; aii Teny £ B JUAY
| FE Sl IR SO UR G S ol

Check for ES 7 4 <\
updates oA, ] ( 1
= i 2 (-1 — - =

a1:1,

a; = (—17G-1)
b = —(=1)7j G2 1.

Applying the algorithm to these coefficients leads to the
o.; array of which the first few clements are as follows:

AN 1 2 4 4 7
1 1
2 —1 1
3 2 —2 1
1 ~ 0 4 1
5 .’}"’T — ‘3{5 —d 1
S . 11,'.':25,09 541 12 —5 1
S W 61

As might be expected from the fact that Y(X) has a
branch point at X = ¢ ¥° = 6922 - -- | this power series
has a small radius of convergence. The corresponding con-
tinued {raction, however, obtained by the ¢d algorithin,
converges quite satisfactorily. Even for X = 4, the error of
the sixth convergent is less than 2.4 percent, and the
crror of the 15th about 0015 pereent.

Aclnowledgments. 1t is a pleasure to acknowledge the
helpful eriticism and adviece of Dr. Richard F. King,
Argonne National Laboratory, in improving the clarity
of the presentation and suggesting the inclusion of a spe-
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ALGORITHM 273

SERREV [C1]

Hexry C. Tuacurr, Jr. (Reed. 2 Apr. 1965)
Argonne National Laboratory, Argonne, Illinois
(Work supported by the US Atomic Epergy Commission.}

procedure SERREV (4, B, C, N'};
value N'; integer N; avray 4, B, (;
comment This procedure produces in the array C the coeflicients
of the power series yi =2 _,%; Cyf, where 3 is the solution of
I N

Jy = 2, Awi = gl = D, Bt

i 1
and Ay = 1. The arrays 4 and B are linear, with bounds 1 and
M =z N. The array C is square, with bounds 1:3, 1: ¥, Ele-
metits above the diagonal are not usced. The derivation of the
method is given in (1};

begin integer [, J, K, LIM; real T;
for I := 1 step 1 until ¥ do

begin for J := [—1 step —1 until 1 do
begin 7' := 0; LIM := [—J;
for K :=1step luntil LIM do T := C{K,1] X C{I—- K J}
+ 7T, ClI,JH+1] =T
end for J;
T .= Bi);
forJ := 2step luntil I do T := T—AJ] X C{IJ];
Clil:=T7T
end for [

end
REFERENCE:

1. Tuacuer, H. C., Jr. Solution of transcendental equations by

series reversion. Comm. ACIH § (Jan. 19663, 10-11.

ALGORITHM 274

GENERATION OF HILBERT DERIVED TEST
MATRIX [F1]

J. Booruroyp (Reed. 19 May 1965 and 27 Aug. 1965)

University of Tasmania, Hobart, Tas., Australia

procedure testmz(a,nj; value n; integer n; array a;
comment T.J. Dekker, “Evaluation of Determinants, Solution
of Systems of Linear Equations and Matrix Inversion’ [Rep.
No. MR63, Mathematical Centre, Amsterdam) deseribes a test
matrix M{l:n, 1:n] with the following properties:
(a) elements M{Z,j] are positive integers,
(bj the inverse has elements (—1) T (477 X M{E,7],
(¢) the degree of ill-condition increases rapidly with increas-
ng n.
Such matrices may be formed by M = FG'HG where F is a
diagonal matrix diag(fz) with fi = factorial (n+i—1)/{factorial
(2—13712) ffactorial (n—1), H is the order n segment of a Hilbert
matrix and @ is diagonal, diag(g7), with g¢ derived from the prime
decomposition of fi by:
fi= plp2™ e ph,

mk =2

(]i - p1m+2p2m+2 jﬂk
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This procedure forms matrices a{l:n, 1inl of this type and ic
lows Dekker in prineiple but not in detail. Factorials ave avoi
by evaluating the fi with a recursion scquence

i) = T X (nt2—

22,0, 1,

permitting the exact computation of fi for much larger n than
would otherwise be possible. In the evaluation of expressions
of the form (uXb) + ¢, where the result is integral but ¢ is not
a factor of either ¢ or b, numerator integer overflow is avoided
by the simple device

expression 1= ¢ X b 4 (#rXb) + ¢ where a = ¢ X ¢+r.

Test matrices for 2 < n £ 15 have been computed on a machine
with a 39-bit integer register. During tests of the procedure the
specification of the array parameter was changed from real to
integer and the results checked by matrix multiplication using
an exact double preeision integer inner-product routine. The
unit matrix was obtained in all cases. As real arrays these
matrices will find use only for values of n such that all integer
clements have an exact floating point representation. For
10 = n = 15 the values of the elements of largest modulus are:

n M jmax
10 1616615
11 498814120
12 108636528
13 490804314
14 1859890032
15 22006817600;

begin integer 1, j, k, ft, ¢7, d, ¢, 7; Boolean even;
integer array f, g{lin];
First we compute F' = diag(fi);
Jii=fl1] :=n; j:=mn X n;
for 7 := 1 slep 1 until n—1 do
begind := ¢ X {; k := j—d,;
¢ = fi+d; r:=fi—qXd;
Ju+rlli=ji =g X k+ Xk = d
end;
comment

conunent

And now, using a modified prime factors algorithm
to obtain ¢ = diug(gi), we compute FG™, whose elements re-
place those of I7;

for ¢ := | step 1 until n do
begind := ¢gi :=1; q:=fi:=f[i}; j:=2;

newj: even := false;

next: if ¢ = j then
begin ¢ 1= fi + j;

if fi 3¢ ¢ X j then
bhegin j 1= j+d; d:= 2; go to newj end;
if cren then gi 1= g1 X j; even 1= — ecren;

Ji = ¢q; go to next
end;
gll o= giy fll := 10} + ¢i
end,;

comment Finally, in one operation (FGNHG where H is a
nonexistent Hilbert matrix whose reciprocal elements,
i+j—1, are computed as we go;

for i := 1 step 1 until n do

begin fi := f[i];
for j := 1 step 1 until n do
begin gi = gljl; k := {+j—1;

g=fi = k; r fi — q X k;
ali, j} = ¢ X gi + (rXgi) = k
end

end

end testmx

12 Communications of the ACM

CERTIFICATION OF ALGORITHAL 56 (821
COMPLETE ELTIPTIC INTEGRAL OF THE
SECOND KIND
L. R. Herndon, Comm. ACI 4, (Apr. 1961}, 180]
Gerirarp Memint Larssex (Reed. 9 Aug. 19653)
Institut fir Statik und Dynamik der Lufi- und Rauna-
fahrtkonstruktionen mit Rechengruppe der Luftfahrt,
Technische Hochschule, Stuttgart, Germany

Algorithm 50 was run on a Uxtvac 1107 using the Usivac 1107

Ancor 60 compiler {dated Janu , 10653, The single-precision
floating-point arithmetic of this translator carries eight significant

digits.
Two syntactical errors were removed [rom the algorithm:
1. The line

ELLIPTIC 2 :=

N
!

040905094 X b -
was changed to
ELLIPTIC 2 := £{0.040905004 X ¢ +

2. The function log was changed to In.
In addition. the statement

ti= 1~k Xk

was removed from the algorithm and the complementary parame--
ter isell used as input to the procedure:

veal procedure ELLIPTIC 2 (f}; value {; rveal (;

to avoid cancellation error for values of %k near 1. [While the uise
of ¢ as input parameter is good computationally, the name of the
procedure is then slightly misleading.—J.G.11.]

Several values of the complete clliptie integral of the secomnd
kind were computed for 1 > ¢ > 0. The maximum error was fouaund
to be about 71:—7, compared with A. Al Legendre, Tafeln der
Elliptischen Normalintegrale, Stuttgart, 1931. For { = 0 an erx-or
exit from the In routine takes place,

=
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