
pot
~o~z

12 :

: T

m

<' more. Create the ai:,prol)riaie e~try in {he Payroll
5,:~teitt~ Table i'Ol' such a program (label it Pl{f~5).

3. ff the form~.t of lhe Payroll]{egisier were (hanged,
.,\i ich progran~ in ~.he system would have to be changed?

~.According to the D . . . ~ ~ ~-; I lOglan.-~ ,le cross reference table
(i jg~.~te 2), l)Iogran~ Pt{40 may use files P]1000t, PR20RM,
t>te ,:m9 1~f~.4()04 and PI{40!{.\[. if m'OKl'aln Pt{40 were
>i>, iwiec in a row wit}lout an hlterve~fing regu[al" process-
irag cycle, what would be in tile file identification of the
t~eco~ciliation 3la t ter File used as input to tile xecond
rumfing of Plq40, i.e., PI /20RM or P t l40~M?

5. How n-tony elentents of data are ht 1he Taxable
Limits t leport-PR5902?

6. If tile elementt of data H I R E - D A T E were deleted
from the system, how many files would be affected?

7. Which Payroll Systeln file could you identify from
:~n ulllabeled listing with only these four elements of data:

01].2MPNI.:MB]!:ll, 04 CURGtROSS, II DEPT,
16 WOiRK-COMP?

8. According to the Element of Data-File cross-reference
table (Figure 4b) for the Payroll Register, is there room
for an elemerlt of data called SPECDIST? (SPECDIST is
five digils long; you can assume three spaces between each
clement of data and two lines for each employee on the
register 120 character lines.)

9. I f HIRt ' ; -DATE (a, class ,,° dement) were deleted

froln the systeIn, wtlich rules in the decision tables might,
have lo be changed?

10. If an additional furletion were added to the file
lnaintenance program and called I N A for inactivate
(opposite of activate), then how many rules would have
to be added to Decisiorl Tab le 1?

T E S T A N S W E R S

1. No. Check PR20 en r:.- in the S y s t e m s "Fable (Figure lb)
2. PRfi5 Q U A R T E R L Y OVER $3.00 P R X X E M PRfi502 QR. P R I N T E R .
3. PR20. In the Prcgrtu:n File cross-reference table (Figure 2), note that the Payroll

[Register file (PR2002) goes only to the p r in t e r .
4. PR40R~,I. After the first running of PR40 . the Reconciliation Master file would

remain PR40R3I until PR20 was ruu again . Therefore , the input to the second running
of PR40 would be the latest P R X X R M , or P R 4 0 R M .

5. Ten. (See Note 2, accompanying F i g u r e 2).
6. Five file types are affected: A, G, O, IU and V (see Figure 4a), bu t actually

eight programs would need to be changed, because file type G includes four files
(PRIOEM, PI/20EM, l 'R72EM, and P R 9 0 E M) .

7. PR1003 or PP Labor Distr ibut ion Transact , ions. I n the Element of Data-File
cross refereuce (Figure 4:~), note t.hat file ' F " is the only entry with jus t those four
elements.

8. Yes. Count the positions required in F i g u r e 4B [226 = 158-1.-5+3 (21)].
9. Decision Table I, rules 5. 8, 9, l0 a n d 12; Decision Tab le 2, rule 2; Decision

Table 3, rules 2, 3 and ,t; Decision Table 6, ru les 3, 4 and 5. (Check the Element of
Data-Decision Rnlc cross-reference tttblc, F i g u r e 5).

10. Two: I N A I N A

Y N

Acknowledgments. Solne of the ideas expressed in this
paper depend on extensive work with tables accomplished
by personnel of the United Sta tes Air Force Logistics
Command and the Sutherland Consulting Company.

R E C E I V E D F E B R U a . R Y , 1965; R E V I S E D A U G U S T , 1965

i

:)

?

i: i:
? i

i:

!i:
:7

Programming Decision Tables
FORTRAN, COBOL or ALGOL

in

CYI~IL G. ~rEINOTT
Reliance Elecb'ic & Engineering Company, Cleveland, Ohio

A simple broad-based approach for programming decision
tables in FORTRAN or COBOL is developed and presented.
With inputs in standard form, as defined in the paper, the pro-
gramming of any decision table can be done with one or two
FORTRAN statements, or with two COBOL statements, if the
COMPUTE verb is available in the COBOL processor. It is
shown that the method is applicable even when there are more
than two mutually exclusive states of one, two or more table
conditions. It is further shown that multi-state conditions in
decision tables can often simplify the programming. The
method outlined has the further advantage that all possible
combinations of conditions are considered, tt is shown that the
suggested procedure is easily implemented in ALGOL.

1. I n t r o d u c t i o n

Much has been written in the literature about the merits
of decision tables in expressing complex logic. A latent
article by Kirk [1] points out some of flmse merits and
gives an elegant metllod for programming a decision table.

Volume 9 / Number 1 / .lanuary, 1966

The subject is also discussed in a very recent paper [2].
In this paper a very simple and broad-based approach to

this problem is developed for programs written in FORTRAN
or COBOL. I t is shown tha t a n y decision table can be pro-
grammed by two s ta tements in FORTRAN II , or by a
single one in FOWl'RAN IV, so long as the two conditions
are expressed in a s tandard form. In COBOL, tWO state-
rnents are sufficient if tim C O M P U T E verb is imple-
mented in the COBOL processor being used. In ALGOL, a
switch serves the purpose.

The approach here has been extended to cover decision
tables where each condition can have two or more mu-
tually exclusive states. I t is shown that such tables can
also be programmed with equal ease, that is, with two
statements in either FORTRAN or COBOL. Moreover, the
use of a plural number of s ta tes of conditions leads to
simpler tables and simpler p rograms than adherence to
decision tables where all conditions are limited to two
states.

Also, it is shown how the approach of this paper can
readily be extended to ALGOL.

Nature of Simple Decision Tables (Two-State Condi-
tions). Table I is a typical decision table. I t is, in fact, the
otto used by Kirk Ill. This table shows three different con-
ditions, and calls for four courses of action, as expressed by
4 "Rules," depending upon par t icular combinations of the
specified conditions. Each condition, in this ease, is repre-

C o m m u n i c a t i o n s of the ACM 31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365153.365164&domain=pdf&date_stamp=1966-01-01

sented by one of two possible slaie.% yes or no, true or
fMse.

We ignore lhe t'ac(tha(t}lere are really only i\vo differ--
ent ('ourses of action in I.he ease of Table i because, ia ihc
general ease, there may be more.

As a rule, it may be said that a decision table ix merely a
convenient form for expressing a multiple branch where
the part icular branch io be followcd is dictated, not by
one condition, but by a ('e~'gai, combination of a -rrumber of
condili(nis.]"low(.harts for su('h a ease can get very in-
volved, and can be very difficult to follow; they al~o in-
volve test ing for each ('on(lilion more than once.

2. G e n e r a l A p p r o a c h

As we have seen, a decision table repre.~ents a multiple
branch in a program, depending upon a set of specified
conditions; there can be as m a n y branches as there are
possible combim,lions of conditions. Fowru.¢x provides
for a muhiple branch by means of a computed GO TO
slatemenl . CoBoL likewise provides for a nmltiple branch
with iis "GO TO . . . D E P E N D I X G OX -- • " s tatement .
In either language, the current value of the branehing
variable delermines which branch the program follows.

The general procedure followed in this paper is to set up
a system for calculating a unique number for each pos-
sible combinaiion of conditions. The unique numbers mus t
be an unbroken series of eonsecutive numbers so tha t they
can be used as a branching variable.

The logic involved may be easier to follow if it is applied
to the simple case of Table I before generalizing.

Programmir~g Table I. Suppose in Table I, we denote

"credi t limit O K " by a value of 0 or 1
" p a y experience O K " I)v a value of 0 or 2
"special c learnnce" by a value of 0 or 4

TABI, I '] I . CUEmT APPIU)VM.: TYplC'.kI~ LtMITED-t']NTRY
I)EelSION TABI.E EXAMPLE

Condition Rule I RMe 2 R.u!e 3 Rule 4

Credi t limit OK Y N N N
P a y experien(,e f,qvorablc Y N N
Special clearance el)lathed Y N
Attires

l)o approve order X X X
1)o m)t approve order X

T A B L E I I

Rules

C,mditi(m ;i Vahle

i : i i

C.redit l imit OK
P a y experience OK
Special clearance obta ined
Action

Do approve order
I)o not approve order
Cor respond ing Rule Num-

ber, Table I

x x x ' , ix
X X i :X X

i- i
iX ~X X :X

x ',x' x i !
:x i !

i i i :

4 1 . 2 . l i 3 i l . 2 1
1

32 C o m m u n i c a t i o n s o f t h e ACM

)

'> a ne:v Table +o reply:co, ff':~bie ~ i~ eons*rueted, ti
a(~cn.ug(a " \ - f i l u e " cohtii].,.i, .<.h/ce ih(?re ('aa b e '>:: --- 8 com_- i i

bimtk{,m~ of ihree .oudii ions,]e{ its pvov](h, S cohw.ms, one
for each (onfl)iuaiion. This has b(.e~i done iu Table I I . Le t { it
these, 8 eCumns be tmmbered from 0 1o 7. iu.:lu~ive, as (..,
shown. Xow,]let X ' s be put in these columns in such a w a y c~
tha t the corresponding " a m e s add io ~.oivc the number a t ,i
the top of the eohmm concerned. Now then, this pro- f(
eedure ~ivcs (at identifieat ion to all eight possible combina- 11'
tions of eondiiionG (b) a unique number for eaeh eombina- t:
tion, obtained by the simple process of adding respective
values for the three conditions, and (c) consecutive o rde r a:
[o unique munbers, o:

Since. the series contains a zero, we need to add 1 so as t.o ec
be able to use this number as a branching variable. I1

Ordimwily we prefer lo denote a yes or no invariably by a ;x:
1 or a 0; if this is done consistently there are less likely t o o:
be errors in the input. >ul pose, in Table II , we deno te

I1 = credil l imit OK 1 = yes 0 = no t"
I2 = pay e x p e r i e n c e 0 K 1 = yes 0 = no
I3 = special clearance ob ta ined 1 = yes 0 = no
N1 = s t a t e m e n t nmnbe r (Fou imxx) or procedure n a m e

(COBOL) in i t ia t ing ael ion to "not approve the o r d e r . "
N2 = s t a t e m e n t n u m b e r (F O R T R A N .) o r p rocedure narne

(CoBoL) in i t ia t ing act ion to " a p p r o v e the o rde r . "

Now then, the FORTRAN program for Table I I is:
sq

J U M P = 1 + I1 -}- 2,I2 -1- 4 , I3 f~
GO TO (N1,N2,N2,N2,N2,N2,N2,N2), J U M P e,

Note. There are 8 s ta tement numbers inside the ("I
since J U M P m a y have any value from 1 to 8. In this ease, '
seven of the s ta tement numbers are the same, but this i
would not generally be true. t.

I f FORTU.aN IV is used the expression for J U M P could b e e
written in place of J U M P in the GO TO staiement , so that. o
only one I:'ORTgAX s ta tement would be needed. N1, N2, (:
etc., represent the numbers of the. s ta tement to which
control is to be transferred.

Similarly, the Cot~oL program for Table I I would be:

C O M P U T E J U M P - 1 + I1 q- 2.I2 + 4.I3
GO TO N1 N2 N2 N2 N2 N2 N2 N2 D E P t !] N D I N G ON J U l e P

Note. As in Fotrrm~x, it is necessary to provide 8 pro-
c.edure numbers, to take care of the 8 possible values o f
J U M P , even though the same procedure name is used m o r e
than once. t

I f the C O M P U T E verb is not available, the opet:ations s
indicated have to be performed by using the avai lable l:
verbs. X1, X2, etc., are, of course, the specific procedure 1,

"1 names to which control is to be transferred.
Note that Table I shows only four of lhe eight possible

combinat ions of conditions, whereas all eight are specifi- : l:
ealy shown in Table I I . I t can be said iha t Rule 1 o f (
Table I, by ignoring two of the three eonditions, " cove r s , " :-: t
at least, by implication, four of the combinat ions shown in ~: 1.,
Table I I . I t m a y be convenient to represent four combina- :!it ('.
tions by a single rule, but the safety of such a pract ice i n :~
the general ease leaves something to be desired. The f o r m a t :
of Table I I forces consideration of every possible eombina- i:: r

V o l u m e 9 / N u m b e r 1 / J a n u a r y , 1966 i::

7

+ ~ be " ~, ;-,--I --,]ndiea- .;.] l l e , t A,~i~,e>:~. Of

8 COl/~ - i ; .," ,'ff :iTi (- r r o r i n] l i p u t s , <'i diagnosl;ic torrid bc pril~ted OUC

1.unl ls , o17 ~x.()':,- ibm beau ty and power of tile' de'('i~iol: i ab lc is tha t
:)le I I . [- i l,+.rt.~iits a lnult i t - , lc bralicl i, bas~xt upon :t c<,7~fis/N(~.[[,,,>l ' i f
: lus t re , ~. ~, t .<![i . i>t .s , ~¥Jl011 Ji, iS possible io i)lall(Jh ti[)oli tC ~sl'tt(/[C
ueh a wa: ~f~,~- it is p robab ly be t te r noi~ to include t h a t condi-
l u m b e r s tic:r~ ~'' a decision table, bu t to branch upon it d i rec t ly be-
t h i s p~, fovohc,~td. Yet example, the "credi t l imit" condi t ion of
c o m b i n ~ T a b l e I might be t tor have been lef6 otl~ of the decision
combin~. ,1 t a o < e itself.

respectk~ I n general , the engineering analyst , or the procedures
t i r e ordc a r i a l y s t , m a y give only the rules of interest , in no par t i cu la r

o r d e r , as done in Table I. The programmer then needs to
1 so asi~ c o m p u t e the va lue of J U M P for each of the rules indicated_

)le. H e n e s t then a d d all the o ther possible combinat ions . I t
i a b l y b y : w i l l he lp to avoid errors if lie lists the combina t ions in
s I ikely~ o r d e r of the magn i tude of J U M P .

we den0{ General Procedure for M Two-State Conditions. :For M

= no :' t w o - s t a t e condit ions, let
= n o

I1 (condition Number 1) 1 = yes 0 = no
= n o

lure nazi: I2 (condition Number 2) 1 = yes 0 = no

he orde# : : :
lure nab IM (condition Number M) 1 = yes 0 = no
; r ." KC = 2 ~M-i)

is: ~ll FORT[I:kN programs, N1, N2, . - - , N M would repre-
s e n t s l a t e m e n t numbers to which control would be h'ans-
l e t t e d . I n COBOL programs, these would represent pro-

' c e d u r e names to which control would be t ransferred.
e t h e (: N u m b e r of possible " ru les" or branches = 2 M. (1)
th i s eai~ T h e f irst s tep would be to rewri te or develop the decision
b u t th}: table wi th 2 M columns, so t ha t each combina t ion of condi-

: t iot~s was identified, and provision made for it. These
' cou td~ e o l u n m s do not have to be ar ranged consecut ively in order
it, s o thv of m a g n i t u d e of J U M P , but i t is p robab ly safer and more

N1, "N2:: convenient to do so.
to whi,:}:: T h e FORT~tAN p rog ram would be:

: . lUMP = l + I 1 + 2.I2 -]- 4.I3 + 8.I4 + . . .KC*IM
v o u l d b-: CO TO (N1, N2, . - .NM), JUMP

T i m COBOL p rog ram would be:
JUS~ ON " ~:

COMPUTE JUMP = 1 + I1 -to 2.I2 + 4.I3 -}- 8.I4 "to ""-KC*
IM

(.10 TO N1 N2 • - . N M D E P E N D I N G ON JUMP

T h e G O TO s t a t emen t , in e i ther FORTmaN or CouoL has
t o h a v e 2 M s t a t emen t numbers or procedure names but the
s a m e s t a t e m e n t number o r p r o c e d u r e name m a y be re-
p e a t e d as many t imes as necessary. Such repe t i t ion is il-
l u s t r a t e d above in the FORTRAN and COBOL programs for
T a b l e I I .

W h a t is the decision table-size l imitat ion on progrmn-
r u i n g t h i s way? This would be de te rmined by how large a
G O T O s t a t emen t would be allowed by the par t icu la r
FO~TRAX or COBOL processor (compiler) used. I n general,
l a r g e decis ion tab les should p robab ly be avoided, for t hey
c a n e a t up m e m o r y (see Section 4).

Condition, s Represented by More Than Two States. I t
m a y be desi rable to represent one or more condi t ions by

.de 8 pr,~
V k t [t l e S '~:

l sed mo.~;

pegatio~:::
availab}i::
~rocedu~:

t possib~.:
'e speciE-:
l u l e I ¢
~ c o v e r s ~ i

s h o w n i~
corn bin~.i:
: a c t i e e)
le forms
~o}nbin~;:

l a r Y , 1 '~ :

i¢:

V o l u r u e 9 / N u m b e r 1 / . I a n u a r y , 1966

. j "

more than two states. F o r example , ~till using the example
of Table I, we m a y wish t o de l inea te different dol lar l imits

for which the credi t is O K , e.g.,

(' o w l i l i o n 1. { 'rcdi! ix O l (

S t a t e 1 - - - U n d e r n o c o n d i t i o n
State 2--For any amount, less than 810,000
State 3--For any amount of $10,000 or more.

Now, let there again be M condi t ions , the s t a t e of each of
which is indica ted by t h e v a l u e of var iables I1, I2, . . . ,
I M . Let the var ious c o n d i t i o n s have K1, K2, • , K M
mutua l ly exclusive s t a t e s . T o clarify the above, consider
the table below.

Represented by Values of the Variable for
Condition Number Vari,~b!e Different States

1 I1 0, 1, 2, , K I - 1
2 I2 0, 1, 2, ,K2-1
: : :

M I M 0, 1, 2, - - - , K M - 1

T h a t is t i le condi t ions t h e m s e l v e s are represented by the
I variables; each of t he se I va r i ab le s can take on different
values, s ta r t ing from 0, to express the s ta te of this par t icu-
lar condition. Tile n u m b e r o f s ta tes of any condi t ion de-
pends in rio way upon t h e n u m b e r of s ta tes of any o ther
condit ion.

Since the states, for a n y condi t ion , are m u t u a l l y exclu-
sive, by definition, on ly one s ta te can exist a t a t ime for
any given condition.

I t can then be shown t h a t the number of combina t ions
or "rules" t, ha t exist, will b e

Number of rules = (K 1) (K2) - - . (K M) = R. (2)
Fo r convenience, let K N L e q u a l the number of s ta tes of the
next - to- the last condi t ion .

Now then, the p r o c e d u r e in p rogramming such a tab te is
to set up R eolunms or ru l e s a n d ident i fy each combinat ion.
To each combina t ion a s t a t e m e n t number (FORTRAN) or a
procedure name (CoBoL) m u s t be assigned; some of these
can be repeated if need be a n d some m a y lead on ly to error
print-outs , but all c o m b i n a t i o n s must be identified.

The FORTRAN p r o g r a m w o u l d be

JUMP = 1 --t- II + K I , I 2 -t- K1.K2.I3 -t- . . , K1.K2.K3.I4 +
(K1.K2*- - - . K N L) . I M

GO TO (NI , N2, N 3 , . - - , N i l .) , JUMP

The COBOL program w o u l d b e

COMPUTE JUMP = 1 + I1 + KI . I2 + Kl*K2.I3 -I- ---
K1.K2.K3*I,~ + (K 1 , K 2 K N L) . I M

GO TO N1 N 2 N3 - . - N R DEPENDING ON JUMP

Illustration of lhe General Case of Multi-Slate Condi-
tions. To i l lustra te a p p l i c a t i o n of the preceding, let us
assume tha t there are t h r e e condi t ions , as follows:

Condi-
tions Slates

1 3 :K1 = 3
2 4 :K2 = 4
3 2 :K3 = 2

So, R, the number of r u l e s t h a t have to be considered, is
R = 3 X 4 X 2 = 2 4 .

Now, lay out Table H I to p rov ide lines for each s ta te of

C o t ~ l n l u n i e a t i o n s o f t h e A C M 33

71
/ 2 : :

:?:
2::
)

j;

each (.ondiiion wi th 24 eohmuts for 2-t rules, a~ shown.
Also, l) ro \ ide three more {.olunms, as shoxttb headed:

Local Irlluc This woul(t he lhc vahle l}rcsumably si{}rc{t
in the (:ontt}ttier 1 o denote the s t a t e for i he t)artiet~.lar con-

di t ion.
3t-ul!iplier- This is the mul t ip l ie r by which the local

va lue is mul t ip l ied . I t is 1 for Cond i t ion 1, 1,21 for Condi-
t ion 2, K 1 X K2 for Condi t ion 3, etc.

Neg Value -This is the net va lue of the pa r t i cu la r s ta te .
Now, in the las t line of the table , en ter numbers from 0

to 23 in stmeessive columns.
Next , insert X ' s in each column so l ha t the net wthLe~

Ol)l)osi(e (he X ' s add Ul} to give the to ta l in lhe lasl~ line.
W e now have l is ted in Table I I I every possible {.ombina-

t loll of all s ia!es of the three given eoz:ditions.
The I"owrl~AX l}rogram for {his table would be:

JUMP - 1 + II -- 3 . I 2 + 12-13
GO T O (N1, N2, N3, - . . , N24), JUMP

The Cm3OL program for this table would be:

COMI'UTI,: JUMP = l -~ I1 _jr_ 3,[2 + 12,I3
(;O TO N1 N2 N3 .. .N24 DEPENDING ON JUMI'

Multi Slale Cow, rill-ions Versus Two-Slate Conditions. I t
is (:lear tha t the 9 s ta tes in T a b l e I I I could have been
represented by 9 two-s ta te condi t ions . Wout(l this be
s impler or not is a na tu ra l quest ion.

W i l h nine two-s ta te condi t ions, from (1)

N u m b e r of rules = 2" = 512.

W i t h tlu'ee condi t ions of .3, 4 and 2 s la tes respect ively,
f rom (2)

N u m b e r of rules - 3 X 4 X 2 = 24.

Clear ly then, it would be imprac t i cab le to l)rogram Table
I I I as nine two-s t a l e condi t ions , bu t i t is qui te prac t icable
to p rog ram the nine s ta tes as they were done.

Pe rhaps a r eader may ask, how does i t happen t ha t one
w a y of se t t ing up the p rob lem gives 24 a l te rna t ives ,

whereas a different way lead.< io 512 alter!mii\~;>P T h e
answer is fail ' ly .<hnple. Col idi t ion i is aPtu~diy rel}rc~ented
}}y//,,or. mttl t tali 5" {,x{:ht,ive >{t t l (' s , :-:O Ill(T{? ~tl'{' {)ltlV {hree
valid a l te rmt t ives to rel)reseHl thi> condi t ion. I f t h e s e
s ta tes were set up as three two-:<tate (:ondiliol~s, t h e r e
would be 2 X 2 X2 = 8 a l te rna t ives , only th ree of which a r e
val id ; the ,qdditional five hxvalid a l t e r : r e t i r e s serve bu t t o
eonfuse and comp!ica.te the pic ture . A s imilar s i t u a t i o n
exists for Condi t ions 2 and 3, wb.ere t r ea t ing t hem a s
more two s t a t e condi t ions in t roduces inval id and u n -
wan ted a l te rna t ives .

Quite obviously then the lesson is clear: When a c o n d i -
t ion can be represented by more t han two mutuca!!y exclu-
sire s ta tes , it should be done:

Local Value Numbers of Conditions. I t was assumed in
Table I I I , for example , t ha t the " local va lues" for e a e h
condi t ion were ah 'eady ava i lab le in s torage. If this is n o t
the case, the local value or "ne t v a l u e " has to be d e t e r -
mined pr ior to t ak ing the s teps out l ined in th is paper . F o r
example, only the amoun t of the o rder migh t be g i v e n .
R a t h e r than have a h u m a n de t e rmine which s ta te i t r e p r e -
sented in condi t ion 1, the p r o g r a m m e r would develop a n d
store e i ther the corresponding local or ne t value. I n l i k e
fashion, some or all of the o the r condi t ions might have t o
be examined and progrmkmmd to ca lcula te the a p p r o -
pr ia te s t a t e for t h a t condi t ion.

3 . E x t e n s i o n o f T e c h n i q u e s to A L G O L P r o g r a m m i n g

The techniques jus t descr ibed are equa l ly appl icable t o
p rograms wr i t t en in ALGOL. The procedure would be:

1. Se t up the decision tab le as discussed above.
2. I n the ALGOL program declare a switch

SWITCH I)TI = N1, N2, Na, N4, etc.

3. The tab le is then imp lemen ted by

JUMP := 1 + II + 2XI2 + 4XI3 + --- }
GO TO DT1 (JUMP)

Condition 1
State 1
State 2
Stale 3

Condition 2
Stale 1
S t a l e 2
S t a t e 3
S t a t e 4

Condition 3
State 1

S t a t e 2

"JUMP" = 1 +

Local
Value

T A B L E I i I

Multi
plier

0
1 1

2

0
3

3 6
9

o
12

12

Equal Xet
Value

: i i i I : !

i] ! i i i] ! i]
X : X X X X ! X X i :X
! / X :X : X ! X = X : i iX iX ~
i X X ! X X X i :X X : X

i I ! ! i ! i

', i i i i ! i ! i ~ , i : I : I i ! i :
i : = : i i] ! I ! i i

X X X ; X X X i ,
! i X X :X i i X X X i i !
i i x x x i i ! x ' x x

i : i : x x i x :: ! i : : x i x i x
: ; = : : : :

i i =, I i i ! ! i
', i I : : i ! I i ; i i i { ! i

I ~ i i i i i i i
X iX X X X X X X X X X X : I i I .t

i i i ; i i ~ ! I i i I
i ; i = i i ~X i- iX !X iX =X iX iX iX iX :X X

0 1] 2 3 [4 1 5 : 6] 7 8 [9 1 0 11 1 2 13! 14[15 16[17 18. I 9 20? 211 2 2 2 3

• 3 4 C o m m u n i c a t i o n s o f t i l e A C M Volume 9 / N u m b e r 1 / J a n u a r > , 1 9 6 6 ~:

: t ives? T
re [)t'esetii

4-

ions, t~i
f wh ieh i
~rve but:
r situati
g t, hen~
1 a n d i

?n ~l cor.~

~ally exci

~ssume¢:
:" f o r e~i
this is::
) be det+
paper . ~:

be give
te i t re!at
~velop ai
ae. I n 1~

!. No te s o n I)ec i s ion T a b l e S i z e s

D: i~ quiie obvious that the n u m b e r of rules goes u I) very
>:: })iciiv wit I t an increase in t he - u m be t of condit ions. When
t i.e .-ize of a table ,hreatep~s t,.) get u tmmnageably large, a
t~H>bc'r of (.ourses of action are available.

I . Take care not to hlclu(te any eoudition thai is inde-
t:,cm:tmtt of all other conditions in the table. That is, do not
i:~(:h,,(ie a condition unless it has to be considered in com-

bi~ag/o~z with other conditions i n this same table.
'2. If two or more conditions ii~ the table are mutttally

cx(:iusive of ea('h other, represe~t t h e m by different states
ot the same condition.

3. When a choice exists, ahvays use more than two states
of a given condition, rather t han adding new conditions.

4. Break the decision table up in to more, slnalle.r tables.
5. If a limit ~ reached be('ause of length of GO TO stale-

menl , two or more GO TO s t a t emen t s can be used. I,q this
(.ase, (he value of J U M P would h a v e to be tested to deter-
mine which GO TO statement wou ld be used; also the
va lue of .IU.~[I) would have to be ad jus ted to suit the com-
l>utcd GO TO to which control is a b o u t to be transferred.

ht have:i: 5. S u m m a r y a n d C o n c l u s i o n s

he a p F : A powerful tool for p rogra tnming decision tables has
= been developed and presented.
: 1. The tnethod is simple and al)t)licable to l"ottTm~X or

rarnrnir:

plicabI¢('2. Any number of con(litions m a y be sl)ecified.
ld b e : = 3, Each condition can have two or more nntlually ex-
~. ,,.htsi ve states.

4. Ea('h of the conditions can severally have different
::: l l l . lI i lbel 's of states.
=: 5. The s tandard ntethod of represent ing states is, for
: ea(.h condition, 0, 1, .,') 3, etc.
: 6. The method automatical ly dewdops all possible con>
: bi,,tations of states of conditions an(t requires l)rovision to

[>c made for all.
: 7. In either FOWFRAN OI' COIIOL, a single data word com-

t>letely specifies the bratwhing required by the decision
table.

:: 8. Only one or two s ta tements are needed in either
I 1: l"otcrt~AX or COBOL (if COM1 U T E verb is available) to

X I i :i l)rogram almost arty decision table , when inputs are of
/ X !X) s tandard form.

9. The only limits on the size of table tha t can be pro-
] g r ammed by this i)roeedure is set b y the maximum length
] i of GO TO statements tha t can be handled by the t)rocessor
i:/ being used or by available m em ory .
[:

K ~ iX== I{E('EIVED At'GUST, 1965 [i: R E F E R E N C E S

::: 1. KH~K, tI. W. Use of decision tables in computer programming.
v i ~ X . Comm. ACM 8 (Jan. 1965), 41-43.

::: 9 PaESS, L. I. Conversion of decis ion tables to computer 21 2 2 ~: - •
i _.__L._. programs. Comm. AC_II. 8 (June 1965), 385-390.

t a r y , 1~':: 'Volume 9 / N u m b e r 1 / J a r i ua ry , 1966

, .",:~

' t h e " = L e t t e r s E d i t o r

•

R e m a r k s on a C o m p u t e r P r o g r a m for t h e
C o n s t r u c t i o n o f S c h o o l T i m e t a b l e s

Dear Editor:
In an earlier letter D u n can [1] has reported the results of a

number of runs on an IBM 7090 w i t h a program written for the
solution of the timetable p r o b l e m as outlined by Gotlieb and
Csima [2]. In a recent review of t h i s eomnmnication, Broder [3]
calls attraction to the fact t h a t t h e computer time required for an
A" X A" X N problem is p r o p o r t i o n a l to 2 N and concludes that,
despite the introduction of c l e v e r programming improvements,
lhe method is likely to prove i m p r a c t i c a l .

Ill his program, Mr. D u n c a n employed a t ight-set search al-
goriHmb as described t)y G o t l i e b :tnd Csima, in the subroutine
used to reduce awfilahility m a t r i c e s ; this algorithm is very ineffi-
cient and we can be vir tually eer ta . in that , among the improve-
meats envisaged by Mr. D u n c a n , h e included the replacement of
this algorithm t)y an eiIieient o n e . Indeed , in following up the work
of Mr. DuncalL we trove done j u s t this with the result, that the
computer time for a problem i n v o l v i n g I8 teachers was reduced
from api)roximately 75 minutes to a few seconds and the coinputer
time for a ease involving 43 t e a c h e r s was approximately 3 minutes,
not 2 'a-~ = 227 hours as s u g g e s t e d by Broder. (These computer
times refer to a program w r i t t e n b y us and used on an IBM 7094.)

The work of Mr. Duncan has b e e n of great vahm to us in the
develolmmnt of our present p r o g r a m which is designed to deal with
real problems as presented b y t i le secondary schools in Ontario.
We are currently using this p r o g r a t n on an experimental basis in
cooperation with represen ta t ives f rom a nmnbcr of schools, in-
cluding one school with a p p r o x i m a t e l y 100 teachers.

l(EFERENCES :
1. I)UNCAN, A. S . Further r e s u l t s on computer construction of

school timetables. Comm. A C M 8, 1 (Jan. 1965), 72.
2. GOTLIEB, C. C., AND CSIMA, Z. T e s t s on a computer method

for constructing school t i m e t a b l e s . Comm. ACM 7, 3 (Mar.
1964), 160q63.

3. lhtoDm~, S. Review 784(3. C o m p . Rev. (July-Aug. 1965), 236.
g . A. GRIFI,'ITIt
J. Kales & Associale~
Toronto, Ontario, Canada

On t he C o n f u s i o n B e t w e e n "'0" and " 0 "

Dear Editor:
[should like to describe b r i e f l y a technique which has been ill

use at the Lewis Research C e n t e r of NASA for approximately ten
years for resolving the confus ion beLweeu the mark 0 intended to
mean zero and the nmrk O i n t e n d e d to meau the character between
N and P in the Latin alphabet..

As applied to the management , of identifiers and nmnerical
vahms ill assemMer or compi ler languages , it: has worked without
failure and does not require t h a t h u m a n programmers differentiate
between the similarly shaped s y m b o l s for zero and the letter "O".

(Continued on page 45)

C o m m u n i c a t i o n s of t h e ACM 35

