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ABSTRACT
In today’s urban landscape, traffic congestion poses a significant
and far-reaching problem impacting cities, economic development,
and individual well-being. The root of this challenge lies in the
ineffective traffic light management system. In this study, we in-
tegrated intersection videos captured by cameras into our system,
aiming to improve solutions by evaluating two vehicle detection
methods: background subtraction (MOG) and YOLOv3. YOLOv3
outperformed MOG in accuracy, leading to its adoption. We em-
ployed the DeepSORT algorithm for vehicle tracking and counting,
crucial for determining green light duration. Using Arduino, we
controlled the green light based on these calculations. Our ex-
periments confirmed YOLOv3’s superiority in vehicle detection,
while our prototype system demonstrated proficiency in detection,
counting, and green light duration calculation. However, room for
improvement remains in vehicle type classification.
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1 INTRODUCTION
Traffic congestion gives rise to a variety of problems, including
air pollution emitted from vehicle exhaust pipes, noise pollution,
physical health issues, and prolonged waiting times, which also
contribute to driver stress. Often, most drivers on heavily congested
roads find themselves stuck at red lights, waiting for the green light
to appear. This issue is of great importance to everyone because
it affects our health and the efficient use of our time. Therefore,
it requires a solution. The primary cause of this problem is the
inadequate control of traffic lights, which is in need of improvement.

Recently, an intelligent traffic light system has been introduced
to address this problem. This system can adjust the duration of a
traffic signal based on the density of vehicles on the road. The key
components of these solutions involve counting and categorizing
the types of vehicles on the road, followed by density calculation
and the adjustment of signal timing to reduce waiting times. To
determine these critical aspects, this paper focuses on adaptive
time control for traffic lights, where the duration of green lights
is calculated based on the number of vehicles and the distance
of traffic congestion. This approach is used to tailor traffic light
management to the number of cars waiting, utilizing two methods:
classical image processing techniques and deep learning techniques.
The challenge addressed in the literature review (Section 2) is the
detection of parked cars on the side of the road, as the calculation
should consider only the vehicles that are actively inmotion. Parked
vehicles should not be included in the count. Ultimately, the vehicle
count will be used to allocate time for traffic light control.

2 RELATEDWORKS
2.1 Classical Image Processing Techniques
Several papers have applied classical image processing techniques
for vehicle detection. For example, in 2020, [5] presented a method
for real-time traffic-based vehicle detection using background sub-
traction with truncation thresholds, erosion for noise reduction,
dilation for shape enhancement, and an adaptive Gaussian mix-
ture model (MOG2) for background modeling. They conducted
experiments under various weather conditions, including morning,
daytime, and afternoon, achieving an average accuracy of 96.01
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percent. The car counting accuracy is commendable, and the tech-
nique has been successfully tested in a real-world environment,
demonstrating reliability. First published (online) in 2020, [2] con-
ducted a case study to address traffic congestion on a bridge using
two cameras with different frame rates. They applied an optical
flow-based approach for vehicle detection, testing it under various
weather and traffic conditions. The approach yielded an accuracy
of over 90%, and its performance remained unaffected by environ-
mental conditions. Another work in 2020 [3] utilized a background
subtraction algorithm to detect vehicles by subtracting the road
image without vehicles, revealing the foreground vehicles. Vehicles
were counted as they entered or crossed the frame, with counting
lines distinguishing vehicles in various positions. The perimeter of
the bounding box was used for vehicle classification. Vehicles with
a perimeter of less than 300 were classified as bikes, those with
a perimeter of less than 500 as cars, and those with a perimeter
exceeding 500 as trucks or buses. The accuracy rates for object
detection and tracking were 97.1% and 98.4%, respectively.

In 2021, classical image processing methods continue to be em-
ployed. [4] proposed an adaptive traffic light control system that
captures road photos and converts them to grayscale. They applied
five edge detection methods (Log, Sobel, Roberts, Active contour,
and Canny) to extract edges. The detection results were used to cal-
culate areas covered by vehicles, which, in turn, determined traffic
density by comparing the area in the captured image to the empty
areas in reference photos. This ratio was converted to a percentage
and used to adjust traffic light durations. For instance, increasing
the green light duration for higher percentages. The experiment
revealed that Canny provided the best accuracy among the five
detectors. Another work [8] captured images using a CCTV camera
to identify traffic density for traffic signal control. Image processing
methods such as RGB to Gray, resizing, and Canny edge detection
were applied. They used the SURF algorithm [6] to calculate the
matching percentage between captured images and reference im-
ages. A higher matching percentage indicated lower traffic density,
leading to the allocation of time for controlling each signal based on
the matching percentage. For instance, increasing the green light
duration for lower matching percentages. The results demonstrated
that the applied SURF algorithm improved detection accuracy.

In summary, classical image processing methods, including back-
ground subtraction and optical flow, continue to be utilized due to
their implementation advantages and acceptable performance.

2.2 Deep Learning Techniques
In the past decade, deep neural networks (a.k.a., deep learning) have
gained prominence as a method for vehicle detection. The most
widely embraced approach is YOLO, known for its commendable
performance in terms of both accuracy and speed, particularly in
real-time applications. Consequently, it has found applications in
numerous research papers. For example, [10] introduced a smart
traffic control and management system using OpenCV and YOLOv3.
This system is designed to detect vehicle movement, identify, track,
and count vehicles in real-time by analyzing live video streams from
cameras. Upon detecting, classifying, and counting the vehicles
in a specific lane, it adjusts traffic lights according to a predefined

threshold value, thereby facilitating the safe passage of more vehi-
cles while minimizing waiting times. The use of pre-trained model
weights on the COCO dataset ensures rapid inference speed. This
system excels in real-time detection of various vehicle types, even in
obstructed and high-density traffic scenarios. However, its smooth
operation necessitates high-spec hardware to achieve an output
exceeding 10 frames per second.

[1] proposed YOLOv3 for object detection and DeepSORT for
tracking multiple objects. Their primary objective was to automate
non-invasive and cost-effective volume surveys for the Brazilian
National Department of Transport Infrastructure. They achieved
a precision rate exceeding 90% in global vehicle counting using
real-world videos recorded on Brazilian roads. Additionally, they
demonstrated that their approach outperformed previously pro-
posed tools with an impressive 99.15% precision in public datasets.
Another work of [12] compared the results of vehicle density detec-
tion from twomethods: 1) using classical techniques, a combination
of background subtraction and blob detection, and 2) using YOLOv3.
Their tests were conducted with four different cameras. YOLOv3
outperformed background subtraction, delivering accuracy over
90%, recall over 87%, and precision over 81%. However, blob de-
tection was found to be valuable for determining the speed and
direction of vehicles, a critical aspect of their challenge.

[7] conducted research based on deep learning models to ex-
plore various object identification strategies for recognizing vehicle
types. Their evaluation encompassed processing speed, accuracy,
and F1-score due to non-uniform data availability. They considered
Faster-RCNN, YOLO, and SSD, all capable of real-time processing
with high accuracy. Among these models, YOLOv4 exhibited the
best performance with a 93% accuracy rate in car model recogni-
tion. Faster-RCNN proved the fastest among RCNN models but
had limitations in terms of frames per second (FPS) due to CNN
utilization, resulting in slow speeds. SSD, while faster, had accuracy
limitations and occasional misses. YOLO, though slower than SSD,
consistently detected vehicles without misses in each frame.

In conclusion, the control of traffic light durations hinges on
two primary variables: the number of vehicles on the road and
the type of vehicles. Researchers employ two main approaches—
classical image processing techniques, known for their simplicity,
and deep learning techniques, appreciated for their accuracy and
speed. Our study pertains to real-time scenarios that require swift
execution, making YOLO a compelling choice. Nevertheless, in the
real world, several undisclosed factors must be considered, such as
idle parked vehicles at intersections. The system should be designed
to account for these vehicles, allocating appropriate traffic signal
durations. Consequently, our work employs both methods to create
a more efficient and precise system, with the aim of addressing this
challenge.

3 PROPOSED METHODS
3.1 Dataset
This research utilizes two types of datasets. First, we collected
our own dataset, comprising videos recorded at the intersection of
Siriraj Hospital on May 29, 2022. All four videos were recorded to
test the performance of our model. Second, we also used the UA-
DETRAC dataset [9], consisting of four videos, to assess YOLO’s
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vehicle counting performance in comparison to background sub-
traction and deep learning techniques.

3.2 Model Selection
In the proposed method, we initially compare two approaches: clas-
sical image processing techniques (Background Subtraction) and
deep learning techniques (YOLO), as shown in Figure 1. Starting
with background subtraction, we use four traffic videos captured
on the road with vehicles as input. Subsequently, the Background
Subtractor (MOG2) class from OpenCV, a Gaussian Mixture-based
Background Segmentation Algorithm [5], begins creating a back-
ground model, in this case, representing the road. As frames are
continuously fed into the system, the background model is updated
accordingly. Additionally, the threshold is adjusted, and the frame
undergoes erosion and dilation operations to determine whether
a pixel belongs to the background model. This value represents a
distance threshold between the pixel and the background model,
indicating the pixels that are well described by the background
model. Subsequently, the background is subtracted, and bounding
boxes are drawn around the contours’ areas to detect the vehicles.
This comparison is performed on all four videos.

The second method involves YOLO. In this study, YOLOv3-608
pre-trained weights on the COCO dataset are used for vehicle de-
tection. According to the information provided by the authors of
YOLOv3-608, YOLOv3-608 exhibits good performance with an mAP
of 57.9. Although it operates at a speed of 20 FPS, which is slower
than some other versions, our focus is on accuracy rather than
speed. This emphasis on accuracy is because our goal is to detect
and count stationary vehicles at intersections rather than moving
ones. We also input the same four videos into our YOLO model,
allowing us to compare the vehicle detection performance of both
methods and select the superior approach for implementing our
system.

Figure 1: Model selection method

Figure 2: Traffic light control method

3.3 Traffic Light Control
After comparing the performance of the two methods, it became
evident that YOLOv3 outperforms background subtraction, as we
will discuss in more detail in Section 4. Consequently, we have
chosen YOLOv3 for the implementation of our system, specifically
for vehicle detection. Our primary approach to controlling traffic
lights revolves around determining the number of vehicles that
come to a stop in the same lane. Vehicles that remain stationary for
longer periods in the same lane will necessitate a longer duration
for a green light. However, it is crucial that these vehicles are not
permanently stopped, as this would lead to an inaccurate allocation
of green light duration. The process outlined in Figure 2 provides a
visual representation of our system.

Find the longest stop vehicles in the same lane: After the
vehicles were detected, we applied the DeepSORT algorithm [14] to
track them and determine the centroid (x,y) for all tracked vehicles
in each frame. Subsequently, we sought to find the maximum
y-coordinate, referred to as Y (min), to identify the longest lane.
To calculate the appropriate green light duration and determine
if the cars were positioned in the same lane, in our experiments,
we compared the actual x-coordinate to X ± Gap (7%) from the
maximum Y coordinate. If the other x-coordinate fell within the
±7% range, we classified the cars as being in the same lane.

Find permanently parked vehicles: We made a clear distinc-
tion between stopped and standing vehicles in this paper. A stopped
vehicle is defined as a car that is parked, while a standing vehicle is
a car that is about to move. This separation was achieved using the
following criteria: a stopped vehicle is one that appears in frames
with a rate of 1000 or more frames, whereas a standing vehicle
appears in frames with a rate of less than 1000 frames. Additionally,
we rechecked whether the centroid of the vehicle changed every 10
frames. Permanent stop vehicles can also be determined by their
ID from the DeepSORT tracking results. If we find a vehicle with
the same ID in the previous frame, it indicates that the vehicle is
permanently stopped and not merely waiting for the green light.
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Figure 3: Simulate a traffic light using a Lego model and Arduino

Count the vehicles in the lane: After identifying the lane with
the most adjacent cars, excluding parked cars, we proceed to count
the total number of cars in that lane based on the X value of their
centroids, with variations of no more than 7% from the centroid of
the furthest car.

Allocate light time: The duration of the green light is deter-
mined by the number of vehicles of each type. In a study from 2012
[13], the average acceleration for each vehicle was obtained: car
= 4.65 km/(h*s) (1.293 m/s2), heavy vehicle = 4.96 km/(h*s) (1.379
m/s2). In another study from 2018 [11], the average length of each
vehicle was determined: car = 3.72 m, bus = 10.1 m, and truck =

7.5 m. These values are utilized to calculate the duration of the
green light for each vehicle as written in Equations 1-4. Using these
equations, we can calculate the green light durations as follows:
car = 2.55 sec, bus = 3.92 sec, and truck = 3.41 sec. For instance,
consider the duration of the green light for 3 cars, 2 buses, and 1
truck: C� = (3 x 2.55) + (2 x 3.92) + 3.41 = 18.9 sec.

B = DC + 1
2
0C2 (1)

C =

√
2B
0

(2)

C = time for moving out from traffic of each vehicle
B = vehicles length (m)
D = speed of the vehicle from a standstill, always zero (m/s)
0 = acceleration of each vehicle (m/s2)

C8 =

√
2 (B8 + 60?)

0
(3)

C� =
∑

(=8 × C8 ) (4)

C8 : Duration for Green light of each vehicle type 8 (sec.)
C� : Total duration for Greenlight (sec.)
=8 : Number of each vehicle type 8 gap = 0.5: Constant

distance from front vehicle (m)
Simulate traffic lights: After calculating the green light dura-

tions (in seconds), the system will operate as a transmitter, sending

the results to the Arduino using the asynchronous UART (Univer-
sal Asynchronous Receiver-Transmitter) serial data transmission
format and the Lego model. It will display results in terms of on-off,
green light, red light, and the time calculated based on the number
of counted cars (see Figure 3).

4 RESULTS AND DISCUSSION
The experiments were conducted on a computer with 16 GB of
DDR4 memory, an AMD Ryzen 7 5800H CPU (running at 3.20 GHz,
with the ability to boost up to 4.40 GHz, and equipped with 16 MB
of L3 Cache), as well as an NVIDIA GeForce RTX 3060 GPU with
6GB of GDDR6 memory. The code was developed using the Python
programming language. The YOLO (You Only Look Once) method
from the OpenCV library utilized YOLOv3-608 weights pre-trained
on the COCO dataset.

4.1 Model Selection
The vehicle count results for all four videos from both models,
background subtraction and YOLOv3, consistently demonstrated
that YOLOv3 exhibited superior vehicle detection performance in
all videos and was capable of classifying the types of vehicles (as
shown in Tables 1 and 2). As example results shown in Figures 4
and 5, we selected YOLOv3 as our vehicle detector to count the
number of cars and determine the subsequent green light duration.

4.2 Traffic Light Control
When utilizing YOLOv3 to detect and count the number of cars in
Video 4 at the Siriraj Hospital intersection, we successfully detected
the vehicles and calculated the green light duration. However, it’s
worth noting that the accuracy in counting the number of cars in
the video is relatively low. Our system cannot check the number of
vehicles in every frame due to the rapid data processing time and
potential issues with duplicate car counts arising from repeated
vehicle detection. This challenge may need to be addressed by
implementing more efficient object-tracking methods and reducing
the re-tracking of the same object.
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Table 1: Performance of the background subtraction model

Input video Counted manually Counted by model Model accuracy
Video 1 7 3 0.429
Video 2 12 1 0.083
Video 3 12 1 0.083
Video 4 19 2 0.105

Table 2: Performance of the YOLOv3 model

Input video Car type Counted manually Counted by model Model accuracy
True positive False positive

Video 1 Car 13 10 0 0.769
Motorbike 9 2 0 0.222
Truck - - - -
Bus 0 0 1 0.000

Video 2 Car 7 6 0 0.857
Motorbike - - - -
Truck 0 0 2 0.000
Bus 0 0 1 0.000

Video 3 Car 8 7 0 0.875
Motorbike 4 2 0 0.500
Truck 0 0 1 0.000
Bus - - - -

Video 4 Car 9 6 0 0.667
Motorbike 1 0 1 0.000
Truck - - - -
Bus 0 0 3 0.000

Figure 4: An example result of the background subtraction model
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Figure 5: An example result of the YOLOv3 model

5 CONCLUSION
From this study, it is evident that the YOLOv3 method outperforms
the background subtraction method in terms of vehicle detection
accuracy. We have successfully implemented adaptive green light
duration control based on YOLOv3. Our system is capable of detect-
ing and counting vehicles and calculating green light durations at
intersections as intended. However, there is room for improvement
in vehicle type classification, and further development is needed
in the areas of vehicle detection and re-counting. Advanced track-
ing object algorithms can be employed to address these issues by
monitoring changes in the vehicles’ positions to avoid duplicate
counts.

Furthermore, in addition to enhancing the efficiency of vehicle
tracking, there are various ways to improve traffic light control.
These include expanding the analysis of vehicles at intersections
where both cars stop at red lights and vehicles pass through green
lights in different lanes to filter out cars that didn’t stop at red
lights. Additionally, there is room for improvement in the detection
method for tracking vehicles on non-straight roads or at inter-
sections that are not four-way junctions, such as roundabouts or
underpasses. Customizing the vehicle type dataset to match spe-
cific use cases, such as TukTuk in Thailand and Tram in the UK,
can also enhance the system’s adaptability for a wide range of sce-
narios. These suggestions aim to create the most adaptive system
for general use cases.

REFERENCES
[1] Adson M. Santos, Carmelo J. A. Bastos-Filho, Alexandre M. A. Maciel, and Es-

tanislau Lima. 2020. Counting Vehicle with High-Precision in Brazilian Roads
Using YOLOv3 and Deep SORT. In Proceedings of the SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI). IEEE, Porto de Galinhas, Brazil.

[2] Ameni Chetouane, Sabra Mabrouk, Imen Jemili, and Mohamed Mosbah. 2022.
Vision-based vehicle detection for road traffic congestion classification. Concur-
rency and Computation: Practice and Experience, 34, 7 (March 2022).

[3] Apeksha P. Kulkarni and Vishwanath P. Baligar. 2020. Real Time Vehicle Detec-
tion, Tracking and Counting Using Raspberry-Pi. In Proceedings of International
Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE,
Bangalore, India.

[4] Belinda Chong Chiew Meng, Nor Salwa Damanhuri, and Nor Azlan Othman.
2021. IOP Conference Series: Materials Science and Engineering, 1088.

[5] De Rosal Ignatius Moses Setiadi, Rizki Ramadhan Fratama, and Nurul Diyah Ayu
Partiningsih. 2020. Improved Accuracy of Vehicle Counter for Real-Time Traffic
Monitoring System. Transport and Telecommunication, 21, 2, 125-133.

[6] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded Up Robust
Features. In Proceedings of European Conference on Computer Vision (ECCV),
404-417. Springer, Graz, Austria.

[7] Jeong-ah Kim, Ju-Yeong Sung, and Se-ho Park. 2020. Comparison of Faster-
RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition. In Proceedings
of International Conference on Consumer Electronics - Asia (ICCE-Asia). IEEE,
Seoul, South Korea.

[8] Lakshmanan M, NVN Jyotika, NivethaP, and Preethi. A.I. 2021. Traffic Light Con-
troller using Image Processing. Turkish Journal of Computer and Mathematics
Education (TURCOMAT), 12, 2.

[9] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang
Qi, Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. 2020. UA-DETRAC: A new
benchmark and protocol formulti-object detection and tracking. Computer Vision
and Image Understanding, 193.

[10] Manish Kumar Singh, Krishna Deep Mishra, and Subrata Sahana. 2021. An
intelligent realtime traffic control based on vehicle density. International Journal
of Engineering Technology and Management Sciences, 5, 3 (May 2021).

[11] Mithun Mohan and Satish Chandra. 2018. Occupancy time-based passenger
car equivalents at unsignalized intersections in India. Current Science, 114, 6,
1346-1352 (March 2018).

[12] C R Rashmi and C P Shantala. 2020. Vehicle Density Analysis and Classification
using YOLOv3 for Smart Cities. In Proceedings of International Conference on
Electronics, Communication and Aerospace Technology (ICECA). IEEE, Coim-
batore, India.

[13] Satish Chandra and Shalinee Shukla. 2012. Overtaking Behavior on Divided
Highways Under Mixed Traffic Conditions. Procedia - Social and Behavioral
Sciences, 43, 313-322.

[14] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online and real-
time tracking with a deep association metric. In Proceedings of International
Conference on Image Processing (ICIP). IEEE, Beijing, China.

42


	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Classical Image Processing Techniques
	2.2 Deep Learning Techniques

	3 PROPOSED METHODS
	3.1 Dataset
	3.2 Model Selection
	3.3 Traffic Light Control

	4 RESULTS AND DISCUSSION
	4.1 Model Selection
	4.2 Traffic Light Control

	5 CONCLUSION
	References

