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The existence of large amounts of data increases the probability of occurring data quality problems. A data
cleaning process that corrects these problems is usually an iterative process, because it may need to be re-
executed and refined to produce high-quality data. Moreover, due to the specificity of some data quality
problems and the limitation of data cleaning programs to cover all problems, often a user has to be involved
during the program executions by manually repairing data. However, there is no data cleaning framework that
appropriately supports this involvement in such an iterative process, a form of human-in-the-loop, to clean
structured data. Moreover, data preparation tools that somehow involve the user in data cleaning processes
have not been evaluated with real users to assess their effort.

Therefore, we propose Cleenex, a data cleaning framework with support for user involvement during an
iterative data cleaning process, and conduct two data cleaning experimental evaluations: an assessment of
the Cleenex components that support the user when manually repairing data with a simulated user; and a
comparison, in terms of user involvement, of data preparation tools with real users.

Results show that Cleenex components reduce the user effort when manually cleaning data during a data
cleaning process, for example, the number of tuples visualized is reduced in 99%. Moreover, when performing
data cleaning tasks with Cleenex, real users need less time/effort (e.g., half the clicks) and, based on question-
naires, prefer it to the other tools used for comparison, OpenRefine and Pentaho Data Integration.
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1 INTRODUCTION

Nowadays, data is an essential asset of any business or public organization to support decision
through data analysis or automatic recommendations. Moreover, data is the basis of the main
products of IT companies such as Google, Facebook, Spotify, and IMDb. To guarantee successful
decisions, data quality is essential, otherwise, we end up with the known situation: “garbage in
garbage out.” In this context, garbage consists of data quality problems that result from a variety
of situations, from human error and sensor malfunctions to data integration scenarios.

Poor data quality greatly impacts data-based decisions. The world’s top companies have more
than 25% of its critical data dirty [50]. The existence of dirty data may have disastrous conse-
quences. For instance, wrong Electronic Health Records can lead to bad assumptions about a cer-
tain treatment. McKinsey estimates savings of 300 billion dollars every year in the United States
of America’s health care [29] by properly analyzing and correcting health data. Globally, Gartner
measures the average impact of data quality in organizations as $9.7 million per year [49].

Data quality problems that exist in structured data (e.g., relational databases) may be of different
types [32]. Single value data quality problems enclose, for instance, missing values, incorrect values
(e.g., syntax violations, misspelled errors, domain constraint violations), and ambiguous values
(e.g., acronyms with no expansion). When considering a set of records and/or attributes, we can
find violations of domain constraints (e.g., a publication published in year 3000), inconsistencies
(e.g., two publications with the same journal name and volume number that are not published in
the same year), and approximate duplicates (e.g., two records referring to the same person).

Example 1.1. Consider Figure 1 that presents a table containing structured data about publica-
tions. Some quality problems can be observed: (i) the incorrect value “and others” in the list of
authors for publication record 3; (ii) the data inconsistency that involves records 1, 2, and 3 given
that they do not satisfy the condition that journal publications published in the same journal and
volume must have the same publication year; (iii) a missing value in the year field of publication 4;
(iv) the occurrence of the acronym PDF in the abstract field of publication 5, with no expansion and
thus consisting on an ambiguous token; and (v) approximate duplicate records 5 and 6 referring
to the same publication.

1.1 Cleaning Structured Data

Data cleaning is today acclaimed as a central feature of data analysis and management tools. Data
cleaning aims at converting source data into target data without errors, missing values, ambiguities,
duplicates, and inconsistencies [39]. It is thus of paramount importance to execute a data cleaning
process to effectively eliminate data quality problems [46].

A data cleaning program to clean structured data is typically modeled by a program designer
as: (a) a graph of data transformations [16] or (b) a set of data quality rules [15].

In the approach (a), a data cleaning program is modeled as a graph of data cleaning transforma-
tions whose execution produces cleaned data. By providing distinct and configurable data opera-
tors that can be composed to implement those data transformations, data cleaning programs based
on graphs of data transformations can clean data inconsistencies, domain/syntax constraints, ap-
proximate duplicate records/attributes, missing values, and incorrect data if the correct values are
available in a reliable data source, which is integrated in the data cleaning process.
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Fig. 1. Example of data quality problems in a publications table.

Fig. 2. Part of a graph from a data transformation cleaning program.

Example 1.2. In Figure 2, we present part of a short data cleaning program based on data trans-
formations. In this graph, ellipses represent high-level data transformations, rectangles represent
data tables, and arrows represent data flows. This data cleaning program aims at identifying and
consolidating approximate duplicate scientific publications similar to records 5 and 6 identified
in Figure 1. First, the data cleaning program executes an Approximate Duplicate Detection trans-
formation that computes the similarity among all possible publication title pairs and filters out
the non-similar pairs of titles. Second, it applies a Grouping transformation to similar pairs of ti-
tles, which assigns a Group_ID to each publication title using a transitive closure algorithm, thus
guaranteeing that similar publications share the same Group_ID. Third, it applies a Consolidation

transformation to find the best representative publication title for each group of publications that
share the same Group_ID.

In the second type of data cleaning programs (b), data quality rules express conditions that data
must satisfy to be considered of good quality. If data does not satisfy a rule, then a violation occurs
and a data repair that corrects the data must be found. Data repairs are typically selected from the
set of possible data repairs using heuristics. In the literature, several formalisms were proposed
to express data quality rules. For example, the authors of Reference [6] proposed Conditional

Functional Dependencies (CFDs), an extension to Functional Dependencies [13].
By exploring different types of formalisms to specify data quality rules, these rule-based data

cleaning programs can identify and possibly lead to the resolution of data quality problems.

Example 1.3. To detect the data inconsistency that involves records 1, 2, and 3 in Figure 1, we
can use a CFD that represents the rule: All publications whose Type value is “Journal” and have
the same Published In and Volume values, must have the same year value. Translating to CFD
notation, this would correspond to: Type[Journal], Published In, Volume -> Year. In this
situation, data cleaning consists in generating, selecting, and applying a data repair that modifies
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the publications records to satisfy the CFD. Possible data repairs are: (i) change the Year of tuple 1
to 2014 or (ii) change the Volume value of record 1 to a different value (e.g., 50).

It is worth noting that commercial data cleaning tools typically support data cleaning graphs [3],
which are useful for users to control the data flow [24]. Nevertheless, the majority of recent re-
search contributions rely on complex data quality rules and on the expensive generation of data
repairs [24].

1.2 User Feedback in a Data Cleaning Process

Often, the execution of a data cleaning program is insufficient to clean all the data quality prob-
lems present in real databases. This happens because: (i) the data quality rules or transformations
available cannot cover all the cleaning criteria required to generate clean data, leaving some dirt-
iness; or (ii) in case of machine learning-based data cleaning, the available clean data may not be
sufficient to infer the correct values (e.g., infer the name of a publication). For instance, missing
and incorrect values (e.g., missing year) cannot be cleaned by data transformations nor generated
data repairs without using an external data source that contains the correct values. Another ex-
ample is when detecting approximate duplicates. In practice, there is no approximate duplicate
criteria (i.e., similarity function and threshold) that perfectly identifies records that refer to the
same entity in the real world. The incorrect identification of approximate duplicate records results
in false positives or false negatives thus leaving some data dirtiness.

After a data cleaning process, users with domain knowledge typically have to manually repair
some data tuples to guarantee the highest quality levels of the resulting data. In these cases, en-
abling a user to manually clean a subset of data is crucial.

1.3 Support for the User Involvement during the Execution of a Data Cleaning Process

In this work, we focus on a particular aspect of human-in-the-loop for data cleaning: user involve-
ment during the execution of a data cleaning process that is modeled as a data cleaning graph. User
involvement is required during the execution of a data cleaning process because: (i) data transfor-
mations used in a data cleaning process need to be tuned, or (ii) data records that are generated
by the transformations that compose a data cleaning process may need to be manually repaired
through user feedback during the execution of an automatic data cleaning process.

Similarly to software development, a data cleaning process needs to be iteratively refined and
executed to obtain the highest quality of data. These refinements can be due to: (i) new data batches
that are continuously provided as input and contain new data quality problems or (ii) modifications
to data transformations that may introduce new data quality problems. Unlike software develop-
ment, a data cleaning process often benefits from manually data repairs where the user feedback
resolves data quality problems, e.g., using expert knowledge to impute missing values. Moreover,
if these repairs are introduced in early phases of the data cleaning process, then they can avoid
the propagation of data quality problems to further stages of the process.

In the literature, Rezig et al. [45] describe a design vision for an end-to-end data cleaning frame-
work that includes several types of user involvement during a data cleaning process, such as re-
fining a data cleaning program and user feedback to manually clean data. Other complementary
tasks in data quality such as data profiling and exploration have benefited from user involvement
to detect data quality problems and efficiently explore data [37, 51].

Despite its importance in a data cleaning process, user involvement in commercially adopted
data preparation tools to perform data cleaning is limited. ETL (Extract, Transform, and Load)
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tools like Pentaho Data Integration (PDI)1 only support the user to tune and combine data trans-
formations. Data wrangling tools like OpenRefine2 support manual data repairs and automatic
data transformation. However, the single possibility to modify applied manual data repairs and
data transformation in a data cleaning program is to remove them, but that is also limited by order
of newest to oldest in a similar manner to the Undo function present in word-processing software.
So far, commercial ETL and data wrangling tools do not support the incorporation of user feedback
to manually repair data during the iterative refinement and execution of a data cleaning process.

To summarize, currently, there is no data cleaning framework that supports, in a principled way,
the user involvement during an iterative execution of such a process. Furthermore, no evaluation
of ETL and data wrangling tools with real users to measure the user effort when designing data
cleaning programs and manually correcting structured data has been performed so far.

1.4 Main Contributions

This article describes the following contributions that address the above mentioned problems re-
garding the support for the user involvement and user effort evaluation:

— Cleenex, a data cleaning framework that is based on the Ajax data cleaning framework [16]
that provides customizable data transformations to clean relational databases. It extends Ajax
with a manual data repair management component whose main principles were proposed in
Reference [17]. This component allows the designer to specify where and how data can be
manually repaired during the execution of a data cleaning process. Additionally, Cleenex
offers a debugging mechanism for data cleaning processes that provides the provenance of
the data. To support the user involvement in an iterative execution of a data cleaning process,
we developed two additional components (manual data repair persistence and manual data

repair recovery) that prevent the integral re-execution of data cleaning processes and the loss
of previous manual data repairs. Moreover, we formulated and implemented an algorithm for

the detection and automatic recovery of manual data repairs, that, given a new execution of a
data cleaning process, identifies which manual data repairs can be automatically re-applied.
Even when manual data repairs cannot be automatically re-applied, Cleenex attempts to
recover those manual data repairs by requesting the user for additional feedback, which is
less demanding than manually repairing the data from scratch.

— An extensive user involvement evaluation of Cleenex that includes two evaluation
studies: (i) the evaluation of the three individual Cleenex components that support the user

involvement (i.e., manual data repairs, persistence, and recovery); and (ii) the evaluation of

Cleenex against two other data preparation tools, OpenRefine and PDI, in terms of their effi-
ciency and effectiveness to support the user involvement.
To evaluate the Cleenex components, we programmed a simulated and ideal user to execute
a data cleaning process, to manually repair the data, and to provide feedback during such an
iterative process. We measured the required amount of data that the simulated user has to
visualize and the number of actions that the simulated user has to perform to clean the data.
To evaluate Cleenex against OpenRefine and PDI, we performed a within-subjects experi-
mental evaluation with 32 users that include: (i) two datasets with data quality problems
that simulate real scenarios, (ii) two tasks in the context of data cleaning that need to be ex-
ecuted by users using each tool, and (iii) a satisfaction questionnaire that assessed the user
perception about each tool. The execution of the data cleaning tasks was evaluated by its

1http://community.pentaho.com/projects/data-integration/
2https://openrefine.org/
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Fig. 3. Typical data cleaning process.

correct or incorrect completion, execution time, and number of user actions (e.g., clicks and
keys pressed).

1.5 Document Outline

The rest of this document is structured as follows: Section 2 presents the fundamental concepts of
data cleaning. Section 3 summarizes the most important related work about user involvement in
cleaning data and data cleaning frameworks. In Section 4, we describe Cleenex and the components
that support the user involvement in an iterative execution of a data cleaning process. In Section 5,
we detail the experimental evaluation procedure and corresponding results to assess user involve-
ment in such a process. In Section 6, we discuss the results and the limitations. Section 7 draws
key conclusions and ideas for future work.

2 OVERVIEW OF A DATA CLEANING PROCESS

In Figure 3, we present a typical data cleaning process. Usually, this process is preceded by a
Data Quality Analysis process that is intended to audit the Dirty Data through data quality rules
and statistical techniques. Then, the user should have sufficient information to proceed with the
Data Cleaning Program Design (with data transformations or data quality rules) that can clean the
data quality problems previously identified. The next step is the Data Cleaning Program Execution

followed by a step where the user can provide User Feedback by manually correcting instances
of data quality problems not addressed by the automatic methods. In the Effectiveness Evaluation

phase, the effectiveness of the data cleaning process is checked by measuring the data quality of a
sample taken from the processed data. If the data is not sufficiently clean, then the same process
is reapplied to the entire Dirty Data with a refined data cleaning program until the desired data
quality is achieved. In the next sections, we present the two main types of data cleaning approaches.
First, we describe data transformations in Section 2.1 and then data quality rules in Section 2.2.

2.1 Data Transformations

In this section, we describe a data cleaning process based on data transformations. A data clean-
ing program constituted of data transformations is usually designed based on a drag-and-drop
graphical user interface, identical to most user interfaces supported by ETL software, where data
transformations are represented by boxes and the data flows by links between those boxes.

A data cleaning program based on data transformations is usually modeled as a graph of data
transformations. The effective combination of data transformations within a graph and the proper
tuning of the cleaning criteria underlying each data transformation can transform dirty tables into
clean tables.

Example 2.1. Consider publication references in a database table, obtained using an extraction
software, we now want to obtain a list of approximate duplicate author name pairs. We start from
an instance of this database table named PublicationAuthors as in Figure 4(a) that contains two
attributes: (i) Pub ID, the publication identifier, and (ii) Authors, containing the last names of each
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Fig. 4. Stage tables from transforming a table containing authors name by publication into a table containing
similar author names.

publication author separated by commas. The final expected result is the SimilarAuthors table,
shown in Figure 4(c), whose schema has 5 attributes: a pair of authors, each represented by an
identifier Author ID 1/2 and its last name Name 1/2; and a distance value between the two authors’
last names within the same pair. To obtain such table, we have to execute an Approximate Dupli-
cate Detection operation composed by the following two high-level data transformations:

Splitting: Splits each field value into a different row using a character or pattern as a sep-
arator. In the example, Splitting extracts the individual author names from the string field
PublicationAuthors.Authors using a comma as a separator (Figure 4(a) to Figure 4(b)).
Approximate Duplicate Detection: Computes a distance value using a distance function
(e.g., the edit-distance [27] function) for all possible pairs of values for the input field Au-

thors.Name (in Figure 4(b)). Then, it filters the rows using a given threshold value, e.g., dis-
tance values below 3 (Figure 4(b) to Figure 4(c)).

Finally, to emphasize the need for the user to manually correct instances of data quality problems
not addressed by the automatic method, note that, in Figure 4(c), the names Heiken and Reeken

(tuple in Italic) do not refer to the same real author and so tuple needs to be removed.

2.2 Data Quality Rules

Data quality rules express conditions that data must satisfy to be considered of good quality. When
a rule is violated, then a data quality problem occurs. In this section, we describe the type of rules
available for data quality analysis and the data cleaning process based on such rules.

Conceptually, the first rules implemented in data management software (e.g., RDBMS—

Relational Database Management Systems) were integrity constraints. Integrity constraints
describe conditions among data values, for instance, a normal employee cannot earn more than the
director of a company. Functional Dependencies (FDs) [13] are integrity rules that check if, for
any set of tuples whose values of a set of user specified attributes X are equal (e.g., same Zipcode),
the values of those tuples in another specified set of attributes Y (e.g., same City) are equal. An FD
is represented as X -> Y . As an example, consider a table Customers storing person records that
contain location-related attributes such as City, Zipcode, and Country. We may state that if two or
more records share the same zip code, then they must have the same city value. The corresponding
FD is: Zipcode -> City. Conditional Functional Dependencies (CFDs) [6] are extensions to
FDs that enable to use value conditions for attributes. Consider that the FD previously defined was
only valid in the United States of America, then we can specify a CFD that expresses that condition
as follows: Country[United States of America], Zipcode -> City. Other formalisms are:
Inclusion Dependencies (INDs), which express conditions that data records must satisfy across
relations (e.g., a foreign key in a database); Conditional Inclusion Dependencies (CIDs) [7],

ACM J. Data Inform. Quality, Vol. 16, No. 1, Article 6. Publication date: March 2024.
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Table 1. Summary of Related Work on User Involvement in Data Cleaning and General Purpose Data
Cleaning Tools

Related Work Year User Feedback to/for data repairs Data Cleaning Approach

Ajax [16] 2001 No Data transformations
FEBRL [9] 2005 No Data transformations
GDR [55] 2011 Select data repairs Automatic selection of data repairs for CFDs
LLUNATIC [18] 2013 Resolve conflicting data repairs Automatic selection of data repairs for EGDs
NADEEF [11] 2013 No Automatic selection of data repairs for CFDs, Mds, and DCs
CDC [52] 2014 Select repair types Automatic selection of data and FDs repairs
FALCON [20] 2016 Provide data repairs and select update statements Guide user to obtain data repairs
ActiveClean [25] 2016 Manual edit data values Obtain edited data to improve ML models
Holoclean [43] 2017 No Automatic generation of data repairs with probabilistic models,

DCs, and knowledge bases
DANCE [2] 2018 Provide data repairs Guide user to obtain data repairs to TGDs and EGDs
ICARUS [40] 2018 Provide data repairs and select update statements Guide user to obtain data repairs
PIClean [56] 2019 Manual edit data and select data repairs Automatic generation of data repairs with probabilistic models
UDATA [38] 2019 Input/output data examples and verify

transformations
Data transformations

CoClean [30] 2020 Manual edit data values Support multiple users to edit data simultaneously
Baran [28] 2020 Manual edit data values ML models to edit data cells
Horizon [44] 2021 No Automatic selection of data repairs for FDs
Garf [34] 2022 No Automatic generation of data repairs with probablistic models
Räth et al. [42] 2023 Select suggested data transformations Data transformations for streaming data
Precisely Data
Integrity Suite

N/A No Data transformations

PDI N/A No Data transformations
OpenRefine N/A Manual edit data values and delete tuples Data transformations

which enable to express conditions over INDs (like the CFDs did with FDs); and Matching De-

pendencies (MDs) [14], which are dependencies designed for approximate duplicate detection.
Finally, equality generating dependencies (egds) [4] consists on a formalism that standardize
dependencies by proposing a syntax based on logic that encloses most of the data dependencies
from the literature (e.g., CFDs, CIDs).

As stated above, data must satisfy the conditions described by a set of data quality rules, oth-
erwise a violation occurs, meaning that data quality problems are found. To resolve a violation,
there are different alternatives to modify the data called data repairs. For example, consider the
records 1, 2, and 3 in Figure 1 and the CFD Type[Journal], Published In, Volume -> Year,
an obvious data repair is to change the Year of tuple 1 to 2014. Another valid data repair would be
to change the volume value of record 1 to a different value such as 50. Choosing which data repair
to apply is usually performed through heuristics [8, 10, 11, 18].

3 RELATED WORK

In this section, we describe the related work in data cleaning. In Table 1, we first summarize re-
search works that involve the user in a data cleaning process in such a way that she can pro-
vide feedback to repair the data, and then we overview both commercial and research general
purpose data cleaning tools. We describe each work regarding: (i) its support for user feedback to
repair data and (ii) the type of data cleaning approach. Additionally, we discuss the Large Lan-

guage Models (LLMs) opportunities in the data cleaning field and other research directions.
User involvement. In LLUNATIC [18], data quality constraints are supported by a language

based on equality generating dependencies (egds) [4] whose semantic incorporates most of the
data quality rules from the literature. The user aims at resolving conflicts unresolved by automatic
generated repairs for violations of data quality constraints. So, the user provides a value for cells
marked with lluns. UDATA [38] learns data transformations through an input/output example, i.e.,
a set of dirty input tuples and desired (cleaned) output tuples provided by the user. Additionally, it
asks the user to verify the generated data transformations. Although manual cleaning is performed
by a user, it is only over a subset of data to serve as an example to generate data transformations.
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In another line of work, Guided Data Repairs (GDR) [55] take advantage of the user to replace
heuristics for selecting data repairs to solve Conditional Functional Dependencies (CFDs) vi-
olations while in Continuous Data Cleaning (CDC) [52] the user has to train a model that to
solve a given violation decides whether to repair the data or to specialize the Functional Depen-

dencies (FDs). PiClean [56] and Baran [28] train Machine Learning (ML) and/or probabilistic
models with user feedback from manual editing data. In PiClean, users also select the right data
repairs, while Baran focuses only on modifications to single cells. ActiveClean [25] also learns
from user feedback when editing data but aims at improving the data specifically for ML models
by selecting the data to manually repair that maximizes ML models’ performance.

DANCE [2], FALCON [20], ICARUS [40], and CoClean [30] aim at achieving high data qual-
ity by refusing the automatic selection of data repairs. Thus, they delegate data repairing ex-
clusively to the user. DANCE tries to clean data by relying only on the user to produce data
repairs. It minimizes the user effort by guiding her through the tuples that are the most likely
to need data repairs. FALCON and ICARUS allow the user to first edit a cell and then generate
general update statements based on the user modification. FALCON supports the edition of miss-
ing or incorrect values and focuses on minimizing the user effort in generating update statements,
whereas ICARUS supports only the edition of missing values but obtains better performance than
FALCON. Moreover, ICARUS focuses on selecting the initial data to present to the user. CoClean
gives support to multiple users to edit a table at the same time.

Recently, Räth et al. [42] proposed to address iterative data cleaning when new data (i.e., stream
data) are given as input, similar to our motivation. However, the authors’ focus is on suggesting
data transformations to this new data and, similarly to Potter’s Wheel framework [41], considers
user involvement to select such data transformations. Our work focuses on the user feedback when
manually editing data.

So far, in the context of the user involvement in a data cleaning process, the user has been
proposed to help resolve data quality constraint violations, to generate update statements (which
can also be constraints) based on edited cells or to train ML/probabilistic models. The importance
of user feedback to achieve high levels of quality is shared across all these works for specific tasks,
e.g., repairing missing values. Nevertheless, the user has not been involved to manually clean
data in a data cleaning process where data cleaning programs are based on data transformations,
which is the most common approach in companies but not in research. Moreover, user involvement
was not explored when continuous program refinements are applied through an iterative process.
Note that CDC [52] addresses only stream data by proposing to specialize FDs, and Räth et al. [42]
consider the user to verify the resulting data transformations.

General purpose tools. Customized data cleaning procedures can be implemented using a gen-
eral purpose programming language, such as Java or Python, or a specialized software tool. Special-
ized commercial and research tools typically support different data operators that can be composed
and form a transformation workflow to clean data. For instance, ETL (Extraction, Transforma-

tion, and Loading) tools such as Informatica PowerCenter3, IBM Data Integration4, Talend5, and
Pentaho Data Integration (PDI)6 provide a panoply of data operators that can implement sev-
eral data transformations on structured data. Data wrangling tools, such as Trifacta Wrangler7

based on the research tool Data Wrangler [22], and OpenRefine8, provide an interactive process

3https://www.informatica.com/products/data-integration/powercenter.html
4https://www.ibm.com/analytics/us/en/technology/data-integration/
5https://www.talend.com/
6http://community.pentaho.com/projects/data-integration/
7https://www.trifacta.com/
8http://openrefine.org/
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to implement data transformations and to map data to a specific format through data operators.
Finally, there are tools specifically designed for data cleaning purposes such as the commercial
tool Trillium Quality9 integrated in the Precisely Data Integrity Suite, and research tools.

Recent and general purpose data cleaning frameworks, LLUNATIC [18], NADEEF [11], and Hori-
zon [44], aim at generating data repairs to address tuples violating data quality rules. Most recently,
Garf [34] and Holoclean [43] provide automatic data repairs using probabilistic models. Both re-
ceive, from the user, the identification of a subset of clean data from a larger corpus. Holoclean also
supports knowledge bases and Denial Constraints (DCs) as input. Older research tools such as
FEBRL [9] and Ajax [16] support data transformations but, as ETL tools, do not support the user
involvement when manually cleaning data.

Large Language Models. Recently, with the popularity of Large Language Models (LLMs)

that generate text (e.g., ChatGPT10) the automation of some data cleaning tasks is possible, namely,
through the generation of code in a general purpose programming language or through prompt en-
gineering, to transform a data cleaning task into a natural language question. Regarding the typical
use cases of LLM, it can be used to (i) generate code for data transformations and (ii) perform data
cleaning tasks that involve natural language analysis or correction, such as value imputation and
approximate duplicate detection [31, 53]. In the first case, we foresee little adoption, as the code
returned is usually a template that needs customization and which specialized tools already pro-
vide using intuitive graphical user interfaces. The usage (ii) can be complementary to specialized
data cleaning frameworks and could be integrated in their pipelines, including also user involve-
ment. Due to limitations in the input length of models like ChatGPT (e.g., 1,000 characters), high
usage costs, and high latency, it becomes impractical to perform data cleaning tasks that involve
processing medium to large amounts of data. Tasks such as resolving inconsistencies across tuples
or tables or performing approximate duplicate detection for a large number of record pairs may
not fit within the input size or could result in prolonged execution times.

Other research directions. Additional research directions for data cleaning, though not di-
rectly related with our current work, encompass: cleaning data with the (single) objective of im-
proving ML models performance (CPClean [23] and AutoCure [1]), upgrading ML models fairness
[47] or enhancing query results (Reference [5] and Dasy [19]), cleaning time series data [54], and
integrating privacy issues into the data cleaning process [21].

4 CLEENEX

In this section, we describe Cleenex, which is based on the data cleaning framework called Ajax
[16] that separates the logical specification of a data cleaning process from its physical imple-
mentation (SQL or Java algorithm implementations). The development of a data cleaning process
in Cleenex involves the design of a data cleaning graph where the nodes are data operators or
relational tables and the edges connect relational tables to data operators, as input or output. It
supports five customizable data operators: (i) Map, which supports one-to-many operations that
transform a tuple into one or more tuples (e.g., a split operation); (ii) Match, which computes an
approximate join between two tables; (iii) Cluster, which groups the tuples of a table into parti-
tions; (iv) Merge, which receives a table as input and outputs a tuple and its attributes for each
partition accordingly to a given criteria algorithm; and (v) View, which supports the operations
already present in the SQL language. Cleenex also supports a debugging mechanism that enables
the user to select tuples from any table in the graph and navigate backwards or forwards through
the data cleaning graph displaying the provenance of tuples.

9https://www.precisely.com/product/precisely-trillium/trillium-quality
10https://openai.com/research/chatgpt
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Fig. 5. Cleenex GUI with a data cleaning graph to detect approximate duplicate authors.

Example 4.1. Figure 5 presents the Cleenex GUI illustrating a data cleaning graph that performs
the same data transformations of Example 2.1 (Section 2.1) to detect approximate duplicate authors
from a list of publications (Table PublicationAuthors). The Splitting high-level data transformation
is implemented in Cleenex with two Map operators: the first applies a splitting function for each
publication, the second generates IDs for each author name. The Approximate Duplicate Detection
is implemented with the Match operator that computes the edit-distance for each author name pair
and returns the pairs whose distance value is less than 3.

To effectively support the user involvement, the designer may also specify Quality Constraints
and/or Manual Data Repairs over any table of a data cleaning graph as proposed in Reference [17].
Quality Constraints (QCs) are integrity rules used to assess the data quality in a specific table
of the graph. The tuples of a table that violate a quality constraint are named blamed tuples. Those
blamed tuples bring the attention of the user to data tuples that do not satisfy QCs. Manual Data

Repairs (MDRs) allow the user to manually modify data tuples that belong to tables in a data
cleaning graph. In particular, MDRs can be used to manually correct blamed tuples. An MDR is
defined by the set of allowed actions that can be taken over a table and a view. The actions can
be: (i) updating a specific set of attribute values, (ii) deleting tuples, and/or (iii) adding tuples. The
view mimics an SQL view and is used to specify the tuples and attributes of a relational table in the
graph or the set of blamed tuples that are shown to the user. When the user manually repairs a data
tuple, an MDR instance is created. An MDR instance stores the MDR name and the specific manual
data modification performed by the user. An MDR instance is then used to apply the corresponding
user manual data repair to the relational table when the data cleaning process re-executes.

Example 4.2 (User feedback in a data cleaning process). Consider the PublicationAuthors table that
stores publication IDs and its author names as shown on the top of Figure 6. A User executes the
data cleaning graph explained in Example 4.1. To simplify, we focus on the first data transformation,
where we apply a Splitting transformation (using two Map operators in Cleenex) that splits the
strings containing several author names stored in the Authors column of the PublicationAuthors

table into several records and assigns an identifier to each name (Author ID). A QC to detect tuples
whose author name contains either “Others” or “and” was previously specified. An MDR is defined
with a view over the blamed tuples generated by violations of this QC and allows the user to delete
or update the author name column value. The specifications of these QC and MDR are represented
on top left of Figure 6. In Figure 6, we show the different iterations required to completely clean
the data. The User executes this data cleaning process and manually repairs the incorrect author
names that are either named “Others” or “and.” The iterative data cleaning process runs as follows:

— At iteration t , a User executes a data cleaning graph that, given the PublicationAuthors table
as input, creates an Authors table where Author ID is the identifier of an author and Name is
its name. The tuples 1, 2, and 5 of the Authors table are blamed tuples, because they violate
the specified QC.
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Fig. 6. Example of user feedback in Cleenex during a data cleaning process.

— At iteration t+1, using the MDR, the user manually repairs tuples 1, 2, and 5 in table Authors.
MDR Instance ID=0 corresponds to deleting the tuple with the “and” value (tuple 1), MDRs
Instances ID=1 and 2 correspond to replace the “Others” by values “Reiiken” and “Heiken,”
respectively. The MDR instances are then applied to the Authors table, resulting in a clean
table with no “Others” and “and” values.

— At iteration t + 2, the User re-executes the data cleaning graph, because the original Pub-

licationAuthors table was modified (e.g., a new data record was added, Pub ID=0). For the
purpose of illustration, consider that the publication ID generation is carried out externally
(e.g., through a web crawler over semanticscholar.com), so not predictable (e.g., random).
This time, the identifier of the publication with original Pub ID=0 is modified to Pub ID=2.
The result is once again a dirty Authors table containing “Others” and “and” values in the
name column.

— At iteration t+3, the User once again manually repairs the Authors table as she did in iteration
t + 1, leading to a clean Authors table.

In Section 4.1, we focus on the Cleenex components that support the iterative execution of
a data cleaning process. For a comprehensive architecture description and technical details, see
Reference [35].

ACM J. Data Inform. Quality, Vol. 16, No. 1, Article 6. Publication date: March 2024.



Cleenex 6:13

4.1 Supporting the Iterative Execution of a Data Cleaning Process

The execution of a data cleaning process is typically iterative mainly due to the following two cases:
(i) the design of a data cleaning process is an iterative process where the designer refines the data
cleaning graph, executes it, and then evaluates the quality of data produced; and (ii) the initial
input data may change, e.g., when the amount of data is very large, it is more efficient to use a data
sample (i.e., a small set of data) to design the data cleaning process. After the process is refined,
the designer executes the data cleaning process to the whole dataset. Due to those two cases,
Cleenex may produce new data in different points of the graph, e.g., the new PublicationAuthors

table in iteration t+2 of Figure 6. Every time a data cleaning process reruns, Cleenex automatically
reapplies the actions contained in MDR instances produced in a previous run to the relational data
tables in the graph; otherwise, the user has to perform those actions again as in iteration t + 3 of
Figure 6.

There are two problems with the automatic reapplication of MDR instances. First, the MDR
instances do not persist in disk, so they are lost when a program re-executes. Second, the reap-
plication of MDR instances to modified and/or additional data as explained above is a challenge,
because the data tuples may not hold all their original attribute values. We define that an MDR

instance conflict arises when Cleenex cannot automatically apply an MDR instance due to consid-
erable data changes that do not guarantee that the modifications still hold. For example, in iteration
t + 2 of Figure 6, the incorrect author names, i.e., “and” and “Others” values, have now different
Author ID values, so Cleenex is not able to reapply the MDR instance to the right tuple.

To support the iterative execution of a data cleaning process with the above constraints, we
first added to Cleenex the MDR Persistence component that prevents the loss of previous MDR
instances when the data cleaning process is re-executed with the same data. Then, we created the
MDR Recovery component that tries to reapply MDR instances in case of conflict or asks the user in
a concise way for additional feedback. To develop such component, in Reference [33], the author
introduced the notion of deterministic attributes in a Cleenex data cleaning graph specification.
Deterministic attributes are attributes whose values do not change during the iterative execution
of a data cleaning process (e.g., column Name of table Authors in Figure 6). So, only the values of
deterministic attributes are taken into account to reapply MDR instances, while the remaining val-
ues are ignored because they may have changed. In the context of this component, we formulated
and implemented an algorithm (detailed in Section 4.1.1) for the detection and automatic recovery
of MDR instances,11 which tries as much as possible with 100% guarantees to recover the MDR
instances from a conflict. If it is not possible to recover, then the algorithm calls the user to help
selecting the right data tuples to which the MDR instance should be reapplied.

Example 4.3 (Iterative data cleaning process). To exemplify the usefulness of the MDR Persistence
and the MDR Recovery components, we revisit the example of Figure 6—defining column Name

of table Authors as deterministic and recreating iterations t + 2 and t + 3 in Figure 7 using these
two components:

— At iteration t + 2, the generated dirty Authors table is passed as input to the MDR Recovery
component. The MDR Recovery component obtains the MDR instances created in iteration
t + 1 through the MDR Persistence component, which retrieves them from the database. For
Instance ID=0, it can recover the tuple, because there is only one “and” and it is placed in a
deterministic column, so it removes the tuple. Since there are two tuples with “Others,” the
component is not able to identify which MDR instance to apply to each tuple, so it creates a

11The thesis cited in Reference [33] proposed the first version of the algorithm and developed the GUI to support conflict
resolution.
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ALGORITHM 1: MDR instance recovery and conflict resolution algorithm
Input:

view = view specified in the MDR, includes the tuples in the view;

mdr_instances = list of MDR instances that belong to the same MDR;

pk_atts = list of attributes that constitute the primary key of the base relation of the view vr;

det_atts = list of attributes of the base relation of the view vr that have been declared as deterministic;

Output: conflicts = list of MDR instance conflicts

1 conflicts← ∅;
2 foreach inst ∈ mdr_instances do
3 if inst.action = insert then view← view ∪ inst.new_tuple ; // There are no MDR Conflicts

4 else if pk_atts ⊆ det_atts then applyMDRInstance (inst, pk_atts, view) ; // There are no MDR Conflicts

5 else
6 candidate_tuples← {tuple ∈ view such that tuple.att = inst.old_tuple.att for all att ∈ det_atts};
7 if |candidate_tuples | = 1 then applyMDRInstance (inst, det_atts, view) ; // There are no MDR Conflicts

8 else
9 new_conflict← conflict (inst, candidate_tuples);

10 conflicts← conflicts ∪ new_conflict;
11 return conflicts;

/* Applies the MDR instance to every tuple that for all attributes passed as argument, the values are equal

to the instance old tuple values */

12 Procedure applyMDRInstance ( inst, atts, view):
13 foreach tuple ∈ view do
14 if tuple.att = inst.old_tuple.att for all att ∈ atts then
15 if inst.action = delete then view← view \tuple;
16 else // Update MDR
17 new_tuple← tuple;
18 foreach att ∈ inst.action.update do new_tuple.att← inst.new_tuple.att ;
19 view← view \tuple ∪ new_tuple;

conflict for MDR instances 1 and 2 saving the candidate tuples Primary Keys (PK) values
(in this example, the Primary Key is the Author ID column).

— At iteration t + 3, the User selects one conflict to resolve. She selects the MDR Instance

ID=1 and selects the tuple with Author ID=7 to which this MDR instance should apply. The
MDR instance is updated with the new tuple and it is applied to the Authors table, leaving
only one tuple with the value “Others.” The MDR recovery component is called with the new
MDR instances and the new Author table. Now, because only one tuple contains the “Others”
value, the MDR recovery component is able to assign it to MDR Instance ID=2, then updates
the MDR instance and applies it to the Authors table, resulting in a cleaned table. Note that,
although the number of iterations is the same, the User only had to select the tuple to which
an MDR instance should be applied while before, as illustrated in Figure 6, the User had to
produce all the MDR instances from scratch.

4.1.1 Conflict Detection and Automatic Recovery Algorithm. We present the algorithm for the
conflict detection and automatic recovery of MDR instances in Algorithm 1. This algorithm re-
ceives a list of MDR instances that belong to the same MDR, applies the MDR instances that have
no conflicts, and outputs a list of MDR instance conflicts to be resolved by the user.

At each new execution of the data cleaning graph, the algorithm first detects existing MDR in-
stance conflicts by evaluating each MDR instance (line 2). If an MDR instance contains an insert
action, then there is no conflict possible, and it is immediately applied (line 3). If all attributes
that form the Primary Key involved in the MDR instance are deterministic, then there is also
no conflict, and the MDR instance can be applied (line 4). For each remaining MDR instances,
the algorithm checks the tuples whose deterministic attribute values are equal to the MDR in-
stance Old Tuple values (line 6). If there is only one tuple, then the algorithm can apply the MDR
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Fig. 7. Example of user feedback in Cleenex using the MDR persistence and the MDR recovery components
during an iterative data cleaning process.

instance (line 7), e.g., deleting “and” in Figure 7 iteration t +2 and updating the remaining “Others”
value in Figure 7 iteration t+3; otherwise, a new conflict has to be created (lines 9–10), e.g., the two
“Others” values in Figure 7 iteration t + 2. A conflict contains the original MDR instance and the
tuples found whose deterministic values are equal to the MDR instance Old Tuple values. When
the algorithm finishes, the user can inspect the conflicts returned by the algorithm and decide how
to resolve them.

5 USER INVOLVEMENT EVALUATION

We conducted an extensive experimental validation to evaluate the support for the user involve-
ment in Cleenex with two studies: (i) with a simulated user, we evaluated the Cleenex compo-
nents regarding their support for the user feedback during a data cleaning process; and (ii) with
real users, we conducted an experimental evaluation of user involvement during a data cleaning
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process with Cleenex against two data preparation tools typically used for data cleaning: Open-
Refine and PDI. In Reference [36], we had already conducted a preliminary experimental study to
compare Cleenex against OpenRefine and PDI in the context of Approximate Duplicate Detection
and Consolidation.

We report the research questions, experimental setup, and obtained results to evaluate Cleenex
support for the user feedback in Section 5.1. We detail our experiments with real users on Cleenex,
OpenRefine, and PDI in Section 5.2.

5.1 User Feedback Support in Cleenex

The goal of this study was to evaluate the effectiveness of the different components incorporated
in Cleenex (namely, QC/MDR Managers, MDRs persistence, and MDRs recovery) in terms of their
effect for reducing the user effort when manually cleaning data during a data cleaning process.
Research Questions. Specifically, we investigate the following research questions:

RQ1.1: What is the impact of having QCs and MDRs in the context of a data cleaning
process?

RQ1.2: What is the impact of having persistent MDR instances in the context of an iterative
data cleaning process?

RQ1.3: What is the impact of having MDR conflict resolution in the context of an iterative data
cleaning process?

Experimental Setup. To answer those research questions, we programmed an ideal user to exe-
cute a data cleaning program, refined by a designer, and to manually clean the required data during
a data cleaning process to obtain 100% clean data. We used the following two datasets: (i) Big Publi-

cation Authors (BPA), which consists of a table that lists publications and corresponding authors
where some author names are written in similar but different ways (approximate duplicates); and
(ii) Customers (C), which contains three tables: one for customers with inconsistent phone num-
ber formats, incorrect/missing values in customer name, phone number, street and city, another
table for treatments where insurance names are written differently (approximate duplicates), and
a master data table that contains a cleaned subset of customer records.

For each dataset, we measured the user effort needed to clean the data quality problems left after
executing a data cleaning program designed by an expert: the number of tuples and characters
(chars) visualized, inserted, updated, and deleted by the user to obtain 100% clean data.
Results. Table 2 reports the results after executing the first iteration of the data cleaning program
for the BPA dataset using Cleenex with QCs and MDRs. We compare it against the baseline, which
is the alternative way available for the user to manually clean the data and obtain equal end results
without QCs and MDRs. In Table 3, we report further iterations over the same data cleaning process
for BPA with QCs and MDRs. We measured the user effort when cleaning again the same data
quality problems with the MDRs Persistence component and with and without the MDRs Recovery
component. We compare those two components against the baseline, which is to use Cleenex
without such components where only QCs and MDRs are available but MDR instances are lost
after each iteration. Table 4 reports the results of executing the data cleaning program for the C
dataset with and without QCs and MDRs.

RQ1.1. Based on the results reported in Tables 2 and 4, we observe that performing a data
cleaning process with QCs/MDRs reduces the user effort, because the user needs to
visualize less data (74%–99% less tuples and 86%–99% less chars) and perform effortless
manual data repairs (64%–94% less chars inserted/updated) comparatively to the same
process without QCs/MDRs.
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Table 2. User Results after Executing the First Iteration of the Data Cleaning Process for the BPA Dataset.
The gain percentage with respect to the first column values is reported in parentheses in the last column

Without Qcs/MDRs (Baseline) With Qcs/MDRs

Visualization
# tuples visualized 1,413 365 (74%)
# chars visualized 51,259 7,308 (86%)

Insertion
# tuples inserted 214 0 (100%)
# chars inserted 2,589 0 (100%)

Update
# tuples updated 0 100 (N/A)
# chars updated 0 939 (N/A)

Deletion # tuples deleted 1 165 (-16400%)

Total
# tuples inserted/updated/deleted 215 265 (-23%)
# chars inserted/updated 2,589 939 (64%)

Table 3. User Results per Iteration (Excluding the First One) of the Iterative Data Cleaning
Process for the BPA Dataset. The gain percentage with respect to each of the two

left columns values is reported in parentheses in the adjacent column to right

Without MDRs Persistence

and MDRs Recovery

(Baseline)

With MDRs Persistence and

without MDRs Recovery

With MDRs Persistence

and MDRs Recovery

Visualization
# tuples visualized 365 265 (27%) 106 (60%)
# chars visualized 7,308 6,426 (12%) 2,481 (61%)

Insertion
# tuples inserted 0 0 (N/A) 0 (N/A)
# chars inserted 0 0 (N/A) 0 (N/A)

Update
# tuples updated 100 0 (100%) 0 (N/A)
# chars updated 939 0 (100%) 0 (N/A)

Deletion # tuples deleted 165 165 (0%) 26 (84%)

Total
# tuples inserted/updated/deleted 265 165 (38%) 26 (84%)
# chars inserted/updated 939 0 (100%) 0 (N/A)

Table 4. User Results after Executing the Data Cleaning Process for the C Dataset. The gain percentage
with respect to the first column values is reported in parentheses in the last column

Without Qcs/MDRs (Baseline) With Qcs/MDRs

Visualization
# tuples visualized 176,200 1,739 (99%)
# chars visualized 9,902,194 145,017 (99%)

Insertion
# tuples inserted 0 0 (N/A)
# chars inserted 0 0 (N/A)

Update
# tuples updated 268 69 (74%)
# chars updated 5,851 333 (94%)

Deletion # tuples deleted 0 200 (N/A)

Total
# tuples inserted/updated/deleted 268 269 (0%)
# chars inserted/updated 5,851 333 (94%)

RQ1.2. The MDRs Persistence component reduced the user effort when manually cleaning data
in an iterative data cleaning process. As observed in Table 3, the number of tuple up-
dates is reduced to zero and the number of tuples visualized dropped 27%.

RQ1.3. Regarding an iterative data cleaning process with the MDRs Recovery component, we
observe also in Table 3 that this component reduces the user effort. The MDRs Recov-
ery component was able to recover most of the manual data repair instances created by
the user in previous iterations of the data cleaning process. For the cases where recov-
ery was not possible, the MDRs Recovery component guided the user into recovering
conflicting MDR instances from previous iterations with less effort (84% less deleted
tuples) than creating those MDR instances again.
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5.2 User Involvement Support in a Data Cleaning Process

In this study, we aimed at evaluating whether Cleenex effectively helps program designers and
domain expert users to perform data cleaning tasks in a realistic scenario. We investigated different
aspects of usability of Cleenex, OpenRefine, and PDI.
Research Questions. Specifically, we try to answer the following research questions:

RQ2.1: Are Cleenex data cleaning programs easier to understand than programs specified using
the other two tools?

RQ2.2: Given a specification of a data cleaning program written and refined by an expert, does
using Cleenex require less time/user effort to obtain cleaned data than using the other
two tools?

RQ2.3: Given a specification of a data cleaning program written and refined by an expert, does
the data obtained with Cleenex have higher quality than the data obtained with the
other two tools?

RQ2.4: Does the debugging functionality help to obtain more correct data than the other two
tools?

Experimental Setup. We performed a controlled experiment with expert users, using a within-
subject design in which all participants from each group tested the two tools under comparison in
that group. The preparation of this study included: (i) a video tutorial for each tool, (ii) an experi-
mental plan, (iii) an experimental guide, and (iv) a satisfaction questionnaire. We used satisfaction
questionnaires to collect users’ opinions instead of the think-aloud method, because typically it
affects the users’ performance, and we wanted to measure the task completion time. We asked
the users to fill a form with demographic information (age, degree, and details about their current
occupation), watch the corresponding video tutorial of their first tool, then to perform two tasks
and answer a set of questions after performing these tasks to assess their perception. This process
was repeated for the second tool and ended with questions to assess and to detail their preferences.
The satisfaction questionnaire included: (i) questions about the user perception, as listed in Table 5,
distinguished by the Research Question identifier they are intended to help answering or classified
as Overall if it is a general question about user preference; and (ii) the questions from the standard
Technology Acceptance Model (TAM) questionnaire [12] as listed in Table 6. TAM questions
are grouped into usefulness and ease of use. The evaluation of these TAM questions is usually
performed by analyzing the sum of the scores obtained for each group.
Experimental Task Descriptions. The first task, Task 1, contains several questions that evaluate
the user’s understandability regarding one of the data cleaning programs designed by an expert.
The programs were similar in complexity (i.e., similar amount and type of transformations) and
included typical data transformation tasks in data cleaning that implement: (i) an approximate
duplicate detection and consolidation process; and (ii) that produce additional rows or columns
based on column string values. We evaluated the score obtained for each understandability ques-
tion to measure how easy it is to understand a program. The second task, Task 2, uses the same
data cleaning program and requires the user to manually clean data to obtain 100% clean data. So,
we measured the final output data quality in terms of Precision, Recall, and F1-Measure. During
the execution of Task 1 and Task 2, we measured the number of clicks and keys pressed by the user,
as well as the time to complete each task and the number of times the Cleenex debugger was used.
Users had to perform both tasks using Cleenex and using another tool. We used two datasets with
the corresponding data cleaning program: (i) Childhood Locations (CL), based on a real dataset
that lists Chicago early childhood locations that contains approximate duplicate records; and (ii)
Publication Authors (PA), which consists of a table that lists publications and corresponding au-
thors where some author names are written in similar but different ways (approximate duplicates).
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Table 5. Perception Questions Asked to the User

Group ID Question Type/Scale Research

Question

User Perception
(after completing
Task 1)

UP1 How easy was it to understand the data cleaning program? 1- very difficult, 7- very easy RQ2.1
UP2 How difficult was it to answer the questions about the data

cleaning program?
1- very difficult, 7- very easy RQ2.1

UP3 How much effort was required to answer the questions about
the data cleaning program?

1- almost no effort, 7 – extreme effort RQ2.1

Program
Specification

PS1 It was easy to understand this tool operators 1 - strongly disagree, 7 – strongly agree RQ2.1
PS2 It was easy to understand the source of specific records using

this tool
1 - strongly disagree, 7 – strongly agree RQ2.3

Manually
correcting data

MCD1 It was easy to find the records that I wanted to modify using
[this tool].

1 - strongly disagree, 7 – strongly agree RQ2.2

MCD2 It was easy to manually repair records using [this tool]. 1 - strongly disagree, 7 – strongly agree RQ2.2

User Preference

UPF1 What would you use to specify a data cleaning program? 1 – PDI/OpenRefine, 7 – Cleenex Overall
UPF2 Please describe the main reasons for your answer above. Open answer Overall
UPF3 Consider that you have the same data cleaning program imple-

mented in both tools, which tool would you use to understand
the source of specific records in a data cleaning program?

1 – PDI/OpenRefine, 7 – Cleenex Overall

UPF4 Please describe the main reasons for your answer above. Open answer Overall
UPF5 Consider that you have the same data cleaning program imple-

mented in both tools, what would you use to manually modify
data?

1 – PDI/OpenRefine, 7 – Cleenex Overall

UPF6 Please describe the main reasons for your answer above. Open answer Overall
UPF7 Based on your experience with Cleenex, please describe which

additional feature(s) would you like to see implemented and
why (you can compare with other tools)?

Open answer Overall

Table 6. TAM Satisfaction Questionnaire Questions Asked to the User

Group Question Scale

Usefulness

Using this tool to perform data cleaning tasks would enable me to accomplish tasks more
quickly.

1 - strongly disagree, 7 – strongly agree

Using this tool to perform data cleaning tasks would improve my performance (quality of
output).

1 - strongly disagree, 7 – strongly agree

Using this tool to perform data cleaning tasks would increase my productivity (efficiency of
production, Output/Input).

1 - strongly disagree, 7 – strongly agree

Using this tool would enhance my effectiveness (accomplish to do the right tasks) to perform
data cleaning tasks.

1 - strongly disagree, 7 – strongly agree

Using this tool would make it easier to perform data cleaning tasks. 1 - strongly disagree, 7 – strongly agree
I would find this tool useful to perform data cleaning tasks. 1 - strongly disagree, 7 – strongly agree

Ease of use

Learning to operate with this tool would be easy for me. 1 - strongly disagree, 7 – strongly agree
I would find it easy to get this tool to do what I want it to do. 1 - strongly disagree, 7 – strongly agree
My interaction with this tool would be clear and understandable. 1 - strongly disagree, 7 – strongly agree
I would find this tool to be flexible to interact with. 1 - strongly disagree, 7 – strongly agree
It would be easy for me to become skillful at using this tool. 1 - strongly disagree, 7 – strongly agree
I would find this tool easy to use. 1 - strongly disagree, 7 – strongly agree

The programs executed by the users that experimented with PDI were smaller, because PDI does
not support approximate duplicate consolation natively, i.e., without programming an operator.
Participants Characterization and Grouping. There were three groups of users: (i) users who
performed experiments on Cleenex and OpenRefine, (ii) users who performed experiments on
Cleenex and PDI, and (iii) users who typically use PDI in their work and performed the experiments
using Cleenex and PDI. The regular participants (user groups (i) and (ii)) in this study were 24 (12
in each group) and the PDI experts (user group (iii)) were 8 in total. Half users in group (i) and
(ii) started the session with Cleenex, while the other half started with OpenRefine or PDI. This
counterbalance is the recommended method to neutralize the learning effect that exists in within-
subjects experiments (for additional details, please see Section 3.5 from Reference [26] and Section
14.2.2 from Reference [48]). The age range for all groups was 21–45, mean around 28–32 for each
group. Twelve users in (i) and (ii) were students who took a data integration course with theoretical
and lab experience on data cleaning tasks; while the other 12 performed data cleaning tasks in their
jobs, both were evenly distributed. In terms of the highest level of education completed, 11 users
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Table 7. Metrics and Answers Related to RQ2.1, P-values <= 0.05, which Pass the Statistical Test, Are
Bolded

Cleenex vs. OpenRefine Cleenex vs. PDI Experts – PDI vs. Cleenex

Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

Task1 -
Understandability

Cleenex Task 1 # Correct An-
swers

7.67 8.00 1.25E-04 6.92 7.00 1.21E-06 6.88 7.00 1.05E-06

Other Tool Task 1 # Correct An-
swers

5.92 6.00 5.75E-01 5.00 5.00 5.98E-01 6.50 7.00 6.32E-05

Tools Difference Task 1 # Correct An-
swers

1.75 2.00 3.91E-03 1.92 2.00 9.77E-04 0.38 0.00 1.97E-01

User Effort

Cleenex Task1 # Clicks 57.92 38.00 5.76E-03 39.58 36.50 7.11E-01 58.88 53.00 1.83E-01
Other Tool Task1 # Clicks 117.08 78.00 3.78E-04 171.00 154.00 7.15E-01 116.38 85.00 4.61E-03

Tools Difference Task1 # Clicks −59.17 −29.00 3.27E-02 −131.42 −120.50 4.88E-04 −34.38 −37.00 1.48E-01
Cleenex Task1 # Keys 0.00 0.00 1.00E-05 0.00 0.00 1.00E-05 0.38 0.00 4.79E-04

Other Tool Task1 # Keys 5.92 0.00 2.78E-05 3.83 1.00 1.06E-04 2.38 0.00 1.52E-05

Tools Difference Task1 # Keys −5.92 0.00 1.54E-01 −3.83 −1.00 9.76E-02 0.25 0.00 3.57E-01

User Perception
(after completing the
task)

Cleenex Answers to UP1 5.67 6.00 2.28E-02 5.83 6.00 2.90E-03 5.38 5.00 3.24E-01
Other Tool Answers to UP1 4.08 4.00 2.11E-01 5.58 6.00 5.88E-02 5.00 5.00 1.20E-01
Tools Difference Answers to UP1 1.58 1.50 3.91E-03 0.25 0.00 5.63E-01 0.38 0.50 5.31E-01
Cleenex Answers to UP2 5.58 5.50 1.18E-01 5.42 6.00 2.81E-02 5.88 6.00 3.70E-02

Other Tool Answers to UP2 3.42 3.00 1.52E-02 4.00 4.00 2.59E-01 5.13 5.00 1.95E-01
Tools Difference Answers to UP2 2.17 2.00 4.88E-04 1.42 1.50 6.54E-02 0.75 1.00 2.19E-01
Cleenex Answers to UP3 3.00 2.50 6.57E-02 2.92 2.50 1.95E-02 2.63 2.50 2.45E-01
Other Tool Answers to UP3 4.50 5.00 1.73E-02 4.33 5.00 5.89E-01 3.25 3.00 4.08E-01
Tools Difference Answers to UP3 −1.50 −1.50 3.81E-02 −1.42 −1.50 3.13E-02 −0.63 −0.50 3.13E-01

Easiness User
Perception

Cleenex Answers to PS1 5.25 6.00 2.72E-02 6.08 6.00 1.52E-02 5.25 5.50 1.85E-02

Other Tool Answers to PS1 3.42 3.50 1.89E-01 4.92 5.50 9.98E-02 5.13 5.50 3.56E-02

Tools Difference Answers to PS1 1.83 1.50 4.10E-02 1.17 0.50 9.38E-02 0.13 0.00 7.85E-01
Cleenex Answers to PS2 5.67 6.00 2.28E-02 6.33 6.50 5.21E-03 6.63 7.00 4.79E-04

Other Tool Answers to PS2 3.25 3.00 4.95E-01 4.58 5.50 5.88E-02 5.25 6.00 7.45E-02
Tools Difference Answers to PS2 2.42 2.00 9.77E-04 1.75 1.50 4.69E-02 1.38 1.00 6.25E-02

had a bachelor’s degree, 12 a master’s degree, and 1 a PhD. As far as we know, this is the first study
reaching such a number of representative participants (32 in total) to perform data cleaning tasks.
Results. We organized the different results per research question. We report the results for RQ2.1,
RQ2.2, RQ2.3, and RQ2.4, respectively, in Tables 7, 8, 9, and 10. In addition, we report overall results
regarding the TAM scores and user preferences in Table 11. For each tool and for each question
score and measure, we report the average, the median of the values, and the P-value. The P-value
corresponds to a normality test, namely, Shapiro-Wilk Test indicated for small sample size (<50).
We consider that the variable (i.e., the results for a given tool) follows a normal distribution if
P-value <= 0.05. For each question score and measure, when possible, we also report the differ-
ence between the values obtained for Cleenex and for another tool within the rows labeled “Tools
Difference” in the “Tools” column. For the difference, we report the average, the median, and the
P-value that corresponds to a pair test over the values obtained on both tools. If both testing vari-
ables (measure values obtained with Cleenex and another tool) are normally distributed, then we
applied the Paired t-test, otherwise, we applied the Wilcoxon Test. We statistically accept that
Cleenex is better in a particular measure or question if the test passes with P-value <= 0.05.

RQ2.1. As observed in Table 7, Cleenex did not pass the statistical test against OpenRefine in
the number of keys pressed for Task 1. The number of correct answers for Task 1, the
scores for all user perception questions (UP1, UP2, UP3, PS1, and PS2 listed in Table 5),
and the number of clicks for Task 1 passed the test. Regarding Cleenex against PDI, the
number of correct answers for Task 1, the scores for questions UP3 and PS2, and the
number of clicks for Task 1 passed the test. In the experiments with PDI experts, we
could not statistically prove any metric, because the P-values of the Tools Differences
are higher than 0.05. Nevertheless, all users, including both regular participants and PDI
experts, performed similar or better on Cleenex and answered the questions positively
to Cleenex against OpenRefine and PDI.

RQ2.2. In Table 8, we observe that almost all metrics in all types of experiments (Cleenex vs.
OpenRefine, Cleenex vs. PDI, and PDI experts) are statistically proved. The exception
is the number of Keys pressed for Task 2 in the experiments of Cleenex vs. PDI and PDI
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Table 8. Metrics and Answers Related to RQ2.2, P-values <= 0.05, which Pass the
Statistical Test, Are Bolded

Cleenex vs. OpenRefine Cleenex vs. PDI Experts – PDI vs. Cleenex

Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

User Effort

Cleenex Task2 Execution
Time (s)

636.50 576.50 9.44E-01 248.83 199.50 1.70E-03 234.00 208.50 2.61E-02

Other Tool Task2 Execution
Time (s)

850.42 834.00 9.28E-01 508.75 423.50 9.42E-03 586.88 526.00 4.38E-02

Tools Difference Task2 Execution
Time (s)

−180.50 −142.00 4.88E-04 −259.92 −296.00 1.72E-02 −352.88 −336.00 1.99E-02

Cleenex Task2 # Clicks 52.08 44.00 3.37E-02 14.67 11.50 4.99E-02 21.38 21.50 3.56E-01
Other Tool Task2 # Clicks 113.50 101.00 1.06E-01 72.42 71.50 2.68E-01 116.38 85.00 4.61E-03

Tools Difference Task2 # Clicks −56.58 −47.00 1.46E-03 −57.75 −58.50 1.95E-03 −95.00 −63.50 7.81E-03

Cleenex Task2 # Keys 0.17 0.00 1.21E-06 0.00 0.00 1.00E-05 0.00 0.00 1.00E-05

Other Tool Task2 # Keys 14.67 6.00 9.62E-04 28.17 1.00 1.52E-04 2.38 0.00 1.52E-05

Tools Difference Task2 # Keys −14.17 −6.00 3.25E-02 −28.17 −1.00 9.67E-02 −2.38 0.00 2.70E-01

User Effort
Perception

Cleenex Answers to MCD1 5.58 6.00 2.80E-02 6.33 7.00 1.05E-03 6.25 6.50 1.85E-02

Other Tool Answers to MCD1 3.17 3.50 6.05E-02 3.92 4.00 5.50E-01 3.63 3.50 1.62E-01
Tools Difference Answers to MCD1 2.42 2.50 9.77E-03 2.42 2.50 5.86E-03 2.63 3.00 1.56E-02

Cleenex Answers to MCD2 5.25 6.00 8.92E-03 6.50 7.00 1.69E-04 7.00 7.00 1.00E-05

Other Tool Answers to MCD2 3.17 3.00 8.69E-02 3.75 3.50 8.93E-01 5.25 5.50 3.34E-01
Tools Difference Answers to MCD2 2.08 2.00 2.88E-02 2.75 3.00 3.91E-03 1.75 1.50 3.13E-02

Table 9. Metrics and Answers Related to RQ2.3, P-values <= 0.05, which Pass the
Statistical Test, Are Bolded

Cleenex vs. OpenRefine Cleenex vs. PDI Experts – PDI vs. Cleenex

Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

Task 2 – Output
Quality

Cleenex Precision 0.83 1.00 9.81E-06 1.00 1.00 1.00E-05 1.00 1.00 1.00E-05

Other Tool Precision 0.51 0.50 3.52E-02 0.94 1.00 4.40E-05 1.00 1.00 1.00E-05

Tools Difference Precision 0.32 0.25 1.06E-02 0.06 0.00 8.19E-02 0.00 0.00 1.00E+00
Cleenex Recall 0.79 1.00 6.71E-05 1.00 1.00 1.00E-05 1.00 1.00 1.00E-05

Other Tool Recall 0.71 1.00 2.34E-04 0.94 1.00 1.21E-06 0.96 1.00 1.05E-06

Tools Difference Recall 0.08 0.00 1.66E-01 0.06 0.00 3.39E-01 0.04 0.00 3.51E-01
Cleenex F1-Measure 0.81 1.00 4.55E-05 1.00 1.00 1.00E-05 1.00 1.00 1.00E-05

Other Tool F1-Measure 0.58 0.67 2.80E-02 0.92 1.00 9.77E-05 0.98 1.00 1.05E-06

Tools Difference F1-Measure 0.23 0.17 1.18E-02 0.08 0.00 9.65E-02 0.03 0.00 3.51E-01

experts that did not pass the test. Still, participants on Cleenex pressed less keys than
in other tool.

RQ2.3. Table 9 presents the output data quality resulting from Task 2. We statistically prove the
results of Precision and F1-Measure for Cleenex against OpenRefine. While no other
statistical significance was observed regarding RQ2.3, the participants using Cleenex
achieved better quality than using another tool, even among the PDI experts.

RQ2.4. We observe, in Table 10, that the debugger was used on Task 1 but was never used on
Task 2. Regarding answers to question PS2, listed in Table 5, we verify with statistically
significance that users find it easier to discover the source of a record using Cleenex
when compared to OpenRefine and PDI. Among PDI experts, we also got a better PS2
but without statistical proof. Moreover, as observed in the answers to question UPF3,
all participant groups preferred Cleenex to other tool.

Based on the obtained results:

— We concluded that: (i) Cleenex data cleaning programs are easier to understand for regular
users than programs specified using the other considered tools; (ii) given a specification of
a data cleaning program written and refined by an expert, Cleenex requires less time/user
effort to obtain cleaned data than any of the other two tools; and (iii) the debugging func-
tionality helps to understand data cleaning programs.

— Still, with no statistical proof but with positive results, we observed that given a specification
of a data cleaning program written and refined by an expert, the data obtained with Cleenex
has higher quality than using any of the other two tools.

— As observed in Table 11, the user answer values to the TAM [12] questionnaire and to the
quantitative Overall questions on User Preference (UPF1, UPF3, and UPF5 listed in Table 5)
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Table 10. Metrics and Answers Related to RQ2.4, P-values <= 0.05, which Pass the
Statistical Test, Are Bolded

Cleenex vs. OpenRefine Cleenex vs. PDI Experts – PDI vs. Cleenex

Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

Debugger Usage
Cleenex # Debugger uses in

Task1
1.58 1.50 6.93E-02 1.67 1.50 5.21E-03 2.75 2.00 1.77E-05

Cleenex # Debugger uses in
Task2

0.00 0.00 1.00E-05 0.00 0.00 1.00E-05 0.00 0.00 1.00E-05

User Perception

Cleenex Answers to PS2 5.67 6.00 2.28E-02 6.33 6.50 5.21E-03 6.63 7.00 4.79E-04

Other Tool Answers to PS2 3.25 3.00 4.95E-01 4.58 5.50 5.88E-02 5.25 6.00 7.45E-02
Tools Difference Answers to PS2 2.42 2.00 9.77E-04 1.75 1.50 4.69E-02 1.38 1.00 6.25E-02
Overall Answers to UPF3 6.08 6.00 2.75E-02 6.58 7.00 4.82E-04 1.38 1.00 4.45E-04

Table 11. Metrics and Answers Related to Overall Analysis and User Preferences, P-values <= 0.05,
which Pass the Statistical Test, Are Bolded

Cleenex vs. OpenRefine Cleenex vs. PDI Experts – PDI vs. Cleenex

Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

TAM

Cleenex Sum TAM Usefulness
Answers

34.67 36.00 6.02E-01 39.67 40.00 1.37E-02 33.00 32.00 N/A

Other Tool Sum TAM Usefulness
Answers

23.00 23.00 5.19E-01 29.67 32.00 3.00E-01 N/A N/A N/A

Tools Difference Sum TAM Usefulness
Answers

11.67 11.00 3.91E-03 10.00 8.00 5.86E-03 N/A N/A N/A

Cleenex Sum TAM Ease of Use
Answers

35.08 36.00 2.06E-01 37.08 38.00 6.14E-01 31.50 33.50 N/A

Other Tool Sum TAM Ease of Use
Answers

23.33 23.00 8.84E-02 28.75 26.00 3.35E-01 N/A N/A N/A

Tools Difference Sum TAM Ease of Use 11.75 10.50 9.77E-04 8.33 6.00 3.91E-03 N/A N/A N/A

User Preference Overall
Answers to UPF1 6.17 6.00 1.53E-02 5.75 6.00 3.80E-02 4.13 4.00 4.37E-02

Answers to UPF3 6.08 6.00 2.75E-02 6.58 7.00 4.82E-04 6.00 6.50 4.45E-04

Answers to UPF5 5.75 6.00 1.72E-02 6.42 7.00 1.64E-03 5.25 6.50 1.07E-02

about user tool preference are greater for Cleenex than for OpenRefine and PDI, and, when
applicable, are statistically significant. Those answers indicate that users prefer to perform
data cleaning tasks with Cleenex than with any of the other two tools.

— For the open answers (UPF2, UPF4, UPF6, and UPF7 listed in Table 5), the users highlight
Cleenex components that help in designing the data cleaning program and manual cleaning
data, such as the graph and code editors, the debugger, and the Manual Data Repairs

(MDRs) that do not exist in OpenRefine and PDI.

6 DISCUSSION AND LIMITATIONS

In this section, we discuss the results obtained in Section 5 and describe the limitations of the two
experimental studies, one with simulated and another with real users.
User Feedback Support in Cleenex Using a Simulated User. Based on the experiments, we
concluded that the Cleenex components that support user feedback reduce user effort. The compo-
nents’ impact depends on the data and programs in which they are used. The fact that, when using
Quality Constraints (QCs) and MDRs, a user can repair data at any stage of a data cleaning pro-
gram (represented as a graph in Cleenex) prevents quality problems from propagating through the
program. Another noteworthy effect is that the type of repair has shifted from inserting whole tu-
ples to tuple updates and deletes, which leads to less keyboard typing. As a consequence, based on
HCI literature (e.g., Reference [48]), it reduces errors. Rules supported in QCs enable the reduction
of tuples that users have to visualize. During an iterative execution of a data cleaning program, the
MDRs persistence component prevents that all repairs need to be reapplied to the program, and
the MDRs conflict resolution is able to recover repairs involved in a conflict using our proposed
algorithm. Additionally, in real settings with humans, we expect that these components lead to the
prevention of errors, as users suffer from less fatigue and repetitive tasks.
User Involvement Support in a Data Cleaning Process with Real Users. Cleenex programs
are easier to understand than OpenRefine and PDI programs. We believe this happens because
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Cleenex offers more concise programs (uses fewer operators for the same program) [36], the code
editor is integrated into the main GUI screen as highlighted by the participants, and the debugger
is used consistently.

As explained above, the Cleenex components that support QCs/MDRs lead to less user effort
and fewer visualizations when compared to other tools, which explains the differences in task
completion times and measured clicks. The differences in the number of keys typed do not hold
statistical significances, but were positive.

We made sure that the data and programs used could be 100% manually cleaned using each of
the tools. As a result, most participants completed Task 2 using any tool. There was no statistically
significant difference in Recall between Cleenex and OpenRefine, and no notable quality measure
was identified compared to PDI. Unexpectedly, participants did not use the debugger to help them
manually clean data; this can be explained by the type of data quality problem (i.e., approximate du-
plicates), which could be cleaned with information in the current table and did not require further
explorations like checking the source of some dirty tuple. However, we expect that if the table con-
taining dirty tuples lacks sufficient information to manually clean them, then the users will utilize
the debugger similarly as they have used during the experiments to understand the program.
Limitations. The number of samples directly impacts statistical significance. Although our
participant count (i.e., samples) was the highest to this moment for this type of experiment in
data cleaning, having an even higher number of participants may lead to statistical significance in
metrics that report positive values but lack significance in our experiments, such as the number
of keys pressed for Tasks 1 and 2, and the output quality measures (Precision, Recall, F1-measure)
for Task 2.

Although we used the most typical data cleaning transformations to compose the programs,
the advantages of Cleenex over other tools may vary, depending on the operations required and
extent of the task, both of which are influenced by the quality problems present in the data. Based
on our experimental results, it is not possible to compare PDI vs. OpenRefine. The reason is that the
users experimenting with PDI used a slightly smaller data cleaning program, because PDI does not
support approximate duplicate detection natively, i.e., without programming a new operator. To
account for this difference, programs in Cleenex were reduced for the experiments involving PDI.

While the method employed (i.e., half of the users initiate with a different tool) minimizes the
learning effect, this effect still could be present. Some individuals could benefit more from this
effect than others in some tasks. Despite this, we tried to balance participants across the two groups
and conducted thorough statistical tests.

The participants watched a short tutorial (10–20 mins) for each tool. The benefits of using a tool
over another in the long term and the learning curves of the tools could not be accessed.

Our study focused on the two main types of tools used for data cleaning: ETL and data wrangling
tools. For each, an open source tool was selected for evaluation. The study is limited in the number
of tools used, and some fluctuations in user performance are expected within each tool type.

This study may have a limited shelf life. The findings should be interpreted in the context of the
technological landscape at the time of the study and may not fully capture the advancements in
software tools used for data cleaning that could occur in the future.

Scalability and performance were out of the scope of this study and were not evaluated. Delays
in data processing will have a major impact on which tool the users will prefer. However, the
data transformations used are similar among tools, and similar performances can be worked out
if needed, as the implementations are available and open source.

The experiments were conducted in Portugal with predominantly Portuguese participants. How-
ever, we anticipate that there should be no significant difference in the performance of individuals
from other nationalities, as any distinctions are more likely to be related to background factors.
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7 CONCLUSIONS AND FUTURE WORK

To support the user involvement during the execution of a data cleaning program, we performed
the following main contributions:

— Cleenex, a data cleaning framework that extends Ajax by incorporating Quality Con-

straints (QCs) and Manual Data Repairs (MDRs), enabling users to manually edit data.
— An algorithm for conflict detection and automatic recovery of MDR instances and corre-

sponding software components that enable the iterative execution of data cleaning programs
with automatic re-application of manual data repairs.

— An extensive user involvement evaluation that includes two studies: (i) the evaluation of the
Cleenex components that support user feedback in a data cleaning process with a simulated
user; and (ii) the evaluation of the user involvement support in a data cleaning process for
Cleenex, OpenRefine, and Pentaho Data Integration (PDI), with real users.

When evaluating the Cleenex components that support the incorporation of user feedback
using a simulated user, we verified that performing a data cleaning process with the full set of
components (QCs, MDRs, MDRs persistence, and MDRs recovery) reduces the user effort when
cleaning data.

When evaluating Cleenex against the other two tools (OpenRefine and PDI) regarding user in-
volvement, we made the following main conclusions:

— Understanding data cleaning programs is easier if specified in Cleenex.
— The use of Cleenex leads to less time and effort to obtain clean data.
— Users have a higher preference to use Cleenex to perform a data cleaning task.
— Users highlight the main innovations of Cleenex such as the MDRs, and the Debugger that

the other tools used in the study do not support.

To further improve the support of user feedback in Cleenex, the next big research task would be
to introduce Machine Learning techniques that identify and automate cleaning patterns that the
user can provide during the execution of the data cleaning process. Such techniques would replace
the user feedback when manually editing large quantities of data and conduct a still-effective data
cleaning process. Furthermore, we consider it important to further research the efficient support of
concurrent user feedback, when multiple experts clean data during the same data cleaning process.
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