
Editor's Note

In the July 1964 issue of the Communications, this department
solicited papers, notes, remarks, and the like on the subject of "A
Successor to ALGOL". While there have been several items received
and published on the subject, the response has been, on the whole,
rather meager considering the amount of heat that gets generated on
the subject. We therefore want to again request sltch material, and this

time solicit particularly ,material which bears on the "environmental,,
aspects of programming langvages: coping with the generation of
computers featuring various kinds of parallelism, dealing with files~
features desired in a time-sharing faeilily, and so on. The following
paper by Opler addresses one sztch question.--.T.E.C.

Procedure-Oriented Language
Statements to Facilitate
Parallel Processing

ASCHER OPLER
Computer Usage Company, Inc., New York, N . Y.

Two statements are suggested which allow a programmer
writing in a procedure-oriented language to indicate sections
of program which are to be executed in parallel. The state-
ments are DO TOGETHER and HOLD. These serve partly as
brackets in establishing a range of parallel operation and
partly to define each parallel path within this range. DO
TOGETHERs may be nested. The statements should be par-
ticularly effective for use with computing devices capable of
attaining some degree of compute-compute overlap.

Computers with parallel processing capabilities are
seldom used to full advantage. In some systems, more
than one single program is processed with simultaneity
while in others, different portions of a single program are
processed in parallel. In the former, inefficiency often re-
sults because the mix of individual programs, each written
for sole occupancy of a computer, is unlikely to demand
equal loading of each parallel element. In the latter ease,
the distribution of program functions to hardware ele-
ments is frequently left to computer logic (e.g. input-
output commands are sent to a special processor, floating-
point arithmetic commands to another, and so forth.)

The following is directed toward better utilization of
computer systems which process a single program by
performing functionally different portions with separate
computing elements. The Bull Gamma 60 and the CDC
6000 series are representative of this class.

Procedure-oriented languages developed for serial com-
putation have serious limitations when used to express
problem solutions involving parallelism since the control
statements (GO TO, DO, FOR, IF, etc.) define a single
serial path for tile computation.

Two statements are suggested as possible additions to
these languages (ALGOL, FORTRAN, COUOL, etc.) to facili-
tate tile efficient application of parallel computers. The
statements provide the analyst with a tool for stating
which procedures may be executed in parallel. They also
provide the compiler designer with a language element that

306 Communications of the ACM

allow the compiler to produce object programs that
can properly use parallel multiple processing computer
logic.

The two statements arc DO T O G E T H E R and HOLD.
One suggested format is described below. The effect of
these statements is to establish a range of parallel opera-
tion and to define two or more parallel paths within this
range. The range begins with the DO TOGETHER and
ends at the HOLD referenced by the former. The object
program will not continue execution beyond the HOLD
until the executable statements in all paths have been
processed (see Figures 1 and 2).

F o r m a t

Label1 DO TOGETHER,
Labels, Labela , . - • , Label,,_! (Label,e)

Label1 (optional) is the tag of the beginning of the
range.

Labels (required) is tile tag of the HOLD that termi-
nates the range. I t is always enclosed in parentheses.

Label2 to Label~-~ are tags of the first statements in
each of the n-2 paths.

The description of a path is terminated when either the
label starting another path o'r the referenced HOLD is en-
countered:

Label HOLD

The Label is mandatory and nmst be referenced by one
or more DO TOGETHERs.

S o m e R u l e s for DO T O G E T H E R

1. Each path must be logically self-contained. Intrapath
branching is permitted ; interpath branching is not allowed.

2. Branching into or out of the range of a DO T0-
GETHER is not permitted.

3. Paths in the same DO T O G E T H E R may reference
the same variables but must not alter these.

4. DO TOGETHERs may be nested. A path ill the
range of a DO TOGETHER may itself contain the range
of another DO TOGETHER.

5. Nested DO TOGETHERs may share the same
HOLD.

6. Logical decisions made within a path should set
switches for interrogation after the IIOLD. This avoids
conflict with rule 2.

7. Subroutine or procedure calls may be made within a
path. Paths in the same range may not call the same sub-
routine unless it is re-entrable.

Volume 8 / Number 5 / May, 1965

http://crossmark.crossref.org/dialog/?doi=10.1145%2F364914.364947&domain=pdf&date_stamp=1965-05-01

[[l i l l l e m e n I, a tl; i o n

1. The object> <:o{h: for ()}it(jh pat, h is coinpiled.
2. A <:olnpl<!:ti<>l~ n<)iiti<:al,i<m me, chanisin is <:ou/piled for

each patti.
3. l)epcmli,~g tlpOll thc d('grec and ll}ittll>(J Of parallelism

permitt;ed by the object (:(t l l /pt l i)eF~ the v<~a'ious instruction,
strings are lnergc(l fo prodtiee all opt i lnt i in parallel pro-
gi'{iAii,

4. At, l,he s<,~<lUClllial Io<:alion correspol,ding to the
HOM) sh t ten l (mt , air i l l l (, r loek l n e c h a n i s l n (as dictated by
the logi<'al design of liie coniputer) is conlpiled. This inter-
lOCi(Of.tit on ly t)(! re leased wtic, i i all paths have fo rwarded

their termination sigmd.
5. Suitable val'ial.ioiis will pernlit processing of nested

DO TOGETHEI{s.

Sample Applicat ions

For computers wilh read-conlpute, eolnpuic-wrile and/
or read-compute-write. "overlap," the use of these state-

GAMMA

D E I/[' A

7]

D() i [' ()GI ;T[[i ;R I~E'['A, (JAXI,\IA (DE/ ,] 'A)

~t &i;f2 m O tli:

Slatement - path 1

Statement

S t a [e m e n t - t
St a[en/eiti;
Statement path 2

S t a t e m e n t

t i e L,D

Fro. 1, St ructure of a :DO T O G E T H E g

Ai,P{IA

B E T A

r a n g e

li'm. 2,

DO T OGETI IE[I

1

F] FO
E

Nes ted DO TO(IE ' I : I I IT l l l s

]

DO T O G E T H E R

HOLD

V o l u m e 8 / Nun i l i , I ~ r 5 / M a y , 1965

meals is relatively straightforward. Compilers for use
with such computers have generally been designed to take
advantage of implicitly declared parallelism. With these
two slatements explicitly directed parallelisin may be
used.

For devices with compute-compute parallel capability,
these statements should lead to better analysis. For the
computer-oriented analyst, these provide a means for di-
viding a single task into subtasks that may be performed
in paralM or for arranging for the concurrent processing
of ~wo independent tasks. For the numerical analyst it
should lead to study and identification of computational
aspects of a solution that can be performed with simul-
taneity. For instance, computing the cheek sum of a row,
finding pivot points and operation on another row of a
matrix may be performed sinmltaneously. In a matrix
multiplication, several row-column combinations can be
worked on simultaneously (see Figures 3a and 3b).

00 6 I= I ,21
O0 6 J = l , 2 1
O0 6 K = I , 2 1

6 C [I , J) = C { I , J I + A { I , K I * B (K , J)

Fro. 3a. 21st:order matrix:multiplication statements in a
(serial) FomrmxN program (multiplication performed serially
9261 times)

T7 O0 TOGETHER 1,2,3,4,5K6|
l O0 I I 1L=1,21,5

O0 I I J l=I t21
DO l l Kl=It21

I I C { I I . J l) = C(IXwJI)+A{I1,KlJ*BKKI,JI |
2 O0 22 1 2 = 2 , L T t 5

O0 22 J 2 = l ~ 2 L
O0 22 K2=I.21

22 C{12,J2|= C{12.J2I+AII2,K2iIBiK2,J21

3 O0 33 13=3.18,5

DO 33 J3=l ,2 l
O0 33 K3=l,21

33 C I I 3 , J 3) = C (I 3 t J 3 | + A (I 3 , K 3 I * B { K 3 , J 3 i
4 DO 44 I4=4,19,5

DO 44 J4=I,21
DO 44 K4=l,21

44 C(I~,J4|= C I I 4 , J k I + A (I 4 , K 4 I I B I K 4 , J 4 |
5 DO 55 15=5,20,5

D0 55 J5=I,21

O0 55 K5=1.21
55 C { I S , J S) = C (I S ~ J 5) ÷ A (I 5 , K S I * B (K S , J S }
6 HOLD

FIG. 3b. 21st-order matrix-multiplieatioll statements in a
FoR'rmtx program for a computer with 5 multiplication units and
other parallel operating registers (multiplication performed 1764
times in each of four units and 2205 times in dm fifth)

Acknowle@ments. The idea of DO TOGETHER, was
first mentioned (1959) by Mine. Jeanne Poyen in discussing
the AP3 compiler for the BULL Gamma 60 computer.
The two statements proposed here may be considered
source language relatives of Conway's Fork and Join in-
structions [1].

I{ECEIVED JC'NE, 1964; I~EWSED SEPTEMBI~ R, 1964

R F, FIi] RENCE

1, Coxw<tY, M. E. A muldprocessor system design. Prec. Fall
J(fint Con~put. C(nf 24, Spartan Books, Baltimore, 1903.

C o m m u n i c a t i o n s of the ACM 307

