
Scenario-based synthetic traffic generation for web
applications using workload patterns

Sana Khurram
s6409106860082@email.kmutnb.ac.th

The Sirindhorn International Thai-German Graduate
School of Engineering, King Mongkut’s University of

Technology North Bangkok
Bangkok, Thailand

Alex R. Sabau
sabau@swc.rwth-aachen.de

Research Group Software Construction, RWTH Aachen
University

Aachen, Germany

Horst Lichter
lichter@swc.rwth-aachen.de

Research Group Software Construction, RWTH Aachen
University

Aachen, Germany

Sansiri Tanachutiwat
sansiri.t@tggs.kmutnb.ac.th

The Sirindhorn International Thai-German Graduate
School of Engineering, King Mongkut’s University of

Technology North Bangkok
Bangkok, Thailand

ABSTRACT
Due to the growing number of internet users, Web applications face
increasing challenges in providing constant availability, resilience
to software failures, and rapid responses to user requests. There-
fore, performance testing of web applications and monitoring them
during high traffic are essential activities to evaluate the behavior
of a system and ensure user satisfaction even during periods of high
demand. However, the effectiveness of performance tests depends
on the modeled user behavior in the tests. The closer the scenarios
modeled in performance tests correspond to actual user behavior,
the more valuable are the insights into the quality of the system that
result from the performance tests performed. This paper presents a
novel approach to traffic generation that leverages the concepts of
workload patterns from cloud computing to model different scenar-
ios of user interaction with a web application. The traffic generation
can be used to test the performance and observe the behavior of
web applications under real conditions of specific user interaction
scenarios. The concepts are demonstrated in a proof-of-concept
implementation and evaluated in a case study. The results of the
case study show that the concepts do work as intended and the
generated traffic follows the selected workload pattern. As a result,
the resource usage of the case study system behaves differently in
each scenario of user interaction with the web application.

CCS CONCEPTS
• Software and its engineering → Object oriented architec-
tures; Software performance; Software testing and debugging;
• Information systems→Web applications; • Computer sys-
tems organization → Cloud computing.

This work is licensed under a Creative Commons Attribution International
4.0 License.

APIT 2024, January 29–31, 2024, Bangkok, Thailand
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1621-8/24/01
https://doi.org/10.1145/3651623.3651638

KEYWORDS
Traffic Generation, Web Applications, Performance Testing, Load
Testing, Software Quality Assurance

ACM Reference Format:
Sana Khurram, Alex R. Sabau, Horst Lichter, and Sansiri Tanachutiwat.
2024. Scenario-based synthetic traffic generation for web applications using
workload patterns. In 2024 6th Asia Pacific Information Technology Conference
(APIT 2024), January 29–31, 2024, Bangkok, Thailand. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3651623.3651638

1 INTRODUCTION
Modern web applications must overcome unique challenges. Being
available at all times and resilient to software failures, as well as
responding quickly to user requests - the challenges of web applica-
tions meeting user requirements increased heavily in recent years
due to the sheer amount of users of nowadays software. Moreover,
they must be able to run stably and provide rapid feedback to the
user even when client requests increase rapidly. This leads not only
to major challenges in the design of the software but also in the
infrastructure on which the software is deployed and operated.

To overcome these challenges, several approaches exist such as
the microservice architecture pattern, which is optimized for high
scalability of individual software components [9, 10], as well as
IaaS and PaaS solutions in the cloud that allow high elasticity of IT
resources for operated software components to be scaled[6]. How-
ever, performance testing and monitoring of productive software
systems remains an utmost important task, as it provides indispens-
able information about the runtime behavior of a system under
heavy load, which in turn heavily correlates with the software
users’ satisfaction [5, 7].

One way to define scenarios to test the performance of a system
under real conditions can be found in the concepts of workload
patterns [3]. The Collins dictionary defines a pattern as "the re-
peated or regular way in which something happens or is done"
[1]. Workload patterns thus describe recurring scenarios in which
the IT resources of a system are used in a certain way, e.g. due to
recurring scenarios in the behavior of users with a system.

22

https://orcid.org/0000-0002-8808-7192
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3651623.3651638
https://doi.org/10.1145/3651623.3651638
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651623.3651638&domain=pdf&date_stamp=2024-05-07


APIT 2024, January 29–31, 2024, Bangkok, Thailand Khurram et al.

To assess the performance of web applications under varying
levels of load, one effective approach is to generate synthetic mes-
sages that are then directed at the APIs of the web application
being tested. In this research paper, we introduce a new method for
creating workloads in web applications. This method is inspired by
the workload patterns identified by Fehling et al. [3] and involves
generating HTTP messages that are shaped as the desired work-
load pattern. Moreover, it adds a “human touch” to the generated
traffic, as human behavior is uncertain and unpredictable and never
follows a perfect pattern. Our contribution aims to improve the
realism of performance testing for web applications. We formulate
the following two research questions:

RQ1: How canworkload patterns be leveraged tomodel real-world
user behavior scenarios for performance testing web appli-
cations?

RQ2: How can synthetic traffic that is modeled on workload pat-
terns be meaningfully generated in such a way that it con-
tains fluctuations that reflect human behavior?

In this paper, we first discuss a comprehensive review of related
work in traffic pattern generation to highlight their limitations in
Section 2. Section 3 describes the proposed solution for generating
and shaping traffic as workload patterns to mimic real-world user
interactions using Django and modern technologies. Section 4 cov-
ers the evaluation and results, verifying the fidelity of generated
traffic patterns. In Section 5, we discuss the effectiveness of our
approach in simulating real user behavior and its implications. The
closing section 6 offers a conclusion summarizing key contributions
and future work.

2 RELATEDWORK
MACE, a framework for malicious traffic generation, provides a
unique environment for recreating a wide range of malicious packet
traffic in laboratory testbeds. It defines a model for the flexible com-
position of malicious traffic, enabling the creation of both known
attacks and new attack variants. This mainly consists of three main
components: exploits, obfuscators, and propagation elements [13].
It is written in Python and facilitates the creation of attack vectors
with interpretation, execution, and exception handling functions.
It supports dynamic exploit and obfuscation generation, utilizing
payload and header construction elements.

On a different note, SURGE is an application-aware traffic gen-
erator specifically designed for testing web server performance.
It complements MACE as it can generate background traffic in a
controlled and configured manner. This tool relies on historical data
to create references that closely mirror real-world measurements
of various aspects of web workloads. These include characteristics
like server file size distribution, request size distribution, relative
file popularity, embedded file references, temporal locality of refer-
ence, and idle periods of individual users. These measurements are
drawn from actual observations of web server usage, underlining
the tool’s foundation in real-world data. [2].

In the context of media service streaming, generating synthetic
and shaped traffic is pivotal for understanding user behavior and
system performance. MediSyn is a synthetic streaming media ser-
vice traffic generator developed to capture the characteristics of

new workloads in shared hosting services. By leveraging extended-
term traces from real streaming media services, MediSyn models
the persistent behavior of these services, including the introduction
of new files and changes in file popularity. It introduces a novel
generalized Zipf-like distribution that accurately represents the
popularity of web objects and streaming media. The generator vali-
dates the statistical models by comparing the generated workloads
with data from two representative streaming media server logs
collected over an extended period [14].

Another notable paper focuses on the generation of synthetic
network traffic data using the STAN approach, which utilizes au-
toregressive neural models. The goal of traffic generation is to create
nearly realistic synthetic data that can be used as an alternative
to real network traffic data, which is often difficult to obtain due
to privacy concerns. STAN integrates convolutional neural layers
(CNN), mixture density layers (MDN), and softmax layers to cap-
ture both temporal dependence and dependence between attributes
in the generated traffic data [15]. This architecture allows STAN
to capture both temporal dependence and dependence between
attributes in the generated traffic data. The results show that mod-
els trained solely on synthetic data have only a small decline in
accuracy compared to models trained on real data.

Traffic generation is crucial for testing intrusion detection sys-
tems (IDS), which play a vital role in protecting networks against
potential threats and attacks. MUCUS IDS simulator is designed for
black-box testing of network intrusion detection systems, where
the internal workings of the IDS are not disclosed to the tester. This
simulator enables security researchers and developers to evaluate
the effectiveness and accuracy of intrusion detection systems under
realistic network traffic scenarios. By utilizing signatures of estab-
lished network-based intrusion detection systems like Snort, the
tool generates synthetic network traffic that emulates malicious
behavior and various types of attacks [8].

Another noteworthy method involves using statistical models
and algorithms to simulate resource utilization. This tool, known
as BURSE, generates and shapes traffic that imitates real-world
workloads, featuring bursty and self-similar characteristics, such
as sudden resource spikes and repetitive resource usage patterns.
Such synthetic traffic shaped as workloads can be used to evaluate
the performance, scalability, and reliability of an application under
different loads and conditions [16].

All aforementioned generators are specifically designed for a par-
ticular type of system. Additionally, the existing traffic generators
lack the ability to realistically simulate varied traffic patterns, as
they mostly provide only one type of traffic pattern and rely heavily
on historical data. Our approach differs from the ones presented,
as it focuses on the various recurring user interaction scenarios of
web application users. Thus, it can be used out of the box without
the need for historical data while still allowing web applications to
be tested in various well-known user interaction scenarios.

3 PROPOSED SOLUTION
Fehling et al. classify five workload patterns in the domain of cloud
computing. Each workload pattern follows a certain course of how
IT resources are utilized. The workload patterns are briefly de-
scribed in the following [3]:

23



Scenario-based synthetic traffic generation for web
applications using workload patterns APIT 2024, January 29–31, 2024, Bangkok, Thailand

• Static: Resources exhibit consistent utilization, steady ac-
cess, and minor fluctuations. Static workloads, while exhibit-
ing slight variations, maintain consistent resource use.

• Periodic: Recurring resource utilization patterns, evident in
a cyclic activity like retail orders peaking throughout a year.
Analyzing recurring intervals, spike intensity, and duration
reveals these patterns.

• Random: Unpredictable resource use fluctuations, challeng-
ingmanagement. Factors like user behavior or external events
induce this randomness. Social media spikes due to viral con-
tent exemplify random workload.

• Once-in-a-lifetime: Resources experience equal use until
a one-time peak. Triggered by unique events, e.g., product
launches, such spikes disrupt regular usage, unlikely to recur.

• Continuously changing: Dynamic utilization shifts, grad-
ual and persistent. Adaptation to evolving demands poses
challenges. Live streaming platforms with varying traffic due
to user behavior and content trends exemplify this pattern.

A synthetic traffic generator that conforms to the presented traf-
fic patterns must be able to generate and send a series of messages
to the system under test during the course of a test run. During a
test run, the number of requests sent in each second must evolve
according to the shape described by the desired traffic pattern. In
the following, we describe how we developed our solutions.

3.1 Defining Workload Pattern Parameters
As a first step, we identified a set of parameters that effectively
describe the distinct characteristics of workload patterns and named
them shaping parameters. This approach allowed us to map the
concepts of workload patterns to the concepts of object orientation,
keeping the development effort low as well as the extensibility
of the concepts high. Moreover, we introduced behavior-related
parameters aimed at incorporating realistic human behaviors into
theworkload patterns.We identified the following common shaping
parameters for all workload patterns:

• Total Time: This parameter is the total time taken by one
traffic generation run.

Apart from the static workload, the two parameters below are
introduced across all other workload patterns

• MinimumNumber of Requests: Indicates the lowest num-
ber of requests that can be transmitted.

• Maximum Number of Requests: Indicates the highest
number of requests that can be transmitted.

3.2 Generating traffic from workload patterns
In order to arrange traffic as a distinct workload category, a precise
arrangement of parameters is required to replicate it in a real-world
scenario.

3.2.1 Static Traffic: A static traffic pattern, when depicting a con-
stant workload, can exhibit either consistent resource utilization
over time or show variations within defined limits, resembling the
characteristics of an approximate static sinusoidal wave. In this
traffic shaping approach, we model user behavior using sine waves,
as this approach affords us greater control over user behavior while

also incorporating an approximation of human interaction. To gen-
erate a static workload trend, we introduce the following additional
shaping parameters:

• Number of Requests: When the "Type" parameter, which
is introduced next, is set to "Straight", it results in the cre-
ation of a traffic pattern characterized by consistent resource
utilization, maintained through uniform sleep intervals and
sending a constant number of requests that is equal to the
number of requests entered by the user. On the other hand,
when the "Type" parameter is set as "Fluctuated", a distinct
approach is adopted. Such a static trend representing traffic
assumes the shape of a stable sine wave, oscillating around
a midpoint that is equal to the number of requests entered
by the user.

In addition to the shaping parameter we introduce a behavior-
related parameter, that adds a human touch to the workload:

• Type: This parameter can take two values: "Straight" or
"Fluctuated". When set to "Straight", the generated traffic
forms a straight line representing constant resource utiliza-
tion. Conversely, when set to "Fluctuated", the traffic takes on
the characteristics of a static workload with occasional fluc-
tuations, resembling an approximation of a static sinusoidal
wave.

In order to represent traffic as a fluctuated static trend, we divide
total time into time intervals. These gaps in time mark the times at
which sets of requests happen. For each interval, we create a series
of requests using a curved pattern, like a sine wave. This wave tells
us how many requests to make at each point. The pattern gradually
goes up and then down, always staying within the initial range.
Within each interval, and for every request group or data point
identified on the sinusoidal range, the precise time gap between
each request is calculated. This calculation is rooted in the overall
interval duration and the specific request count pertaining to that
particular data point. To incorporate a more authentic and realistic
static behavior in the traffic, a brief sleep time is introduced between
each request.

3.2.2 Periodic Traffic: To model traffic conforming to the periodic
workload pattern, several supplementary parameters come into play.
To generate a periodic workload trend, we introduce the following
additional shaping parameters.

• Number of Elements on each Side of the Wave: This
parameter plays a pivotal role in shaping the periodic wave.
It defines the number of requests in each group that represent
data points, spanning from the trough of the sine wave to
its peak or vice versa.

We also introduce behavior-related parameters that add a human
touch to the workload as follows:

• Difference Variable: Adjusts the range of viable request
counts by subtracting it from the “Maximum Number of Re-
quests” and adding it to the “Minimum Number of Requests”.

• Rest Time at Lowest Peak: Extends the resting phase at
the lowest peak of the wave by elongating the width of
the trough. This manipulation enables the replication of
scenarios where fewer requests are transmitted during this
resting period, adding a touch of human behavior.

24



APIT 2024, January 29–31, 2024, Bangkok, Thailand Khurram et al.

Suitable intervals are computed for the sine waves based on the
parameters "Total Time" and "Rest Time at Lowest Peak". Deducting
the "Rest Time at Lowest Peak" from each interval yields the sleep
time during the trough. Introducing a sleep time or more simply a
delay, between requests helps to shape the trend. Subsequently, a
well-ordered but randomized list of request numbers is formulated,
mirroring sinusoidal waves with gradual inclines and declines. This
list consists of the group of requests or data points of sine waves
within each interval. The equitable distribution of the interval’s
duration among specific points regulates the temporal spacing,
determining and documenting the interval for each point.

For each interval and its corresponding request count, a loop
orchestrates the process of generating and dispatching requests.
Following preparation, each request is sent, and a brief pause is
introduced between them, replicating the temporal dynamics of
real-world workloads. This inter-request pause substantiates the
intervals between requests, eventually giving rise to the periodic
wave-like pattern.

3.2.3 Random Traffic: To generate traffic conforming to the ran-
dom workload pattern relies on the three fundamental parameters
that are already discussed i.e. minimum and maximum number of
requests, and total time. Nevertheless, we also introduce another
behavior-related parameter as follows:

• Total Data Points: Divides the Total Time into equal inter-
vals. This inherent randomness is achieved by employing the
Poisson probabilistic distribution, which governs the number
of requests dispatched within each interval. This parameter
plays an important role in adding a touch of human-like
characteristics. This parameter divides the Total Time into
equal intervals. This inherent randomness is achieved by em-
ploying the Poisson probabilistic distribution, which governs
the number of requests dispatched within each interval.

The Poisson distribution’s ability to model random events within
constraints makes it ideal for predicting events within a fixed time
or space based on an average occurrence rate. The simulation uses
these time intervals to progress iteratively. In each interval, a ran-
dom number of request groups is generated using the Poisson dis-
tribution. To add realism, brief sleep durations are inserted between
requests, mimicking the pacing of real workloads.

3.2.4 Once-in-a-lifetime Traffic: To replicate this distinctive pat-
tern, several supplementary parameters are introduced including
various shaping parameters as follows:

• Number of Elements on each Side of the Wave: This is a
key parameter influencing the formation of periodic waves.
It creates the number of points representing request groups,
from the trough to the peak of the sine wave, or vice versa.

• Once-in-a-Lifetime Peak Occurrence Time: This param-
eter pinpoints the exact moment of the unique peak’s ap-
pearance.

• Once-in-a-Lifetime Peak Occurrence Number of Re-
quests: This is a parameter that denotes the number of re-
quests that are to be sent during this peak. This parameter
plays a significant role in shaping the traffic as a once-in-a-
lifetime pattern.

Shaping the traffic as a Once-in-a-lifetime workload pattern
adheres to the underlying structure of a typical periodic pattern
but omits any rest periods at its lowest points. While rest times
at troughs were integrated into the periodic workload to mimic
human dynamics, the focus in this workload shape is to craft a
distinctive pattern of the traffic defined by an exceptionally high
peak.

In order to send the traffic in this type of workload, appropri-
ate intervals are computed for the sine waves based on the total
time. This is followed by the creation of a sorted but randomized
list of request numbers, ascending and descending alternatively.
This list emulates sinusoidal waves, gradually increasing and then
decreasing the number of requests similar to shaping the periodic
workload. The numbers in the list determine the count of requests
within each interval.

Within each interval, corresponding to the designated request
count, a loop manages the generation and dispatch of requests.
These requests are then prepared and transmitted, with a brief
interval inserted between each to mimic real workload dynamics.
Alongside the standard periodic transmission pattern, a unique
event unfolds as time coincides with the once-in-a-lifetime occur-
rence peak. At this moment, a sharp and substantial increase in
requests occurs creating an exceptional once-in-a-lifetime peak.

3.2.5 Continuously changing Traffic: A continuously changing
workload pattern is characterized by an uninterrupted and gradual
rise or fall in resource utilization[3]. For shaping a continuously
changing workload pattern, the objective is to replicate a dynamic
sequence of requests that either escalates or gradually diminishes
in a straight or exponential manner within a defined time frame. To
simulate traffic in such a continuously changing trend, the common
parameters are used along with an addition of a behavior-related
parameter:

• Trend: This parameter classifies what type of continuously
changing workload is to be shaped. Four values have been
proposed for this variable: straight increase, straight de-
crease, exponential increase, and exponential decrease.

When simulating an exponential trend, the number of requests
steadily grows or shrinks based on a calculated exponential rate.
For exponential increase, requests continuously and exponentially
increase until they reach the maximum. For exponential decrease,
they systematically decrease from the maximum using an exponen-
tial rate. The rate for both increase and decrease is determined as
follows:

rate = max_requests_num
total_time (1)

This choice of the above equation offers several advantages for
our study. Firstly, its simplicity and intuitive nature make it ac-
cessible for both researchers and practitioners. By adjusting the
maximum number of requests and the total time, we can easily
control the behavior of exponential growth or decay, facilitating a
continuously changing traffic trend.

For the trends, straight increase and straight decrease there is
a linear increase or decrease in the number of requests sent over
time. The rate of increase and decrease is calculated as follows:

25



Scenario-based synthetic traffic generation for web
applications using workload patterns APIT 2024, January 29–31, 2024, Bangkok, Thailand

rate = max_requests_num - min_requests_num
total_time (2)

By adjusting the maximum and minimum number of requests
and the total time, we can easily control the behavior of linear
growth or decay.

3.3 Implementation
In the implementation process using Django, we integrated a range
of contemporary technologies and frameworks, with the core being
the Django web development framework itself. Highly regarded
for its "batteries included" philosophy, Django greatly simplified
the creation and management of a traffic generator for workload
patterns [4].

We also utilized supplementary libraries including NumPy, pan-
das, and Django Rest Framework to enhance our implementation.
A key transformation came through the incorporation of the fac-
tory design pattern, which enabled flexible and decoupled object
creation [11]. As a client, we developed a simple frontend with
HTML and CSS to provide a user-friendly system for initiating
traffic generation through straightforward button interactions.

4 EVALUATION & RESULTS
To evaluate our prototype, our evaluation strategy is composed of
two tests. First, we designed an end-to-end (E2E) test to evaluate
the integration of the traffic generator and the system under test.
Then we ran test runs for each traffic pattern. In each test run, we
logged the number of requests per second and plotted them as line
diagrams using the Python library Plotly. By this we could evaluate
that the patterns generated by the traffic generator indeed matched
the workload patterns by Fehling et al [3]

For the system under test, we implemented a case study applica-
tion that models a basic student enrollment system. The applica-
tion comprised four distinct microservices, sequentially processing
requests through each of these services. In each test, the traffic
generator sent the generated messages to the API of the Gateway
of the case study application. Figure 1 shows the case study system
as a component diagram, where each microservice is represented
as a single component.

The test environment included an 11th Gen Intel(R) Core(TM)
i5-1135G7 CPU with a base clock speed of 2.40GHz (Turbo Boost
up to 4.20GHz), 4 cores, 8 threads, and 8GiB of DDR4 RAM running
at 3200 MHz.

4.1 Evaluating integration by E2E test
To test the integration we logged all messages on both ends to
verify that they were sent and received in the same manner and
in the same order. For this, we added a payload size of a specific
size to each message. The payload size was further scrutinized to
identify any alterations upon reception.

We used our periodic traffic generation to send the messages.
Due to the design of our traffic generator, we did not repeat the tests
for the other traffic patterns, as we logged the data right before the
traffic generator sent the messages out. Since all traffic generator
modules use this same endpoint to send the messages, it suffices

Figure 1: Component diagram of the case study system

to implement an E2E test for any of the traffic generators. Table 1
shows the parameters of the E2E test:

Parameters Values
Payload Size Min 1
Payload Size Max 4
Min Requests Num 1
Max Requests Num 10
Total Time 60
Number of Elements on Each Side of the Wave 5
Rest Time at Lowest Peak 2
Difference Variable 3
Table 1: Parameters for periodic workload trend

In total 126 requests were sent from the traffic generator to the
case study system. Throughout all 126 requests, the order in which
these requests were received corresponded exactly to the order in
which they were initially sent by the traffic generator. Additionally,
no anomalies in the data of the sent and received messages could be
observed. In conclusion, the E2E test has shown that the received
messages correspond exactly to the sent messages in every way.
Thus, we were able to continue our evaluation with the second
evaluation approach.

4.2 Evaluating the traffic shapes
To evaluate that the generated traffic shapes conform to the desired
workload shape, we manually logged the number of requests per
second in the generator component at runtime. For each traffic
generator, we ran multiple tests with the same test configuration to
ensure that the traffic shape resulting from the test configuration
could repeatedly be generated. However, if a test configuration
included a certain amount of randomness in the traffic shape, we
accepted deviations from other test runs and compared the overall
traffic shape of the test run with one of the others, i.e. in such cases
we did not enforce strict equality of the traffic shapes.

4.2.1 Test configurations. Table 2 shows the parameters for each
test of traffic generation. The parameters of total time, minimum,
and maximum requests are consistent across all test runs, set at 60
seconds, 1, and 10 requests, respectively. However, this range for

26



APIT 2024, January 29–31, 2024, Bangkok, Thailand Khurram et al.

Traffic Patterns Parameters Values
Static Traffic
(Straight)

Number of Requests 5

Static Traffic
(Fluctuated)

Number of Requests 9

Periodic Traffic
Number of Elements on
each side of the Wave

5

Rest Time at Lowest
Peak

3

Difference Variable 2
Random Traffic Total Data Points 20

Once-in-a-
lifetime Traffic

Number of Elements on
each side of the Wave

5

Once in a Lifetime Peak
Occurrence Time

50

Once in a Lifetime Peak
Occurrence Num of Re-
quest

20

Continuously
Changing Traffic
(straight increase)

Trend straight increase

Continuously
Changing Traffic
(straight decrease)

Trend straight decrease

Continuously
Changing Traffic
(exponential
increase)

Trend exponential increase

Continuously
Changing Traffic
(exponential
decrease)

Trend exponential decrease

Table 2: Evaluation test configurations

minimum and maximum request values is from 1 to 20 requests for
continuously changing workload patterns characterized by expo-
nential increments and decrements. The total time is 60 seconds for
the static workload test run whereas it doesn’t consist of parameters
related to minimum and maximum requests. Static workload trend
consists of separate parameter values for straight and fluctuated
types.

4.3 Results
For all traffic shapes, we were able to reproduce the desired shapes
several times. Moreover, we did not have a test run in which the
traffic shape did not have the desired shape or did not show the
expected characteristics. It has to be mentioned that in the case of
the random traffic generation, in contrast to all others, we were not
able to reproduce the exact shape again. This lies in the nature of
the random character of the random traffic generator. Thus, in the
case of the random traffic generation we did not compare the traffic
shapes of each test run with each other. We compared whether the
outcomes of all test runs showed a random behavior, which they
did.

Since all our tests have shown that the behavior of our traffic
generators is reproducible, we can ensure that the test results are
not false positives. Therefore, we will now present the results of a

test run for each traffic pattern. Figure 2a represents a straight line
for traffic shaped as a static workload pattern, which occurs when
the minimum and maximum request number parameters are set to
the same value. In contrast, Figure 2b illustrates a static sinusoidal
wave that oscillates around a central point due to distinct parameter
values.

(a) Static workload with a constant trend

(b) Static workload with variation

Figure 2: Result for static workload

In Figure 3a the outcome of a test run of the periodic traffic
generation is presented. The monitored data aptly depicts a periodic
workload pattern, including deviations in the shapes conforming to
human behavior, by elongating the trough of the sinusoidal curve
and keeping the spectrum for maximum and minimum request
numbers variable.

Figure 3b illustrates the results of a test run for the Once-in-a-
lifetime traffic pattern. The diagram clearly shows an exceptionally
distinct and high peak within the course of the test run. Moreover,
it also shows not a complete artificial course of the number of user
requests per second, as after 10 seconds there was already a small
peak in the number of requests received before the exceptionally
high demand of the case study system began. This reflects the
human touch we developed in our

Figure 4a and 4b show the outcome of two separate test runs
of the random traffic generation. In both figures, it can clearly be

27



Scenario-based synthetic traffic generation for web
applications using workload patterns APIT 2024, January 29–31, 2024, Bangkok, Thailand

(a) Periodic workload pattern

(b) Once-in-a-lifetime workload pattern

Figure 3: Result for periodic and once-in-a-lifetime workload
patterns

seen that the course of user requests per second does not follow
any certain pattern and is, thus, characterized by a distribution of
completely random and unpredictable numbers of user requests per
second. The scenario-based traffic generator employed in this study
exhibits the capability to produce four distinct categories of con-
tinuously changing workloads, characterized by both incremental
and decremental patterns. The first row of Figure 5 portrays a con-
sistent, yet linear, increase and decrease in traffic load. In contrast,
the second row illustrates the manifestation of traffic exhibiting
exponential growth and decrease trends.

Due to resource constraints, this scenario-based traffic generator
was subjected to testing with predefined thresholds for specific
parameters. These threshold values included a maximum number
of requests set at 20 and a total time threshold limited to 120 seconds.

5 DISCUSSION
In addressing our first research question, our approach offers a mul-
tifaceted strategy. We replicate genuine user interactions by using
synthetic traffic patterns, faithfully mimicking real user behaviors,
including fluctuations corresponding to human behavior. For ex-
ample, periodic workload patterns enable us to recreate scenarios
like seasonal sales or product launches. This approach provides

(a) Random workload pattern - test run 1

(b) Random workload pattern - test run 2

Figure 4: Result for random workload pattern

Figure 5: Continuously changing workload pattern

valuable insights into application performance during peak periods,
enhancing the comprehensiveness of performance testing.

Furthermore, workload patterns are essential for assessing infras-
tructure suitability. Conducting load tests with these patterns helps

28



APIT 2024, January 29–31, 2024, Bangkok, Thailand Khurram et al.

organizations determine if their existing infrastructure can handle
varying loads effectively. For example, simulating traffic peaks as-
sociated with once-in-a-lifetime events, such as Black Friday sales,
helps ascertain whether the current infrastructure can scale to meet
such demands or if additional resources are necessary. This proac-
tive approach ensures web applications remain responsive during
peak usage, ultimately improving the user experience. Workload
patterns also introduce human-like behavior into synthetic traffic,
adding another layer of realism.

To answer our second research question, our approach integrates
behavior-related parameters into traffic shaping. Key parameters
such as "Type" (straight or fluctuated) and "Number of Requests"
play a pivotal role in simulating these fluctuations. Furthermore,
in the case of random workload patterns, we employ probabilistic
distributions such as the Poisson distribution to introduce unpre-
dictability into request dispatch. This randomness closely mirrors
scenarios where user behavior is influenced by external factors or
spontaneous events, thereby replicating real-world fluctuations in
user activity. This ensures that load-testing scenarios encompass
the inherent uncertainties associated with human-driven interac-
tions, providing a more accurate assessment of system performance
and robustness.

6 CONCLUSION
In this paper, we presented the concept of generating synthetic traf-
fic that corresponds to workload patterns observed in the operation
of software systems in the cloud. Our approach enables perfor-
mance testing of existing web applications under real conditions
without the need for historical data. To answer our research ques-
tions, we demonstrated how workload patterns can be leveraged to
model real-world user behavior scenarios for performance testing
of web applications. We also addressed the challenge of generating
synthetic traffic that includes fluctuations corresponding to human
behavior. Our research has demonstrated the effectiveness and re-
producibility of our scenario-based traffic generators in simulating
a wide range of traffic patterns.

In our implementation, we realized a first prototype that al-
lows for generating traffic conforming to the presented workload
patterns including a human touch. We were able to evaluate the fea-
sibility of our approach by plotting the course of user requests per
second in multiple test runs per traffic pattern. Thus, the achieved
flexibility in our concepts allows for a wide range of performance
testing scenarios. Despite resource constraints, we employed prede-
fined thresholds for specific parameters i.e maximum of 20 requests
and total time limit of 120 seconds. This ensured that our testing
approach remained robust and effective. For all tested traffic shapes,
we consistently achieved the desired patterns, and we did not en-
counter any instances where the traffic shape deviated from our
expectations.

The results of our test runs for various traffic patterns provided
valuable insights. In the case of static workload patterns, we success-
fully replicated linear and sinusoidal shapes, illustrating the flexibil-
ity of our approach in capturing different characteristics. Periodic
traffic generation accurately reflected real-world periodic workload
patterns, introducing variations that mimic human behavior. The
Once-in-a-lifetime traffic pattern exhibited a distinct and high peak,

aligning with the demands of a case study system. The early peak in
user requests highlighted the human-like unpredictability that we
aimed to incorporate into our approach. Additionally, the random
traffic generation yielded entirely unpredictable patterns, simulat-
ing scenarios where user behavior is influenced by external factors,
thus introducing realism into the testing process. Our scenario-
based traffic generator successfully created four distinct categories
of continuously changing workloads, including incremental and
decremental patterns. The ability to replicate these various traffic
patterns has significant implications for performance testing and
infrastructure assessment.

6.1 Future Work
Our proof of concept implementation showed that our concepts
work. However, the applicability of it is limited, due to the generic
messages being created. To leverage our concepts for meaningful
performance testing arbitrary web applications, the concepts of
message generation must be extended. We see one way to do this
in an HTTP message configuration component that provides a set
of HTTP message stereotypes, such as messages with an image or
video payload to upload or authenticated messages, as well as a set
of configuration parameters to configure messages tailored to the
APIs of the system under test.

Another avenue for future work lies in the prospect of conduct-
ing system tests within a production environment, specifically on a
server infrastructure. This extension would enable comprehensive
test runs using larger values of the number of requests over ex-
tended time spans. Such an endeavor holds promise for evaluating
the performance of the traffic generator in real-world conditions
and fine-tuning any potential delays in traffic generation processes.
This valuable step can enhance the reliability and efficiency of the
traffic generation system, further strengthening its applicability and
practicality. Furthermore, another area for future research involves
the development and testing of a more intricate case study-based
system. This advanced system would be intentionally designed to
assess its resilience under specific scenarios, to identify vulnera-
bilities or critical failure points. The creation of such a complex
and challenging testbed could offer deeper insights into the per-
formance and robustness of traffic generation techniques under
adverse conditions.

Given the growing challenges web applications encounter in
maintaining availability, resilience, and responsiveness, a valuable
future work can the extension of our concepts by the concepts of
resilient vector consensus to design test scenarios that protect web
applications frommalicious attacks and failures [12]. By incorporat-
ing the extended concepts for mitigating mobile malicious attacks,
web applications can undergo more extensive testing. Furthermore,
future research may explore innovative techniques to safeguard
web applications, ensuring they remain robust even in the presence
of security threats and disruptions.

ACKNOWLEDGMENTS
The author would like to thank the Research Group Software Con-
struction at RWTH Aachen University, Aachen, Germany and The

29



Scenario-based synthetic traffic generation for web
applications using workload patterns APIT 2024, January 29–31, 2024, Bangkok, Thailand

Sirindhorn International Thai-German Graduate School of Engi-
neering King Mongkut’s University of Technology North Bangkok,
Bangkok, Thailand.

REFERENCES
[1] 2023. "Collins English dictionary (2023)". https://www.collinsdictionary.com/

english/pattern. [Online; accessed 04-September-2023].
[2] P. Barford and M. Crovella. 1998. Generating representative web workloads for

network and server performance evaluation. In Proceedings of the 1998 ACM SIG-
METRICS joint international conference on Measurement and modeling of computer
systems. 151–160.

[3] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. 2014. Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer. https://doi.org/10.1007/978-3-7091-1568-8

[4] Devndra Ghimire. 2020. Comparative study on Python web frameworks: Flask
and Django. (2020).

[5] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and detecting real-world performance bugs. ACM SIGPLAN
Notices 47, 6 (2012), 77–88.

[6] Peter Mell, Tim Grance, et al. 2011. The NIST definition of cloud computing.
Special Publication 800-145 (2011), 1–7.

[7] Ian Molyneaux. 2014. The art of application performance testing: from strategy to
tools. " O’Reilly Media, Inc.".

[8] D. Mutz, G. Vigna, and R. Kemmerer. 2003. An experience developing an IDS
stimulator for the black-box testing of network intrusion detection systems. In
19th Annual Computer Security Applications Conference, 2003. 374–383.

[9] Sam Newman. 2021. Building microservices. " O’Reilly Media, Inc.".
[10] Chris Richardson. 2018. Microservices patterns: with examples in Java. Simon and

Schuster.
[11] Vaskaran Sarcar. 2016. Java Design Patterns. https://doi.org/10.1007/978-1-4842-

1802-0
[12] Yilun Shang. 2023. Resilient Vector Consensus Over Random Dynamic Networks

Under Mobile Malicious Attacks. Comput. J. (2023), bxad043.
[13] J. Sommers, V. Yegneswaran, and P. Barford. 2004. A framework for malicious

workload generation. In Proceedings of the 2004 ACM SIGCOMM Internet Mea-
surement Conference, IMC 2004. 10.

[14] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat. 2003. Medisyn: A synthetic stream-
ing media service workload generator. In Proceedings of the 13th international
workshop on Network and operating systems support for digital audio and video.
12–21.

[15] Shengzhe Xu, Manish Marwah, Martin Arlitt, and Naren Ramakrishnan. 2021.
Stan: Synthetic network traffic generation with generative neural models. In
Deployable Machine Learning for Security Defense: Second International Workshop,
MLHat 2021, Virtual Event, August 15, 2021, Proceedings 2. Springer, 3–29.

[16] J. Yin, X. Lu, X. Zhao, H. Chen, and X. Liu. 2014. Burse: A bursty and self-similar
workload generator for cloud computing. IEEE Transactions on Parallel and
Distributed Systems 26, 3 (2014), 668–680.

30

https://www.collinsdictionary.com/english/pattern
https://www.collinsdictionary.com/english/pattern
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1007/978-1-4842-1802-0
https://doi.org/10.1007/978-1-4842-1802-0

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Defining Workload Pattern Parameters
	3.2 Generating traffic from workload patterns
	3.3 Implementation

	4 Evaluation & Results
	4.1 Evaluating integration by E2E test
	4.2 Evaluating the traffic shapes
	4.3 Results

	5 Discussion
	6 Conclusion
	6.1 Future Work

	Acknowledgments
	References

