Check for
Updates

Create the appropriate eniry in the Payroll

<

Table for such a program (Iabel it PRGH).
the format of the Payroll Register were changed,
program in the system would have to be changed?
Aecording to the Program-File cross-reference table
{ 23, program PR40 may use files PRO00I, PR20RAM,
P , PR4004 and PR4ORM. If program PR40 were
run twice in a row without an intervening regular process-
ing cvele, what would be in the file identification of the
Reconciliation Master Tile used as input to the second
iing of PR40, i.e., PR20RAM or PR4ORN?
5. How many elements of data are in the Taxable
Limits Report-PR5902?

5. If the element of data HIRE-DATE were deleted
frow the system, how many files would be affected?
7. Which Payroll System file could you identify from
an unlabeled listing with only these four elements of data:

2

01 EMPNTUAMBER, 04 CURGROSS,
16 WORK-COAIP?

11 DEPT,

8. According to the Element of Data-File cross-reference
table (Iigure 4b) for the Payroll Register, is there room
for an element of data called SPECDIST? (SPECDIST is
five digits long; vou can assume three spaces between cach
clernent of data and two lines for each employee on the
register—120 character lines.)

9. If HIRE-DATE (a class 3 element) were deleted

from the system, which rules in the decision tables might
have to be changed?

10. If an additional function were added to the file
maintenance program and called INA for inactivate
(opposite of activate), then how many rules would have
to be added to Decision Table 1?

TEST ANSWERS

1. No. Check PR20 entry in the Systems Table (Figure 1b).

2. PR65 QUARTERLY OVER $§3.00 PRXXEM PR6502 QR PRINTER.

3. PR20. In the Program-File cross-reference table (Figure 2}, note that the Payroll
Register file {PR2602) goes only to the printer.

4. PR4ORM. After the first running of PR40, the Reconciliation Master file would
remain PR4ORM until PR20 was run again. Therefore, the input to the second running
of PR40 would be the latest PRXXRM, or PR4ORM.

5. Ten. {8ce Note 2 mpanying Figure 2).

6. Five file typ ted: A, G, Q, U and V (see Figure 4a), but actually
eight programs would need to be changed, because file type G includes four files
(PRIOEM, PR2OEM, PRT2EM, and PRSOEM).

7. PRI003 or PP Labor Distribution Transactions. In the Element of Data-File
cross-reference (Figure 4a}, note that ile * F7' is the only entry with just those four
elements.

8. Yes. Count the positions required in Figure 4B [226 = 1584543 (21)].

@. Decision Table 1, rules 5, 8 9, 10 and 12; Decision Table 2, rule 2; Decision
Table 3, rules 2, 3 and 4; Deecisicn Table 6, rules 3, 4 and 5. (Check the Element of
Data-Decision Rule cross-reference tauble, Figure 5).

10. Two: INA INA

Y N

Acknowledgments. Some of the ideas expressed in this
paper depend on extensive work with tables accomplished
by personnel of the United States Air Force Logistics
Command and the Sutherland Consulting Company.

RECEIVED FEBRUARY, 1965; REVISED AUGUsT, 1965

ngramming Decision Tables in

FORTRAN, COBOL or ALGOL

Cyrin G. VEINOTT
Reliance Electric & Engineering Company, Cleveland, Ohio

A simple broad-based approach for programming decision
tables in FORTRAN or COBOL is developed and presented.
With inputs in standard form, as defined in the paper, the pro-
gramming of any decision table can be done with one or two
FORTRAN statements, or with two COBOL statements, if the
COMPUTE verb is available in the COBOL processor. It is
shown that the method is applicable even when there are more
than two mutually exclusive states of one, two or more table
conditions, It is further shown that multi-state conditions in
decision tables can often simplify the programming. The
method outlined has the further advantage that all possible
combinations of conditions are considered. It is shown that the
suggested procedure is easily implemented in ALGOL.

1. Introduction

Much has been written in the literature about the merits
of decision tables in expressing complex logic. A recent
article by Kirk (1] points out some of these merits and
gives an elegant method for programming a decision table.

Yolume 9 / Number 1 / January, 1966

The subject is also discussed in a very recent paper [2].

In this paper a very simple and broad-based approach to
this problem is developed for programs written in ForTRAN
or CosoL. It is shown that any decision table can be pro-
grammed by two statements in ForTran II, or by a
single one in Forrran IV, so long as the two conditions
are expressed in a standard form. In Cosor, two state-
ments are sufficient if the COMPUTE verb is imple-
mented in the CoBor processor being used. In ArgoL, a
switch serves the purpose.

The approach here has been extended to cover decision
tables where cach condition can have two or more mu-
tually exclusive states. It is shown that such tables can
also be programmed with equal ecase, that is, with two
statements in either ForTrax or Copor. Moreover, the
use of a plural number of states of conditions leads to
simpler tables and simpler programs than adherence to
decigion tables where all conditions are limited to two
states.

Also, it is shown how the approach of this paper can
readily be extended to ArLGou.

Nature of Simple Decision Tables (Two-State Condi-
tions). Table Iis a typical decision table. It is, in fact, the
one used by Kirk [1]. This table shows three different con-
ditions, and calls for four courses of action, as expressed by
4 “Rules,” depending upon particular combinations of the
specified conditions. Each condition, in this case, is repre-

Communications of the ACM 31


http://crossmark.crossref.org/dialog/?doi=10.1145%2F365153.365164&domain=pdf&date_stamp=1966-01-01

sented by one of two possible staies, ves or no, true or
false.

We ignore the fact that there arve really only two ditfer-
ent courses of action in the case of Table I hecause, in the
general ease, there may be more.

Asx a rule, it may be said that a decision table is merely a
convenient form for expressing a multiple branch where
the particular branch to be followed iz dictated, not by
one condition, hut by a certain combination of a number of
conditions. Flowcharts for such a case can get very in-
volved, and can be very difficult to follow; they alzo n-
volve testing for each eondition more than once.

2. General Approach

As we have seen, a decision table represents a multiple
branch in a program, depending upon a set of specified
conditions; there can be as many branches as there are
possible combinations of conditions. Forrrax provides
for a multiple branch by means of a computed GO TO
statement. Conor likewise provides for a multiple branch
with its “GOTO - -+ DEPENDING ON - - 7 statement.
In either language, the eurrent value of the branching
variable determines which branch the program follows.

The general procedure followed in this paper is to set up
a system for caleulating a unique number for each pos-
sible combination of conditions. The unique numbers must
be an unbroken series of consecutive numbers so that they
can be used as a branching variable.

The logic involved may be easicr to follow if it is applied
to the simple case of Table I before generalizing.

Programming Table I. Suppose in Table I, we denote

“eredit limit OK*? by a valuc of O or 1
“pay experience OK' by a value of 0 or 2
“special clearance™ by a value of Q or 4

TABLE [. Creort Arprovar: Typicarn LiviTEp -ENTRY

DEecisiox TasLeE ExavpLE

Rule 3

Condition Ruie ! Ruie 2 Rule 4
Credit limit OK Y N N N
Pay experience favorable Y N N
Special elearance obtained Y N
Action
Do approve order X X X
Do not approve order X
TABLE II
: Rules
Condition Value -
: Lo - 34 Leiy
Credit limit OK 1 ©X
Pay experience OK 2 X X
Speeial elearance obtained 4 X
Action : Co i
Do approve order : X X ‘X
Do not approve order ' X
Corresponding Rule Num- 11 1i311 2:1

ber, Table T

32 Communications of the ACM

uel
Al

nYa

¢

bination= of three conditions, Iet us provide 8 columns, one
for cach combination. This hax been done in Tuble 11, Let
these 8 columns be numbered from 0 to 7, inclusive, as
shown. Now, let X’s be put in these columns in =uch a way
that the corresponding “values” add 1o give the number at
the top of the column concerned. Now then, this pro-
cedure gives (a) identification to all eight possible combina-
tions of conditions, (b) a unique number for each combina-
tion, obtained by the simple process of adding respective
ralues for the three conditions, and (¢) consecutive order
to unique numbers.

Since the series contains a zero, we need to add 1 =0 as te
be able to use this number as a branching variable.

Ordinarily we prefer to denote a yes or no invariably by a
1 or a 0; if this is done consistently there are less likely to
be errors in the input. Suppose, in Table I1, we denote

I1 = credit limit OK 1 =yes 0=no
I2 = pay experience OK 1=yes 0=no
13 = special clearance obtained 1 =yes 0= no

N1 = statement number (ForrTrax) or procedure name
(CosoL) initiating action to ‘“not approve the order.”™

N2 = statement number {(ForrraN; or procedure name
(CoBoL) initiating action to “approve the order.”

Now then, the ForrraN program for Table 1T is:

JUMP =1 + T1 + 2:I2 + 4+I3
GO TO (N1,N2,N2,N2,N2,N2,N2 N2), JUMP

Note. There are 8 statement numbers inside the ( )
since J UMP may have any value from 1 to 8. In this case,
seven of the statement numbers arc the same, but this
would not generally be true.

If Fortrax IV is used the expression for JUMP could be
written in place of JUMP in the GO TO statement, so that
only one Forrrax statement would be needed. N1, N2,
ete., represent the numbers of the statement to which
control is to be transferred.

Similarly, the Cogpor program for Table II would be:

COMPUTE JUMP = 1 4 11 4 2412 4 4xI3
GO TONIN2N2N2N2N2N2N2DEPENDING ON JUMP

Nofe. As in ForTrAN, it 13 necessary to provide 8 pro-
cedure numbers, to take care of the 8 possible values of
JUMP, even though the same procedure name is used more
than once.

If the COMPUTTIS verb is not available, the operations
indicated have to be performed by using the available
verbs. N1, N2, ete., are, of course, the specifie procedure
names to which control iz to be transferred.

Note that Table I shows only four of the eight possible
combinations of conditions, whereas all eight are specifi-
aly shown in Table IL. It ean be said that Rule 1 of
Table I, by ignoring two of the three conditions, ‘“‘covers,”’
at least by implication, four of the combinations shown in
Table II. It may be convenient to represent four combina-
tions by a single rule, but the safety of such a practice in
the general case leaves something to be desired. The format
of Table IT forces consideration of every possible combina-

Volume 9 / Number 1 / January, 1966



ne of these happen to be mean
1 errorin i

gless, or indica-
nputs, a aano\h( could b

e printed out.
the beauly and power of the decision table is that

\\hct it is possible to branch upon a single
t 1s probably better not to include that condi-
ision table, but to branch upon it directly be-

1 For example, the “eredit limit" condition of
Table I might better have been left out of the decision
table itself.

In general, the engineering analyst, or the procedures
analyst, may give only the rules of interest, in no particular
order, as done in Table I. The programmer then needs to
compute the value of JUMP for each of the rules indicated.
He must then add all the other possible combinations. It
will help to avoid errvors if he lists the combinations in
order of the magnitude of JUMP.

General Procedure for M Two-State Conditions.
two-state conditions, let

For M

11 (condition Number 1) 1=yes 0= no
I2 (condition Number 2) 1 =yes 0= no
iM {condition Number M) 1 = yes 0 = no
KC = 2M-D
In Forrrax programs, N1, N2, --- | NM would repre-

sent statement numbers to which control would be trans-

ferred. In CoBoL programs, these would represent pro-
ceclure names to which control would be transferred.

Number of possible “rules” or branches = 2M. (1)

The first step would be to rewrite or develop the decision

table with 2M columus, so that each combination of condi-

tions was identified, and provision made for it. These

columns do not have to be arranged consecutively in order

of magnitude of JUMP, but it is probably safer and more
convenient to do so.
The Forrran program would be:

JUMP = 1411 + 212 + 413 4- 8+I4 4 - - KC+IM

GO TO (N1, N2, ---NM), JUMP

The Cosor program would be:

COMPUTE JUMP = 1 + 11 4 2+12 - 413 4 8«14 + ---KC+
M

GO TO N1 N2 ---NM DEPENDING ON JUMP

The GO TO statement, in either ForTrAN or CoBoL has
to have 2™ statement numbers or procedure names but the
same statement number or procedure name may be re-
peated as many times as necessary. Such repetition is il-
lustrated above in the ForTraN and CoBor programs for
Table II.

What is the decision table-size limitation on program-
ming this way? This would be determined by how large a
GO TO statement would be allowed by the particular
ForTraN or CoBoL processor (compiler) used. In general,
large decision tables should probably be avoided, for they
¢an eat up memory (see Section 4).

Conditions Represented by More Than Two States. Tt
may be desirable to represent one or more conditions by

Yolume 9 / Number 1 / January, 1966

s a multiple branch, based upon a combination of

more than two states. For example, still using the example
of Table I, we may wish to delincate different dollar limits
for which the credit is OK, e.g,,
Condilion 1. Credil is ON

State 1—Under no condition

State 2—For any amount less than 810,000

State 3—For any amount of $10,000 or more.

Now, let there again be M conditions, the state of each of
which is indicated by the value of variables I1, 12, -+,
IM. Let the various conditions have K1, K2, » KM
mutually exclusive states. To clarify the above, consider
the table below.

Values of the Variable for

Represented by I
Difierent States

Condition Number Variable

i T 0,1,2 - Kl-1
2 12 01,2 Kool
M IM 6, 1,2 - KM—1

That is the conditions themselves are represented by the
I variables; each of these I variables can take on different
values, starting from 0, to express the state of this particu-
lar condition. The number of states of any condition de-
pends i1 no way upon the number of states of any other
condition.

Since the states, for any condition, are mutually exclu-
sive, by definition, only one state can exist at a time for
any given condition.

It can then be shown that the number of combinations
or “rules” that exist will be

Number of rules = (K1) (K2) --- (KM) = R. (2)
For convenience, let KNI, equal the number of states of the
next-to-the last condition.

Now then, the procedure in programming such a table is
to set up R columns or rules and identify each combination.
To each combination a statement number (FORTRAN) or a
procedure name (CoBoL) must be assigned; some of these
can be repeated if need be and some may lead only to error
print-outs, but all combinations must be identified.

The ForTRAN program would be

JUMP =14 It + K1+I2 4+ K1+K2+13 + ..+
(K1+K2x- - *KNL)*I\I
GO TO (N1, N2, N3,

K1+K2+K3+T4 +

-.NR), JUMP
The CoBoL program would be

COMPUTE JUMP = 1 -+ T1 + KI+I2 4 KI«K2+I3 + ---
K1+K2:K3+J4 + (KixK2x. - - KNL}&IM
GO TO N1 N2 N3 ---NRR DEPENDING ON JUMP

Tllustration of the General Case of Mulli-State Condi-
tions. To illustrate application of the preceding, let us
agsume that there are three conditions, as follows:

Condi~

tions States
1 3 Kl =3
2 4 K2 = 4
3 2 K3 =2

So, R, the number of rules that have to be considered, is
R=3X4X2=24.
Now, lay out Table IIT to provide lines for each state of

Communications of the ACM 33



each condition with 24 columns for 24 yules, as shown.
Aleo, provide three more columns, as shown, headed:

Local Value - This would be the value presumably stored
in the computer to denote the state for the particular con-
dition.

Multiplier—This is the multiplier by which the local
value is multiplied. It is 1 for Condition 1, K1 for Condi-
tion 2, K1 X X2 for Condition 3, eic.

Net Value—This is the net value of the particular state,

Now, in the last line of the table, enter numbers from 0
to 23 in successive columns,

Next, insert X’s in each column so that the net values
opposite the X’s add up to give the total in the last line.

We now have listed in Table IIT every possible combina-
tion of all states of the three given conditions.

The Forrrax program for this table would be:

JUMP = | 4+ 11 4 3+12 4 12«13
GO TO (N1, N2, N3, -+, N24), JUMP
The CosoL program for this table would be:
COMPUTE JUMP = 1 -+ 11 + 3=[2 4 12413
GO TO N1 N2 N3 .- N24 DEPENDING ON JUMP

Maulti-State Conditions Versus Two-Stale Conditions. 1t
is clear that the 9 states in Table III could have been
represented by 9 two-state conditions. Would this be
simpler or not is & natural question.

With nine two-state conditions, from (1)

Number of rules = 29 = 3512,

With three conditions of 3, 4 and 2 s{ates respectively,
from (2)

Number of rules = 3 X 4 X 2 = 24,

Clearly then, it would be impracticable to program Table
IIT as nine two-stafe conditions, but it i quite practicable
to program the nine states as they were done.

Perhaps a reader may ask, how does it happen that one
way of setting up the problem gives 24 alternatives,

whereas a different way leads 1o 312 alternatives? The
answer s {airly simple. Condition 1 is artualiy reprecented
by tHee mutually exelusive =tades, =0 there are only three
valid alternatives to represent thix condition. It these
states were set up as three two-state conditions, there
would be 2X2X2=8 alternatives, only three of which are
valid; the additional five invalid alternatives serve but te
confuse and complicate the pieture. A similar situation
exists for Conditions 2 and 3, where treating them as
more two-state conditions introduces invalid and un-
wanted alternatives.

QQuite obviously then the lesson is clear: When a condi-
tion can be represented by more than two mutually exclu-
stee states, it should be done!

Local Value Numbers of Conditions. It was assumed in
Table 111, for example, that the “local values” for each
condition were already available in storage. If this is not
the case, the local value or “net value” has to be deter-
mined prior to taking the steps outlined in this paper. For
example, only the amount of the order might be given.
Rather than have a human determine which state it repre-
sented in condition 1, the programmer would develop and
store cither the corresponding local or net value. In like
fashion, some or all of the other conditions might have to
be examined and programmed to calculate the appro-
priate state for that condition.

3. Extension of Techniques to ALGOL Programming
The techniques just described are cqually applicable to
programs written in ALcoL. The procedure would be:
1. Set up the decision table as discussed above.
2. In the Arcor program declare a switch
SWITCIH DTI = N1, N2, N3, N4, ete.
3. The table 1s then implemented by

JUMP := 1+ Il + 2XI2 + 4XI3 + ---
10 TO DT1 (JUMP)

TABLE III

a Multi- * Equal Net:
Value plier Value
Condition 1
State 1 0 0 X
State 2 1 1 1 X .
State 3 2 2 X
Condition 2 :
State 1 0 0 X X X
State 2 1 3
State 3 2 3 6
State 4 3 9
Condition 3 . _ ,
State 1 [ 0 XX X X I\
i I P E P
State 2 S U 12 P
SJUMPY = 14 0°1 2.3]4.

P ;
ﬁ P . X X KX :
X X X X P | %
i i | : i H [ : i i ; | i
I R .
. XXX XX X XX XX XX
6.7 8.9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

-34

Communications of the ACM

Volume 9 / Number 1 / January, 1964




i, Motes on Decision Table Sizes
uite obvious that the number of rules goes up very
th an increase in the number of conditions. When

[ table threatens 1o get ulmanageably large, a

rourses of action are available.

=

"0
1. Take care not to include any coudition that is inde-
dent of all other conditions in the table. That iz, do not

p{\
nclude a condition unless it has fo be considered n com-
pination with other conditions 7n this same lable.

2. If two or more conditions in the table are mutually
exclusive of each other, represent them by different states
of the same condition.

3. When a choice exists, always use more than two states
of a siven condition, rather than adding new conditions.

4. Break the decision table up into more, smaller tables.

5. If u limit iz reached beeause of length of GO TO state-
nient, two or more GO TO statements can be used. In this
¢ase, the value of JGMP would have to be tested to deter-
mine which GO TO statement would be used; also the
value of JUMP would have to be adjusted to suit the com-
puted GO TO to which control is about to be transferred.

5. Summary and Conclusions

A powerful tool for programming decision tables has
been developed and presented.

1. The method is simple and applicable to Fonrrax or
ConoL.

2. Any number of conditions may be specified.

3. Fach condition can have two or more mutually ex-
clusive states,

4. Each of the conditions can severally have different
numbers of states,

5. The standard method of representing states is, for
cach condition, 0, 1, 2, 3, ete.

. The method automatically develops all possible com-
binations of states of conditions and requires provision to
be made for all.

7. In either Forrrax or CoBor, a single data word com-
pletely specities the branching required by the decision
table.

8. Only one or two statements are needed in cither
Fowrray or Cosor (if COMPUTE verb is available) to
program almost any decision table, when inputs are of
standard form.

9. The only limits on the size of table that can be pro-
grammed by this procedure is set by the maximum length
of GO TO statements that can be handled by the processor
being used or by available memory.

1eCcEIvED Avcust, 1965

REFERENCES

1. Kirg, HI. W. Use of decision tables in computer programming.
Comm. ACM 8 (Jan. 1965, 41-43.

2. Press, L. 1. Conversion of decision tables to computer
programs. Comm. ACM. 8 (June 1965), 385-390.

Volume 9 / Number 1 / January, 1966

Letters to the Editor

L L W

Remarks on a Computer Program for the

Construction of School Timetables

Dear Editor:

In an earlier letier Duncan [1] has reported the results of a
number of runs on an IBM 7090 with a program written for the
solution of the timetable problem as outlined by Gotlieb and
Csima 2]. In a recent review of this communication, Broder [3]
calls attention to the fact that the eomputer time required for an
N X NV X N problem is proportional to 2% and concludes that,
despite the introduction of clever programming improvements,
the method is likely to prove impractieal.

In his program, Mr. Duncan employed a tight-set search al-
govithm, as deseribed by Gotlieb and Csima, in the subroutine
used to reduce availability matrices; this algorithm is very ineffi-
cient and we can be virtually certain that, among the improve-
wents envisaged by Mr. Duncan, he included the replacement of
this algorithm by an efficient one. Indeed, in following up the work
of Mr. Duncan, we have done just this with the result that the
computer time for a problem involving 18 teachers was reduced
from approximately 75 minutes to a few seconds and the computer
time for a case involving 43 teachers was approximately 3 minutes,
not 286 = 92 hours as suggested by Broder. (These computer
times refer to a program written by us and used on an IBM 7094.)

The work of Mr. Duncan has been of great value to us in the
development of our present program which is designed to deal with
real problems as presented by the secondary schools in Ontario.
We are currently using this program on an experimental basis in
cooperation with representatives from a number of schools, in-
cluding one school with approximately 100 teachers.

{EFERENCES:

1. De~can, A. K. Further results on computer construction of
school timetables. Commn. ACM 8,1 (Jan. 1965), 72.

2. Gorries, C. C., axv Csivia, J.  Tests on a computer method
for constructing school timetables. Comm. ACM 7, 3 (Mar.
1964), 160-163.

3. Brover, 8. Review 784G. Comp. Rev. (July-Aug. 1965), 236.

‘ B. A. GrIFFITH
J. Kates & Associales
Toronto, Ontario, Canada

On the Confusion Between “0°’ and ‘0’

Dear Editor:

I should like to describe briefly a technique which has been in
use at the Lewis Research Center of NASA for approximately ten
years for resolving the confusion between the mark 0 intended to
mean zero and the mark O intended to mean the character between
N and P in the Latin alphabet,

As applied to the management of identifiers and numerical
values in assembler or corpiler Lainguages, it has worked without
failure and does not require that human programmers differentiate
between the similarly shaped symbols for zero and the letter <0

(Continued on page 45)

Communiecations of the ACM 35



