
(7) In scheduling, how much of our resources do we allot to any
particular job? For example, how much storage and how many
tape units are scheduled when sorting is able to take a variable
number, and other users are competing for space and time?

(8) What records do we need to keep in the system dynamically,
so that we can carry out diagnostics or rebinding that may be
necessary?

Mealy noted that the impact of the new operating systems on
programming languages raises the following questions:

(1) The problem of naming. Most programming languages think
they know all the names in the world. We need to have program-
ming languages that can talk to programs written in other lan-
guages, and that can talk about data that has been constructed
by programs in other languages. They need to be able to talk about
and with operating systems and programs written in other lan-
guages.

(2) Languages need to be able to recognize many more data
types. Most of them think that there are only five data types in
the world. The range of data types should be open-ended.

(3) Users need to be able to make control statements, in the
language, to the operating system.

(4) Operating systems should be able to deal with data de-
scriptions that are held with the data instead of having been
absorbed at translation time.

(5) Not only do programming languages need to be environ-
ment-free; but the programs also need to be environment-free.
Most of the time they are not.

Following this summary there were questions, the most in-
teresting of which were as follows:

Steel: Should the operating system be constructed in tasks or
in special structures of its own?

Mealy: We do not know yet. Both ways have problems and these
have not been solved.

(Unknown): Why should we multitask our jobs?
Mealy: There are three basic reasons: (1) for a neater, simpler

organization; (2) to take advantage of overlapping of resources;
and (3) to take advantage of such things as multiprocessors. Note,
though, that if we program to take advantage of these things and
then do not have them, we can still run.

Green: Do we need any special language changes for multi-
tasking?

Mealy: No, we do not need any major changes in the language.
Multitasking can be handled in the same way as subroutine calls.
Some of the parameters of the subroutine call will include the
environment in which a task must run.

Mitchell: A present problem is that of separate and incom-
patible languages for the operating system and the translators.

Mealy: This is a big problem. In the construction of large sys-
tems, many individuals develop parts separately, and achieving a
complete, consistent system is a problem still not solved.

Naur: When there is the problem of allocating resources, either
the programmer can build it into his program or it can be built by
the systems designer into the operating system. These alternatives
are surely too rigid. What we really need is a way for the pro-
grammer to make an environment inquiry from his program and
then ask the system for a chosen selection of the resources.

Mealy: Yes, this kind of technique would be valuable, but at
the moment it does raise problems which occur when the environ-
ment changes and the requests cannot be honored.

Orchard-Hays: I t is essential to know what resources you may
expect from the system, such as the number of tapes and words
of core storage.

Mealy: I think the way to tackle this problem is to be able to
put a hold on resources for particular programs.

Evolution of the Meta-Assembly Program
D a v i d E. Ferguson

Programmatics, Inc., Los Angeles, California

A generalized assembler called a "meta-assembler" is de-
scribed. The meta-assembler is defined and factors which con-
tributed to its evolution are presented. How a meta-assembler
is made to function as an assembly program is described. Fi-
nally, the implication of meta-assemblers on compiler design is
discussed.

I n t r o d u c t i o n

A meta-assembly program is a mach ine - independen t
assembly program. I t is machine i ndependen t in the sense
t h a t bo th the assembly language which it is to accept
(the source language) and the machine code which i t is to
generate (the object language) are supplied as par t of the
program to be assembled. T h a t is, bo th the source lan-
guage and the object language are i n p u t parameters to
the meta-assembler .

The n a m e meta-assembler was coined b y analogy with

Presented at an ACM Programming Languages Conference,
San Dimas, California, August 1965.

the word metadanguage . A rec ta- language describes a
language; a recta-assembler describes an assembler. The
t e rm is no t direct ly related to the t e rm recta-compiler ,
which has recent ly come into use. A recta-assembler is
p robab ly more closely allied to what has recent ly been
called a macro expander.

Meta -assembly is a p roven technique. Several meta-
assembly programs have been implemented and are operat-
ing on m a n y different computers . T h e y have been used to
create assembly programs for these computers and for a
n u m b e r of other computers, some wi th characterist ics
very different f rom those of the base computers .

The meta -assembly process is briefly described here,
a nd a few remarks are offered on existing meta -assembly
programs together wi th developments t ha t d is t inguish
each f rom its predecessors. ']_'he paper concludes wi th a
brief descr ipt ion of M~TAPI~AN, a compu te r - independen t
systems p rogramming language based u p o n the recta-
assembly technique, which is t r ans la ted by way of meta-
assembly programs.

190 C o m m u n i c a t i o n s o f t h e ACM Volume 9 / Number 3 / March 1966

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365230.365264&domain=pdf&date_stamp=1966-03-01

Th e M e t a - A s s e m b l y Process

Most symbolic assembly programs have characteristics
in common. Among these are the ability to read and
identify constants and symbols, to convert numbers from
one radix to another, to build and search symbol tables,
to compute the values of arithmetic expressions involving
constants and symbols, to allocate storage at object time
for the object program, and to assemble related partial
words into full words for output.

Traditionally, whenever a new computer model has
been manufactured, one or more assembly programs have
been written for it. Each of these assembly programs per-
forms all the functions mentioned above. The objective
in producing a recta-assembler was to make this redundant
effort unnecessary. That is to say, when one has a recta-
assembler operating on computer X, one can create
assembly programs for computers X, Y, Z, etc., on com-
puter X, almost as quickly as one can write down the
nmemonic commands and their corresponding computer
codes, and the lengths and ordering of the partial words
which make up a machine instruction.

One can think of several situations in which computer
installations can benefit by assembling on one computer
for another, particularly when creating the new assembly
program requires less than a day's work. However, there
is still a need to assemble for the new computer on the
new computer. This problem is solved by coding the
recta-assembly program itself in the machine-independent
language METAVLAN, which is discussed at the end of the
paper.

Syntactically, a meta-assembly program consists of one
or more logical lines, each of which occupies one or more
physical records. Each line contains a label field, a com-
mand field, and an operand field. Comments may appear
following the line.

The label field is ordinarily blank. If, however, it con-
tains a symbol (identifier), this symbol ordinarily takes
on the current value of the location counter, as in a con-
ventional assembler.

The command field contains a symbol. This symbol may
be the name of one of the directives built into the recta-
assembly language, or the name of an enti ty previously
defined in the current program. The directives built into
the recta-assembly language are machine-independent.
They merely provide a way of describing the desired
assembly program. Several of them are discussed below.

The operand field may be blank or may contain one or
more operands separated by commas. Each operand may
be an arithmetic expression or a list, where a list is com-
posed of one or more operands separated by commas.
Thus, in the general case the operand field contains a list,
which may contain lists, etc. Tha t is, the definition is
recursive, but ultimately each operand is an arithmetic
expression. Arithmetic expressions consist of symbols and
constants connected by (1) arithmetic operations of addi-
tion, subtraction, nmltiplication and division; (2) rela-
tional operators, less than, greater than and equal to;
and (3) the logical operators AND and oR.

One of the directives in any recta-assembly language
states the word size of the computer in bits or characters.
Another directive gives the algorithm for representing a
negative quanti ty in the object computer in terms of
positive quantities. Clearly, different algorithms are re-
quired for two's complement, one's complement, and sign
magnitude computers. Another directive is the familiar
EQU directive, which is present in many conventional
assembly programs.

None of the recta-assembly directives produce code.
The programmer produces code by means of the F O R M A T
directive. This directive specifies that the values of one or
more arithmetic expressions are to be assembled into words
and output as part of the object program, and it specifies
the length and ordering of the expressions. Each format
has a name. To reference the format the programmer
writes its name in the command field. In the operand field
he writes the expressions which are to be assembled into
this format.

For example, suppose that we wish to assemble the con-
s tant - 5 for a sign magnitude 36-bit computer. The cod-
ing for this might be written as follows. The first line would
define the word size as 36 bits. The second line would de-
fine the representation of - N as the logical union of N
and a sign bit. The third line would contain the definition
of a format which stated that one field of 36 bits was to be
assembled. The name of the format (say, DATA) would
appear in the label field of the third line. The programmer
could now write a line containing DATA in the command
field and --5 in the operand field, and at assembly time
this line would produce a 36-bit --5 in the object program.

To generate an instruction, the programmer might define
a format with 3 fields, where the fields represented the
command, the address and the index register. He could
then reference this format by name, giving as arguments
an octal command code, a symbolic address and a sym-
bolic index register; at assembly time this line would pro-
duce a computer instruction in the object program.

This example should serve to demonstrate that machine-
independent code generation is possible. Obviously,
referencing the same format repeatedly to generate in-
structions would be impractical. Accordingly, several
other directives exist within the recta-assembly language
to facilitate creating an assembly language more familiar
to the user and more concise.

It has been mentioned that several kinds of entities
may be defined by the programmer. One of these is the
format; another is the procedure. A procedure has one or
more names and is referenced by writing any of its names
in the command field of a line. One simple procedure
might be one to generate instructions. The programmer
calls the procedure by writing the appropriate mnemonic
command in the command field of a line and the address
and index in the operand field, separated by commas.
Within the procedure itself is a format reference which
generates the actual bits of the command code and as-
sembles the address and index field into the proper places
in the output word.

Volume 9 / Number 3 / March 1966 Communications of the ACM 191

One can see that turning the meta-assembly into an
assembly program is simply a matter of writing pro-
cedures corresponding to the desired instructions and
data formats of the assembly language. Since most com-
puters have few different formats for their instructions
and data, few procedures are ordinarily required. The
creation of a new assembly program can be accomplished
quickly.

Procedures are, in effect, a generalization of the macro
concept, and it may already be apparent that procedures
may be used for much more elaborate purposes than
assembling one-for-one machine instructions. An example
of the power accorded by procedures is given in certain
library programs written by SDS which generate code for
the 920 computer or for the 9300 computer based on the
value of a single variable within the program. If this
variable is set equal to zero a 920 computer program is
developed; if it is set equal to 1, a 9300 program is de-
veloped. The programs are of different size and contain
different instructions.

The code within a procedure may be any code permis-
sible outside a procedure. Procedures may call each other
to any depth and may pass their arguments down. There
is also provision for making a symbol defined within a
procedure available to the next higher level procedure.
The number of lines of code generated by a procedure may
be zero or greater and may vary from one call of the pro-
cedure to the next. This is made possible by the DO
directive which permits conditional skipping of one or
more lines following it.

I t is straightforward to develop a compiler level lan-
guage for a particular application which consists of nothing
but calls on procedures. One such language is the business
language developed by SDS which in certain applications
calls procedures to 8 levels deep. Procedures at the lower
level may be concerned with code optimization and do as
good a job of optimization as the source language permits
or as good a job as the programmer who writes the pro-
cedures cares to build in. A good example might be the
problem of moving m characters starting in the n th
character position of location L to another location, in a
fixed-word-length computer. Optimum code to perform
this function varies widely from one computer to the next.
I t also depends heavily on where the word divisions fall
within the character string being moved. If one expresses
this operation as a procedure call with 5 arguments, how-
ever, the procedure can generate optimum code for which-
ever computer is to be used for this particular run.

Meta-Assembler Programs

The first program which could qualify as a meta-
assembler was UTMOST, for the UNIVAC I I I computer.
I t was completed in 1962. UTMOST introduced most of
the features which distinguish the meta-assembler: formats
and procedures in particular, generalized arithmetic ex-
pressions, lists, etc. U T M O S T introduced subscripted
symbols as a notation for addressing procedure arguments

from within the procedure. It was also perhaps the first
assembly program to utilize an ALGoL-like block structure.

The syntax of the meta-assembler source line is much
like that of FAP, the FORTRAN Assembly Program for the
IBM 7000 series. From FAP, the recta-assemblers also
gained the following features: the use of a relocatable
location counter; the DUP directive in FAP, which is the
basis of the DO directive in the meta-assemblers; and the
convention for making a symbol external to the current
program. (In meta-assemblers, a symbol may be made
external to the current procedure as well.)

SLEUTH, for the UNIVAC 1107, followed UTMOST.
SLEUTH introduced the notion of the function, which is
essentially a procedure which returns a value and is
referenced in the operand field rather than in the com-
mand field.

META-SYMBOL, for the SDS 900 series computers,
generalized the concept of a list in several ways beyond
that of either UTMOST or SLEUTH. META-SYMBOL
also introduced a new "squoze" scheme for encoding
symbolic information into binary. This reduced the
volume of information by a factor of about i0 to I.

A meta-assembler was developed as part of a FORTRAN
II compiler for the militarized version of the UNIVAC 490.
It had both extensions to and deletions from the cus-
tomary syntax, for this special purpose. The program was
syntax-directed and was able to translate two different
assembly languages as well as FORTRAN.

Meta-assemblers have also been completed for the RCA
IiOA computer and for the Spectra 70 series. With the
Spectra 70 meta-assembler, the concept of the many-to-
many macro was introduced, probably the most significant
development in assembly programs since the introduction
of the standard, or one-to-many macro. It is through the
use of the many-to-many macro that the Spectra 70
series meta-assembler is able to produce highly efficient
code from the]VfETAPLAN source language.

METAPLAN

METAPLAN stands for META Programming LANguage,
and denotes a computer-independent language at the
compiler level. METAPLAN statements are of two types:
declarative and imperative. Declarative statements de-
clare data of several kinds, including: data in tabular
form, whole word and partial word data, and program-
mable switches. Imperative statements specify the pro-
gram flow, moving and testing of the data, and arithmetic
operations.

A typical imperative statement is:

IF F(A) PLUS 5 EQ G(B) GOTO L

In this example, F and G are previously declared fields.
Let's assume the F field is the 3rd to the 6th bits of the
argument (in this case, A), and that the G field is the last
15 bits of the second word following the argument (in this
case, B). Optimum code is generated to load the contents
of A, isolate the 3 bits of the F field, add 5, and compare

192 Communications of the ACM Volume 9 / Number 3 / March 1966

the resul t wi th the last 15 bits of the word a t B + 2 . W h a t

ac tua l ly happens here is t h a t IF , P L U S , EQ and G O T O

are procedure calls, each wi th an a rgument . The four calls

toge the r cons t i tu te a m a n y - t o - m a n y macro, m a n y pro-

cedure calls producing m a n y ins t ruct ions in the objec t
code.

Those of you who have deal t wi th the p rob lem of

genera t ing o p t i m u m code in this k ind of s i tua t ion will

recognize tha t t r ea t ing IF , P L U S and EQ as unre la ted

one - to -many macros, and genera t ing code f rom each in

turn, would not in general produce o p t i m u m code. T h e

m a n y - t o - m a n y macro, however , gives the t rans la tor the

abi l i ty to look ahead to fu tu re requ i rements (or back)

and thus hold shift operat ions to a min imum, take ad-

va n t age of par t icu la r compute r commands which load

and store address fields, etc. Fu r the rmore , the ac tual

code to be genera ted by the procedures is expressed in

assembly language, whereas in a convent iona l compiler

i t is h idden within the compiler p rog ram itself.

W h a t we have here is a way of exhibi t ing the semant ic

con ten t of a compiler s t a t ement , jus t as recent ly developed

syntax-d i rec ted techniques have m a d e it possible to

exhibi t the syn tax of the compi ler language. METAPLAN

is essential ly a semantics-directed compiler.

I t seems l ikely t h a t semantics-directed compi la t ion

techniques will have an impac t on the compiler tech-

nology of the next few years comparab le to the impac t

t h a t syn tax-d i rec ted techniques have had in the last few

years. B y combining syntax-d i rec ted and semant ics-

di rected techniques, implementors can adap t an exist ing

compiler or meta-assembler to a new compute r in weeks,

r a the r t han coding an ent i re ly new p rog ram over a period

of months . I n fact, the bulk of the task consists in pro-

g r amming I / O rout ines and a loader for the new computer ,

T h e in t roduc t ion of the m a n y - t o - m a n y macro, and the

resul t ing deve lopmen t of METAPLAN and the concept of

the semant ics-d i rec ted compiler, have b rough t the meta-

assembly p rog ram to its cur ren t s ta te of evolut ion.

D I S C U S S I O N

Gorn: To trace the evolution facts we could, for instance, go at
least as far back as 1954 when there was a report by the Navy on a
conference just like this, on automatic programming. You'll find
in there a number of sources for many of these ideas. It isn't hard
to see where theywere using meta-assembly concepts, and the one
I remember best is by a peculiar coincidence my own presentation
(laughter) on a universal coding experiment. Of course, universal
coding was a typical mathematician's name for what is now called
common programming language.

One of the things that occurred in the universal coding experi-
ment was the separation of assembly and translation, and the
characteristic thing about the assembly job was that it was con-
sidering generalized linkage of what is being called here many-to-
many macros. In fact, the universal code itself has a numerical
code giving the number of entrances, the number of inputs, the
number of outputs, the number of exits. The fact that it was meta-
assembly that was involved was clearly indicated by the fact that
the assembly program tried was written in U-code itself, and was
therefore, in that respect, machine independent. Going out from
there, even in Sperry Rand there was a development up to that
point, and you might look at the work by Holt and Turanski on
GP and GPX, and that evolves to the extended machine concept
that we've been hearing about. Also, even as recently as two years
ago, there was Sibley's SLANG language in IBM, which handled
a typical meta-assembly process.

Ferguson: This sounds interesting. I 'd like to know more about
it, and perhaps Holt will tell us a little more about it in a minute.
Maybe I should have used the term "parallel evolution."

Carr: I t 's interesting to try to find what one might mean by
assembly. My definition, your definition, may disagree. Neverthe-
less, I think there are some basic assumptions which could be use-
ful.

The first is that an assembler is some sort of growing system
that inputs one language, or many languages, and outputs a second
language which is close to machine language. That this second
part is close to machine language is most important.

Now I wrote down some things I thought were wrong assump-
tions. The first is that an assembly program should be separated
from other portions of the overall system. This is purely historical
in that in any machine you generally have to write the assembly
program first. If you are bootstrapping then you go back later on
and redo the job. Most people are willing to do this because you

get a far more powerful product than the one started with.
The second assumption which I think is implicit ill most of the

discussion here is that the assembly program should be special
purpose. I don't know why it should be special purpose. I can see
no reason why one should insist that it always has to be written on
one line per card, or the result to be in one certain form. I think
this again is just historical. The purpose as I understand it is to
produce good code by means of programmer decisions. And these
programmer decisions could be decisions of his own or they could
be meta decisions which are programmed into the axioms of the
particular problem.

The third assumption which I think is false is that assembly
programs should be written in machine language or something like
it. This is partially implicit here, although, of course, the idea of
machine independence is very much there. Why can't the assembly
program be written in JOVIAL (which is a very good language for
doing this sort of thing), not only in JOVIAL but as part of JOVIAL,
so that any programmer can go along and at any stage he can write
a J o v i a l line or he can write a line which gives him an assembled
instruction? I would like to propose that one should have a central
unified system, that all languages could be intermixed. I know that
the author does point out that FORTRAN and assembly language
have been mixed and I think it is a good thing. But I see no reason
why if one planned correctly that all the languages one has could
not be able to refer to each other at almost any stage. I t 's a much
more difficult planning job but it 's one where the end result would
seem to be more powerful. There should certainly be a common
naming structure, and finally, the assembler should be written in
the most powerful language around, rather than the most trivial
language around.

Ferguson: I 'd be glad to comment, but I 'm not sure I got the
question. So far as I 'm aware, this type of format is unusual to me
in assembly languages, although I don't think it's a particularly
important point. As far as efficiency goes, I don't think of that as a
function of the assembler; that is, I think of the assembler as as-
sembling the code the user wrote. On coding the assembler in
JOVIAL, that's another computer-independent language that it
could be written in, and probably pretty well, although I don't
think it would have the property of being able to move itself onto a
new computer just by changing procedures.

Opler: May functions and procedures be nested within other
procedure and function definitions?

Volume 9 / Number 3 / March 1966 Communica t ions of the ACM 193

Ferguson: Yes.
Opler: May calls to functions and procedures be recursive?
Ferguson: Yes.
Holt: Re: Dr. Gorn's remark, it seems to me tha t systems are

complicated things and the knowledge of them consists in some
to ta l i ty of growth possibili ty and a part icular way of combining
various technical inventions.

I think tha t Ferguson's remark about UTMOST being the first
meta-assembler in tha t sense is highly justified, no mat te r what
separate parts of technique tha t are found there were repeatedly
found in other peoples suggestions.

Then, I ' d like to give my own translat ion, short t ranslat ion, of
Dr. Carr 's comments, which is tha t it seems to me he has said he is
not interested in assembly.

Leavenworth: I th ink somebody else has already said tha t the
many- to-many macro tries to imitate a port ion of a compiler. I t
seems to me tha t the many- to-many macro has a large effect on
syntax. I don ' t see why the macro in general should be restr ic ted
to a functional prefix format. I don ' t see why you can ' t couple a
macro concept to a syntax compiler tha t handles general syntax
structures, so tha t you could define new constructs in terms of
those previously recorded. A few people have mentioned the macro
sys tem implemented at Bell Telephone Laboratories. I ' d like to re-
fer to the paper by McIlroy in 1960 in the Communications, which
discussed what those macro concepts were.

Ferguson: I agree with you. The purpose here was to achieve a
particular goal, namely, the goal of developing a language in which
we can express a meta-assembly process and t ransla te it into the
meta-assembly language with procedures. That , of course, doesn ' t
conclude our interest in the subject , but i t 's all tha t was necessary
to achieve this result.

Irons: One of the things which was said, and I th ink one of the
impor tant things, about this technique is the abili ty to boots t rap
a compiler onto a new machine. This will save a great deal of pro-
gramming time, I am sure, but I wonder how much.

Some of the things tha t strike me tha t have to be redone or ac-
counted for in some way are, obviously, some concerned wi th in-
pu t /ou tpu t . But more important ly than tha t , two things I th ink of
are: (1) tha t a new machine is likely to have facilities different
enough such tha t we might have to rewrite things to take good ad-
vantage of the capabilit ies of the machine ; and (2) tha t one of the
impor tant featuies in the assembly program seems to be inter-
ac t ionwi th the library. Many assemblers do generate something tha t
is relocatable and as I th ink they should, have facilities for get t ing
the decks in the library.

Ferguson: Yes, let me first of all say tha t I d idn ' t tell the whole
t ruth. When you produce an assembly program or another assem-
bler for a new computer you still have to write the inpu t /ou tpu t if
somebody else hasn ' t done it, and you also have to write a loader
if you're going to use it. Your remarks about a new computer and
the possibili ty of not having the capabil i ty to handle it is a good
one. We've encountered it before and as Jean [Sammet] pointed
out, perhaps the Bh000 is an example. All I can say is tha t unti l
we're confronted with this si tuation, we 'd have to not make any
comments. The system outputs binary, which might be impor tant
if you have a decimal computer. This says tha t you would have to
do some hand coding in the binary output package. I t wouldn ' t
affect anything else.

Irons: Is it bound code with addresses assigned?
Ferguson: The binary output can also include binary heading

information and so, depending on the system tha t it is to operate
in, you can define this control information. You can tes t for the re-
loeatabil i ty of symbols, you can make a decision as to whether
these should be put in as some kind of header information; you can
test for the presence of the definition of the symbol which you
might decide would const i tute an external reference if it weren ' t
otherwise declared. So you do have this capability. There 's no
abili ty to communicate with the l ibrary at assembly time except
for the PROC's , but you do have symbolic linkage at load time.

Green: In the paper it mentions "semant ics-di rec ted ." I would

like to comment tha t you did the same thing tha t syntax-directed
compilers do.

Ferguson: The idea here is tha t information is supplied to the
meta-assembler which has the purpose of extracting and exhibiting
separately the semantic mapping and is certainly not in conflict
with syntax-directed techniques. The important difference is tha t
the semantic contents can be supplied or modified by the user;
whereas, whether the assembler operates as a syntax-directed
processor or not is really immaterial.

Green: You mean by semantics, the macro definition?
Ferguson: Right. I mean what is defined as the result of a par-

t icular source language representat ion.
Floyd: Does it allow for multiple program counters and, if so,

are these t rea ted in exactly the same way as general symbols; tha t
is, is there a dist inction between a location counter name and a
symbolic address, and how do you control them?

Ferguson: You have several questions. To the first one, yes and
no: we have produced systems which do and systems which do
not have multiple location counters. Symbolic address was effected
by writing a dollar sign in front of the location counter whatever
i t might be. Dollar sign and some expression referred to location
counters and then when you define the symbol it was defined under
control of a part icular location counter and had the relocatabil i ty
of tha t location counter.

Floyd: I t seems to me tha t it would be plausible in assembly to
have any identifier act as a location counter.

Ferguson: I agree it would be desirable.
Floyd: How about addressing relative to the present location?

If one writes $ + n, are you talking about n locations down in the
assembly listings or n locations down in the object program? Do
you deal with both of those?

Ferguson: We deal with both of those. We deal with the first one
because of history, not because we like it. My personal objection
is tha t i t ' s sad news, but the second is a very useful thing, part icu-
larly within procedure declarations. One of the a t t r ibutes t ha t we
have is the line number a t t r ibute and with the line number at-
t r ibute you can ask what is the line number of such and such a la-
bel. There are some ra ther s trong constraints here. The label must
be a forward reference, must be inside of the procedure, and you 'd
be t te r find it before you find the end of the procedure. The result
you get is the relative line number of the label.

Floyd: How complex, how big, and how fast is a meta-
assembler? How long does it take to implement?

Ferguson: As far as efficiency goes, I guess the answer would be
which one. The best one is equivMent in speed or comparable in
speed to a conventional two-pass assembly program, the FAP,
SAP type assembly program. As far as how long it takes to imple-
ment one, on a fixed time scale we've coded and produced them in
less than two months. Now obviously, if you're going to code it
from scratch i t ' s more difficult. I 've spent most of the morning
t rying to prove we don ' t have to code it from scratch, but obvi-
ously every t ime we do it we think of new things we want to do next
time.

Gorn: How big is "we"? You said two months?
Ferguson: We can have one programmer put an existing meta~

assembler on a new computer in two months. Now as far as one
assembler assuming a working meta-assembler, assembling for
another machine, one man-day is a be t te r figure.

Floyd: In short, the question is: why not have all assemblers
look alike? I th ink we should include the proposal, in talking about
the matter .

Ferguson: I th ink tha t eventually we will. I th ink tha t the point
is a good one. We had a lot of headaches because in the Spectra 70
we had to be compatible with the IBM language, which means in-
s tead of having a very clean syntax we have to do things like the
DC constant of 360 and, if you're familiar with the syntax of the
DC constant, you 'd see the problem. The syntax is completely
foreign to the rest of the syntax in the meta-assembly language
for no apparent reason. I t may be as good but there is really no
necessity, as I see it, for it to be different.

194 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m h e r 3 / M a r c h 1966

At this point, A. Holt talked at length about the facilities provided in the GP and GPX assembly systems for generalizing the
concepts of subroutine structure and linkage and the extensive exploitation of library mechanisms. The discussion subsequent to his
presentation follows.

Woodger: Generally, one learns by experiencing something one
shou ldn ' t have done. I ' d like to know if you would indicate what is
the main lesson in this work, in this sense.

Holt: Well, I t h ink first of all t h a t I have, since the t ime t h a t
t h a t work was done, seen a var ie ty of o ther invent ions which seem
to cont r ibute to the same object ive in ways we had not t hough t of,
and I th ink a prime example of this was presented to us by Dave
Ferguson today. There are a lot of techniques t h a t I see there, and
even though he faces basic mot iva t ion differently f rom what I pre-
sented to you, I see a lot of techniques there which would have
been very helpful to us.

I would say another th ing t ha t we did not do r ight was to under-
s tand t h a t this assembly sys tem really had to be a par t of a larger
operat ing envi ronment . T h a t was something t h a t we very, very
insufficiently apprecia ted in the beginning and gradual ly came to
appreciate. So there was bui l t up a whole complex of, you might
say, subsidiary funct ions or re lated funct ions which had to do
wi th l ib rary maintenance . L ibrary main tenance was a very im-
po r t an t feature here because the whole idea was for people to
form many libraries, and the assembler had the capabi l i ty of re-
ferr ing to many l ibraries during a single compilation. A problem
t h a t we never sa t isfactor i ly solved was the following: we though t
i t would be nice if people would be able to inven t formats for
wri t ing ins t ruct ional type informat ion and we though t i t would
be nice to be able to embed in the same framework s tored s t ruc-
tures which amount to cer ta in variet ies of t rans la tors which
would help to in te rpre t those special formats in the context of
every th ing else t h a t is going on. We never sat isfactor i ly solved
t ha t problem.

Naur: I would like to get a clarification on the las t point ,
regarding the dis t inct ion between using facilities for achieving
cer ta in ends and say, on wri t ing algori thms.

Holt: To look at the major i ty of algori thmic languages one gets
the impression t h a t the problems of good ut i l iza t ion of facilities
are made very hard. I mean i t ' s sort of washed out of view as
much as possible in a cer tain sense and you are even prevented
very often from addressing yourself to the problem of ut i l iz ing the
facilities of the comput ing device at the bo t tom end, hoping al-
ways t h a t by some sort of ent i re ly au tomat ic means the problem
of so-called efficiency can be solved by some sys tem t h a t lies in
between, of which, in fact, programming intell igence is demanded.

Naur: I agree wi th you t h a t programming languages and other
higher level languages act as a sort of cushion between you the
user and the machine behind. I made these points at the I F I P
Conference. I t is cer ta inly t rue t h a t this great danger is something
we should be well aware of all the time. Bu t you could look a t a
higher level language and more or less self-impose or res t r ic t
yourself to viewing things from the angle of t h a t language. There
you have the same problem of uti l izing the facilities behind t h a t
language.

Holt: In t h a t sense I cer ta inly agree wi th you.
Graham: I th ink most of us agree what t r ans la t ion is. When

speaking about programs, this means to take a program in lan-
guage A and t ransform it into a program in language B in such a
way t h a t the t ransformed program does approximate ly what the
original one did, providing the meaning of the two languages is
known. And of course one type of t r ans la t ion is into machine
language, which is what most t rans la tors of languages like ALGOL
and FORTRAN do. Cer ta in ly most assemblers as we know them to-
day are t ransla tors .

My idea of a useful definition of assembly is the following: We
have always associated assembly or assemblers in some way wi th
machine code. So I propose t h a t assembly is a process which takes
as input , machine code wi th something I will call "b ind ing d a t a . "
Now this machine code is cer ta inly machine-l ike; i t i sn ' t a r i th-

metic s t a t ement s of the form found in ALGOL. I t ' s essential ly
machine ins t ruct ions , wi th some of the addresses unspecified,
unbound. Now the object of assembly seems to be to generate
executable code.

The product ion of final machine addresses I like to call "b ind-
ing ," the implicat ion being t h a t originally this address s t a r t ed
out in some symbolic form. The assembly process, then, is to take
one or more chunks of machine code (in which some of the ad-
dresses are yet unspecified) and the binding da ta t h a t goes along
wi th each chunk and pu t them together . In general, this process
may not completely bind, a l though the binding has been carried
further . Complete binding of the address may occur in a number
of steps in which the address, in some sense, is bound t igh ter and
t igh ter on each step.

The BSS loader also does some of this. I t in terpre ts directions
wr i t t en in a par t icular language. I t ' s funny language, i t consists
of cer ta in b inary bi ts in cer ta in places on b inary cards which i t
reads. The b inding i t does is very simple, i t consists of what we
call relocation.

Today, the assembler does not in fact do the ent i re assembly
process and h a s n ' t for a long time. Only absolute assemblers ever
completely assemble a program. In today 's systems the assembly,
in general, is in two places: a t the tail end of the assembler, and
in the loader. In fu ture systems the assembly process is cer ta inly
going to occur f requent ly in still another place, and t h a t is a t
execution t ime upon first reference to a symbol t h a t will t hen be
bound. Unt i l t h a t t ime it will not be bound. An executing program
in no sense will be completely assembled.

Holt: I do not want to raise any new arguments about the pro-
posed definition of assembly t h a t has been given, a l though I dis-
agree wi th it. I t h ink t h a t all efforts of definition of this sort are

going to remain fruitless occupat ions for considerable t ime to
come. Dr. S t rachey suggested t h a t we need some way of under-
s tanding what we mean by address and similar fundamenta l terms
t ha t deal wi th programming. T h a t is a very difficult under t ak ing
in my opinion and unt i l t h a t is solved, really technical ly satis-
factory definitions of funct ional processes are s imply not going to
be perceptible.

Green: I ma in t a in t ha t a good deal of the confusion is the lack
of d is t inc t ion between the assembly funct ion and language. I
t h ink the assembly funct ion is something t h a t everybody has been
ta lk ing about as binding. However, the assembly language, or the
languages which we call or declare as assembly languages, have a
great difference from the higher level languages in the fashion in
which they use names. T h a t is t h a t a name in an assembly lan-
guage is not a var iable in the real sense. When we say in assembly
language CLA A, what we are referr ing to as what the name A
represents is something which I call the machine equivalent ad-
dress; t h a t is, the va lue which you would assign in a l inkage func-
t ion at operat ion time. When we say A + I [in assembly language]
the value we use for A is this machine equivalent address. I t repre-
sents, in the class of machines being used r ight now, an integer.
Now one of the propert ies t h a t an assembly language has which
is given to i t because of this use of name, is t h a t it has the abi l i ty
to be in t rospect ive; t h a t is, i t can t r ea t ins t ruc t ions and da ta as
t he same. I t can manipu la te inst ruct ions.

One of the big difficulties wi th doing this has been t h a t the lan-
guage in which you a t t e m p t e d to do this, if you used a higher level
language, p reven ted you from really being introspect ive. I t pre-
ven ted you from uti l iz ing the machine ' s facilities efficiently. And
the reason t h a t i t did t h a t is because it never let you handle a
machine address as a value. One of the few things which I have
not heard described and which we have done and which I th ink
would be useful in this area, is the development in a higher level
language of an operator which enables one to use the actual ma-

V o l u m e 9 / N u m b e r 3 / M a r c h 1966 C o m m u n i c a t i o n s o f t h e ACM 195

chine address. In XTRAN We use something we call "name opera-
tor." (This was developed by Bob Shapiro in about 1959.) The
name operator has the property that any expression behind it is
converted to integer and it is used in the place of a name. The
contents function does not do that. Adding the name operator to
a higher level language can give the same properties for being
able to control the machine as an assembly level language, and,
therefore, the conclusion I would draw is that , if you want to be
able to construct different processors for different machines, then
there's no need to go down to an assembly level language to ac-
complish this.

Mealy: I 'm afraid I 'm about to be unkind. I think that
Bob Graham's discussion only succeeded in drawing an elaborate,
putrid, red-herring across the issue and Julien Green's discussion
has nothing to do with the issue.

Let us first talk about the assembly function as opposed to as-
sembly programs. I think the dictionary definition of assembly is
perfectly fitting and proper and applicable and I think many of us
have used it this way in the programming field for some years
now, Namely, it is the process by which things get glued together,
or bolted together, bound if you wish. I think restricting the no-
tion of binding just to address values is a mistake. Symbols have
all kinds of attributes. We have to speak about binding for each

attribute a symbol may have. Assembly programs--the large ma-
jority that have been in existence for the last fifteen years--have
done no more assembly than most of the compilers have. They
have proceeded in binding address values to symbols on occasion;
so have compilers. The real assemblers, the real assembly pro-
grams, have also glued in pieces of code in a one-to-many m a n n e r J
these we call macros; they have pulled things in from libraries,
and they have in general glued things together. I think this is a
perfectly adequate description of assembly, although not of most
assembly programs.

Orchard-Hays: I think it 's been demonstrated that assemblers
are not understood, but I would like to point out that George
[Mealy] intimated that assemblers do not necessarily produce ma-
chine code. Data can be assembled in much the same way as code
is; in fact, i t 's been done for many years and many applications.

Gorn: I agree with Holt and Mealy on a broader concept of
assembly and think that Bob Graham's point of view is too nar-
row. Bind is a concept that comes from logic and mathematics,
and is the same concept that I see here when you want to bind
data. The binding time, therefore, is the time at which you put
something into a certain storage position, and that is all binding
means. The linkage function of assembly will be binding entrances
and exits, and inputs and outputs, in that way.

Requirements for Real-Time Languages
Ascher O p l e r

Computer Usage Education, Inc., blew York, New York

Real-time languages have different requirements from other
programming languages because of the special nature of their
applications, the environment in which their object programs
are executed and the environment in which they may be com-
piled. It may not be the language extensions that ultimately
advance developments in the field. Progress may be made by
attacking the special compiling and executing system problems
that must be solved.

I t is no t easy to de l inea te those areas of compu t ing
which m a y be cor rec t ly t e r m e d rea l - t ime. I t is compl i ca t ed
b y the over lap be tween onl ine compu t ing a n d rea l - t ime
comput ing . I n the online t echnology , t e r m i n a l e q u i p m e n t
is d i r ec t ly connec ted to a c o m p u t e r a n d m a y be invo lved
a t a n y t ime in d a t a t ransmiss ion . I n the real-time area, a t
leas t six t ypes of compu t ing m a y be d i f fe ren t ia ted :

I. Simulation in real t ime. A c o m p u t e r executes a pro-
g r a m wi th the t ime scale cor responding to t h a t of t he
process to be s tud ied v i a s imu la t ion (e.g. p r o g r a m s to
t r a in or t es t responses) .

I I . Parallel Operation with a Process in real t ime. A
c o m p u t e r executes a p r o g r a m wi th a t ime in close corre-
spondence to a real process (e.g., missi le pos i t ion d i sp l ay
p rograms) .

I I I . Hybrid Operation with an Analog Computer in

Presented at an ACM Programming Languages and Pragmatics
Conference, San Dimas, California, August 1965.

real t ime. A c o m p u t e r per forms i ts func t ion as p a r t of a
t o t a l s y s t e m closely coupled to an ana log compute r .

IV. Performing an Operational Function in rea l t ime.
A c o m p u t e r serves p r i m a r i l y as an e l emen t in an ex te rna l
e n v i r o n m e n t (e.g., cont ro l l ing an a c t u a l process v i a feed-
b a c k mechan isms) .

V. Performing a Remote Communications Function in
rea l t ime. A c o m p u t e r is connec ted to a n d services a
m u l t i p l i c i t y of r e m o t e t e rmina l s (e.g., message swi tching,
i n q u i r y / r e s p o n s e s t a t i on ne twork) .

VI . Controlling the Operation of One or More Computers.
T h e m o d e r n cont ro l p r o g r a m (s u p e r v i s o r) a s used wi th
m u l t i p r o g r a m m i n g , mul t ip rocess ing a n d / o r t ime-shar ing ,

T y p e s I a n d I I can genera l ly be h a n d l e d w i t h o u t en-
r ich ing exis t ing languages , a l t hough s t a t e m e n t s es tabl i sh-
ing a t ime-reference scale would p rove a useful add i t ion .

T y p e I I I requires special l anguage e n r i c hmen t to dea l
w i th the specia l ized env i ronmen t . Since h y b r i d c o m p u t a -
t ion m a y be done w i th v a r y i n g degrees of t a s k division,
the l anguage r equ i r emen t s can be expec ted to be equip-
m e n t - o r i e n t e d and v e r y de ta i led . I n a n y case, l anguage
e lements r e l a t ed to ana log-d ig i t a l conversion r equ i r emen t s
would be heavy .

F o r T y p e IV, t he re la t ions be tween sys t em-wide process
e lements and the specific func t ions to be pe r fo rmed b y
the c o m p u t e r will domina te . I n p u t and o u t p u t m a y re-
quire cons iderable convers ion and normal iza t ion . I n p u t
requires access to sensors, a n d cont ro l ins t ruc t ions to

196 Communica t i ons of t he ACM Volume 9 / Number 3 / March 1966

