog- estimation)
nition, cancer tumor detection) — Leads to severe distortion and low perfor-
mance in case of massive reduction in image
resolution

— Requires high-quality saliency detection

— May require design of custom loss or regu-
larization

— Not suitable for videos with frequent cuts

578 — More efficient on scenes with small | —Less efficient on scenes with large salient
salient areas areas
LSNs
— Suitable for dense tasks where output is | — Requires custom architecture design; diffi-
a map (e.g., crowd counting, monocular cult and time-consuming
depth estimation)
— Suitable for scenes without perspective
(e.g., WSIs, remote sensing)
TOIC
— Frequency-domain methods are general-| — Requires domain-knowledge and expertise
purpose and applicable to a wide variety to extract proper representations
of tasks
— Can lead to massive speedup compared
to other methods
HR-ViTs

— General-purpose and applicable to a | — Not as efficient as CNNs and other methods
wide variety of tasks

diagnosis, treatment, and prevention. Among efficient high-resolution deep learning methods, the
most widely used subset of this data is the breast invasive carcinoma (BRCA), which is out-
lined in Table 4. However, TCGA provides data for many other types of cancer, such as bladder
urothelial carcinoma (BLCA), glioblastoma and lower grade glioma (GBMLGG), lung ade-
nocarcinoma (LUAD), and uterine corpus endometrial carcinoma (UCEC). These are used
in some studies, and have properties similar to that of BRCA.

5 DISCUSSION AND OPEN ISSUES

Each of the approaches introduced in Section 3 has its advantages and disadvantages and is useful
in certain situations, which are summarized in Table 5. NUD (Section 3.1) works well in cases where
the salient area is small compared to the entire image, and thus, it is possible to sample many pixels
from such areas. This requirement is satisfied in gaze estimation or object detection problems. Our
conjecture is that it would also work well in problems such as hand gesture detection and non-
cropped facial expression recognition, although these tasks are not yet explored in the literature
in combination with NUD. However, when the salient area is large, for instance, densely populated

ACM Comput. Surv., Vol. 56, No. 7, Article 181. Publication date: April 2024.



Efficient High-Resolution Deep Learning: A Survey 181:25

scenes in crowd counting or a scene fully covered with objects in object detection, the quality gain
obtained by sampling from salient areas will be negligible, and the result of NUD will be similar
that of uniform downsampling [8].

Similarly, SZS methods (Section 3.2) require the salient area to be small, otherwise they zoom
everywhere and save little time and computation. This also means that the effectiveness of NUD
and SZS methods may vary based on the specific input. For instance, the more people there are
in an image processed for crowd counting, or the more tumors there are in cancer detection, the
less efficient such methods will be, unless there are specific safeguards that prevent them from
performing an enormous number of computations, such as GigaDet [18] which processes at most
K patch candidates.

Furthermore, NUD methods are not effective when the resulting resolution is extremely smaller
compared to the input resolution, for instance, when gigapixel inputs need to be resized down to
HD, as this would result in highly distorted images, which makes it difficult for the task DNN to
perform well. Even when the gap between the two resolutions is not extremely large, NUD can
lead to high distortions in some cases, for instance, it may completely distort and change the shape
of the edges of a gastrointestinal lesion, making it difficult for the task network to detect useful
features. This may reduce accuracy despite the fact that more pixels are sampled from salient areas.
As explained in Section 3.1, some methods try to mitigate the distortion by using structured grids.
However, this may limit the benefits obtained by NUD.

In addition, since NUD is enlarging some parts of the image compared to uniform downsampling,
some areas of the resulting image will be smaller than they would be with uniform downsampling.
Thus, if the saliency map is not of high quality, unimportant areas will be enlarged and the ones
important for the final task will shrink, resulting in accuracy loss. This is directly at odds with the
requirement that the saliency detection method should be low-overhead, creating another trade-
off that needs to be carefully balanced. Moreover, as explained in Section 3.1, some variations of
NUD require an external supervision signal or regularization term to train the saliency detection
network, which can be difficult to design. In NUD or SZS methods that detect saliency in videos
based on the results obtained from previous frames, such as SALISA [8] and REMIX [67], when
the difference between subsequent frames is high, the method needs to be reset to processing the
entire high-resolution image. When this occurs frequently, the obtained benefits are diminished.

As mentioned in Section 3.3, LSNs need to be designed, trained and well optimized for the
specific problem at hand, which is not an easy task. Furthermore, since LSNs produce an output
for each scanned area of the input, they are suitable for tasks where the output has the form of a
map, such as dense classification or dense regression problems. Moreover, the scanning nature of
LSNs means that all areas of the image are treated similarly, therefore, they are better suited for
situations where there is no perspective and objects of the same type have the same size regardless
of their location, such as WSIs and remote sensing, as opposed to surveillance and crowd counting
where people close to the camera are larger than people far away.

Since TOIC methods extract representations that are both compressed and suitable for the task
at hand, they often need to be tailored to the specific problem, which requires high domain knowl-
edge. Both Slide Graph [89] and MCAT [20] presented in Section 3.4 are based on domain knowl-
edge about cellular structure of tissues and biological function of genes, respectively. Almost all
frequency-domain DNNs try to preserve the architecture of the CNNs they are based on. However,
since the interpretation of features in frequency-domain is different, and they have certain prop-
erties such as being non-negative, it might be better to customize the architectural elements for
the frequency domain, as CS-Fnet [90] does.

Most high-resolution Vision Transformer methods try to reduce the quadratic cost of self-
attention to linear, and then compensate the accuracy loss by learning data transformations using
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Table 6. Datasets used in Experiments of Various Methods

‘ Task Method Category Method Dataset ‘
Object Detection NUD FOVEA [124] ArgoverseHD [81] & BDD100K [155]
Object Detection NUD SALISA [38] ImageNet VID [108] & UA-DETRAC [145]
Object Detection SZS [46] Caltech Pedestrian [33]

Object Detection SZS [132] fMoW [24]

Object Detection SZS GigaDet [18] PANDA [144]
Object Detection SZS REMIX [67] PANDA [144]
Object Detection LSNs HR-NAS [32] KITTI (3D) [47]
Object Detection TOIC MMNet [143] ImageNet VID [108]
Object Detection HR-VITs ViL [160] COCO [85]

Object Detection HR-VITs GG-Transformer [156] COCO [85]
Histopathology  SZS RAZN [35] BACH [5]
Histopathology =~ LSNs Fast ScanNet [83] CAMELYONI16 [154]
Histopathology =~ TOIC Slide Graph [89] TCGA-BRCA [74]
Histopathology =~ TOIC [123] CAMELYON16 [154]
Histopathology =~ TOIC MCAT [20] TCGA-BRCA [74]
Histopathology ~ HR-ViTs HIPT [19] TCGA-BRCA [74]

convolutions. To keep the overhead of convolutions low, depth-wise convolution is typically used.
Additionally, most high-resolution ViTs utilize a multi-scale architecture in order to capture fea-
tures of various scales. High-resolution ViTs are more general purpose than other high-resolution
deep learning methods and are often used for a large variety of tasks.

Quantitative comparison of various methods is a serious challenge in efficient high-resolution
deep learning. As methods available in the literature rarely provide code, in order to compare them
against the same benchmark, they need to be reproduced from scratch, which requires massive
effort. The next best approach is to compare these methods based on results reported on the same
benchmark. However, methods rarely use the same datasets and metrics in their experiments. To
shed some light on these challenges, consider Table 6 as an example. Although a single common
benchmark among these methods does not exist, several pairs include experiments on the same
dataset. However, upon further inspection, it is not possible to make fair comparisons. GigaDet
and REMIX both use the PANDA dataset, and ViT and GG-Transformer both use COCO. However,
both pairs belong to the same category of methods, therefore, there is little benefit in comparing
them. SALISA and MMNet both use ImageNet VID, and they do not belong to the same category of
methods. However, SALISA uses GFLOPs as efficiency metric, which is hardware agnostic, while
MMNet evaluates efficiency using frames-per-second (FPS), which is hardware dependent.
Slide Graph, MCAT and HIPT all use TCGA-BRCA, however, neither MCAT nor HIPT report any
efficiency metrics. Finally, Fast ScanNet and [123] both use CAMELYON16, however, Fast ScanNet
reports performance using the AUC and FROC metrics, while MCAT reports performance in
terms of c-Index, and does not measure efficiency. Due to the trade-off between efficiency and
performance, both metrics must be taken into account to properly compare methods and draw
meaningful conclusions.

6 CONCLUSION AND OUTLOOK

Processing high-resolution images and videos with deep learning is crucial in various domains of
science and technology. However, few methods exist that address the computational challenges.
Among existing methods, the trend of designing solutions specifically for the problem at hand is
clearly visible. This can be an issue in tasks for which high-resolution datasets are not available.
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Similar to model compression approaches, both modifying existing methods and designing an
efficient high-resolution method from scratch are viable approaches.

Efficient high-resolution deep learning is in its infancy and there is a lot of room for improve-
ment. For instance, a number of attention-free MLP-based methods have been recently proposed
as lightweight alternatives for Transformers [51], which try to mimic the global receptive field
of Transformers without the self-attention mechanism. Exploiting such architectures for efficient
processing of high-resolution inputs would be an interesting research direction. Furthermore, the
multimodal co-attention in MCAT [20] can be applied to many other multimodal tasks, especially
the ones with audio, vision and language modalities. Moreover, frequency-domain representations
can be explored as inputs to ViTs, which can lead to more efficiency compared to frequency-domain
CNN:ss. For instance, ViTs can take separate patches from DCT-Cb, DCT-Cr and DCT-Y components,
bypassing the need to upsample DCT-Cb and DCT-Cr to match the dimensions of DCT-Y.

The combination of efficient high-resolution deep learning with other efficient deep learning
methods, such as model compression [23], dynamic inference [53], collaborative inference [16] and
continual inference [56], is an unexplored area of research. For instance, if the saliency detection
network is a lightweight version of the task network, NUD can be combined with early exiting,
where the output of the saliency detection network would be a fast, but less accurate, early result.
This is simple to implement in dense regression problems such as depth estimation and crowd
counting, where the output of the task can be interpreted as a form of saliency.

Moreover, with the adoption of edge and cloud computing, transmission of high-resolution in-
puts to servers for processing is a real challenge. As a solution, efficient high-resolution deep
learning methods can be combined with edge computing paradigms. For instance, the downsam-
pled images in NUD and compressed representation in TOIC can be transmitted instead of the
original inputs. This would be a form of split computing (also known as collaborative intelligence)
[6, 94], where the initial portion of computation is performed on a resource-constrained end-device,
and the compact intermediate representation is then transmitted to a server where the rest of the
computation is carried out. A study using this idea for high-resolution images captured by drones
is reported in [10].

Finally, we strongly recommend that future research on high-resolution deep learning meth-
ods begin by examining the datasets employed in previous approaches and incorporate relevant
datasets into their experimental evaluation. This approach facilitates a more accurate compari-
son among different methods. Furthermore, it is essential to employ evaluation metrics consistent
with relevant literature. Additionally, to facilitate a thorough comparison of methods and deter-
mine their positions on the accuracy-efficiency spectrum, it is crucial to report both efficiency and
performance metrics. Moreover, metrics that are independent of hardware, such as FLOPs are pre-
ferred for evaluation of efficiency, whereas efficiency metrics tied to specific hardware, such as
FPS, are challenging to reproduce consistently.
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APPENDIX
A DATA SOURCES

Data Sources and details for device camera resolutions are shown in Table 7.

Table 7. Details for Device Camera Resolutions

Device Camera Year Resolution (MP) Source
Apple iPhone Rear Camera 2007 2 link
2008 2 link
2009 3 link
2010 5 link
2011 8 link
2012 8 link
2013 8 link
2014 8 link
2015 12 link
2016 12.2 link
2017 12 link
2018 12 link
2019 12 link
2020 12 link
2021 12 link
2022 12 link
Samsung Galaxy S Rear Camera 2010 5 link
2011 8 link
2012 8 link
2013 13 link
2014 16 link
2015 16 link
2016 12 link
2017 12 link
2018 12 link
2019 16 link
2020 108 link
2021 108 link
2022 108 link
Microsoft HoloLens Camera 2016 2.4 link
2019 8 link
Raspberry Pi Camera 2013 2.1 link
2016 8 link
2020 12.3 link
DJI Phantom Camera 2012 12 link
2013 14 link
2014 14 link
2015 12.4 link
2016 20 link
2017 20 link
2018 20 link

All links were accessed on 26 July 2022.

ACM Comput. Surv., Vol. 56, No. 7, Article 181. Publication date: April 2024.


https://en.wikipedia.org/wiki/IPhone_(1st_generation)
https://en.wikipedia.org/wiki/IPhone_3G
https://en.wikipedia.org/wiki/IPhone_3GS
https://en.wikipedia.org/wiki/IPhone_4
https://en.wikipedia.org/wiki/IPhone_4S
https://en.wikipedia.org/wiki/IPhone_5
https://en.wikipedia.org/wiki/IPhone_5S
https://en.wikipedia.org/wiki/IPhone_6
https://en.wikipedia.org/wiki/IPhone_6S
https://en.wikipedia.org/wiki/IPhone_SE_(1st_generation)
https://en.wikipedia.org/wiki/IPhone_X
https://en.wikipedia.org/wiki/IPhone_XS
https://en.wikipedia.org/wiki/IPhone_11_Pro
https://en.wikipedia.org/wiki/IPhone_12_Pro
https://en.wikipedia.org/wiki/IPhone_13_Pro
https://en.wikipedia.org/wiki/IPhone_SE_(3rd_generation)
https://en.wikipedia.org/wiki/Samsung_Galaxy_S
https://en.wikipedia.org/wiki/Samsung_Galaxy_S_II
https://en.wikipedia.org/wiki/Samsung_Galaxy_S_III
https://en.wikipedia.org/wiki/Samsung_Galaxy_S4
https://en.wikipedia.org/wiki/Samsung_Galaxy_S5
https://en.wikipedia.org/wiki/Samsung_Galaxy_S6
https://en.wikipedia.org/wiki/Samsung_Galaxy_S7
https://en.wikipedia.org/wiki/Samsung_Galaxy_S8
https://en.wikipedia.org/wiki/Samsung_Galaxy_S9
https://en.wikipedia.org/wiki/Samsung_Galaxy_S10
https://en.wikipedia.org/wiki/Samsung_Galaxy_S20
https://en.wikipedia.org/wiki/Samsung_Galaxy_S21
https://en.wikipedia.org/wiki/Samsung_Galaxy_S22
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://www.microsoft.com/en-us/hololens/hardware
https://en.wikipedia.org/wiki/Raspberry_Pi#Accessories
https://en.wikipedia.org/wiki/Raspberry_Pi#Accessories
https://en.wikipedia.org/wiki/Raspberry_Pi#Accessories
https://en.wikipedia.org/wiki/GoPro#HERO3_(White/Silver/Black)
https://www.dji.com/dk/phantom-2-vision
https://www.dji.com/dk/phantom-2-vision-plus
https://www.dji.com/dk/phantom-3-pro
https://en.wikipedia.org/wiki/Phantom_(UAV)#Current_Phantom_drones
https://en.wikipedia.org/wiki/Phantom_(UAV)#Current_Phantom_drones
https://en.wikipedia.org/wiki/Phantom_(UAV)#Current_Phantom_drones
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