

J. G. HERRIOT, Editor

ALGORITHM 256

MODIFIED GRAEFTE METHOD [C2]
A. A. Grau (Recd. 29 July 1964, 23 Oct. 1964 and 18 Jan. 1965)

Northwestern University, Evanston, Illinois

The algorithm given herc mechanizes a modified form of the Graeffe process designed to avoid an expanding number range. This was discussed in [1]; the notation used below is the same as in that article.
Let the given polynomial be

$$
a_{0} x^{n}+\cdots+a_{n}
$$

the degree n and the array of coefficients a are input parameters of the procedure. An additional input parametor w is used to determine the number of stages needed to obtain a desired order of resolution; this may be considered to be roughly the number of significant decimal places expected in the zeros of the polynomial.
The algorithm finds the moduli, $d_{s} \quad(s=1, \cdots, n)$, of the zeros of the polynomial and the number of stages used for this, p. If the algorithm succeeds, the output parameter q is set equal to 0 ; otherwise, the value of q serves as the indicator for the reason of failure: $q=1$ if the polynomial has a zero-valued coefficient, and $q=2$ if a zero-valued divisor is encountered somewhere in the process. In either case, the moduli of the zeros are not found. Apart from these two cases, the algorithm applies generally; this includes the cases where some zeros have equal moduli or are imaginary.

The algorithm has been tested with polynomials of degree up to 10 , including ill-conditioned cases such as polynomials with one or more sets of multiple or imaginary zeros. The algorithm has been compiled as it stands using both the Oak Ridge Algol Translator for the Control Data 1604 and the Share Algol Translator for the IBM $709 / 7090$. In the case of the latter, one change as noted in a comment had to be made ; this is presumably no longer necessary in a revision of the translator.

Garwick's device [2] is used as convergence criterion in both root extraction and the basic process. From w and the number of stages determined from it, it is possible to conclude whether some zeros may be considered to be of equal moduli; in such cases an adjustment of their values is possible and is made.

The quantities used in the modified Graeffe process are related to those occurring in the ordinary root-squaring process. This implies that in general the limitations of the Graeffe process (see, for example [3, pp, 67-69]) hold also in the modified process; the most serious of these is that initially the condition of successive polynomials may deteriorate.

An expanding number range is avoided by introducing at each step arithmetic divisions. It follows that if c_{i} is near zero, overand underflow can oceur in computing subsequent quantities. In the usual machine system, such a condition results in the automatic temination of computation; in this case this is not serious. In an Abdi, system where this is not true, a very unsatisfactory arangement generally, machine-dependent facilities must be added to the algorithm to obtain the same effect; the Alcon language contains no way of doing this. Theoretically a bridging mechanism is possible to work around near-zero divisors, but this has not been attempted here.

The modified process can be expected to perform somewhat better than the standard process in the case of equal moduli.

```
procedure Modified Graeffe ( \(w, n, a, d, p, q\) );
```

 value \(w, n ;\) integer \(w, n, p, q ;\) array \(a, d\);
 begir
real $a a, e p s, e p s 2, h, h 1, h 2, h h 2, m, n h 2$;
integer $i, k, k 0, k 00, s, s 3$;
array $c[0: n], d 1, h h[1: n], e[1: n, 1: n / 2]$; comment Using the
Share processor, the last subscript bound $n / 2$ was replaced by
entier (n/2);
eps $:=$ eps $2:=10-5$;
$k 00:=40$; comment This is the maximum number of stages
needed on the CDC 1604 where about 10 significant decimal
figures may be obtained. On the IBM machines it is less, but
the figure was not changed for such use;
for $s:=0$ step 1 until n do
begin if $a[s]=0$ then begin $q:=1$; go to out end end;
Determine the number of stages:
$k 0:=$ entier $(3.56 \times w+3.21)$;
if $k 0>k 00$ then $k 0:=k 00$;
Initialization:
for $s:=1$ step 1 until n do
begin
if $s+s>n$ then $s 3:=n-s$ else $s 3:=s ;$
for $i:=1$ step 1 until $s 3$ do
$e[s, i]:=a[s+i] \times a[s-i] /(a[s+i-1] \times a[s-i+1]) ;$
$d \mathbf{1}[s]:=a b s(a[s] / a[s-1])$
end;
$c[0]:=c[n]:=1$;
$m:=1$;
Main loop:
for $k:=1$ step 1 until $k 0$ do
begin
$m:=m / 2 ;$
for $s:=1$ step 1 until $n-1$ do
begin
if $s+s>n$ then $s 3:=n-s$ else $s 3:=s$;
$h:=0$;
for $i:=s 3$ step -1 until 1 do
$h:=(1-h) \times e[s, i] ;$
$c[s]:=1-2 \times h$;
if $c[s]=0$ then
begin $q:=2$; go to out end
end;
for $s:=1$ step 1 until n do
begin
if $s+s>n$ then $s 3:=n-s$ else $s 3:=s$;
for $i:=1$ step 1 until $s 3$ do
begin
$h:=(c[s+i] / c[s+i-1]) \times e[s, i] ;$
$e[s, i]:=(c[s-i] / c[s-i+1]) \times e[s, i] \times h ;$
end;
comment In the paper [1] on which the algorithm is based,
there is an error in equation (13) and results derived from
it. The equation should be

$$
e_{s i}^{(k+1)}=\left[e_{s i}^{(k)}\right]^{2} \frac{c_{s+i}^{(k+1)} c_{s-i}^{(k+1)}}{c_{s+i-1}^{(k+1)} c_{s-i+1}^{(k+1)}}
$$

Root extraction:
$a a:=a b s(c[s] / c[s-1]) ;$
comment If the \uparrow operation is suitably implemented for fractional exponent, the following 12 lines may be replaced by

$$
h h[s]:=h 1:=a a \uparrow(1 / 2 \uparrow k)
$$

$h 1:=h:=1+(a a-1) \times 10-2 \times m ;$
$n h 2:=1$;
$A B:$ for $i:=1$ step 1 until k do $h:=h \times h$;
$h 2:=(a \omega / h-1) \times m$;
$h:=h 1:=h 1+h 1 \times h 2$;
$h h 2:=a b s(h 2)$;
if $h h 2>$ eps then go to $A B$;
if $h h 2<n h 2 \wedge h h 2 \neq 0$ then
begin
$n h 2:=h h 2 ;$ go to $A B$
end;
$h h[s]:=h 1$;
$d 1[s]:=d 1[s] \times h 1$
end;
$h:=0$;
for $s:=1$ step 1 until n do
begin
$h 1:=a b s(h h[s]-1) ;$
if $h 1>e p s$ then go to $A C$;
if $h 1>h$ then $h:=h 1$
end;
if $h<\operatorname{eps} 2 \wedge h \neq 0$ then
begin eps $2:=h$; go to $A C$ end;
go to Root determination;
AC: end Main loop;
$k:=k 0 ;$
Root determination:
$q:=0 ; p:=k ; \quad s:=1 ;$
$B A$: for $i:=s$ step 1 until n do
begin
if $a b s(c[i]-1)<e p s 2$ then
begin $k:=i$; go to $A E$ end
end;
$k:=n$;
$A E:$ if $k=s$ then
begin
$d[s]:=d 1[s] ;$ go to $A G$
end
else
begin
a $a:=1$;
for $i:=s$ step 1 until k do
$a a:=a a \times d 1[i] ;$
comment If the \uparrow operation is suitably implemented for fractional exponents, the following 13 lines may be replaced by

$$
h:=a a \uparrow(1 /(k-s+1))
$$

$h 1:=d 1[s]$;
$n h 2:=1 ;$
$A F: h:=1$;
for $i:=s$ step 1 until k do
$h:=h \times h 1$;
$h 2:=(a c / h-1) /(k-s+1)$;
$h 1:=h 1+h 1 \times h 2$;
$h h 2:=a b s(h 2)$;
if $h h 2>e p s$ then go to $A F$;
if $h h 2<\pi h 2 \wedge h h 2 \neq 0$ then
begin
$n h 2:=h h 2 ;$ go to $A F$
end;
for $i:=s$ step 1 until k do $d[i]:=h 1$
end;

TABLE 1

n	Conffrents (a_{s})	Actuml Zeros	p	Computed Moduli (d_{s})
Resmets mrom CDOC 1604				

4	$1-1-5-1-6$	$12-23$	29	3.0000000000 1.0000000000	2.000000000 1.0000000000
4	12322	$\pm i-1 \pm 8$	35	1. 1421213563 1. 0000001008	1.414213563 . 990998932 *
4	14641	- -1 (four Fold)	35	1.002108373 .0999999400	$\begin{aligned} & .9999999404 \\ & .9978961853 \end{aligned}$
5	$1-5-15125-226120$	$1234-5$	9	5.000000000 2.999999999 1.0000000000	4.000000001 2.000000000
5	15101051	$\cdots-1$ (five fold)	21	$\begin{gathered} 1.003023179 \\ 1.000737942 \\ .0977555433 \end{gathered}$	$\begin{aligned} & 1.000737942 \\ & .9977555433 \end{aligned}$
6	11-4535 $524-1230720$	$1234-5-6$	9	5.999999999 3.999999998 2.000000000	3.0000000004 3.000000001 1.000000000
6	1615201561	$-1($ six-fold $)$	22	$\begin{gathered} 1.009739721 \\ 1.000072156 \\ .0902827716 \end{gathered}$	1.009739721 1.000072156 .9902827715

6	1615201561	-1 (six-fold)	22	$\begin{gathered} 1.0442011 \\ 1.0219216 \\ .97855264 \end{gathered}$	$\begin{gathered} 1.0219216 \\ .97855264 \\ .95767000 \end{gathered}$
10	$\begin{array}{llllllll} 1 & 10 & 45 & 120 & 210 & 252 & 210 & 120 \\ 45 & 10 & 1 \end{array}$	-1 (ten-fold)	23	1. 1896983 1.0977241 1.0001204 .91099190 84044056	1. 1896983 1.0977241 1.0001204 .91099190 .84044056
10	$\begin{array}{cccc} 1 & -55 & 1320 & -18150 \\ -902055 & 3416930 & -840950 \\ 12753576 & -10828640 & 3628800 \end{array}$	$\begin{aligned} & 12345678 \\ & 910 \end{aligned}$	10	10.001153 8.0090868 6.0027695 3.9999811 2.0000007	8.9947183 6.9926022 4.9996995 2.9999883 1.0000000

$A G:$ if $k=n$ then go to out;
$s:=k+1$;
go to $B A$;
out:
end Modified Graeffe
Tests. Some of the tests (Table 1) were run on the CDC 1604 using an earlier version of the algorithm; minor improvements incorporated afterwards should not affect the results substantially. The results obtained using the Share Algon translator and the IBM 709 suffer in comparison to those obtained on the 1604 for two main reasons: (1) significance of floating-point numbers is 27 bits vs, 35, and (2) input conversion routines introduce greater perturbations into input numbers. The last cases given are very poorly conditioned, so that the rather poor results should not be especially surprising.

Thanks and acknowledgements are due to several members of the Mathematics Division of Oak Lidge National Laboratory for running tests on the Control Data 1604, and to Mrs. Virginia Kloma for running tests on the IBM 709 computer at Northwestern University.

References:

1. Grar: A. A. On the reduction of number range in this use of the Gracfe process. J. ACM 10 (1963), 538-544.
2. Garwrok, J. V. The limit of a converging sequence. Nord. Tidskr. Informationsbehandlung (BIT) I (1961), 64.
3. Wrikinson, J. H. Rounding Eitors in Algebraic Procesess. Prentice-Hall, New York, 1964.
