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ABSTRACT
This paper presents an in-depth exploration of data mining tech-
niques aimed at optimizing the operational efficiency of urban last
mile delivery services. Leveraging an authentic industry dataset
graciously provided by a collaborative logistics partner, this study
meticulously unravels intricate delivery patterns and discerns clus-
ters attributed to delays, employing advanced cluster analysis
methodologies through the utilization of the WEKA software suite.
From our initial cluster analysis, we identified specifically that
33% of late cases occurred in the latitude range of (1.277, 1.287],
36% occurred in the longitude range of (103.843, 103.855], and that
Driver 2065 was involved in 13% of late cases. Furthermore, a
pioneering route analysis paradigm is introduced, elucidating an
implementation framework harnessed through Python, Pandas,
Folium packages, and the Open Source Routing Machine (OSRM)
API. Through our route analysis, we were able to visualize the his-
torical routes taken by drivers and the recommended routes by
OSRM for their given jobs. In the case of Driver 2065, this allowed
us to identify visits to non-job locations and extended durations
spent at high-rise and high-density buildings. Notably, this research
surmounts the challenge posed by imprecise GPS coordinates for
job locations by propounding an innovative approach to location
estimation. This groundbreaking technique bestows the capability
to compute pivotal parameters, encompassing travel time and ser-
vice duration, which aptly characterizes the temporal allocation at
each discrete job locale. The culmination of our scholarly pursuits
begets profound insights, effectively serving as a guiding compass
to engender tangible operational enhancements and methodical
finesse in the domain of delivery operations, thereby ensuring the
punctilious execution of time-sensitive deliveries.
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1 INTRODUCTION
The field of Data Mining has emerged as a vital tool for deriv-
ing meaningful insights from vast datasets, facilitating informed
decision-making across a spectrum of enterprise and supply chain
scenarios. For instance, its application extends to optimizing in-
ventory management, fuel consumption, analysing oil price move-
ments, and the prediction of oil production, among others [1] [2]
[3] [4]. Particularly pertinent to delivery-oriented businesses, data
mining plays a pivotal role in enhancing job performance, yield-
ing benefits such as heightened customer satisfaction and curbed
economic losses arising from job failures. These enhancements
are of particular significance in the realm of Last Mile Logistics, as
this phase of the supply chain often proves to be the least efficient
and cost-intensive [5]. Amid escalating market competition [6],
operational efficiency becomes a cornerstone for cost reduction and
the preservation of customer satisfaction [7], thereby safeguarding
revenue streams.

In this context, our study is driven by the imperative to un-
earth actionable insights that can systematically enhance delivery
performance, focusing on a real-world industry case. Our dataset
originates from a third-party logistics service provider (3PL) encom-
passing their fleet of vehicles and drivers. Our investigation centers
on identifying the causes behind delayed delivery jobs, spanning
both pick-up and drop-off tasks. The 3PL’s diverse vehicle fleet com-
prises vans, cars, and motorbikes, catering to a range of goods, from
letters to medium-sized parcels. Each vehicle embarks from the
central depot at predetermined times, traversing designated job lo-
cations for pick-ups and drop-offs. An internally developed Vehicle
Routing Engine guides the drivers, its routes adapting dynamically
based on real-time job completions.

The dataset is bifurcated into two core components: job attempt
information and GPS data. The former entails crucial details like
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job ID, latitude, longitude, timestamp, driver ID, and completion
status, while the latter encompasses driver ID, latitude, longitude,
and timestamp.

Our approach embraces both cluster analysis and route analysis.
For cluster identification, we harness the user-friendly WEKA soft-
ware, which streamlines dataset filtering and visual distribution
representations. For route analysis, we undertake a simulation
employing Python, Pandas, Folium packages, and the Open Source
Routing Machine (OSRM) API. A salient feature of our approach
lies in our innovative route analysis methodology. Given that the
GPS data may lack precise job location coordinates, we devised a
method to infer these locations, thereby enabling the segmentation
of GPS data into vehicle routes between successive job locations.
Moreover, this allowed us to estimate travel times between job sites
and service times, reflecting the duration spent at each location.

2 LITERATURE REVIEW
2.1 Cluster analysis
Cluster analysis encompasses several techniques [8] [9], notably
K-means clustering [10], hierarchical clustering [11], and density-
based clustering. Of particular interest in our study is density-
based clustering, which defines clusters over contiguous regions
with high point densities [12]. In our study, we employ a density-
based approach to discern clusters within visualizations of the
distributions of datapoints from our dataset, which are generated
using the WEKA software.

2.2 Route analysis
To gain clearer insights into vehicle travel patterns and facilitate
more in-depth analysis, it becomes essential to pinpoint job lo-
cations within the GPS data. Notably, Ma, Xiaolei, et al. [13]
introduced anchor points for truck trip chains through a spatial,
density-based clustering algorithm on GPS data, successfully identi-
fying frequently visited points by their fleet. However, our context
differs significantly, as we focus on the entire paths traversed by
individual vehicles following unique travel plans. In contrast, Ma
et al.’s study centered on common points frequented by their fleet,
rendering their method less applicable to our scenario. Another
relevant study by Sharman, Bryce W., and Matthew J. Roorda [14]
explored hierarchical agglomeration and partitioning clustering
methods to ascertain trip destinations, akin to our context of indi-
vidual vehicle visits to planned destinations. Yet, disparities emerge
concerning dataset characteristics. While they inferred trip ends
through vehicle engine on-off status or vehicle stationary periods,
our dataset lacks engine status and vehicle GPS information. In-
stead, our data entails driver GPS information post-vehicle parking,
as drivers facilitate deliveries. This intricacy compelled us to de-
velop an innovative approach to estimating job locations within
the constrained GPS dataset.

Consequently, we devised a novel method to estimate job loca-
tions, effectively navigating the limited GPS information by leverag-
ing job attempt data. This innovative approach ensures consistency
in identifying job locations across both segments of the dataset.

3 DESCRIPTION OF DATASET
The dataset comprises two distinct components: 1) JOB_INFO and
2) GPS_DATA. The former, JOB_INFO, encompasses job attempt
details, while the latter, GPS_DATA, comprises GPS information
collected from drivers at regular intervals. Tables 1 and 2 delineate
the attributes characterizing each segment, accompanied by an
exemplar entry.

4 PROPOSED METHOD
We use CRISP-DM methodology for this study. The details are
described as the following subsections.

4.1 Preprocessing
The initial dataset, JOB_INFO, underwent augmentation with the
inclusion of the subsequent enhancements:

• ATTEMPTED_DAY: Intended for exploratory data analysis
purposes.

• ATTEMPTED_TIME: Incorporated for exploratory data anal-
ysis endeavors.

• IS_LATE: Introduced to distinguish between late and non-
late jobs.

The new attributes ’ATTEMPTED_DAY’ and ’AT-
TEMPTED_TIME’ are conveniently derived from the existing
’ATTEMPTED DATETIME’ field. Meanwhile, ’IS_LATE’ is estab-
lished based on the contents of the ’COMPLETION_DESCRIPTION’
attribute, assuming a Boolean value (True or False) contingent
upon whether the term ’late’ is present in the corresponding
entry. In addition, entries featuring ’LAT’ = 0 or ’LONG’ = 0 were
removed, deeming them as negligible anomalies. The configuration
of the modified JOB_INFO, along with an illustrative entry, is
delineated.

4.2 Cluster analysis
Subsequently, we initiated a cluster analysis using the WEKA soft-
ware to unveil visualizations illuminating the distribution of fea-
tures within JOB_INFO. To distinguish between late and non-late
jobs, we designated ’IS_LATE’ as the class variable. With an aim to
mitigate the occurrence of late cases, we delved deeper by focusing
on late instances. Our exploration then shifted towards identifying
features with conspicuous spikes in their visual patterns, indicating
potential clusters of late jobs under specific conditions. Notably, we
directed our attention towards ’LAT,’ ’LONG,’ and ’DRIVER_IDEN-
TIFIER’ features, probing the interplay among late jobs, individual
drivers, and geographical coordinates.

4.3 Route analysis
In the preceding section, our focus successfully narrowed down
instances of late jobs to specific drivers and geographical regions,
as defined by latitude and longitude ranges. To glean deeper in-
sights from the available dataset, we embarked on a route analysis
specifically targeting these drivers and regions. This endeavor in-
volved examining the routes traversed by these drivers between
job locations within the regions prone to late deliveries and their
associated circumstances. The overall process and steps undertaken
in our route analysis are outlined in Figure 1.

87



Urban Last Mile Delivery Data Mining for Performance Improvement ICCMB 2024, January 12–14, 2024, Singapore, Singapore

Table 1: JOB_INFO (Original)

Feature Example Value

JOBSIDX 7338195
JOBNO 2301S00908
DELIVERYCONTENT Parcel
ATTEMPTED DATETIME 3/1/2023 4:03:14 PM
STATUSCODEIDX 49
FROMDATETIME 3/1/2023 3:00:00 PM
TODATETIME 3/1/2023 3:30:00 PM
EXTFROMDATETIME NULL
EXTTODATETIME NULL
COMPLETION_DESCRIPTION Attend Late, Std Run, PM, Late <=45min
JOB_DESCRIPTION
JOB_DESCRIPTION2 Auto SS FP (Std Run)
DRIVER_IDENTIFIER 2065
LAT 1.2852529
LONG 103.851096
ACCURACY 4250
VEHICLETYPE Van

Table 2: GPS_DATA

Feature Example Value

ID1 599908662
DRIVER_IDENTIFIER 421
LAT 1.2814896
LONG 103.820354
DATETIME 6/1/2023 6:33:56 AM
ACCURACY 2053

Figure 1: Steps in route analysis

To execute the route analysis, we designed a driver’s travel pat-
tern simulation for a single day. This procedure commenced with
the identification of the driver’s job locations. Our approach in-
volved filtering the GPS_DATA to extract entries pertinent to the
designated driver and day. Subsequently, we filtered the JOB_INFO
data by the same driver and day, thereafter sorting all relevant
job attempts based on the ’ATTEMPTED DATETIME’ feature in
ascending order. We created custom ’JobLoc’ objects to represent

individual job locations. An illustration of a ’JobLoc’ object is pre-
sented in Figure 2, and the key attributes of this object are detailed
in Table 3. Through iteration, we populated each ’JobLoc’ object
with its respective job attempts, establishing a sequence of these
objects, each representing a distinct job location.

With job locations identified, our attention shifted to pinpoint-
ing those within the regions where frequent late jobs occurred,
a region referred to as the ’late rectangle’ for simplicity. Having
established the relevant job locations, we proceeded to simulate the
driver’s travel pattern by iteratively analyzing filtered GPS_DATA.
Given the chronological sorting of GPS_DATA entries, an additional
sorting step was unnecessary.

The determination of the driver’s arrival at a job location relied
on the Haversine formula, calculating the distance between the dri-
ver’s present location (extracted from GPS_DATA) and the job loca-
tion (from the corresponding ’JobLoc’ object). When the calculated
distance fell within a predefined threshold, the driver was consid-
ered to have reached the job location. Consequently, attributes such
as ’recorded_entry_time,’ ’recorded_entry_loc,’ and ’recorded_en-
try_idx’ were assigned to the respective ’JobLoc’ object based on the
current GPS_DATA entry. Subsequent iterations marked the dri-
ver’s departure from the job location when the distance threshold
was met again, resulting in the assignment of ’recorded_exit_time,’
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Figure 2: Illustration of estimation of a job location with a JobLoc object.

Table 3: Key Attributes of JobLoc object

Attribute Type Description

visit_idx int Contains index of JobLoc object to identify job locations and their order of completion.
lat_long list Stores in a list the latitude and longitude values (as floats) of a job location.
jobs list Stores in a list the jobs attempted at a job location.
recorded_entry_time str Contains the time component (‘DATETIME’) of the row in the GPS_DATA dataset that

we estimate to be the point at which the driver enters the job location.
recorded_exit_time str Contains the time component (‘DATETIME’) of the row in the GPS_DATA dataset that

we estimate to be the point at which the driver exits the job location.
recorded_entry_loc list Stores in a list the latitude and longitude components (‘LAT’, ‘LONG’) of the row in

the GPS_DATA dataset that we estimate to be the point at which the driver enters the
job location.

recorded_exit_loc list Stores in a list the latitude and longitude components (‘LAT’, ‘LONG’) of the row in
the GPS_DATA dataset that we estimate to be the point at which the driver exits the
job location.

recorded_entry_idx int Contains index (‘ID1’) of the row in the GPS_DATA dataset that we estimate to be the
point at which the driver enters the job location.

recorded_exit_idx int Contains index (‘ID1’) of the row in the GPS_DATA dataset that we estimate to be the
point at which the driver exits the job location.

’recorded_exit_loc,’ and ’recorded_exit_idx’ attributes. By maintain-
ing synchronization between JOB_INFO and GPS_DATA through
the ’visit_idx’ attribute, we accurately simulated the driver’s travel
pattern between job locations.

The interval between entry and exit times represented the esti-
mated service time for each job, with the circular region around the
job location demarcating the service region. This cumulative infor-
mation allowed us to approximate job locations within GPS_DATA,
with each ’JobLoc’ object documenting these estimations. The re-
sulting job locations were visually identified on a map, and path
connections between them were plotted using the Python Folium
package.

For generating a suggested route by OSRM (Open Source Routing
Machine) encompassing a driver’s job locations, the OSRM API was
employed in conjunction with the ’lat_long’ attribute of the ’JobLoc’
objects. This process entailed retrieving routes between consecutive
job locations and linking them to outline the recommended path

from the initial job location within the ’late rectangle’ to subsequent
ones, preserving the order specified by the ’visit_idx’ attribute.

To extract the actual path taken by the driver during the day,
individual paths between specific job locations of interest were
determined and aggregated. The connection between two job lo-
cations was established by identifying the corresponding rows in
GPS_DATA. Each connection was visualized as a line joining the
associated coordinates. To enhance visibility of driver positions
along the path, markers were virtually placed at regular time in-
tervals. By employing a predetermined interval and computing
the time difference between successive GPS_DATA rows, markers
were introduced to the plot at intervals roughly equivalent to the
specified time interval.

In summary, our comprehensive route analysis facilitated the
estimation of job locations, visualization of drivers’ paths, and the
determination of suggested and actual travel routes, ultimately pro-
viding a dynamic view of drivers’ activities during their journeys.
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Figure 3: Filtering on IS_LATE = True

5 RESULTS AND DISCUSSION
5.1 Results of cluster analysis
Our initial step involved filtering based on the condition ’IS_LATE’
= True, thus eliminating non-late jobs, as our focus lay in uncov-
ering patterns within late jobs. Our intent was to delve into the
interplay among late jobs, individual drivers, and geographical data,
suspecting that a significant portion of late job occurrences could be
attributed to locality or personnel-related issues. In this pursuit, we
scrutinized the ’LAT’, ’LONG’, and ’DRIVER_IDENTIFIER’ features
within WEKA visualizations to discern conditions giving rise to
notable spikes in late cases.

It is worth acknowledging that the precise definition of a spike
substantial enough to warrant our attention through visual inspec-
tion is not immediately apparent. Intuitively, such a spike might
occur when a substantial proportion of cases within the overall
dataset cluster within a narrow range for a specific parameter. To
translate this intuition into a quantitative selection criterion, one
approach involves examining the number of late cases occurring
within the specified parameter range, relative to the total number of
late cases. This computation is facilitated by WEKA’s visualization
features, which provide case counts for specific ranges. In gen-
eral, our selection of parameter ranges corresponding to significant
spikes encompasses at least 10% of the total late cases. Simulta-
neously, comparable ranges that adhere to similar lengths would
yield proportions significantly below half of this value, unless they
too qualify as spikes.

As illustrated in Figure 3, substantial spikes in late cases are
evident when:

1. ’LAT’ lies within the range (1.277, 1.287] (13032/40013 = 32.569%
of cases)

2. ’LONG’ falls within the range (103.843, 103.855] (14292/40013
= 35.718% of cases)

3. ‘DRIVER_IDENTIFIER’ corresponds to 2065 (5025/40013 =

12.558% of cases)

This approach provides us with quantitatively grounded criteria for
identifying notable patterns within late job occurrences, allowing
us to effectively focus our investigation on specific regions and
driver attributes where significant late cases cluster.

Our investigation commenced by initially filtering based on the
condition ’IS_LATE’ = True, thereby excluding non-late jobs, in
pursuit of discerning distinct patterns within late job occurrences.
Our focus was on unveiling potential associations involving late
jobs, individual drivers, and geographical attributes. As it seemed
plausible that a substantial portion of late jobs might be influenced
by locality or driver-related factors, we specifically examined the
’LAT’, ’LONG’, and ’DRIVER_IDENTIFIER’ features within WEKA
visualizations. Our aim was to unravel circumstances giving rise
to pronounced spikes in instances of late deliveries. It is worth
noting that determining the precise magnitude of a spike meriting
attention through visual inspection proved nontrivial. We sought
a quantitative foundation for our selection criterion, which we
achieved by evaluating the number of late cases within a specified
parameter range as a fraction of the total late cases. This calcula-
tion was facilitated by WEKA’s inherent visualization capabilities,
offering insights into case counts across parameter ranges.

In general, the parameter ranges delineating significant spikes
encompassed at least 10% of the total late cases. Conversely, param-
eter ranges of similar lengths yielded proportions notably below
half of this benchmark, unless they also constituted spikes.

This analysis indicated that certain conditions lead to higher
likelihoods of late deliveries:
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• Jobs occurring within latitude range (1.277, 1.287] or longi-
tude range (103.843, 103.855] demonstrate increased lateness.

• Jobs attributed to Driver 2065 are more prone to being late.
In a subsequent refinement, we focused on the latitude range (1.277,
1.287] as guided by the prior insight. The analysis unveiled that
the most substantial spikes in late cases occurred within specific
sub-ranges:

• ’LAT’ = (1.278, 1.28] (47.869% of cases)
• ’LAT’ = (1.285, 1.286) (21.100% of cases)
• ’LONG’ = (103.849, 103.851] (50.540% of cases)
• ’DRIVER_IDENTIFIER’ = 2065 (31.844% of cases)

Further scrutiny within the ’LAT’ = (1.278, 1.28] range revealed
additional insights:

• ’LONG’ = (103.845, 103.853] (70.249% of cases)
• ’DRIVER_IDENTIFIER’ = 2065 (32.258% of cases)

Similarly, a detailed assessment within the ’LAT’ = (1.285, 1.286]
range led to the following revelations:

• ’LONG’ = (103.849, 103.852] (93.435% of cases)
• ’DRIVER_IDENTIFIER’ = 2065, 2169, 2811 (74.407% of cases)

Additionally, focusing on the longitude range (103.843, 103.855]
unveiled further insights:

• ’LONG’ = (103.848, 103.849] (26.152% of cases)
• ’LONG’ = (103.85, 103.851] (44.199% of cases)
• ’DRIVER_IDENTIFIER’ = 2065 (29.961% of cases)

In summary, among late jobs:
• A significant number of jobs within latitude range (1.278,
1.28] and longitude range (103.848, 103.851] are carried out
by Driver 2065.

• A noteworthy percentage of jobs within latitude range (1.285,
1.286] and longitude range (103.848, 103.851] are executed
by Driver 2065, Driver 2169, and Driver 2811.

This analysis showcases a strategy for identifying prominent late
regions among drivers in the dataset. A similar approach can be
iteratively employed to unveil secondary late regions by consecu-
tively eliminating late orders from higher-frequency late regions,
and subsequently subjecting the remaining jobs to clustering analy-
sis. This iterative process aims to capture all significant late regions.
By leveraging this methodology, we can conduct route analysis
on jobs within these regions, further enhancing the precision and
effectiveness of our analysis.

5.2 Results of route analysis
Presenting the plotted trajectories suggested by OSRM and the ac-
tual paths traced from GPS_DATA for Driver 2065, Driver 2169, and
Driver 2811 on January 20, 2023, we offer the visual representations
depicted in Fig. 4, 5, 6, and 7.

In addition, our analytical capabilities extend to evaluating travel
time through insights derived from the OSRM API’s recommenda-
tions. As for the actual path, a straightforward estimate of travel
time can be readily attained by computing the time difference
between the ’recorded_entry_time’ and ’recorded_exit_time’ at-
tributes associated with the corresponding JobLoc objects. Upon
meticulous scrutiny of Figure 4 and Figure 5 pertaining to Driver
2065, a conspicuous discrepancy surfaces within the designated late

Figure 4: Driver 2065 - suggested path

Figure 5: Driver 2065 – actual path

rectangle, encompassing the latitude range of (1.285, 1.286] and the
longitude range of (103.848,103.851]. Notably, Driver 2065’s actual
trajectory markedly diverges from the suggested OSRM path. This
divergence primarily stems from Driver 2065’s deliberate devia-
tions, leading to a detour to non-job locations, notably conspicuous
within the Crawford area positioned between job sites within the
late rectangle.

A closer examination of the map reveals prominent clusters of
red circles, clearly demarcating instances where the driver spent
significant amounts of time at locations. These clusters notably
manifest around prominent CBD landmarks, such as the Wing On
Life Building and the UOB Plaza towers, prominently illustrated in
Figure 6 and Figure 7 respectively. This analytical insight penetrates
the intricate dynamics governing the driver’s movements, casting
light on recurrent deviations from the prescribed path, character-
ized by:

- Visits to non-job locations
- Extended durations spent at high-rise and high-density build-

ings.

Conversely, a comparable finding emerged for Driver 2169, where
prolonged stays at high-rise and high-density buildings feature as
a key observation.

Significantly, a parallel observation is unveiled for Driver 2811,
reinforcing the recurrent pattern of extended durations spent at
such high-rise and high-density locations. These key findings fur-
nish invaluable insights into the drivers’ behaviors, revealing their
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Figure 6: Driver 2065 - cluster at Wing On Life Building

Figure 7: Driver 2065 - cluster at UOB Plaza towers

propensity to deviate from optimal routes and linger around spe-
cific areas. Such insights hold the potential for optimizing delivery
efficiency and refining operational strategies to enhance the overall
service quality.

5.3 Discussion
A common theme for the drivers was the visiting of high-rise, high-
density job locations. The drivers typically spent much time at
these places, judging by the density of red circles in the plots. Also
it could be the case that vertical travel time (i.e. time for drivers
travelling up and down the buildings) could be very long in these
locations. This long and uncertain vertical travel time for intensive
jobs may be a major cause for high frequency of late jobs there.

The actual total travel time of the drivers from their first job to
their last job in the late rectangle is significantly greater than that
suggested by OSRM. This suggests that much time was spent trav-
elling by the drivers outside of travel times between job locations.
This supports the notion that drivers might be spending much time
travelling within buildings – something that OSRM cannot capture.
Another common finding was that the drivers often visited non-job
locations between jobs in the late rectangle. Naturally, this might
cause delays subsequently and late jobs. Interestingly, many of
these non-job locations are food establishments. The drivers tend
to visit such places in the early afternoon, suggesting that they
might be visiting these places to buy their lunch.

6 CONCLUSION AND FUTUREWORK
This paper presents an innovative approach to estimating job loca-
tions from GPS data within a comprehensive data mining frame-
work aimed at enhancing delivery performance for a logistics part-
ner. Notably, the analysis highlights that late jobs are influenced
by factors such as high-rise, high-density locations and visits to
non-job sites. Addressing these factors holds the potential to reduce
late deliveries and enhance overall performance for the logistics
partner.

Future work could refine our approach by developing an adaptive
distance threshold to address the accuracy impact of overlapping
service regions in our method. Mitigating this challenge requires
careful threshold calibration for optimal simulation accuracy with-
out underestimating service times. Additional opportunities include
creating statistical models for location-dependent service times and
non-job events (e.g., lunch breaks) based on historical data. Inte-
grating these models into logistics planning can enhance delivery
operation efficiency.
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