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ABSTRACT
As a significant characteristic of point clouds, equivariance has
attracted increasing attention in various fields such as computer
vision and computer graphics. In this paper, we introduce a novel
framework for achieving equivariance in point clouds using simpli-
cial complexes and a message passing network. By leveraging the
properties of complexes, we obtain equivariance for point clouds
represented as graphs with vertices and edges. The message passing
network aggregates information from simplices instead of individ-
ual points, which is further processed using convolutional layers
to produce the output results. Our extensive experiments on point
cloud classification and semantic segmentation tasks demonstrate
that our method achieves comparable or better results than previous
methods, showcasing its robustness.
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1 INTRODUCTION
The 3D point cloud is a crucial data structure containing geometric
information widely utilized in computer vision and computer graph-
ics communities. Analyzing and understanding 3D point cloud data
has become increasingly important. In recent years, deep learn-
ing methods like PointNet++ [22], PointCNN [11], DGCNN [28],
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A-CNN [9], and others have become standard tools for modeling
point clouds and capturing their geometric relationships.

A characteristic of 3D point cloud is that most scalar features
of the point clouds are invariant to global translation and rotation,
while most vector features are equivariant to these transformations.
For instance, the geometric structure, graphic categories, and part
semantics of point clouds remain unchanged during translation and
rotation, while vector features like normal information synchronize
with the rotation. However, previous methods for solving point
cloud problems, such as point cloud classification and semantic seg-
mentation, have not effectively ensured these properties of point
clouds. Therefore, finding a new method to guarantee the invari-
ance and equivariance of point clouds is of utmost importance and
significance. Note that invariance is a special case of equivariance.

Currently, several research approaches aim to achieve the in-
variance and equivariance of point clouds. For instance, learning
orientations-based neural networks [15] achieve point cloud equiv-
ariance to some extent, but learning orientations can significantly
affect the accuracy of the final result. Local-global-representation
(LGR)-Net [38] designs a two-branch network to encode local and
global features separately, but it requires the normals and higher-
order relationships between the local coordinates centered at differ-
ent points, which is nontrival. Vector-based neural networks [3, 8]
use fully connected layers to linearly input point cloud information,
achieving point cloud equivariance through linear combinations.
However, these methods suffer significant losses in preserving the
geometric structure information contained in point clouds. Tensor
field-based neural networks [6, 20, 26] employ continuous con-
volution to process point clouds. Yet, they require calculating a
significant amount of spherical harmonics on the fly, making their
formulation overly complex, and resulting in high space and time
complexity. Another approach defines convolution operators by
spherical correlation and SO(3) correlation with circularly symmet-
ric kernels [2, 4]. Some works [29, 30] extend spherical CNNs to
3D voxel grids. Additionally, mesh-based methods for point clouds,
such as Geodesic CNN [16], ensure the geometric structure in-
formation effectively. However, applying mesh-based methods to
large-scale point clouds can be challenging, with high computa-
tional costs leading to low algorithm efficiency.

The method we proposed leverages simplicial complexes in ge-
ometry to achieve the invariance and equivariance of point clouds
through a specialized message passing network and graph neural
network. This approach is precise, effective and simple to imple-
ment, while preserving the geometric structure information of point
clouds. Our method involves three key steps. First, we convert point
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clouds into graphs with point and edge structures, and then further
transform them into complexes. Second, we utilize message passing
networks to extract and aggregate feature information from various
simplicial complexes. Finally, we apply the graph neural network
algorithm to obtain the equivariant properties based on the output
features from the message passing layers.

In this article, we concentrate on point cloud classification and
semantic segmentation tasks, with a specific focus on the impact
of rotation and translation on these tasks. In comparison to pre-
vious methods, our approach excels at preserving the geometric
structure information of point clouds, leading to higher accuracy
in the results. Moreover, our method shares similarities with local
meshing through simplicial complexes but effectively circumvents
the challenges associated with mesh processing.

To summarize, our main contributions are

1. Introducing simplicial complexes from traditional geome-
try into point clouds, proposing a local mesh-like method
that better preserves geometric structure information while
avoiding meshing of point clouds.

2. Introducing a novel message passing model on simplicial
complexes to capture feature information from point clouds
and ensure equivariance.

3. Demonstrating the integration of our message passing model
into the traditional graph neural network algorithm for point
cloud processing.

4. Conducting extensive experiments on various tasks, includ-
ing point cloud classification and segmentation, and demon-
strating competitive performance of our proposed method.

2 RELATEDWORK
Graph neural networks The field of point cloud research has
witnessed continuous progress, with methods evolving from voxel-
based approaches [17, 27] andmulti-view-based approaches [32, 34]
to raw point cloud-based approaches [21, 22]. Currently, graph neu-
ral network (GNN) methods have emerged as the standard approach
for solving machine learning tasks on point clouds. These GNN
models, such as DGCNN [28], Point-GNN [25], AdaptConv [39],
and others, have demonstrated their effectiveness in various point
cloud processing applications. With their ability to capture local
and global geometric relationships, GNNs have become increas-
ingly popular and have achieved state-of-the-art performance in
point cloud tasks such as classification and segmentation.

GNNs treat point clouds as graphs with vertices and edges. The
feature information for each point is transferred and aggregated
based on their relative positional relationships within the graph.
These aggregated features are then processed through standard
neural networks, such as Multi-Layer Perceptrons (MLPs), to solve
various machine learning tasks. DGCNN [28] gathers nearest neigh-
boring points in the feature space, followed by the EdgeConv op-
erators for feature extraction, in order to identify semantic cues
dynamically. AdaptConv [39] proposes a new graph convolution
operator to replace the isotropic kernels, which can adaptively
represents the diversity of kernels unique to each pair of points.
MoNet [18] defines the convolution as Gaussian mixture models
in a local pseudo-coordinate system. However, traditional GNN
methods may not ensure the equivariance of point clouds after

rotation, and the scale features of point clouds, such as their shape
categories, can be affected by their poses in 3D space. Therefore, it
is of utmost importance and value to design a new neural network
that can achieve equivariance for point clouds, ensuring robustness
to transformations and preserving essential geometric information
regardless of their orientations.

Rotation-equivariant approaches The sensitivity of CNNs to
rotations has sparked interest in exploring rotation-equivariant
variants. One approach to achieve equivariance is by learning ori-
entations of the points in point clouds, which effectively decouples
global rotation. However, methods like Luo et al. [15] are suscepti-
ble to noisy data when learning orientations, and others like GC-
Conv [35] rely on handcrafted prior knowledge that may not be
available in real-world applications. Another approach proposed
by SFCNN [23] involves mapping input point clouds to a sphere
and performing operations on the sphere, similar to a multiview
representation. This approach aims to achieve equivariance in the
presence of rotations.

Vector-based neural networks (VNNs) [3] provide an alternative
solution for achieving equivariance by directly mapping rotations
applied to input point clouds to intermediate layers. However, some
other vector-based approaches [7, 8] may result in the loss of geo-
metric information due to linearly combining their fully connected
layers with input vectors. Tensor field-based networks [6, 20, 26]
adopt the constraint of convolutional kernels to the spherical har-
monics family. Alternatively, some methods are based on the theory
of SO(3) representations [4, 24], employing steerable kernel bases
for convolution to produce features with equivariant behavior.

Other approaches achieve equivariance through pose estima-
tion [12, 13]. Moreover, in [1], simplicial complexes and color in-
formation are used to detect homeomorphism in protein molecular
structures. Inspired by this, we introduce simplicial complexes from
geometry into point clouds to achieve equivariance. This approach
leverages the inherent properties of simplicial complexes to ensure
robustness and equivariance in point cloud analysis.

3 PRELIMINARIES
3.1 Simplicial complex
Definition 1. [19] Let V be a finite non-empty vertex set. A simplicial
complexK on V is a collection of nonempty subsets of V that contains
all the singleton subsets of V and is closed under the operation of
taking subsets.

A member 𝜎 = {𝑣0, · · · , 𝑣𝑘 } ∈ K with cardinality 𝑘 + 1 is called
a 𝑘-dimensional simplex or simply a 𝑘-simplex. Geometrically, one
can see vertices as 0-simplices, edges as 1-simplices, triangles as
2-simplices, and so on. Several simplices can form a complex, see
Figure 1. Note that a complex is equivariant in three-dimensional
space which can be used in our method.

Definition 2. We say 𝜎 ≺ 𝜏 iff 𝜎 ⊂ 𝜏 and there is no 𝛿 such that
𝜎 ⊂ 𝛿 ⊂ 𝜏 .
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Figure 1: An illustration of the simplicial complexes. The left
K is a simplicial complex and the rightK′ is a non-simplicial
complex. Because the set {𝑣0, 𝑣1, 𝑣2} is present in K′ but the
subset {𝑣0, 𝑣2} is not disqualifies K′ from being a simplicial
complex (The blue triangle exists but segment 𝑣0𝑣2 does not
exist).

This relation describes what simplices are on the boundary of
another simplex. For instance vertices {𝑣1}, {𝑣2} are on the bound-
ary of edge {𝑣1, 𝑣2} and edge {𝑣3, 𝑣4} is on the boundary of triangle
{𝑣3, 𝑣4, 𝑣5}. We will make use of this relation to construct our com-
plexes from a graph.

Definition 3. [1] Consider a simplex 𝜎 ∈ K . Four types of adjacent
simplices can be defined:
1. Boundary adjacencies B(𝜎) = {𝜏 | 𝜏 ≺ 𝜎}
2. Co-boundary adjacencies C(𝜎) = {𝜏 | 𝜎 ≺ 𝜏}
3. Lower-adjacencies 𝑑𝑜𝑤𝑛(𝜎) = {𝜏 | ∃𝛿, 𝛿 ≺ 𝜏 ∧ 𝛿 ≺ 𝜎}
4. Upper-adjacencies 𝑢𝑝 (𝜎) = {𝜏 | ∃𝛿, 𝜏 ≺ 𝛿 ∧ 𝜎 ≺ 𝛿}

Clearly, the boundary simplices of an edge are determined by
its vertices. The co-boundary simplices of a vertex are determined
by the edges it is a part of. Lower-adjacent edges are identified by
common line-graph adjacencies. Lastly, upper adjacencies between
vertices correspond to regular graph adjacencies. It is important
to acknowledge that a simplex may not necessarily have all four
types of adjacent simplices.

3.2 Equivariance
we denote 𝑥 ∈ X as input, 𝑦 ∈ Y as output, and 𝑡 ∈ T as a specific
transform in the transformation group T (e.g. permutation group,
rotation group, etc.), and T𝑡 (𝑥) : X → X, G𝑡 (𝑦) : Y → Y denote
the function that applies transform 𝑡 to the input and output respec-
tively. Then a function 𝑓 : X→ Y is equivariant if the following
equation holds:

𝑓 (T𝑡 (𝑥)) = G𝑡 (𝑓 (𝑥)) .
Note that invariance is a case of equivariance when G𝑡 (𝑦) = 𝑦. In
point cloud analysis, we consider the following types of equivari-
ance:

Permutation equivariance and invariance:These types of equiv-
ariance are not the main focus of this article because most research
on point clouds has achieved permutation equivariance for global
features due to their disorder. Here we will state them formally:
let P be a permutation group, 𝜃 ∈ P be a bijective mapping on
{1, 2, · · · , 𝑁 }, so T𝜃 (X) = (x𝜃 (1) , · · · , x𝜃 (𝑁 ) ), then the outputs are

equivariant if 𝑓 (T𝜃 (X)) = G𝜃 (𝑓 (x1, · · · , x𝑁 )), and the outputs
are invariant if 𝑓 (T𝜃 (X)) = 𝑓 (x1, · · · , x𝑁 ).

Rotational and translational equivariance and invariance:
The main interest of this work is the equivariance of rotation and
translation, the shape category of point clouds and point-wise se-
mantic labels fall into this type equivariance. We also let T de-
note the group of rigid transform (including rotation and trans-
lational transform), so the transform function on input domain
can be defined as T(R,t) (X) = (Rx1 + t, · · · ,Rx𝑁 + t), where
(R, t) denote the rotation matrix and translation matrix. Then
the transform function on the output domain is equivariant if
𝑓

(
T(R,t) (X)

)
= G(R,t) (𝑓 (X)), namely,

(𝑓 (Rx1 + t), · · · , 𝑓 (Rx𝑁 + t)) =
(R𝑓 (x1) + t, · · · ,R𝑓 (x𝑁 ) + t)

and the transform function is invariant if

(𝑓 (Rx1 + t), · · · , 𝑓 (Rx𝑁 + t)) = (𝑓 (x1), · · · , 𝑓 (x𝑁 )) .

4 METHOD
The central idea of this work is to obtain a new method for feature
extraction of point cloud data through message passing model, and
combined with graph neural network to achieve the equivariance of
point clouds. Our method follows a three-step process (see Figure 2).
First, we take the original or globally rotated point clouds as input
and construct the corresponding simplicial complexes. Next, we
utilize the message passing model on these simplicial complexes to
aggregate information. Finally, by processing the aggregated infor-
mation through graph convolutional layers, we obtain the output
results. Due to the geometric properties of simplical complexes, this
approach ensures the equivariance of point clouds and preserves
essential geometric information during the analysis process. In this
section, we will explain the methods we have adopted separately,
organized as follows:

• In section 4.1, we introduce how to convert point clouds into
graphs and further transform them into a complex, and ex-
plain the meshing like methods used in constructing complex
shapes;
• In section 4.2, we detail the principle of message passing
model and propose a message passing model based on sim-
plicial complexes to achieve the equivariance of point clouds;
• In section 4.3, we show how to combine our message passing
model with DGCNN to get a novel graph neural network
with equivariance.

4.1 Construction of complex
Let X = (x1, x2, · · · , x𝑛) denotes the input point clouds, with each
point containing at least its three-dimensional coordinates x𝑖 =

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ), and it is possible includes other features such as color,
normal vector and so on. We use the 𝑘-nearest neighbor algorithm
(𝐾-NN) to construct a graph model 𝐺 = (𝑉 , 𝐸) for point clouds
X , where 𝑉 and 𝐸 denote the vertices and the edges of the graph
respectively. In Section 5.3, we discuss the selection of the parameter
𝑘 .
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Figure 2: The pipe line of the proposed method.

In geometry, we can consider such a graph𝐺 as a simplicial com-
plex. Then we can transform the obtained graph 𝐺 to a simplicial
complex G = (V, E,T ,A,W):

G ←− COM(𝐺) (1)

where COM means the process of transforming the graph into
complexes, G is a set of complexes (such as the quantity is 𝑛) with
verticesV = {𝑣 (𝑛)

𝑖
}𝑖=𝑘+1
𝑖=1 . edges E ⊆ V×V in every complexes are

part of 𝐸 in graph𝐺 (The collect of E are same as 𝐸). T is the feature
of 2-simplices in complexes, here we make use of the centroid to
represent the features. A is adjacency matrix that specifies the
path of information transmission, andW is edge weight matrix,
where the (𝑖, 𝑗)-th entry 𝑒 (𝑛)

𝑖, 𝑗
= 𝐻Θ (𝑣 (𝑛)𝑖

, 𝑣
(𝑛)
𝑗
) denotes the weight

of the edge feature that from node 𝑖 to node 𝑗 , and 𝐻Θ : E → R is
a non-linear function with certain parameters Θ. Here we consider
the difference between different points as the initial feature of the
edges, and utilize Softmax function as the non-liner function to
process edge features:

W = Softmax(𝛽), 𝛽𝑖, 𝑗 = | |𝑣 (𝑛)𝑖
− 𝑣 (𝑛)

𝑗
| |2 (2)

The determination of adjacency matrix A is the key process to
the construction of complex. The edges E obtained directly from
K-NN algorithm are fully connected to all nodes in local complexes,
and the adjacency matrixA is determined through E. We can select
different adjacency matrix according to the needs, so as to control
the generated simplicial complex. For example, the simplest method
is to letA also represent fully connected, while the efficient method
is an adaptive one. The process of determining the adjacency matrix
A is somewhat similar to the process of meshing locally, but it is

simpler and more efficient, while also preserving the geometric
structure information of the point clouds.

4.2 Message passing network
In PyG [5](Pytorch Geometric, a library for deep learning on irreg-
ularly structured input data), there is a message passing method
that updates the central node information by aggregating adjacent
node information, thereby generalizing the convolution operator to
irregular domains and connecting the graph to the neural network.
The algorithm obtained using this method is called a message pass-
ing graph neural network, and its main process can be described
as

X (𝑡 )
𝑖

= 𝛾
(𝑡 )
𝑖

©­«X (𝑡−1)𝑖
,
⊕

𝑗∈N(𝑖 )
𝜙 (𝑡 )

(
X (𝑡−1)
𝑖

,X (𝑡−1)
𝑗

, e 𝑗,𝑖
)ª®¬

where X (𝑡−1)
𝑖

∈ R𝐹 denotes the feature of node 𝑖 in the (𝑡 − 1)-th
layer, e 𝑗,𝑖 ∈ R𝐷 denotes the feature of edge that from node 𝑗 to
node 𝑖 ,

⊕
denotes a differentiable, permutation invariant function,

e.g., sum, mean or max, 𝛾 and 𝜙 denote differentiable functions
such as MLPs (Multi Layer Perceptrons).

Here we propose a novel message passing graph neural network
for point clouds according to the concept of simplicial complexes
in section 3.1. The message passing operations we used are based
on the four types of adjacent simplices in Definition 3 (see Figure
3), that is for a simplex 𝜎 in complex K , we have:
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Figure 3: An illustration of the message passing model on simplicial complexes. The model contains four types to aggregate
information, and we just introduce two of them as example here. In this figure, message passing with boundary and upper
adjacencies to vertex 𝑣2 and edge {𝑣7, 𝑣8}. For a certain simplex like vertex 𝑣2, the information conveyed by its non-existent
adjacent simplex(e.g. boundary adjacency) is denoted as 0.

𝑚𝑡
B (𝜎) = AGG𝜏∈B(𝜎 )

(
𝑀B (ℎ𝑡−1𝜎 , ℎ𝑡−1𝜏 )

)
𝑚𝑡
C (𝜎) = AGG𝜏∈C(𝜎 )

(
𝑀C (ℎ𝑡−1𝜎 , ℎ𝑡−1𝜏 )

)
𝑚𝑡
𝑑𝑜𝑤𝑛

(𝜎) = AGG𝜏∈𝑑𝑜𝑤𝑛 (𝜎 )
(
𝑀𝑑𝑜𝑤𝑛 (ℎ𝑡−1𝜎 , ℎ𝑡−1𝜏 )

)
𝑚𝑡
𝑢𝑝 (𝜎) = AGG𝜏∈𝑢𝑝 (𝜎 )

(
𝑀𝑢𝑝 (ℎ𝑡−1𝜎 , ℎ𝑡−1𝜏 )

)
(3)

where 𝜎 and 𝜏 are the two simplexes mentioned in Definition 1.
𝑀B (ℎ𝑡−1𝜎 , ℎ𝑡−1𝜏 ) represents feature transferring from 𝜏 to 𝜎 at itera-
tion 𝑡 − 1, which is based on boundary adjacencies B, and the other
three functions are similar.𝑚𝑡

B (𝜎) denotes the feature of simplex
𝜎 after (𝑡 − 1)-th iteration based on boundary adjacencies B, the
others are similar.

Then the update operation takes into account these four types
of incoming messages of simplex and we have:

ℎ𝑡𝜎 = 𝑈

(
𝑚𝑡
B (𝜎),𝑚

𝑡
C (𝜎),𝑚

𝑡
𝑑𝑜𝑤𝑛

(𝜎),𝑚𝑡
𝑢𝑝 (𝜎)

)
(4)

where ℎ𝑡𝜎 denotes the feature of simplx 𝜎 at iteration t.
For the main process of feature passing function𝑀 (·), we take

into account it with linear message functions, sum aggregation
for all messages and an update function taking the sum of the
messages followed by a ReLU activation. Specifically, we consider
a p-dimensional complex with a set of simplex S𝑛 , then we have
the output feature matrix:

H𝑜𝑢𝑡
𝑛 = 𝜓

(
H(A𝑛,H𝑖𝑛

𝑛 ),W𝑛

)
(5)

where A𝑛 is the adjacency matrix described above that specifies
the path of feature transmission, H(A𝑛,H𝑖𝑛

𝑛 ) is an aggregation
mapping,W𝑛 is the trainable weights,𝜓 is an entry-wise activation
function (e.g. ReLU function).

Then we can apply this model to the complexes obtained from
the previous section. Thus, we construct our message passingmodel
based on simplicial complexes. Different from the previous message
passing model, our model focus on large-scale point cloud data, and
uses simplex instead of points as information transfer units, thus
making use of the equivariance of simplicial complexes to achieve
the equivariance of our model.

4.3 Graph neutral network
In this section, we will illustrate how to achieve equivariance in
traditional graph neural networks by integrating our message pass-
ing model. We will use DGCNN [28] as an example to demonstrate
this process.

DGCNN is a classical graph neural network algorithm, which
is related to two classes of approaches, PointNet and graph CNNs.
DGCNN builds the model with edge convolution and dynamic
graph update as the main body, and its core formulations of the
first and subsequent layers are:

h(1)
𝑖
←− max

𝑗∈N(𝑖 )
𝜓
(
𝜙0 (x 𝑗 − x𝑖 , x𝑖 )

)
(6)

h(ℓ+1)
𝑖

←− max
𝑗∈N(h(ℓ )

𝑖
)
𝜓

(
𝜙 (ℓ ) (h

(ℓ )
𝑗
− h(ℓ )

𝑖
,h(ℓ )

𝑖
)
)

(7)

where𝜓 is an activation function such as ReLU function, 𝜙 is MLPs
function.

DGCNN has shown good performance in solving the classifica-
tion and semantic segmentation problems of point clouds, but it is
unable to achieve equivariance of point clouds. We can combine
DGCNN with our message passing model to avoid this deficiency.

Now we consider a certain p-dimension complex, each node has
𝑑-dimensional feature. In our model, we first need to calculate the
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initial weight matrixW (0) of the edges and the adjacency matrix
A. We can obtain the result of W (0) like formula (2) and the
result ofA from formula (1). Then we can through the aggregation
model SCAGG of the above message passing network and graph
convolution layers denoted as Gcov to update the features of nodes
and edges:(
H (1) ,A (1) ,W (1)

)
←− Gcov

(
SCAGG(V (0) ,A (0) ,W (0) )

)
(8)

(
H (ℓ ) ,A (ℓ ) ,W (ℓ )

)
←− Gcov

(
SCAGG(H (ℓ−1) ,

A (ℓ−1) ,W (ℓ−1) )
)

(9)

When we integrate DGCNN into our model, we just need to
replace the formula (7) with

h(ℓ )
𝑖
←− max

𝑗∈N(𝑖 )
𝜓

(
𝜙 (ℓ ) (H

(ℓ )
𝑗
− H (ℓ )

𝑖
,H (ℓ )

𝑖
)
)

(10)

and at every iteration, we let(
H (ℓ+1) ,A (ℓ+1) ,W (ℓ+1)

)
←− Gcov

(
SCAGG(h(ℓ ) ,

A (ℓ ) ,W (ℓ ) )
)

(11)

Thus, we can obtain the model that combines DGCNN and our
message passing model. It is worth mentioning that we can also
combine other traditional graph neural networks with our method
similarly to get a new model.

5 EXPERIMENTS
In the previous sections, we explained how our method obtains
equivariant features for point clouds. In this section, we will evalu-
ate the model constructed using simplicial complexes and DGCNN
on different tasks, including classification and part segmentation.
These tasks will assess the model’s ability to model equivariant
detail properties effectively.

5.1 Classification
We use the ModelNet40 [31] to estimate our model’s performance
for point cloud classification task. The dataset contains 12311 shapes
from 40 different categories. We followed the previous work [15,
28, 35] to use 9843 shapes for training and other 2468 shapes for
testing, and each point cloud contains 1024 points. In addition, to
verify the robustness of our model, we also added noise to the data.

In order to evaluate the equivariant properties of our model, we
followed the setup in the previous work [3, 10, 15] and adopted
three different train-test rotation settings:

(1) Z/Z: both training and test point clouds are rotated around
the gravitational axis;

(2) Z/SO(3): training point clouds are rotated around the grav-
itational axis and test point clouds are rotated arbitrarily.
This setting examines the model’s quality of equivariance-
by-construction.

(3) SO(3)/SO(3): both training and test point clouds are rotated
arbitrarily.

Table 1: Classification accuracy on ModelNet40. The upper
rows are non-equivariant models, and the lower rows are
equivariantmodels. Ourmodel outperforms all the baselines.

Methods Z/Z Z/SO(3) SO(3)/SO(3)
PointNet[21] 85.9 19.6 74.7

PointNet++[22] 91.8 28.4 85.0
RS-CNN[14] 90.3 48.7 82.6
DGCNN[28] 90.3 33.8 88.6
RI-Conv[36] 86.5 86.4 86.4
GC-Conv[35] 89.0 89.1 89.2
Point-LO[15] 88.4 88.4 88.9

Ours 89.5 89.4 89.4

We compare ourmodel with both equivariant and non-equivariant
methods baselines. Table 1 shows the results of mean classification
accuracy of differentmethods.We can find that ourmethod achieves
competitive performance compared to other baseline models, and
our model exhibits robustness to noise.

5.2 Part segmentation
Point cloud segmentation is a classic point cloud problem. Here,
we use the ShapeNet [33] dataset to verify the performance of
our method in semantic segmentation problems. For this task, each
point from a point cloud set is classified into one of a few predefined
part category labels. The dataset contains 16881 shapes, from 16
object categories, annotated with 50 parts in total. Following the
convention [11, 15], we sample 2048 points for each shape, and we
also add noise to the data to check the robustness of our model.
We use two train-set rotation settings for this task: Z/SO(3) and
SO(3)/SO(3). We calculate the IoU (Inter-over-Union) metric to
measure the segmentation quality for each category.

Table 2 and Table 3 provide a summary of the quantitative com-
parisons with baseline methods in the Z/SO(3) and SO(3)/SO(3)
settings, respectively. Our model outperforms all the baseline mod-
els in 11 out of 16 categories in the Z/SO(3) setting and 10 out of
16 categories in the SO(3)/SO(3) setting. This improvement demon-
strates the effectiveness of our equivariant model in learning fine-
grained details. Additionally, our model exhibits a certain degree
of robustness.

5.3 Selection of 𝑘 in our message passing
network

The value of 𝑘 plays a crucial role in our message passing network,
as it controls the generated simplicial complex. Therefore, selecting
a suitable value for 𝑘 is essential. To address this, we conducted
a series of experiments on point cloud classification and part seg-
mentation problems. These experiments helped us determine the
optimal value of 𝑘 for our model.

For the classification task, we utilized the ModelNet40 dataset,
with 9843 shapes used for training and the remaining 2468 shapes
for testing. Each point cloud contains 1024 points. We selected
k values of 5, 10, 20, and 40. We followed the Z/SO(3) train-test
rotation setting and obtained results as shown in Table 4.
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Table 2: Point cloud segmentation results in the IoU (Inter-over-Union) under Z/SO(3) setting.

Z/SO(3) plane bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skate table
# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet[21] 40.4 48.1 46.3 24.5 45.1 39.4 29.2 42.6 52.7 36.7 21.2 55.0 29.7 26.6 32.1 35.8
PointNet++[22] 51.3 66.0 50.8 25.2 66.7 27.7 29.7 65.5 59.7 70.1 17.2 67.3 49.9 23.4 43.8 57.6
PointCNN[11] 21.8 52.0 52.1 23.6 29.4 18.2 40.7 36.9 51.1 33.1 18.9 48.0 23.0 27.7 38.6 39.9
DGCNN[28] 37.0 50.2 38.5 24.1 43.9 32.3 23.7 48.6 54.8 28.7 17.8 74.4 25.2 24.1 43.1 32.3
ShellNet[37] 55.8 59.4 49.6 26.5 40.3 51.2 53.8 52.8 59.2 41.8 28.9 71.4 37.9 49.1 40.9 37.3
RI-Conv[36] 80.6 80.0 70.8 68.8 86.8 70.3 87.3 84.7 77.8 80.6 57.4 91.2 71.5 52.3 66.5 78.4
GC-Conv[35] 80.9 82.6 81.0 70.2 88.4 70.6 87.1 87.2 81.8 78.9 58.7 91.0 77.9 52.3 66.8 80.3
RI-Fwk[10] 81.4 82.3 86.3 75.3 88.5 72.8 90.3 82.1 81.3 81.9 67.5 92.6 75.5 54.8 75.1 78.9
LGR-Net[38] 81.5 80.5 81.4 75.5 87.4 72.6 88.7 83.4 83.1 86.8 66.2 92.9 76.8 62.9 80.0 80.0
TFN[20] 81.1 77.8 79.8 74.5 89.1 77.2 90.8 82.8 77.7 78.6 60.3 93.4 77.0 54.7 74.4 79.5

Point-LO[15] 81.7 79.0 85.0 78.1 89.7 76.5 91.6 85.9 81.6 82.1 67.6 95.0 79.6 64.4 76.9 80.7
Ours 82.4 84.0 87.8 78.5 90.2 89.6 91.1 87.9 83.6 96.0 61.3 94.4 80.9 52.2 72.3 82.4

Table 3: Point cloud segmentation results in the IoU (Inter-over-Union) under SO(3)/S0(3) setting.

SO(3)/SO(3) plane bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skate table
# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet[21] 81.6 68.7 74.0 70.3 87.6 68.5 88.9 80.0 74.9 83.6 56.5 77.6 75.2 53.9 69.4 79.9
PointNet++[22] 79.5 71.6 87.7 70.7 88.8 64.9 88.8 78.1 79.2 94.9 54.3 92.0 76.4 50.3 68.4 81.0
PointCNN[11] 78.0 80.1 78.2 68.2 81.2 70.2 82.0 70.6 68.9 80.8 48.6 77.3 63.2 50.6 63.2 82.0
DGCNN[28] 77.7 71.8 77.7 55.2 87.3 68.7 88.7 85.5 81.8 81.3 36.2 86.0 77.3 51.6 65.3 80.2
ShellNet[37] 79.0 79.6 80.2 64.1 87.4 71.3 88.8 81.9 79.1 95.1 57.2 91.2 69.8 55.8 73.0 79.3
RI-Conv[36] 80.6 80.2 70.7 68.8 86.8 70.4 87.2 84.3 78.0 80.1 57.3 91.2 71.3 52.1 66.6 78.5
GC-Conv[35] 81.2 82.6 81.6 70.2 88.6 70.6 86.2 86.6 81.6 79.6 58.9 90.8 76.8 53.2 67.2 81.6
RI-Fwk[10] 81.4 84.5 85.1 75.0 88.2 72.4 90.7 84.4 80.3 84.0 68.8 92.6 76.1 52.1 74.1 80.0
LGR-Net[38] 81.7 78.1 82.5 75.1 87.6 74.5 89.4 86.1 83.0 86.4 65.3 92.6 75.2 64.1 79.8 80.5
TFN[20] 80.8 74.5 82.8 74.4 89.4 75.7 90.6 81.0 77.8 80.5 62.4 93.3 78.5 55.8 74.7 79.5

Point-LO[15] 81.8 78.8 85.4 78.0 89.6 76.7 91.6 85.7 81.7 82.1 67.6 95.0 79.1 63.5 76.5 81.0
Ours 82.7 82.3 87.7 78.3 90.0 89.2 91.0 88.0 83.4 96.3 60.9 94.1 80.5 51.7 71.9 82.2

Regarding the part segmentation task, we used the ShapeNet
[33] dataset and focused on the earphone category. We sampled
2048 points for each shape in this category and used k values of
5, 10, 20, and 40. We also adopted the Z/SO(3) train-test rotation
setting and obtained results as presented in Table 5.

Table 4: The performance of different k in classification task
under Z/SO(3) setting.

k 5 10 20 40
accuracy 88.5 89.3 89.4 89.2

Table 5: The performance of different k in part segmentation
task of earphone under Z/SO(3) setting.

k 5 10 20 40
accuracy 79.4 82.6 86.4 89.6

As the value of k increases, the accuracy may continue to im-
prove, but the computational workload will increase significantly,
leading to a decrease in efficiency. From Table 4, we choose 𝑘 = 20
in our classification task and from Table 5, we choose 𝑘 = 40 in our
part segmentation task.

6 CONCLUSION
In this paper, we present a scheme for equivariant point cloud anal-
ysis. The key element is a feature extraction model for point clouds
using message passing based simplicial complexes, integrated with
traditional graph neural networks. Through extensive experiments,
we demonstrate the effectiveness and generality of our model.

However, the proposed method currently requires local semi-
gridding in the feature extraction model, which demands a con-
siderable amount of computational effort. It is crucial to explore
ways to reduce the computational cost of this process. Additionally,
while we demonstrate the method’s efficacy in a few applications,
it would be valuable to investigate its performance in other more
challenging tasks as well.
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