
A Nonrecursive Method of
Syntax Specification

JOHN W. CARR I I I AND JEROME WEILAND
The Moore School, University of Pennsylvania, Philadelphia,

Pennsylvania

The use of the Kleene regular expression notation for de-
scribing algebraic language syntax, in particular of ALGOL,
is described in this paper. A FORTRAN II computer program
for carrying out the elimination algorithm of Gorn, similar to
Gaussian elimination for linear systems of algebraic equations,
is described. This was applied to numerous smaller languages,
including some sublanguages of ALGOL. A hand calculation
result of the application of the algorithm to all of ALGOL is
given, thus expressing the Revised ALGOL 1960 syntax in
completely nonrecursive terms, as far as its context-free por-
tion is concerned. This description in many ways is far more
intuitively understood than the previous recursive description,
it is suggested. The paper also includes results of the machine
program, which does not include a simplification algorithm.

The basis and the method to produce a new approach
to computer language syntax specification is outlined in
this paper. Given a recursive specification for a context-
free language in standard so-called "Baekus Normal
Form" (BNF) [1] a nonreeursive specification can be
produced by using the elimination algorithm of Gorn [2].
The elimination algorithm will solve a set of "equations"
(i.e., productions) in BNF in a way similar to tha t of the
standard Gaussian elimination. The elimination algorithm
will remove all recursion only on linear languages or
Chomsky Type 3 languages [3]. (By "linear" we actually
mean "one-sided linear.") If the language is not linear
the recursion in the linear portions of the language can
be removed, thus producing an overall reduction in re-
cursion in the specification of the language. The basis of
the elimination algorithm is:

(a> : : = (a> (b>l<e>
is replaced by

(a> : : = <c> ((b>)*

t-Iere the asterisk indicates zero or more occurrences but
not necessarily the same strings drawn from the set (b}.

After applying the elimination algorithm to a linear
language the nonrecursive specification produced is in

D. E. KNUTH, Editor

the form of a regular expression as described by Kleene
[4]. A program has been written in FORTRAN II which will
take as input a BN F specification for a linear language and
produce as output the regular expression [5]. An inverse
process has been programmed by Roberts [6]. Tha t con-
text-free portion of ALGOL aS defined by Naur [7] was used
as input to the program. Upon using Section 2.5.1 ((num-
ber}) of Naur as input, a sample of the output from the
program is shown in Figure 1.

If the language input to the program is nonlinear the
program will go through the elimination procedure an
equation (production) at a time until a nonlinear equation
is reached. Then the program produces results obtained up
to this equation and then stops. The results of the program
on ALGOL aS well as other hypothetical languages are
given by Weiland [5].

The output of the program demonstrates the fact that
the regular expressions produced at the end of the back
substitution are large and unwieldy to work with except
in a computer with a very large memory. The work of
Iverson [8] inspired a compact nonrecursive specification of
the context-free portion of ALGOL which is presented in
Table I. Table I was produced by a hand calculation
rather than the machine program, since the program does
not include efficient simplification algorithms. Back sub-
stitution has not been carried out in general in Table I,
in order to keep the specifications compact. Since each
equation (production) as originally formulated is im-

U I = D l (D I } ~ ~

I N = (L / O / 1) D I (D I } * ,

D F = 2 D I (D I) * ~

E P = I 0 L / O / I) D I (D I * ,

O N = L D I (D I) ~) 2 D I

I) *
D I) * / L D I (D

U N = L
DI(.DI
(L / D I
)) ,

((L /
*)) 1
D I) *

I (D I) *
(L / 0 / i
2 D [(D I

2 b I (D I) * / L
D I (D I) * / L (
~ I L D I (D i) ~

N U = (L 0 / i)
I (D I) ~ / L D I
(D [) ~ / L ((L
L D I (D I) *) }

(L / ((L / D I (D I) *) 2 D
D I) *)) 1 0 (L / O / 1) D I
D I (D I) ~) 2 D I (D I) ~ /

FIG. 1

V o l u m e 9 / Number 4 / April , 1966 C o m m u n i c a t i o n s o f t h e ACM 267

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365278.365503&domain=pdf&date_stamp=1966-04-01

T A B L E I

Name Nonrecursive Specification Name Nonrecursive Specification

1.1
E M P T Y S T R I N G

2.1
L E T T E R

2.2.1
D I G I T

2.2.2
L O G I C A L V A L U E

2.3
D E L I M I T E R S

2.4.1
I D E N T I F I E R

2.5.1
U N S I G N E D I N T E G E R
I N T E G E R
D E C I M A L F R A C T I O N
E X P O N E N T P A R T
D E C I M A L N U M B E R
U N S I G N E D N U M B E R
N U M B E R

2.6.1
P R O P E R S T R I N G
A N Y S E Q U E N C E OF B A S I C

S Y M B O L S N O T C O N T A I N -
I N G " O R "

O P E N S T R I N G
S T R I N G

3.
E X P R E S S I O N

3.1.1
V A R I A B L E I D E N T I F I E R
S I M P L E V A R I A B L E
S U B S C R I P T E X P R E S S I O N
S U B S C R I P T L I S T
A R R A Y I D E N T I F I E R
S U B S C R I P T E D V A R I A B L E
V A R I A B L E

3.2.1
P R O C E D U R E I D E N T I F I E R
A C T U A L P A R A M E T E R

L E T T E R S T R I N G
P A R A M E T E R D E L I M I T E R
A C T U A L P A R A M E T E R L I S T
A C T U A L P A R A M E T E R

P A R T
F U N C T I O N D E S I G N A T O R

3.3.1
A D D I N G O P E R A T O R
M U L T I P L Y I N G O P E R A T O R
P R I M A R Y

F A C T O R
T E R M
S I M P L E A R I T H M E T I C E X -

P R E S S I O N
I F C L A U S E
A R I T H M E T I C E X P R E S S I O N

3.4.1
R E L A T I O N A L O P E R A T O R
R E L A T I O N
B O O L E A N P R I M A R Y

(LE) : : = aIbld". IzIAIBICI
• .. IZ

(DI) : : = 011[21314j516i7[819

(LV) ::= t r u e [f a l s e

(ident ica l w i th ALGOL 1960 Re-
v i s e d R e p o r t)

(ID) : : = LE (LE[DI)*

(U /) : : = (DiXDI)*
(IN> : := @ I + [-) (U I)
(DF) : : = .(UI)
(EP) : := lo(IN)
(DN) : := @[(UI))(DF)](UI)
(UN) : := (DN)I@](DN))(EP)
<NU> : := (d + I - I) < U N >

(PS) ::= (AN)I~
<AN>

<os> : := <PS)l'(OS>'l<OS>(os>
(ST) : : = '(0S>'

(EX) : : = <BE)I(AE)I(DE)

(V/) : := <ID)
<SV) : : = (VI)
<SE) : : = <AE)
(SL) : := (SE)(,(SE))*
(AI) : : = ([D)
(SR) : : = (AI)[<SL)I
(VA> : : = (SV>I<SR)

(P /) : : = (ID)
(AP) : := (ST)I(EX)I(AI)[

(SW)I(PI)
(LS) : : = (LE)<LE),
(PD) ::= ,I)<LS):(
(AL) : : = (AP)((PD)(AP)),
(A T) : : = ¢1 ((AL))

(FD) ::= (PI>(AT)

(iO) : : = + I - -
(MO) : : = xl / l+
(PR) : : = (UN)I(VA)I(FD)]

(<AE))
(FT) ::= (PR)(~(PR)),
{TE) :: = (FT) ((MO)(FT)),
(SA) ::= (@](AO))(TE))

((AO)(TE)) •
(I¢) ::= i f <BE> t h e n
(AE) ::= ({IC)(SA) else)*(SA)

<RO> ::= <]<I~Ikl>l~
<RE) ::= (SA)(RO)(SA)
(BP) ::= (LV)I(VA)I(FD)I

(RE)[((BE))

B O O L E A N S E C O N D A R Y
B O O L E A N F A C T O R
B O O L E A N T E R M
I M P L I C A T I O N
S I M P L E B O O L E A N
B O O L E A N E X P R E S S I O N

',.5.1
L A B E L
S W I T C H I D E N T I F I E R
S W I T C H D E S I G N A T O R
S I M P L E D E S I G N A T I O N A L

E X P R E S S I O N
D E S I G N A T I O N A L E X -

P R E S S I O N

:.1.1
U N L A B E L L E D B A S I C

S T A T E M E N T
B A S I C S T A T E M E N T
U N C O N D I T I O N A L S T A T E -

M E N T
S T A T E M E N T
C O M P O U N D T A I L
B L O C K H E A D
U N L A B E L L E D C O M P O U N D
U N L A B E L L E D B L O C K
C O M P O U N D S T A T E M E N T
B L O C K
P R O G R A M

L2.1
L E F T P A R T
L E F T P A R T L I S T
A S S I G N M E N T S T A T E M E N T

k3.1
GO T O S T A T E M E N T

4.4.1
D U M M Y S T A T E M E N T

4.5.11
I F S T A T E M E N T
C O N D I T I O N A L S T A T E -

M E N T

4.6.1
F O R L I S T E L E M E N T

F O R L I S T
F O R C L A U S E
F O R S T A T E M E N T

4.7.1
P R O C E D U R E S T A T E M E N T

5.
D E C L A R A T I O N

1.1.1
T Y P E L I S T
T Y P E

L O C A L O R O W N T Y P E
T Y P E D E C L A R A T I O N

i.2.1
L O W E R B O U N D
U P P E R B O U N D
B O U N D P A I R
B O U N D P A I R L I S T
A R R A Y S E G M E N T
A R R A Y L I S T

(BS) := (¢I--Q(BP)
(BF) :: = (BS) (A<BS))*
(BT) ::= (BF)(V(BF))*
U P) : := (BT)(D(BT))*
(SB) : := (IP)(~(IP))*
(BE} ::= ((IC)(SB) else)*(SB)

(LA) : := (ID)I(UI)
(SW) : := <ID)
(SG) : := (SW)[(SE)]
(SX) : := (LA)I(SG)I(<DE>)

<DE) ::= ((IC)(SX) else)*(SX)

(UB) ::= (AS)](GS)](DS)KPT)

(BA) : := ((LA):)*(UB)
<US> : := (BA)[(CS)I(BL)

(SM) : := <US)[(CD)I(FS)
(CT) : := (<SM);).((SM) e n d)
(BH) : := b e g i n (DC)(;(DC))*
(UC) : := b e g i n (CT}
(UL) ::= (BH);(CT)
(CS) ::= ((LA):)*(UC)
(BL) : := ((LA):)*(UL)
(PR) : := <BL)[<CS)

(LP) : := (VA) :=](PI) :=
(LL) : : = (LP)(LP).
(AS> : := (LL)((AE)I<BE))

<GS) : := go t o (DE)

(DS) :: =

(IS) : : = (ICXUS)
(CD) : := ((LA):)*((IS)(~]clse

(SM>I<IC>(FS>)

(FE) : := (A E) (~] w h i l c (BE)]
s t ep (AE) u n t i l
<hE>)

(FR) : := (FE)(,<FE))*
(FC) ::= for (VA) : : = (FR) d o
(FS) : := ((LA) :)*((FC)(SM))

(PT) : : = <PIXAT)

(DC) : : = (TD)I(AD)I(SD)I(PA)

(TP) : := ((SV),)*(SV)
(TY) : := r e a l l i n t e g e r l

B o o I e a n
(OW) ::= (~Iown) (TY)
(TD) : := (OWXTP)

(LB) : := (AE)
<UR) : : = <AE)
(BD) : := (LB) :(UR)
(BR) : := (BD)(,(BD))*
(A Y) : := ((AI),)*((Ai)[(BR)])
(AA) : : = (AY)(,(AY))*

1 I F c l ause a n d u n c o n d i t i o n a l s t a t e m e n t a re n o t r e p e a t e d he r e as in r e p o r t of NAUR [6].

268 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m b e r 4 / Apri l , 1966

TABLE I (Continued)

Name Nonrecursive Specification

ARRAY DECLARATION

5.3.1
SWITCH LIST
SWITCH DECLARATION

5.4.1
FORMAL PARAMETER
FORMAL PARAMETER

LIST
FORMAL PARAMETER

PART
IDENTIFIER LIST
"VALUE PART
SPECIFIER

SPECIFICATION PART

PROCEDURE HEADING
PROCEDURE BODY
PROCEDURE DECLARA-

TION

(AD) ::= (array I((OW) array)
(aA)

(SH) ::= (DE)(,(DE)).
(SD) ::= switch (SW) := (SH)

(FM) ::= (ID)
(FA) ::= (FM)((PD)(FM))*

(FO) ::= ~]((FA))

(IF) ::= (ID) (,(ID))*
(VP) ::= value (IF);[~
(SP) ::= stringlarray](TY)

(~1 arraylproce-
dure)[lahel]
switehlprocedure

(SF) ::= (~](SP)(IF):) ((SP)
(IF):) *

(PH) ::= (PI)(FP); (VP)(SF)
(PO) ::= (SM)[(CO)
(PA) ::= (~I(TY)) (procedure

(PH)(PO))

mediately solvable in terms of the asterisk notation, a
nonrecursive regular expression is produced. This is a
special characteristic, not emphasized up until now, of
the published context-free part of ALGOL (as is well known
for context-free languages in general).

The section numbers in Table I refer to section numbers
in the ALGOL report of Naur [7]. Each string class name
of the original report is represented in this Table by a
symbol composed of two letters. The reason for choosing
two letters was that the program was written to accept two
characters for each name and that letters could be used
as mnemonics for the actual names. No duplicate symbols
were allowed; thus the symbol for the name is not always
clearly mnemonic. By the use of the distributive law of
conca tena t ion over set un ion the nonrecursive equat ions

have been factored if possible. The names t ha t are defined
recursively in the original ALGOL report [7] are easily
recognized by the appearance of a * in the nonrecurs ive
specification.

Since the nonrecurs ive specification requires parentheses
as control characters, whenever r ight or left parenthesis
denote themselves in Tab le I they are in boldface. Section
4.7.1 was no t included in its en t i re ty as in [7] because
(Procedure statement} has the same specification as 3.2.1
(Func t ion Designator}. The symbol ~ is used ins tead of
(empty} to conform more closely to the K]eene nota t ion .
I n addit ion, Section 2.3 (Delimiters) has been omi t ted as
an exact duplicate of the report.

I n Figure 1, because of the l imi ta t ions of a s t andard
computer pr inter , the symbol L has been used instead of
~, 0 f o r + , 1 f o r - , a n d 2 f o r . .

RECEIVED NOVEMBER, 1965

George E. Forsythe, Editor of a

New Education Department
I n v i t e s Contributions

Computing and Education come together in two different
ways. First, the digital computer can be programmed into
a powerful tool in the educational process itself, for example
as a teaching machine or as a processor of records about
student progress. We might call this computers in education,
and we welcome contributions in this area. (If they deal
with educational data-processing techniques that are
mainly the same as data-processing techniques for other
purposes, articles should be directed to another department
of Communications.) The second confluence of Computing
and Education might be called education in comnputing. This
deals with matters of curriculum, personnel, and organiza-
tion in formal education at all levels about the computing
and information sciences. We welcome contributions in this
area also. Reference [1] is an excellent preliminary report on
education in computing, and it is criticized in reference [3].
Reference [2] deals with both our subjects, discussing a use
of computers in education about computing.

With the great growth of interest in teaching machines
and the sudden emergence of numerous university depart-
ments of computer science (under various titles), there
should be a great deal of valuable material for this depart-
ment. Let's have it !--G. E. FORSYTrm

R E F E R E N C E S

1. ACM Curriculum C o m m i t t e e o n Computer Science. An undergraduate
program in computer science--preliminary recommendations, Comm.
ACM 8 (Sept. 1965), 543-552.

2. i~ORSYTHE, GEORGE E. AND WIRTH, NIKLAUS. Automatic grading pro-
grams. Comm. ACM 8 (May 1965), 275-278.

3. PARNAS, DAVID L. On the preliminary report of C~S (l e t t er t o t h e Ed-
itm') Comm. ACM 9 (Apr. 1966), 242-243.

REFERENCES

1. BACKUS, J. W. The syntax and semantics of the proposed
international algebraic language of the Zurick ACM-GAMM
conference: ICIP. Paris, June 1959.

2. GOI~N, S. Processors for infinite codes of the Shannon-Fano
type. Prec. of a Symp. on Mathematical Theory of Automata,
Polytechnic Institute of Brooklyn, 1962.

3. CHOMSKY, N . O n certain formal properties of grammars.
Inf. Contr. ~ (June 1959), 137-167.

4. KLEENE, S. C. Representations of Events in Nerve Nets and
Finite Automata. Automata Studies, Shannon, C., and
McCarthy, J. (Eds.). Princeton, 1956.

5. WEIL.AND, J . N . Applications of the elimination algorithm to
recursive language specifications. Master's Thesis, U. of
Pennsylvania, May 1965.

6. ROBERTS, M.B. A generalized recognizer for finite state lan-
guages. Master's Thesis, U. of Pennsylvania, August 1965.

7. NAUR, P. (Ed.) Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6, 1 (Jan. 1963), 1-17.

8. IVERSON, K. E. A method of syntax specification. Comm.
ACM 7, 10 (Oct. 1964), 588-589.

Volume 9 / Number 4 / April, 1966 Communica t ions of the ACM 269

