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ABSTRACT 
In view of the difficulties in evaluating computer pointing 
devices across different tasks within dynamic and complex 
systems, new performance measures are needed. This paper 
proposes seven new accuracy measures to elicit (sometimes 
subtle) differences among devices in precision pointing tasks. 
The measures are target re-entry, task axis crossing, 
movement direction change, orthogonal direction change, 
movement variability, movement error, and movement offset. 
Unlike movement time, error rate, and throughput, which are 
based on a single measurement per trial, the new measures 
capture aspects of movement behaviour during a trial. The 
theoretical basis and computational techniques for the 
measures are described, with examples given. An evaluation 
with four pointing devices was conducted to validate the 
measures. A causal relationship to pointing device efficiency 
(viz. throughput) was found, as was an ability to discriminate 
among devices in situations where differences did not 
otherwise appear. Implications for pointing device research 
are discussed.  

Keywords 
Computer pointing devices, performance evaluation, 
performance measurement, cursor positioning tasks 

INTRODUCTION 
The popularization of the graphical user interface (GUI) 
began in 1984 with the Apple Macintosh. Since then, GUIs 
have evolved and matured. A key feature of a GUI is a 
pointing device and “point-and-click” interaction. Today, 
pointing devices are routinely used by millions of computer 
users.  

The pointing device most common in desktop systems is the 
mouse, although others are also available, such as trackballs, 
joysticks, and touchpads. Mouse research dates to the 1960s 
with the earliest publication from English, Engelbart, and 
Berman [6]. The publication in 1978 by Card and colleagues 
at Xerox PARC [4] was the first comparative study. They 
established for the first time the benefits of a mouse over a 
joystick. Many studies have surfaced since, consistently 
showing the merits of the mouse over alternative devices 
(e.g., [7, 9, 13]). 
This paper focuses on the evaluation of computer pointing 
devices in precision cursor positioning tasks. The primary 
contribution is in defining new quantitative measures for 
accuracy that can assist in the evaluations.  

PERFORMANCE EVALUATION 
The evaluation of a pointing device is tricky at best, since it 
involves human subjects. There are differences between 
classes of devices (e.g., mouse vs. trackball) as well as 
differences within classes of devices (e.g., finger controlled 
trackball vs. thumb-controlled trackball). Generally, between-
class differences are more dramatic, and hence more easily 
detected through empirical evaluations.  
The most common evaluation measures are speed and 
accuracy. Speed is usually reported in its reciprocal form, 
movement time (MT). Accuracy is usually reported as an 
error rate – the percentage of selections with the pointer 
outside the target. These measures are typically analysed over 
a variety of task or device conditions. 
An ISO standard now exists to assist in evaluating pointing 
devices. The full standard is ISO 9241, “Ergonomic design 
for office work with visual display terminals (VDTs).” Part 9 
is “Requirements for non-keyboard input devices” [8]. 
ISO 9241-9 proposes just one performance measurement: 
throughput. Throughput, in bits per second, is a composite 
measure derived from both the speed and accuracy in 
responses. Specifically, 

 
MT
IDThroughput e=  ( 1 ) 
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The term IDe is the effective index of difficulty, in “bits.” It is 
calculated from D, the distance to the target, and We , the 
effective width of the target. The use of the “effective” width 
(We) is important. We is the width of the distribution of 
selection coordinates computed over a sequence of trials, 
calculated as 

 xe SDW ×= 133.4  ( 3 ) 

where SDx is the standard deviation in the selection 
coordinates measured along the axis of approach to the target. 
This implies that We reflects the spatial variability (viz. 
accuracy) in the sequence of trials. And so, throughput 
captures both the speed and accuracy of user performance. 
See [5, 10] for detailed discussions. 

NEW ACCURACY MEASURES 
Besides discrete errors or spatial variability in selection 
coordinates, there are other possibilities for accuracy and 
each provides information on aspects of the interaction. In a 
“perfect” target selection task, the user moves the pointer by 
manipulating the pointing device; the pointer proceeds 
directly to the centre of the target and a device button is 
pressed to select the target (see Figure 1).  
 
  

 
Figure 1. A “perfect” target-selection task 

In practice, this behaviour is rare. Many variations exist and 
all occur by degree, depending on the device, the task, and 
other factors. In this section, we identify some of these 
behaviours and formulate quantitative measures to capture 
them.  
We are not suggesting that it is wrong to report error rates. 
Rather, our goal is to augment this with more expressive 
measures of accuracy — measures that can assist in 
characterizing possible control problems that arise with 
pointing devices. 

Movement Variability 
Devices like mice, trackballs, joysticks, and touchpads have a 
variety of strengths and weaknesses, and these are well 
documented in past studies [4, 5, 7, 9, 11]. However, analyses 
tend to focus on gross measures such as movement time and 
error rates. These measures adequately establish “that there is 
a difference", but their power in eliciting “why there is a 
difference” is limited. Establishing “why” is more likely 

borne out in more thorough analyses, for example, in 
considering movement path.  
Consider the trackball’s means to effect pointer motion. To 
move the pointer a long distance, users may “throw” the ball 
with a quick flick of the index finger, whereas more precise 
pointer movement is effected by “walking” the fingers across 
the top of the ball. These behaviours, which are not possible 
with other pointing devices, may affect the pointer’s path. 
Such effects may not surface if analyses are limited to 
movement time or error rates. 
Dragging tasks are particularly challenging for trackballs. 
This has been attributed to an interaction between the muscle 
groups to effect pointer motion (index finger) vs. those to 
press a button (thumb) [11]. In the study cited, however, only 
movement times and error rates were measured. Since these 
are gross measures (one per trial), their power in explaining 
behaviour within a trial is limited. Here we see a clear need 
for more detailed measures that capture characteristics of the 
pointer’s path.  
Several measures are possible to quantify the smoothness (or 
lack thereof) in pointer movement, however analyses on the 
path of movement are rare in published studies. (For 
exceptions, see [1, 12].) One reason is that the computation is 
labour-intensive. The pointer path must be captured as a 
series of sample points and stored in a data file for subsequent 
analysis. Clearly, both substantial data and substantial follow-
up analyses are required.  
An example of a task where the path of the pointer is 
important is shown in Figure 2. When selecting items in a 
hierarchical pull-down menu, the pointer’s path is important. 
If the path deviates too far from the ideal, a loss of focus 
occurs and the wrong menu item is temporarily active. Such 
behaviour is undesirable and may impact user performance. 
 

 
Figure 2. The importance of pointer path 

Several measures are now proposed to assist in identifying 
problems (or strengths) for pointing devices in controlling a 
pointer’s movement path. Figure 3 shows several path 
variations. Note that the pointer start- and end-point are the 
same in each example. Clearly, accuracy analyses based only 
on end-point variation cannot capture these movement 
variations. 
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We begin by proposing several simple measures that require 
only that certain salient events are logged, tallied, and 
reported as a mean or ratio. 
Target Re-entry (TRE). If the pointer enters the target 
region, leaves, then re-enters the target region, then target re-
entry (TRE) occurs. If this behaviour is recorded twice in a 
sequence of ten trials, TRE is reported as 0.2 per trial. A task 
with one target re-entry is shown in Figure 3a. 
 

(a) 

(b) 

(c) 

(d)  
Figure 3. Path variations. (a) target re-entry (b) 
task axis crossing (c) movement direction 
change (d) orthogonal direction change 

An example where target re-entry was not used, yet may have 
helped, is Akamatsu et al.’s evaluation of a mouse with tactile 
feedback [2]. This study found a main effect on fine 
positioning time – the time to select the target after the 
pointer entered the target region. With tactile feedback, users 
exhibited a lower fine positioning time than under the no 
feedback, auditory feedback, and colour feedback conditions. 
A measure such as target re-entry may also serve to reveal 
differences among on-target feedback conditions, for 
example. 
Other counts of path accuracy events are possible, and may 
be relevant, depending on the device or task.  
Task Axis Crossing (TAC). In Figure 3b, the pointer crosses 
the task axis on the way to the target. In the example, the 
ideal path is crossed once, so one task axis crossing (TAC) is 
logged. This measure could be reported either as a mean per 
trial or a mean per cm of pointer movement. 
TAC may be valuable if, for example, the task is to trace 
along a pre-defined path as closely as possible.  
Movement Direction Change (MDC). In Figure 3c, the 
pointer’s path relative to the task axis changes direction three 
times. Each change is logged as a movement direction change 
(MDC). 
MDC and TAC are clearly correlated. One or the other may 
be of interest, depending on the task or device. 

Orthogonal Direction Change (ODC). In Figure 3d, two 
direction changes occur along the axis orthogonal to the task 
axis. Each change is logged as one orthogonal direction 
change (ODC). If this measure is substantial (measured over 
repeated trials), it may signal a control problem in the 
pointing device. 
The four measures above characterize the pointer path by 
logging discrete events. Three continuous measures are now 
proposed: movement variability, movement error, and 
movement offset.  
Movement Variability (MV). Movement variability (MV) is 
a continuous measure computed from the x-y coordinates of 
the pointer during a movement task. It represents the extent to 
which the sample points lie in a straight line along an axis 
parallel to the task axis. 
Consider Figure 4, which shows a simple left-to-right target 
selection task, and the path of the pointer with five sample 
points.  

x0 ,y0 

x1 ,y1 
x2 ,y2 

x3 ,y3 

xn-1 ,yn-1 

 
Figure 4. Sample coordinates of pointer motion 

Assuming the task axis is y = 0, yi is the distance from a 
sample point to the task axis, and y  is the mean distance of 
the sample points to the task axis. Movement variability is 
computed as the standard deviation in the distances of the 
sample points from the mean:  

 
( )

1

2

−
−

= ∑
n

yy
MV i  ( 4 ) 

For a perfectly executed trial, MV = 0. 
Movement Error (ME). Movement error (ME) is the 
average deviation of the sample points from the task axis, 
irrespective of whether the points are above or below the axis. 
Assuming the task axis is y = 0 in Figure 4, then 

 
n

y
ME i∑=  ( 5 ) 

For an ideal task, ME = 0. As with MDC and TAC, ME and 
MV are likely correlated. One or the other may bear particular 
merit depending on the movement characteristics of the 
device. 
Movement Offset (MO). Movement offset (MO) is the mean 
deviation of sample points from the task axis. Assuming the 
task axis is y = 0 in Figure 4, then 

 yMO =     ( 6 ) 
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Movement offset represents the tendency of the pointer to 
veer “left” or “right” of the task axis during a movement.  

For an ideal task, MO = 0. Several movement responses, and 
the relative values of movement variability, error, and offset 
are shown in Figure 5. 

METHOD 
To test our accuracy measures, we designed an experiment 
with standard pointing devices. 

Participants 
Twelve paid participants (9 male, 3 female) were recruited, 
based on a posting at a local university. All participants were 
regular users of a GUI and mouse. Two participants were 
regular trackball users and one a regular joystick user. None 
were regular touchpad users. 

Apparatus 
The experiment was conducted on a Pentium-class desktop 
PC running Windows 98. The experimental software was 
developed in Visual Basic (version 6). Output was presented 
on a 17” monitor. Input was via the following four stand-
alone pointing devices: 

• Mouse (Logitech FirstMouse+) 

• Trackball (Logitech TrackMan Marble) 

• Joystick (Interlink DeskStick) 

• Touchpad (Touché Touchpad) 

Procedure 
Participants were randomly assigned to one of four groups (3 
participants/group). Each participant was tested with all 
devices. The order of devices differed for each group 
according to a balanced Latin square. 
Prior to testing, participants were briefed on the purpose of 
the experiment. The task was demonstrated and a sequence of 
warm-up trials was given prior to testing. The task was the 
simple multidirectional point-select task in ISO 9241-9 [8] 
(see Figure 6).  

There were 16 circular targets arranged in a circular layout. 
The diameter of the layout circle and targets was 400 pixels 
(180 mm) and 30 pixels (13 mm), respectively. Since our 
goal was to test our accuracy measures across several 
pointing devices, we used only one task condition with a 
nominal difficulty of 3.8 bits. 

 

Click on target marked with ‘+’ 

etc. 

 
Figure 6. Experiment task showing a sequence 
of 15 target selections (see text for details) 

A sequence of trials began when a participant clicked in the 
top target in the layout circle. The next selection was the 
target on the opposite side of the layout circle, and so on. The 
first three selections are identified by the dotted lines in 
Figure 6. At all times, the “next” target was identified with a 
purple crosshair, which moved from target to target as a 
sequence progressed. 

Movement Responses  

 

  
  

Movement Variability Low Low High High 

Movement Error Low Very High High Very High 

Movement Offset Low High  Low High 

Figure 5. Comparison of movement variability, movement error, and movement offset 
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Participants were instructed to select the targets as quickly 
and accurately as possible, while not exceeding 
approximately one error per sequence. A beep was heard for 
any selection with the pointer outside the target. 
The experiment proceeded by “sequences” and “blocks.” A 
sequence was 15 target selections (see Figure 6). (Note: Data 
collection began with the first selection, thus data were not 
collected for the top target.) A block had 5 sequences. Ten 
blocks, lasting about one hour total, were given for each 
device. Data collection was continuous within a sequence; 
however, rests were allowed between sequences. 

Design 
The experiment was a 4 × 5 × 10 within-subjects factorial 
design. The factors and levels were as follows: 

• Device {mouse, trackball, joystick, touchpad} 

• Sequence {1, 2, 3, 4, 5} 

• Block {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

With 12 participants and 15 selections per sequence, the total 
number of trials in the experiment was 
 12 × 15 × 4 × 5 × 10 = 36,000 
Samples were collected at a rate of 40 per second. Since our 
measures necessitated recording the pointer path, a large 
amount of data was collected (approximately 40 MB). 
Analyses are given in the following section. 

RESULTS AND DISCUSSION 
We begin by analysing the main effects and interactions on 
the traditional measures of movement time, throughput, and 
error rate. 

Movement Time and the Learning Effect 
All participants were regular mouse users; however, some 
had little or no experience with other devices. In addition, 
participants had to gain familiarity with the task. For these 
reasons, a learning effect was expected, perhaps confounded 
with previous experience with the mouse.  
Figure 7 shows the effects of learning (i.e., block) and device 
on movement time. Clearly, the mouse was the fastest device, 
the joystick the slowest. The mouse also had the flattest 
learning curve, as indicative of users’ prior experience. The 
main effects were significant for device (F3,396 = 63.9, p < 
.001) and block (F9,396 = 43.6, p < .001). Not surprisingly, the 
device by block interaction was also significant (F27,396 = 
2.28, p < .001). 
Helmhert contrasts showed that the block effect was not 
significant after block five. Therefore, subsequent analyses 
are based on means from blocks six to ten only.  

Throughput and Error Rates 
Figure 8 shows throughput and error rate by device, with 
95% confidence intervals. As seen, the variance is 
substantially larger for error rate than for throughput. This is 
expected as error rates are generally more variable than 
movement time [3] or throughput. The lower variance for 

throughput is also expected since the calculation inherently 
trades speed with accuracy (see Equations 1-3). 
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Figure 7. Movement time by device and block 

The throughput was 4.9 bps for the mouse, 3.0 bps for the 
trackball, 1.8 bps for the joystick, and 2.9 bps for the 
touchpad. The main effect for device was clearly significant 
(F3,44 = 108.4, p < .001). Paired t-tests revealed significant 
differences in throughput across all device combinations 
except between the trackball and touchpad. Concluding that 
these two devices performed about the same is premature, 
however. As shown later, the additional discriminatory power 
of the new accuracy measures revealed a difference between 
the trackball and touchpad that did not appear in throughput 
measures. 
The throughputs for the mouse and trackball are within 10% 
of those reported previously (e.g., [11]). It is notable that 
contrary to Douglas et al. [5], the joystick had a lower 
throughput than the touchpad. This may be attributed to the 
different products tested. We used an Interlink DeskStick, a 
stand-alone joystick based on force-sensing resistive (FSR) 
technology, whereas Douglas et al. used an IBM TrackPoint, 
a joystick based on strain gauge technology built in to the 
keyboard of an IBM ThinkPad notebook. 
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Figure 8. Throughput and error rate by device 
with 95% confidence intervals 
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Error rates were 9.4% for the mouse, 8.6% for the trackball, 
9.0% for the joystick, and 7.0% for the touchpad. The 
differences were not statistically significant (F3,44 = 0.197, p > 
.05). 

New Accuracy Measures (and Their Relationship to 
Throughput) 
Table 1 shows the means and standard deviations of the seven 
accuracy measures across the four devices. Recall that for all 
measures, lower scores are better. The units in Table 1 are 
“mean count per trial” for TRE, TAC, MDC, and ODC; and 
“pixels” for MV, ME, and MO, where 1 pixel = 0.43 mm as 
measured on the display. One-way ANOVAs showed 
significant differences between the devices across all 
accuracy measures. (Absolute values were used for MO, since 
both negative and positive values are possible; see Equation 
6.) We begin by examining the relationship between these 
measures and throughput. 
The major aim of pointing device research is to develop 
devices that are as efficient as possible. Throughput is an 
accepted measure — now endorsed in an ISO standard — 
with a long history in pointing device research. It is derived 
from speed and accuracy, represented by movement time and 
end-point selection coordinates, respectively. These are gross 
measures (one per trial) lacking any information on 
movement during a trial. For that reason, it is important to 
develop additional accuracy measures with the potential to 
explain why some pointing devices are more efficient than 
others. 
In this section, we illustrate how the new accuracy measures 
can explain differences borne out in the throughput 

measurements. That is, if all or some of the candidate 
accuracy measures have a causal relationship to throughput, 
this is useful in the development and evaluation of pointing 
devices because there are more ways to determine why such 
differences exist and to adjust a design accordingly. 
To determine if the new accuracy measures have a causal 
relationship to throughput, we first calculated the participant 
and device adjusted partial correlations between throughput 
and all seven accuracy measures. These are shown in Table 2. 
The correlations clearly show that all seven accuracy 
measures are inversely related to throughput. Correlations 
range from -.40 to -.82. This is expected: it simply means that 
low throughput is coincident with inaccurate movement as 
measured with TRE, TAC, MDC, ODC, MV, ME, and MO. 
It is noteworthy, however, that some of the inter-correlations 
in Table 2 are high. This is especially true for MV and ME, 
which have about 94% of their variance in common (r = .97, 
r2 = .94). For this reason, some of the measures may capture 
more-or-less the same behaviour, as noted earlier for TAC 
and MDC. This was examined with a multiple regression 
analysis using forward selection, whereby predictors are 
entered in order of the magnitude of their independent 
contribution to the dependent variable. See, for example, [14] 
for details. 
The result was that only two of the measures made a 
significant contribution to the prediction of throughput. These 
measures – TRE and MO – explained about 61% of variance 
in throughput. TRE explained about 41%, and MO about 
19%. This final model was clearly significant (F2,45 = 40.74, p 
< .001).  

Table 1. Means and Standard Deviations of Accuracy Measures for Each Device 

 Mouse  Trackball  Joystick  Touchpad   
Variable  mean sd  mean sd  mean sd  mean sd  F 

Target re-entry (TRE) 0.07 0.04  0.26 0.13  0.33 0.08  0.15 0.04  27.92*** 
Task axis crossing (TAC) 1.7 0.2  2.2 0.4  2.0 0.3  1.64 0.19   9.83*** 
Movement direction change (MDC)  3.6 1.0  5.7 1.6  6.1 3.8  3.6 0.7   4.74*** 
Orthogonal direction change (ODC) 0.8 0.4  1.8 0.6  1.5 0.9  0.8 0.2   8.59*** 
Movement variability (MV) 10.5 3.9  15.9 2.5  17.6 3.8  11.7 2.4  13.54*** 
Movement error (ME) 11.6 4.7  16.5 3.6  18.7 3.5  13.2 2.5   9.09*** 
Movement offset (MO) 2.5 1.0  3.4 0.8  5.1 1.8  3.9 2.4   5.42*** 
***p < .001, **p < .01              

Table 2. Adjusted Partial Correlations Between Accuracy Measures 

 1. 2. 3. 4. 5. 6. 7. 8. 
1. Throughput —        
2. Target re-entry (TRE) -.82*** —       
3. Task axis crossing (TAC) -.56*** -.62*** —      
4. Movement direction change (MDC) -.40*** -.36*** -.64*** —     
5. Orthogonal direction change (ODC) -.50*** -.66*** -.63*** -.75*** —    
6. Movement variability (MV) -.69*** -.66*** -.31*** -.49*** -.71*** —   
7. Movement error (ME) -.60*** -.54*** -.16*** -.46*** -.66*** -.97*** —  
8. Movement offset (MO) -.73*** -.36*** -.04*** -.06*** -.25*** -.54*** -.55*** — 
***p < .001; *p < .05 
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Although TRE and MO were the only measures contributing 
significantly to the prediction of throughput, this does not 
mean the other measures are without merit. Consider TRE as 
an example. A large number of target re-entries does not 
directly imply what is wrong with the pointing device. 
However, if we know, for example, that another measure has 
a causal effect on TRE (Table 2), this may provide insight on 
how to reduce TRE. We tested this again using multiple 
regression but with TRE as the dependent variable. Of the 
remaining six measures, orthogonal direction change (ODC) 
had a high influence on TRE, explaining 49% of the variance. 
Examining and correcting the underlying source of poor 
accuracy measures should help improve pointing device 
throughput. Caution is warranted, however, in advancing any 
claim that some of the measures are more important than 
others. The experiment described here is the first to test the 
new measures. Although TRE, MO, and ODC had a 
significant negative effect on throughput in this study, in 
other contexts, such as different devices and/or tasks, the 
relative contribution of the measures in explaining throughput 
may be entirely different. 

Discriminating Among Devices 
The relationship between our seven accuracy measures and 
throughput has been studied thus far treating the four devices 
as a single group. This is a reasonable first step to validate the 
measures. However, quantitative measures are typically 
called upon to discriminate among devices. 
In the present experiment, TRE and MO had the greatest 
influence on throughput. For this reason, we will concentrate 
on these two measures in analyzing the differences across 
devices. The averages for TRE and MO from Table 1 are 
illustrated in Figure 9. Note that performance is better as 
points move closer to the origin. 
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Figure 9. Device differences for target re-entry 
and movement offset 

To test the discriminatory power of TRE and MO we 
conducted paired t-tests for all device combinations. Of the 
twelve possible comparisons (six for each measure), nine 

were significant. This confirms the ability of the measures to 
discriminate among devices. 
The touchpad-trackball comparison is of particular interest 
because these devices had essentially the same throughput, as 
noted earlier. Figure 9 suggests that these two devices are 
different, based on TRE and MO. The difference in MO was 
not significant (t11 = 0.62, p > .05), whereas the difference in 
TRE was (t11 = 3.24, p < .01). Thus, while the throughput of 
these devices is similar, the touchpad is better when measured 
with TRE. Put another way, TRE reveals a problem with the 
trackball, in comparison to the touchpad, in its ability to 
position the pointer inside a target — and keep it there! This 
assessment is facilitated by the additional discriminatory 
power of the new accuracy measures, such as TRE. 

CONCLUSIONS 
Our goal in this study was to describe and validate new 
accuracy measures for computer pointing devices. We 
demonstrated that the proposed measures give information on 
pointing tasks beyond the traditional measures of speed, 
accuracy, and throughput. The latter are based on a single 
measurement per trial, and so are less adept at capturing 
movement behaviour during a trial.  
The new measures are not intended to replace the traditional 
measures. Rather, we consider them supplementary measures, 
with the potential to explain why some devices are more 
efficient than others. 
All of the proposed accuracy measures are associated with 
pointing device efficiency. As revealed in our “example” 
study, the efficiency of a pointing device suffers if movement 
control is difficult to the extent that the pointer must re-enter 
a target several times before selection. This conclusion 
follows from our measurement and analysis of target re-
entries (TRE). In addition, we showed by measuring and 
analysing movement offset (MO) that the efficiency of 
pointing decreases if the pointer veers from the ideal path.  
Target re-entry (TRE) and movement offset (MO) were the 
only accuracy measures related, independent of the other 
measures, to pointing device throughput. This does not mean 
that other measures are without merit. More likely, the 
importance of TRE and MO in this study may simply reflect 
the particular devices and/or task. In fact, the other measures 
may have a greater causal effect on throughput if adopted in 
studies with other devices or tasks (e.g., a stylus in a menu 
selection task). 
An important result of the present study was that the accuracy 
measures with an independent contribution to pointing device 
throughput were able to discriminate among devices. 
Furthermore, in at least one comparison we found a 
significant difference between two devices even though those 
devices had essentially the same throughput, thus illustrating 
the discriminatory power of the new measures beyond that 
offered by throughput alone. 
The new accuracy measures increase the theoretical 
knowledge base on subtle differences between various 
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pointing devices. As we shift our focus from validating the 
measures to adopting them as tools in pointing device 
research, it is their causal link to device efficiency (viz. 
throughput) and their power to discriminate different devices 
that really counts. Both these capabilities have been 
established in this study. 
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