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ABSTRACT
This research introduces an innovativemethod specifically designed
for comprehensive error detection in the 3D printing process. The
Between-layer Structural Similarity (BLSS) technique gauges the
similarity between displacement maps, which are generated using
the Structural Similarity Index Measure (SSIM). This allows for the
differentiation between consecutive layers in both simulated and
actual prints. Utilising the Fast Fourier Transform (FFT), the dis-
placement maps can be converted to the frequency domain and
assessed for similarity. The proposed approach involves three key
processing stages: print simulation and processing, print capture
and processing, and BLSS-based structural analysis and evalua-
tion. This methodology not only reduces material wastage but also
lays the foundation for automated systems capable of halting or
terminating live printing processes upon error detection. Experi-
mental results reveal that printing defects occur below 97.5 % of
the similarity value, establishing this threshold as appropriate. This
underscores the effectiveness of the system in error detection and
its potential for real-time quality control in 3D printing.
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1 INTRODUCTION
Fused Filament Fabrication (FFF) 3D printing, an extensively utilised
additive manufacturing (AM) technology, employs material extru-
sion through a nozzle. This technology offers several advantages,
including design flexibility, cost-effectiveness, and the capability to
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produce intricate objects without the need for expensive tooling
[1–3]. Despite its advantages, 3D printing faces limitations such
as slow build speeds and a relatively high rate of print failures.
Many issues result from incorrect thermal settings, which can lead
to problems like delamination, material under extrusion or over
extrusion [4]. Another major category of failures can be attributed
to inexperienced users, improper mechanical setup, or incorrect
print parameter configurations [5]. In response to these challenges,
researchers in recent years are developing 3D printing monitor-
ing systems to mitigate the impact of print failures. Becker et al.
[6] implemented microphones near the nozzle to monitor material
flow by sound. This configuration faced challenges distinguishing
the material flow sounds from background noise, which affecting
the accuracy of the system. Aidala et al. [7] developed a contact
sensor that employs a touch probe to compare the printed object
outer shape with the simulated model. In contrast, the vision-based
error detection systems have shown promise in various 3D print-
ing processes, including material jetting and powder bed fusion.
These systems often incorporate machine learning algorithms to
self-calibrate printheads and offer closed-loop feedback for print
correction [8]. Vision-based error detection in 3D printing can be
categorised into global and local approaches.

Global error detection is crucial in identifying various issues,
such as geometric accuracy, thermal deformation or surface de-
fects. Researchers have explored various approaches to achieve
this goal, including the utilisation of single and multiple-view cam-
eras for quality assessment by comparing simulated and actual
printed layers [9], [10]. Various camera view orientations, includ-
ing orthogonal and angled camera positioning, have been tested.
The most widely adopted experimental setup involves mounting
a camera perpendicularly above the build plate of the 3D printer
to enable a top-view perspective of the object. Other researchers
have concentrated on adopting a perpendicular side view approach
to detect errors that were previously difficult to identify using the
conventional top view [11]. Typically, these setups involve the use
of binary template matching from the current layer or a 2D view of
the object with simulated images [12]. The primary focus has fre-
quently centred around the identification of external shape errors.
Petsiuk and Pearse [13], developed a setup with an angled view,
allowing them to identify the shape of the printed object using edge
detection and match it to a template, which could also measure
object height accurately from this perspective. While single-camera
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systems can detect significant print failures, there are distinct ad-
vantages to implementing multiple-camera systems, despite the
synchronisation challenges they may introduce. Multiple-camera
systems provide comprehensive monitoring by capturing images
from various angles, enabling them to detect a broader range of
potential issues. It is worth noting that concavity remains a chal-
lenging limitation [14], [15]. Local error detection plays a critical
role in monitoring material flows and analysing specific segments
of parts during the 3D printing process. Unlike global approaches
that examine the entire object, local methods focus on individual
components and localised issues. Specifically, the system primarily
concentrates on monitoring the material flow from the nozzle and
detecting any overlaps with previous printed lines. This localised
approach ensures that potential errors and discrepancies in material
deposition are detected and addressed promptly, contributing to
improved print quality and accuracy [16], [17].

Neither global nor local error detection methods are flawless.
Global approaches often overlook subtle, layer-specific inconsisten-
cies and depend on camera perspectives that might fail to capture
intricate errors due to their limited viewpoints. Conversely, local
methods may be too narrow in focus, potentially neglecting errors
that impact the overall structure. In response to these limitations,
this paper proposes a Between-layer Structural Similarity (BLSS)-
based method to address the challenges of error detection. The
objective is to pinpoint discrepancies between consecutive layers
in both simulated and actual prints. To enhance accuracy in sim-
ilarity quantification, the calculated displacement maps undergo
transformation into the frequency domain. This innovative ap-
proach shows promise in enhancing the quality and efficiency of
3D printing processes.

In the rest of the paper, the mechanical setup, the preparatory
process and the methodology are introduced in Section 2, and it is
followed by presenting the experimental analysis and a precise clas-
sification of detectable errors in Section 3. Finally, the concluding
remarks are given in Section 4.

2 METHODOLOGY
The proposed methods consist of three main processing stages,
including the print simulation and processing, print capture and
processing, and BLSS-based structural analysis and evaluation. In
the print simulation and processing, the system generates a simu-
lated image from G-code to preview the expected outcome. During
the actual print capture and processing stage, it captures real-time
snapshots of the print, enhancing and isolating the printed object
in images for the further analysis. In the BLSS-based structural
analysis and evaluation, the processed images are used to generate
the displacement maps between consecutive layers in both simu-
lated and actual prints, and it is followed by the similarity measure
of the displacement maps. Figure 1 illustrates the work cycle of the
proposed method.

2.1 System Configuration
The research utilised a Creality Ender 3 printer, selected for its
affordability and dependable performance. To facilitate smooth
communication, it was linked to a Raspberry Pi 2b model, enabling

Figure 1: Work cycle of the proposed method

the integration with OctoPrint. Image capture was conducted us-
ing a standard web camera with a resolution of 640x480 pixels.
The computational setup featured a computer equipped with an
i7 processor, 32GB of RAM, and an 8GB video card. The proposed
methodology was implemented using MATLAB.

2.2 Print Simulation and Processing
Generating a simulation of the 3D object involved the utilisation of
a G-code file. This file, crafted by a slicer program, encompassed a
textual compilation of printer settings and movements. This textual
information served as the basis for the physical reconstruction of
the object using a 3D printer or for creating a virtual simulation in
MATLAB. Top views of a single layer simulation and a 3D object
simulation are shown in Figure 2.

To facilitate structural analysis, images containing simulated
prints were initially cropped to align with the build plate size of the
3D printer utilized in this project, ensuring uniformity for subse-
quent measurement comparisons. Following the cropping process,
a thresholding technique was implemented to eliminate the back-
ground and isolate the object of interest. Manual adjustments to
threshold values, considering colour space and setting minimum
and maximum values for all three corresponding colour channels,
were made to ensure standardized segmentation quality. This step
proved critical for maintaining reliability in comparisons and anal-
yses throughout the study. Subsequently, the thresholded images
were converted to grayscale to enhance computational efficiency in
the structure analysis. To further refine the images, a median filter
was applied to the grayscale images in order to further refine the
image including reducing noise and smoothing overlapping edges.
Figure 3 demonstrates the above workflow for processing an image
of simulated print.

2.3 Print Capture and Processing
Instead of the conventional black build surface, a yellow Polyether-
imide (PEI) sheet was positioned on the silver build plate. The
choice of the PEI sheet colour proved advantageous for more ef-
fective thresholding and background subtraction. Synchronisation
between the top-down camera view and the print control system
was crucial for ensuring precise and consistent image captures. This
alignment guaranteed that each image was captured with the ob-
ject and the camera in identical positions, significantly simplifying
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Figure 2: View of print simulation: (a) single layer; (b) 3D object

Figure 3: Workflow for processing an image of simulated print

subsequent processing and analysis. This alignment was particu-
larly crucial for accurate layer subtraction, as it ensured to capture
the differences occurred from layer changes rather than shifts in
positioning. This, in turn, reduced computational complexity and
enhanced the reliability of the analysis. The setup for print capture
is shown in Figure 4.

Similarly, to the procedure for processing the image of simulated
print, the image containing the actual print was handled through a
sequence of steps, including distortion correction, colour thresh-
olding, grayscale conversion, and median filtering. The camera
calibration was conducted to estimate the camera parameters and it
is followed by the image distortion correction using the estimated
camera parameters. A semi-automated background subtraction
process was then applied to the undistorted image in which the
manual thresholding values were set for the first layer, specifying
the colour space and establishing minimum and maximum values
for all three channels individually. These specified values masked
the background in subsequent images throughout the print process.
Both grayscale image conversion and median filtering processes
were the applied to the masked images. The workflow for process-
ing an image of actual print is illustrated in Figure 5.

2.4 BLSS-based Structure Analysis
Having both simulated and processed, and actual prints captured
and processed layer frames, a structure analysis can be applied to

determine the similarity between them. The structure analysis uses
a processing pipeline that includes the Structural Similarity Index
Measure (SSIM) calculation, image cropping, Fast Fourier Trans-
form (FFT) and Normalised Cross-Correlation (NCC), as illustrated
in Figure 6.

Comparing images directly poses challenges due to notable dif-
ferences in colour intensity, brightness, background, and image
distortion between simulated and actual prints. Such disparities, as
illustrated in Figure 7, can lead to inaccuracies in similarity mea-
surements, as acknowledged in studies conducted by Schindler et
al. [10] and Aburaia et al. [12]. To address this issue, an alternative
approach is proposed, involving the use of displacement maps from
consecutive layers in both simulated and actual prints. This method
allows for a more reliable comparison of structural differences, un-
affected by other substantial disparities. The study uses the result of
the SSIM calculation for the similarity measure, designed to assess
perceived changes in structural information between images. The
SSIM considers three key image components - luminance, contrast,
and structure - to encompass various aspects of image quality such
as brightness, sharpness, and texture [18].

Following the computation of SSIM, a displacement map is gener-
ated to illustrate structural differences between consecutive layers,
as depicted in Figure 6. Subsequently, this map is cropped to isolate
the area of interest corresponding to the layers. Applying FFT and
NNC to the cropped map transforms it into the frequency domain
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Figure 4: Print capture setup

Figure 5: Workflow for processing an image of the actual print

Table 1: Examples of BLSS-based error detection

Error Camera Image Simulated Image BLSS of Camera Image BLSS of Simulated
Image

NCC similarity of
FTT Images

Layer Shift 73.67%
Bridging
Defects

92.81%

and assesses the similarity between the maps of the same layer
in both simulated and actual prints. The utilisation of FFT is ad-
vantageous because the displacement map can be represented in
terms of frequency components. This representation offers a more
intuitive depiction of texture and structure information based on
its frequency content, facilitating precise comparisons [19]. NCC
evaluates similarity by comparing frequency-transformed maps,
considering how patterns in one map correlate with those in the
other. It proves effective even for subtle differences. The resulting
metric yields a scaled value between -1 and 1, where 1 indicates a
perfect positive match, and 0 signifies no match [20].

The robustness of the BLSS-based structure analysis demon-
strates its strength from its capability to identify errors that posed

limitations in previous research, such as detecting layer shifts on
a pyramid or identifying holes in a bridging surface. These errors
are documented in Table 1, along with the corresponding simu-
lated layers and the actual structural differences, presented as a
percentage to indicate the similarity. The layer shift, artificially
created and measuring only 2mm along the Y-axis, ensures it re-
mains within the outer contur of the object. This demonstrates how
the method effectively addresses challenges related to identifying
errors in objects where cross-sections progressively reduce in size.
Another advantage of this method is that if the user decides that a
detected error is not a critical failure and chooses to continue the
print, the previous error will not be flagged in subsequent layer
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Figure 6: Proposed BLSS-based approach for structure analysis and evaluation

Figure 7: Images containing the layer 67: (a) simulated print; (b) actual print

structure analyses. This ensures that the system accommodates
user preferences and allows for the continued printing process.

3 EXPERIMENTAL RESULTS
To comprehensively evaluate the effectiveness of the proposed
method, a selection of objects was chosen for experimental testing.
This set included a cube to represent simplicity, a pyramid to intro-
duce angular complexity, and the intricate details of a 3D Benchy
model, as illustrated in Figure 8. Each object underwent testing

with a diverse colour spectrum to evaluate sensitivity and accuracy
across various potential printing scenarios, ensuring a thorough
assessment of performance. This led to a total of 30 test prints.

In some cases, intentional modifications were made to the G-
code to induce printing faults. This purposeful alteration aimed to
evaluate the capacity of the system to identify common printing
defects, such as layer shifts, missing layers, extrusion errors, and
inaccuracies in print detail. Upon analysing the outcomes from the
30 test prints, a preliminary accuracy threshold of 97.5% was estab-
lished to differentiate between correctly printed layers and printing
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(a) (b) (c)

Figure 8: Print objects: (a) cube; (b) pyramid; (c) 3D Benchy model

Figure 9: Similarity measurement for the print process with artificial defects

errors. This threshold is subject to further refinement through ad-
ditional testing. Figure 9 provides a visual representation of the
similarity measurement using the proposed BLSS-based method
across various print tests that feature print defects, including blobs,
bridging errors, stringing, build plate delamination, spaghetti, layer
shifts, and lost feature [2], [21–23]. It is evident that the similarity
values corresponding to the print layers with defects significantly
fall below the established threshold boundaries.

Figure 10 shows an example of BLSS-based similarity measure-
ment in details. In this figure, the yellow areas represent artificial
defects, while grey areas signify regions without defects. The drop
in similarity values below the defined threshold is clearly visible
in the two artificial areas. However, there is another drop under

the threshold around Layer 37 of the print, where a visible bridging
error caused by the printer itself occurred. This error is clearly
reflected in the similarity measure, demonstrating the ability of the
method to detect both artificial defects and real printing errors.

Another significant advantage that is clearly visible and has
been explained in the Methodology section is the capacity of the
method to minimize redundant notifications, which contributes
to its overall effectiveness. Furthermore, this method effectively
addresses a critical issue by minimizing unnecessary notifications
for errors, ensuring that notifications are only triggered when there
is a significant deterioration in error severity. This practical feature
proves particularly useful when operators anticipate error recovery.
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Figure 10: Similarity measurement for the print process with both artificial and actual defects

4 CONCLUSION AND FUTUREWORK
This paper introduces an innovative BLSS-based approach for real-
time monitoring of 3D printing. The core method involves cal-
culating structural similarity between consecutive layers in both
simulated and actual prints, achieved through the process pipeline
of SSIM, FFT, and NCC. Experimental results showcase the effec-
tiveness of the method in detecting print defects caused by various
factors, offering potential improvements to the overall quality and
efficiency of the 3D printing process. Future efforts will prioritize
exploring optimizations to enhance the robustness of the method.

In the course of this research, several avenues are being con-
sidered for enhancing the robustness and efficiency of the BLSS
method in future work. One of the primary objectives under consid-
eration is the optimization of error identification by repositioning
the camera to different angles, allowing for the determination of op-
timal viewpoints for error detection. Additionally, the integration
of a nozzle-mounted camera for real-time monitoring of material
flow and overlapping is being explored, enabling immediate er-
ror identification during the printing process. Furthermore, the
research is currently investigating the incorporation of machine
learning methods. The goal is to establish a robust model using
extensive training data. This approach aims to enhance the BLSS
method ability to identify deformation and defects. While these
advancements may increase calculation time, efforts are planned to
optimize the algorithm to ensure efficient processing. To enhance
statistical reliability, an increase in the repetition times of exper-
iments is also planned, aligning with the suggestion to improve
experiment reliability. These ongoing efforts aim to improve the
efficiency and stability of 3D printing and enhance error detection’s
overall quality and accuracy. The valuable suggestions from the
reviewers are appreciated, and the commitment to implementing
these enhancements in future work remains.
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