
that drives the syntax table can be written by one person in a
couple of weeks, and the syntax table itself goes together very
well.

Schwartz: The part of the problem which you mentioned as im-
portant for these higher-level languages is getting the algorithm
down. It is my opinion in viewing these real-time systems that
this particular phase of the job is actually quite small, no matter
what the language is. Somehow, when the specifications are clear,
which they nornmlly are not, the getting of the program written
is not the hard problem. Debugging is the hard part; but still, the
part where the language is the most important is the area of change
of these programs. If you can design these kinds of languages to
permit rapid program change with rally complex changes in data,
that's the key to the problem, rather than just permitting someone
to write coding a little faster.

Opler: That's a very good point. You have your system ahnost
fully developed when they announce either a slight change in
hardware, a major development, or a new external unit that's to
be hooked up to your unit. What Jules [Schwartz] is saying is that
it would be manna from heaven if you could change a few state-
ments and recompile your real-time program.

Steel: The production of real-time systems is a real-time prob-
lem.

Schneider: We have had a few comments that reM-time is not
the same as online, but there is considerable overlap. It seems that
the hardest problems [those mentioned] came up in the areas of
online, real-time applications. I am wondering what might be
needed in the areas which are either online but not reM-time, or
real-time but not online?

Opler: First, where real time and not online is concerned, it
generally turns out that, once you've cut yourself away from
reality (in the online sense), all you're doing in the computer is
mirroring real time, rather than interacting with real time. There-
fore, the problem is that of getting the object program to do its

execution in a time equivalent to real time. Now it turns out that
if real time is slow, time is no problem; if real time is moderately
fast time, it 's no problem; if real time is extremely fast time, it
may turn out that the compiler will be required to be constructed
in such a way that all emphasis is pushed on producing a very,
very fast program even if it takes several hours to compile the
program. Now, if you have online computing that is not real time,
the problem turns out to be less constrained.

Steel: This little piece of code, which is in no known syntax, is
an example: Do Job X , for i = 1, by steps of 1, to n within Time =
$n + 27 in some units, where there is a requirement explicitly
placed in the language to demand that the computation be done
within a certain time. Do you know if there is any known proce-
dure for dealing with this type of problem?

Gosden: Is there an else statement on the end?
Sammet: One of the problems in creating situations and sys-

tems of this kind is the problem of allocating resources and know-
ing what, in fact, is important and what is not, and how long
things can be delayed. If I can, I should supply to the system a
statement that says, " I want the following things going, and in
the following period of time," which might be one minute, one
hour, or so. I think this would help tremendously.

Opler: I really must apologize because I neglected a whole class
of work that has been done. There are in existence probably half
a dozen systems which enrich the FORTRAN language by adding to
it a series of terms associated with real-time or process-control
systems. These systems have been developed, but they're fairly
primitive, I believe, along the lines of what is needed to compile
the types of programs to cope with these systems. These systems
have been developed in particular with the view of processing
control. Statements in them facilitate analog-digital conver-
sion and establish a time. It may be that some of these have a
statement of the sort: "The following must be done every three
seconds."

Online Programming
Jules I. Schwartz

System Development Corporation, Santa Monica, California

When the transition has been made from off:line to online
programming, there are a number of changes in the working
conditions noted. These changes in the environment make neces-
sary corresponding changes in the processes related to pro-
ducing and checking out programs. In the main, it is not the
programming language itself which must be changed to provide
a facility for the online user; it is the system surrounding the
programming language. In this paper the online environment
and its effect on programming are discussed.

Introduct ion
One migh t suspect t ha t there should be considerable

difference be tween p rog ramming languages in tended for
users hav ing access to online devices while p roduc ing or

Presented at an ACM Programming Languages and Pragmatics
Conference, San Dimas, California, August 1965.

execut ing programs and languages used in a s t r ic t ly off-

line envi ronment . This is no t true. I t is t rue t h a t some

p rog ramming languages t h a t are in tended for online use

differ to a considerable ex ten t f rom languages of the same

fami ly in tended for offline use [1]. However , these dif-

ferences p robab ly arose f rom deficiencies noted in the

offline language while it was being used online, or because

the online language was easier to exper iment wi th than

the offline one. In e i ther case, language character is t ics

used in online p rog ramming languages general ly apply to

the offline languages as well.

Of course, due to the na tu re of online processing, there

are languages t h a t are associated a lmos t exclusively wi th

online use. Fo r example, J o s s [2] and the Cul ler -Fr ied

sys tem [3] are languages tha t were in tended for use a t a

console. However , these are no t p rog ramming languages;

Volume 9 / Number 3 / March 1966 Communica t ions of the ACM 199

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365230.365266&domain=pdf&date_stamp=1966-03-01

thus their major language characteristics reflect an at-
tempt to assist the nonprogrammer in solving his prob-
lem, rather than reflecting any innate online language dif-
ference for programming.

There is no question that with increasing use of online
devices and systems, there will be a substantial increase
in so-called user-oriented or application languages. Since
most scientific or investigative applications require con-
siderable interaction, the lack of facilities to interact has
hampered to a great extent the development of languages
oriented to the nonprogrammer. Thus in most instances,
better programming languages have been developed so
that the professional programmer can better assist the
applications-oriented user with his tasks. The major lan-
guage development efforts have been in the area of lan-
guages which are quite general in nature, and also oriented
towards the comput ing--ra ther than the applications--
specialist. These programming languages are the ones
where little difference should be reflected in the transition
from offline to online operation. Although the increase in
online systems will create inroads into the need for the
professional programmer and his languages, there will
continue to be interest in these for a considerable period
of time.

There are differences between using a programming
language online and using one offline. However, these
differences are caused by, and are reflected primarily in,
the system surrounding the programming language. The
physical surroundings--consoles, hard copy output,
displays--affect, to a considerable extent, the way a per-
son deals with a computer. The fact that a computer
responds at a different rate when used online also affects
the requirements of the user and consequently the system
being used. Thus, the differences between online and off-
line programming lies in the entire programming process--
from the time the requirements of a program are decided
upon to the time it is checked out. The programming
language used is a small part of this process.

Differences B e t w e e n Onl ine and Offl ine Access

Online. When users use a computer online, they have
terminals with which they can have an almost constant
dialogue with or about a program or programs throughout
their stay at the console.

This dialogue can take place before, during and after
the instruction execution of the program. In an offline
system, of course, the "dialogue" (if it can be called that)
has a much lower frequency, can be more extensive, and
takes place from user to program prior to execution and
from program to user after execution with no exchange
during execution.

Time-sharing. Since the user's par t of any online dia-
logue normally requires some seconds or minutes of prepa-
ration, during which time the computer has no service to
perform for the user, a need exists on most computers to

occupy this idle time. The most common technique is
time-sharing, where the user "shares" the computer with
a number of other online users or with work being per-
formed for offline users.

This "sharing" of the computer, incidentally, does
tend to moderate to some extent the previous statement
tha t there is little difference between on and offline pro-
gramming languages. Since most online languages are
used in a time-shared environment, certain operations are
frequently necessary in order to get or release access to the
system's facilities. Examples of these can be seen in
Dennis and Van Horn [11]. The additional operations
exist, however, because of the requirement to share the
facility. They are not due directly to the "onlineness"
of the language's use.

Net effects. With the combination of time-sharing and
online use of a computer--and, in rare cases, sole use of a
computer onl ine--a user can run the computer at his own
pace, getting reasonably rapid response from the computer,
and inputting when he feels ready. Thus, he can direct
the run without concern for optinmm computer utiliza-
tion, in the sense that the price he pays for his own slow-
ness should be reasonably low.

M e a n i n g o f Onl ine U t i l i z a t i o n to Users

The "conversational" environment available to an on-
line user implies certain conditions that are somewhat
different from those of an offline environment. Some of
these are as follows:

A complete plan isn't necessary. The concept of di-
rected computer utilization, techniques of trial and error,
and those solutions that require human assistance for
convergence are all possible with this mode of operation.
Thus in program debugging, one need not fear that one
small omission or error in the prcedure will cause a lost
run as would happen in an offline environment.

Program errors aren't catastrophic. In a good online
system, the presence of a number of errors in a program
should not cause any serious problems. In fact, online
discovery and repair of program errors is one of the areas
where online computing seems to be very strong. In an
offline system, each error might cause hours' or days'
delay in checkout.

The online user gets low-volume output. Online input-
output devices are generally quite slow. With the excep-
tion of display scopes which are not now in general use- -
the amount of output tha t can be presented in a given
period of time is considerably less than with devices
associated with offline programming. Even if these termi-
nals were much faster, it is unlikely that an online user
could make much use of the speed, since he normally
does not have enough time to absorb much output.

A user enters his own inputs. Unlike in the offline
computing center, the user normally enters inputs directly

200 Communications of the ACM Volume 9 / Number 3 / March 1966

into the computer. In the offline center, he has it prepared
by others, and the inputs are entered by other people or
input directly by equipment. In online operation, the
user generally enters commands or programs by key-
board devices, which are not intended for rapid or high-
volume input. Thus, the means of expression must be
fairly concise to accomplish a maximum and minimize
input errors.

A n online user is occupying his own time to run programs.
Unlike in offline processing, the online user generally is
spending his own time during the entire programming
process. Some people are not too happy with this aspect.
They would like to deliver their jobs and retire to their
office or homes until the job is run. These people seem
to be in the minority, since most feel their time is worth
the gains of online use. In either case however, users are
often impatient with minor problems presented by an on-
line system. People become quite annoyed when some
system inconsistency, error or malfunction causes them
to lose time when they are at a terminal. Big problems or
malfunctions that cause the loss of several hours at a con-
sole are catastrophic, causing even the most ardent de-
votees to lose enthusiasm.

The Programming Process

Since there is some direct effect on the techniques of
programming, given the general considerations discussed
previously, some observations on these can now be made.

Design and coding. In several systems in existence
today (e.g., MAC [4], SDC [5]), many of the currently
operating programs formerly ran in an offline environ-
ment and now perform quite effectively in an online en-
vironment. Aside from the addition, to most of them,
of considerable human interaction, these programs are
generally the same as designed for their original offline
environment. Thus it appears that the design and coding
of programs are not affected considerably by the fact they
are to be run in an online environment.

One difference may be the fact that the online program-
mer is more likely to program in smaller modules and
build up larger programs by connecting a number of
routines. This is because it is easier to enter small
routines, and checkout of small routines online is usually
rapid because the turnaround time is not great enough to
seriously outweigh the time spent in finding few or no
errors. Of course, it is also easier to type small routines
than long ones at one sitting.

I t is at this stage that the programming language plays
a part. One of the most important properties of an online
language is the ability to easily state interactive require-
ments (e.g., communications with keyboard and display
devices). The language should provide concise and power-
ful statements that enable a dialogue between user and
program to be entered and changed rapidly. In general,
the need for conciseness of expression is a valuable one

for online languages, although this does not mean that
this property is a bad one for offline languages.

Entering and modifying code. There are methods for
entering code on an online system that are identical to
those used offline. The code can be keypunched, then
put on magnetic tape and processed from tape.

Techniques that normally exist for online systems per-
mit routines to be entered via keyboard, then merged
with other routines, at the time of entering, compilation,
loading or execution. Usually, the lines of programs are
assigned sequence numbers as they are entered, and these
are used for later references.

The process of editing code online is considered by
some to be the heart of a good online system. Thus,
various schemes for modifying programs have been
developed. These vary from those which use concise con-
trol languages on a keyboard to insert, change and delete
lines by line number [6], to those which use more advanced
methods utilizing displays and editing by context rather
than line number [7, 8]. In any case, the ability to rapidly
modify a program at a console is an extremely important
one for online users.

Another consideration in the preparation of programs
in an online system is the one concerning the preservation
of and access to files entered at a console. Since the con-
sole itself preserves little more than a written list of the
transactions that have taken place, a mechanism is
needed, to provide later access to disk or other mass
storage device files made in this way. Among some of the
other requirements are those for assignment, protection
from destruction, privacy and purging to permit new files.

Compiling-interpreting. Assuming one has a capability
for entering and modifying code, the next requirement is
that of compiling or interpreting so that the code may be
executed. One of the first observations that can be made
about online compiling is that one needs a rapid compiler.
Since one can, in the normal course of an online sitting,
compile several or more times, and since it is extremely
unsatisfying to sit and stare at a quiet console for long
periods while a long run is taking place, the need for speed
is readily apparent. This aspect is important enough for
the user to forego some of the advantages that might be
achieved with a slower compiler, such as extremely effi-
cient code and complete listings. This requirement is
compounded by the fact that most online systems are time-
shared, causing lengthy compute times to be multiplied
considerably in elapsed time, resulting in intolerable de-
lays for very long jobs. Techniques for speeding up com-
priers include limiting them to "one pass," linking at load
rather than compile time, "incremental" compilers--where
single statements can be compiled and added to an existing
program--and the maintenance of one compiler for pro-
gram checkout and another when the program reaches the
production stage.

Volume 9 / Number 3 / March 1966 Communica t ions of t he ACM 201

Another aspect of online compiling that has been found
to be valuable is that of interaction between user and the
compiler. With this, the compiler can query the user re-
garding what it considers to be error conditions, permit-
ting the user to change the program before the compila-
tion is complete. This interaction could be extended to
include questions that would aid the compiler to produce
better code.

The use of interpreters online has proven to be of some
value. Interpreters can find many errors during execute
time that are dittieult or impossible to detect immediately
with a compiled program. Also, interpreters can, in gen-
eral, be more helpful to users, and for various reasons,
interpreters are easier to produce and modify then com-
pilers permitting easier language experimentation. Of
course, interpreted programs are usually slower than
compiled programs, as much as 40 times slower in some
cases that have been examined. Also, the interpreter
occupies space that the program or its data could other-
wise occupy.

Executing-debugging. The ability to detect and cor-
rect all en'0r while working online is one of the most ex-
citing aspects of this technique of computer utilization.
This rapid exchange must be aided by a reasonably good
online debugging system. (Examples of these are found
in [9, 10]). Characteristically, these systems permit the
inspection and modification of program and data simply
and concisely. They also permit modification of program
paths and searching for specified values so that particu-
larly difficult situations can be investigated.

Of course, the characteristic use of online debugging
does not admit lengthy printouts that are commonly
used in offline debugging. There are cases, however,
where large dynamic printouts are valuable. Taking these
dumps on tape and having them printed later is no great
problem for users located near the computing facility,
but this procedure is somewhat less valuable to those
located at a considerable distance.

With an online language which permits easily added
console input-output statements, a certain amount of
debugging information can be attained from a "conversa-
tion" with the program while it executes. In fact, a good
deal of console debugging consists solely of observing the
progress of the executing program through its output to
the user.

Summary

The most interesting aspect of the online programming
process is the tremendous compression of time that is
possible. The entire process from coding to checkout can
be repeated several or many rinses within a few hours.
This is a process that can take days or weeks in more
conventional, offline systems. Without the presence of a
number of supporting tools and techniques, however, the
mere existence of online consoles would not assist the
user very much. In providing a system such as this, one
must consider both the methods of operation forced upon
the user by his environment and those that shonld be
present to take advantage of the situation. When this is
done, a user can accomplish more in the period of time
when he is present than he could by the indirect approach
presented by offline computing techniques.

REFERENCES

1. SCHWARTZ, J . I . Programming languages for on-line comput-
ing. Proc. IFIP Congress 65, New York, 1965.

2. StrAW, J . C . JOSS: A designer's view of an experimental on-
line computing system. Proc. Fall Joint Comput. Conf. 1964,
Vol. 26, Pt. I, pp. 455-464.

3. CULLER, G. J. , AND FRIED, B . D . An on-line computing center
for scientific problems. M19-3U3, TRW Computer])iv.,
Thompson Ramo Wooldridge, Los Angeles.

4. THE MIT COMPUTING CENTER. The Compatible Time-Sharing
System, A Programmers Guide. The MIT Press, Cambridge,
1963.

5. SCHWARTZ, J. I. The SDC time-sharing system, part I.
Datamation 10, 11 (1964), 28-31; Pt. II, 10, 12 (1964), 54-55.
(Also available as SDC doc. SP-1722, System Development
Corp., Santa Monica, CMif.)

6. ARANDA, S. M. EDIT. SDC dec. TM-1354/444/00, System
Development Corp., Santa Monica, Calif., Feb. 16, 1965.

7. DALEY, I~. C. ED, a context editor for card image files.
CC-245, MAC-M-195, Comput. Ctr., MIT, Cambridge,
Nov. 20, 1964.

8. SALTZER, J .H . TYPSET and RUNOFF, memorandum editor
and type-out commands. CC-244-2 MAC-M-193-2, MIT
Project MAC, Cambridge, Jan. 11, 1965.

9. EDP-6 time-sharing software. 1-61B, Digital Equipment
Corp., Maynard, Mass., 1965.

10. Command research laboratory user's guide. SDC doc. TM-
1354 series, System Development Corp., Santa Monica,
Calif.

11. DENNIS, J. B., AND VAN HORN, E . C . Programming semantics
for multiprogrammed computations. Comm. ACM 9 (Mar.
1966), 143-155.

DISCUSSION

Sammet: There is a big difference between using a system online
with the enormous convenience that you get and the concept of
just about not being able to solve the problem otherwise. Where
the situation is one in which you are trying to generate the mathe-
matical expressions, in many cases, you either can tell ahead of
time---or don't really care--what the form of the expression is;
that 's what you want the computer to do for you and a batch

situation can be defined. But there are other cases in which you
can't tell what the result of an operation, say differentiation, is
going to be until you physically see it. Here is the time in
which you need the online situation, in which not only is the ini-
tial language essential, but you must have the online situation.

Furthermore, I do not agree with your point that all the lan-
guages tend to be in the batch version. There are cases and there

202 Communica t ions of the ACM Volume 9 / Number 3 / March 1966

are things we know of, where there are addi t ional language facili-
ties needed for the online s i tua t ion which are meaningless in the
ba tch envi ronment . I t h ink the answer is t h a t all of our experi-
ence has been wi th FORTRAN and JOVIAL. As we get into new areas,
I believe we will need new commands.

Schwartz: If a ma thema t i c i an is going to use a language in his
everyday work, he would much prefer to have a language online
t h a t is cer ta inly a different k ind of language t han we general ly
p rogram in. I t is cer ta in ly not our in t en t t h a t the users be pro-
grammers. We are, as t ime goes on, developing tools amenable to
nonprogrammer usage. We have, for example, the police depar t -
men t detectives, who don ' t know any th ing about computers or
programming, using it for applicat ions.

Schneider: Fi rs t a word in defense of in terpreters . While the
in te rpre t package itself will take up space, the actual code itself
being in te rp re ted is much more compact. Also the QmCKTRAN
system, which is an in terpre ter , does provide traces, p r in tou ts of
a var iable every t ime it changes, and so forth.

Schwartz: TINT does t h a t too. I t is an in te rpre t ive system. I t
is a par t icu lar version of JovIAL. The k ind of dump I am ta lk ing
about you may get over a te le type, bu t i t may take a couple of
hours to a few seconds or minutes of computing.

Book: I would like to take exception to one point you made.
Wi th online programming we tend to write and to be able to check
out the largest program possible all a t once. Debugging facilities,
and facilities to edit and compile fas t and be online, give you such
a hold on being able to comprehend problems t h a t come up in de-
bugging t h a t you automat ica l ly can write the program all a t once.

Schwartz: I t h ink t h a t you may be right. Our weakness is the
abi l i ty to gather routines. T h a t might also influence what you are
saying.

Bachman: Who uses t ime-shar ing systems? We have the good
for tune of having one in Phoenix t h a t we can use. And my experi-
ence has been t h a t everybody and his b ro ther has been using i t - -
engineering people, the finance office; they all use it. In fact i t ' s
usually a problem to walk around and find an open terminal ; in
my own setup, abou t 10 people out of the group of 40 were using
it for one purpose or the other.

The other side t h a t I don ' t t h ink has been emphasized suffi-
ciently is the react ive aspect of this online computing. I have been
doing a lot of s imulat ion work and I s tar ted , really not knowing
when it was going to s top; so by observing the results I could tell
when it had gone far enough. Wi th an offline sys tem i t ' s ha rd to
tell when to stop unless you do addi t ional programming to set up
l imits for calculations. One th ing t h a t we don ' t have today in our
present sys tem is the abi l i ty to say stop and go somewhere else.

Opler: As par t of your research depar tment , have you made any
careful plans or s tudied the development of equivalent programs
in ba tch groups and in t ime-sharing?

Schwartz: We have jus t s t a r ted a test , an experiment , compar-
ing online vs. offline debugging. As always in these experiments
there are many difficulties. For example, in our case there is no
good offline system in the computer we have. We've had to manu-
facture what we th ink is a good offline sys tem wi th two-hour re-
sponse t ime guaranteed, and a number of o ther things like this.
We have jus t begun a pilot s tudy to see what problems we are
going to have; the only react ion so far is t ha t the user doing the
offline at the moment is complaining about the two-hour response
time.

Bachman: Jus t one point t h a t h a s n ' t been discussed yet, which
turns out to be a very t icklish one: t h a t is, account ing for a sys-
tem like this. There is the problem of file space, which people use
and sometimes use badly. Also, there is the problem of edit t ime,
which is one funct ion of the computer , and also problems of com-

put ing time. Now one th ing t h a t we have not found a very good
answer for yet is how to account for these or how to keep t rack of
them.

Wha t really happens is t h a t the u l t imate user walks in wi th a
problem t h a t is a pressing one; he has some ideas but has not de-
veloped the concepts and selected the numbers which are going to
allow you to do something for him. He s ta r t s out wi th an airl ine
reservat ions sys tem and as soon as he discovers the great amount
of raw mater ia l wi th in the airl ine reserva t ion sys tem which could
help h im wi th management p lanning of something else, or for
which there is in te rac t ion between two areas of his business, t hen
he cer ta inly would like to have addi t ional features. Now some of
the ini t ial airline reservat ion systems were bu i l t specifically for
airl ine reservat ions and d idn ' t use general purpose computers. I t
was r a the r embarrass ing when they couldn ' t even get the da ta
t h a t was obviously wi th in the system.

This evolution, then, I th ink, is one of the features of rea l - t ime
systems, or many of the real- t ime systems: the burgeoning out of
the real- t ime to involve things which are not necessari ly real t ime.
You rapidly get to develop the hybr id system, something which
has a bulk da ta processing job which slowly moves past the faci l i ty
bu t in the foreground there are sorts of real- t ime or in te rmedia te -
t ime aspects in suppor t of people who want immedia te repor ts ou t
of the system. F requen t ly one of the big problems is the ab i l i ty to
handle this in terac t ion between the bulk da ta processing job going
on in the background and the jobs going on in the foreground. I
don ' t t h ink we yet have the languages which will address these
problems.

The kind of languages which I see t h a t we need, then, are first,
da t a t r ans format ion languages. Bu t second, there are the lan-
guages of resource control. These are associated more wi th the
logistics of ge t t ing a problem done t h a n wi th the logic of ge t t ing
da ta t r ans format ion done. These languages t u rn out to be not
avai lable using the normal compilers bu t are available, in most of
the systems we work with, a t the opera t ing level. Wha t you want
done at this level has some implicat ions for, and needs informat ion
out of the logic areas in terms of desired t ransformat ions . Most of
the compilers we are familiar wi th do not make avai lable to the
operat ing sys tem the k ind of informat ion needed to assist in solv-
ing this problem.

There is a th i rd type of language I see coming in now. Most of
the online real- t ime systems of the past have had a very simple
syntact ica l vocabu la ry - -you push bu t tons or you make very clean
pa ramete r inserts into what we might th ink of as macros. We're
rapid ly ge t t ing to the point where the k ind of language which the
user wants and the k ind of act ivi t ies he wants the machine to do
for h im cannot be provided b y paramete r inser t ion or b u t t o n push-
ing. We're beginning to build online real- t ime systems wi th com-
pilers or language t rans la tors which may indeed drive in te rpre te rs ,
bu t they do t u rn out to accept languages. In this case they are
appl icat ion languages. We do have need for compilers inside some
of the real- t ime systems. I t ' s the control and da ta collection types
of languages which are not available, and also the I / 0 areas are
not avai lable adequately. Therefore, we s t a r t bui lding our own.

Seventy-e ight percent of the AF expendi ture is in wha t you
might call managemen t -admin i s t r a t ive suppor t area or what some
people call da ta processing. These areas which have been bui l t in
pieces are rapidly ge t t ing to the point where they cannot be run
wi thou t becoming integrated. These systems are also moving to-
ward hav ing aspects of online real- t ime processing. To get a t these
problems we have to s t a r t fixing it so t h a t the programs can in-
deed unde r s t and and communicate to the k ind of env i ronment
they are going to be runn ing in. The languages for the logic of how
you want the da ta t ransformed is the very s implest par t . Bu t for
the par t which does all the logistic flow for me, controls and de-
cides what should be done next, I jus t don ' t have enough good
capabi l i ty in current languages.

V o l u m e 9 / N u m b e r 3 / M a r c h , 1966 C o m m u n i c a t i o n s o f t h e ACM 203

