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Abstract

We consider the bit complexity of computing Chow forms of projective varieties defined over integers
and their generalization to multiprojective spaces. We develop a deterministic algorithm using resultants
and obtain a single exponential complexity upper bound. Earlier computational results for Chow forms
were in the arithmetic complexity model; thus, our result represents the first bit complexity bound. We
also extend our algorithm to Hurwitz forms in projective space and we explore connections between
multiprojective Hurwitz forms and matroid theory. The motivation for our work comes from incidence
geometry where intriguing computational algebra problems remain open.

1 Introduction

Suppose a curve in space is given geometrically, e.g., in parametric form, how can one find an algebraic
representation of this curve? This was a question tackled by Cayley [10] and later generalized to arbitrary
varieties by van der Waerden and Chow by introducing what is now called the Chow form [56]. The Chow
form is now recognized as a fundamental construction in algebraic geometry and it is particularly important
in elimination theory. The structural and computational aspects of Chow forms have been an active area
of research for several decades, we humbly provide a sample of references: [38, 14, 5, 34, 40]. Despite the
large body of literature on the subject, one basic aspect has received little attention: the bit complexity
of computing a Chow form. Our paper fills this gap. We also extend our algorithmic results to Hurwitz
forms [53] and to the recent generalization of Chow forms for multiprojective varieties [46].

Another motivation for deriving precise complexity bounds for computing Chow forms comes from
combinatorics: Let S1, S2 ⊂ C2 be two finite sets and let p be a 4-variate polynomial. How many zeros of
p can be located in S1 × S2? It was noticed in [45] that this simple question has surprising consequences
in extremal combinatorics and incidence geometry. This question almost entirely looks like a subject for
the Schwartz-Zippel-De Millo-Lipton (SZDL) lemma [43], but S1 and S2 are two dimensional.

In [18] we developed a multivariate generalization of the SZDL lemma: Suppose λ = (λ1, λ2, . . . , λm)
is a partition of n, that is n =

∑m
i=1 λi. Let 0 6= p ∈ C[x1, x2, . . . , xn] be a polynomial of degree d

and assume that for any collection of positive dimensional varieties Vi ⊂ Cλi , for i = 1, 2, . . . ,m, we
have V1 × V2 × . . . × Vm 6⊂ V(p). Then, for any collection of finite sets Si ⊂ Cλi , any real ε > 0, and
S := S1 × S2 × . . .× Sm we have

|V(p) ∩ S| = On,d,ε

( m∏

i=1

|Si|
1− 1

λi+1
+ε

+
m∑

i=1

∏

j 6=i

|Sj|
)
.
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Note that the containment assumption on the variety V(p) is necessary for any non-trivial upper bound to
hold: one can simply place any collection of finite sets Si with arbitrary size on the positive dimensional
varieties Vi. For applications in incidence geometry, we need to certify this assumption on the polynomial
p that encodes the incidence relation. This brings us to the following problem.

Problem 1.1. Assume that we are given an n-variate polynomial p and a positive integer vector λ =
(λ1, λ2, . . . , λm) where n =

∑m
i=1 λi. Decide whether there exist positive dimensional varieties Vi ⊂ Cλi for

i = 1, 2, 3, . . . ,m such that V1 × V2 × · · · × Vm ⊂ V(p).

Note that a variety V(p) of degree d can contain varieties of arbitrary degree (think of a high degree
curve included in an hyperplane). Hence, the problem resists standard computational algebra tools that
have to assume a degree bound on Vi. Our paper [18] includes an algorithm to decide if V(p) contains
a cartesian product of hypersurfaces. One can hope to utilize multiprojective Chow form(s) of V(p) to
relate the general containment Problem 1.1 to the special case of hypersurface containment. This was our
motivation to develop precise complexity bounds for computing multiprojective Chow forms.

1.1 Previous Works and Our Results

The Chow form of a variety can be computed by using standard tools of elimination theory, e.g., Gröbner
basis, in a black-box manner [14]. This black-box approach does not exploit the special structure of the
problem and does not yield precise complexity estimates. Instead, we will rely on resultant computations.
Roughly speaking, for a (homogeneous) polynomial system of n equations in m ≥ n variables, the resultant
is a polynomial in m − n variables (and in the coefficients of the original polynomials) that is zero if
and only if the original system has a solution; we refer to [22, 12] for further details. Resultants are
typically computed using a formula that expresses them as a factor of the determinant of a square matrix.
Other factors of this determinant can sometimes be identically zero and might prevent us to compute the
resultant. Canny [6] introduced the generalized characteristic polynomial that symbolically perturbs the
input polynomials and avoid the unsolicited vanishing of components. Our computations rely on Canny’s
technique.

To our knowledge, the first algorithm with a precise complexity estimate to compute the Chow form
of a pure dimensional variety, say V , is due to Caniglia [5]. Caniglia’s algorithm is based on a clever
reduction to linear algebra and it admits a single exponential upper bound on the number of arithmetic
operations. In the case where the defining polynomials of V are given by straight-line programs, Jeronimo
et al. [34] describe a probabilistic algorithm that computes the Chow form of V , see also [35]. This Las
Vegas algorithm admits a single exponential time upper bound on a Blum-Shub-Smale (BSS) machine. Its
expected complexity is polynomial in terms of the input size and the geometric degree of the variety V
and thus; a single exponential time worst case complexity. See [34, Theorem 1] for the exact statement.

Our contribution There is an extensive literature on the complexity of elimination theory procedures
in general, and complexity of polynomial system solving in particular; we provide a small sample here
[23, 31, 30, 8, 25]. Despite the strong literature on the subject, we were not able to locate any results
on the bit complexity of computing Chow forms. We present a single exponential time algorithm to
compute the Chow form of a pure dimensional variety where the computational model is the bit model;
see Proposition 3.3 for the complete intersection case and Theorem 3.9 for the general case. We further
extend our algorithmic techniques to compute Hurwitz forms [53] with precise complexity estimates, see
Proposition 3.10.

There is a generalization by Osserman and Trager [46] of Chow forms for varieties in multiprojective
space. Our method to compute the Chow form is based on resultant computations and this seamlessly
extends to multiprojective space, see Lemma 4.5 for the complete intersection case and Theorem 4.8 for
the general case. We should emphasize that the generalization from the projective Chow forms to the
multiprojective ones is far from straightforward both from the mathematical and algorithmic complexity
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point of views. Even though a multiprojective space is isomorphic to a projective variety via the Segre
embedding, this requires adding many more additional variables. To work directly with multiprojective
spaces and avoid the use of (many more) additional variables we have to take into account the partition
of the variables in blocks, the combinatorics of the supports of the polynomials, and exploit this structure
both from a mathematical and an algorithmic point of view. Moreover, the number of blocks (and the
variables in each block) should also appear in the corresponding complexity estimates. We refer to Section 4
for a detailed presentation.

In addition, we discuss a multihomogeneous generalization of the Hurwitz form. To the best of our
knowledge, our paper provides the first result in this area. Contrary to the homogeneous case, multigraded
Chow forms and Hurwitz form require a choice of a non-degenerate multidimension vector for the linear
subspace, in a sense that is discussed in Section 4. This set of non-degenerate dimension vectors gives rise
to an interesting combinatorial structure, namely a polymatroid. In [7], it has been proven that the set
of multidegrees of a multiprojective variety forms a polymatroid. In [46], the authors show that the set
of non-degenerate dimension vectors for Chow forms equals to the truncation of this polymatroid, which
is itself a polymatroid. In a similar fashion, we show that non-degenerate dimension vectors for Hurwitz
forms also form a polymatroid, which is obtained by the elongation of the polymatroid of Chow forms. We
discuss this combinatorial structure in Section 5.

Last but not least, our techniques allow us to provide precise bit complexity estimates for the coefficients
of the Chow form (both in the projective and in the multiprojective case). These bounds give an estimation
on the size of the objects that we compute with and consist a measure of hardness of the corresponding
algorithmic problems.

1.2 Outline of the paper

The rest of the paper is structured as follows. In section 2 we present a short overview of Chow forms.
Section 3 is on the computation of the Chow form in Pn and the extension of techniques to compute
Hurwitz forms. Section 4 presents algorithms for computing multiprojective Chow forms. Section 5
explores connections between multiprojective Chow & Hurwitz forms and matroid theory.

2 Preliminaries

2.1 Notation

The bold small letters indicate vectors or points; in particular x = (x0, . . . , xn) or x = (x1, . . . , xn)
depending on the context. We denote by O, resp. OB , the arithmetic, resp. bit, complexity and we use
Õ, resp. ÕB , to ignore (poly-)logarithmic factors. For a polynomial f ∈ Z[x], h(f) denotes the maximum
bitsize of its coefficients; we also call it the bitsize of f . We use [n] to denote the set {1, 2, . . . , n}.
Throughout C denotes the field of complex numbers, Z integers, An the affine space, and Pn the projective
space.

Given polynomials f := (f1, f2, . . . , fk) ∈ C[x]k, we call the zero locus

VA(f1, f2, . . . , fk) := {p ∈ An | f1(p) = f2(p) = · · · = fk(p) = 0},

the affine variety defined by f . In the case that f consists of homogeneous polynomials, the set

VP(f1, f2, . . . , fk) := {[p] ∈ Pn | f1(p) = f2(p) = · · · = fk(p) = 0}

is well-defined and called the projective variety defined by f .
A projective variety V ⊂ Pn is called irreducible if we cannot write it as a non-trivial union of two

subvarieties. Otherwise, V is called reducible. We can write every reducible variety (in an essentially unique
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way) as a finite union of irreducible subvarieties, that is

V =
⋃l

i=1
Vi, (Vi (

⋃
j 6=i

Vj). (1)

The irreducible subvarieties Vi are the irreducible components (or components for short) and the expression
(1) is the irreducible decomposition of V .

As a preparation for the discussion on Chow forms, we define the dimension of a projective variety
à la Harris [26, §11]: dimV of V is the integer r satisfying the property that every linear subspace
L ⊂ Pn of dimension at least (n − r) intersects V and a generic subspace L ⊂ Pn of dimension at most
(n − r − 1) is disjoint from V . We call V pure dimensional (sometimes also equidimensional), if every
irreducible component of V has the same dimension. Note that if V is irreducible, then it is trivially pure
dimensional.

2.2 Associated hypersurfaces and Chow forms

The main object of our study is the associated hypersurface of a variety V and its defining polynomial,
the Chow form. For a detailed introduction on Chow forms, we refer to [13, 14]. For a concise, clear, and
deeper exposition we refer to [22].

Let V ⊂ Pn be an irreducible variety of dimension r. By the definiton of dimV , if L ⊂ Pn is a generic
linear subspace of dimension n−r−1, then the intersection L∩V is empty. The associated hypersurface of
V is the set of non-generic subspaces, i.e., (n− r− 1)-dimensional subspaces of Pn that have a non-empty
intersection with V . To be more concrete, we consider the Grassmannian

Gr(n− r − 1, n) = {L ⊂ Pn | L is a subspace of dimension n− r − 1},

of linear subspaces of Pn of dimension n− r − 1.

Proposition 2.1. Let V ⊂ Pn be an irreducible variety of dimension r. Then, the set of linear subspaces
intersecting V ,

CZV := {L ∈ Gr(n− r − 1, n) | V ∩ L 6= ∅} ⊆ Gr(n− r − 1, n),

is an irreducible hypersurface of Gr(n−r−1, n) that we call the associated hypersurface of V . Moreover,
CZV uniquely defines V ; that is,

V = {p ∈ Pn | p ∈ L implies L ∈ CZV }.

It is known that Gr(n − r − 1, n) has the property that every hypersurface of Gr(n − r − 1, n) is the
zero locus of a single element of its coordinate ring (see, for example, [22, Proposition 2.1]). In particular,
the associated hypersurface CZV is the zero set of an element in the coordinate ring1 of Gr(n − r − 1, n)
that we call the Chow form of V . We write a linear subspace L ∈ Gr(n − r − 1, n) as the intersection of
r + 1 hyperplanes. For 0 6= u ∈ Cn+1, we consider U(u,x) = u0x0 + · · · + unxn.

Definition 1. Let V ⊂ Pn be a variety. The Chow form of V is the square-free polynomial with the
property that

CFV (u0, . . . ,ur) = 0 ⇐⇒ V ∩ V(U(u0,x), . . . , U(ur,x)) 6= ∅

for u0,u1, . . . ,ur ∈ Cn+1. The Chow form is defined only up to multiplication with a non-zero scalar.

1For a general variety X, it is not true that every hypersurface in X is the zero locus of some element of the coordinate

ring of X. The standard example is a plane curve of degree d > 2 and a point on the curve.

4



M. Levent Dogan, Alperen A. Ergür and Elias Tsigaridas

The previous definition and Proposition 2.1 imply that if V is irreducible, then CFV is an irreducible
polynomial which defines the irreducible hypersurface CZV . More generally,

V = V1 ∪ V2 ∪ · · · ∪ Vl ⇒ CFV = CFV1 × CFV2 × · · · × CFVl

holds if V is pure dimensional and V =
⋃l

i=1 Vi is the irreducible decomposition of V . If V is not pure
dimensional, then a linear subspace of complementary dimension generically does not intersect the lower
dimensional components so the Chow form forgets these components. We will generally assume that V is
pure dimensional.

Lemma 2.2. Suppose V ⊂ Pn is a pure dimensional variety such that V = X1 ∩X2 ∩ · · · ∩Xl, where the
variety Xi is pure dimensional and dimV = dimXi, for all i ∈ [l]. Then

CFV = gcd(CFX1 , CFX2 , . . . , CFXl
).

Proof. Since dimV = dimXi for i ∈ [l], we can see that the irreducible components of V are exactly the
common irreducible components of Xi. Hence, both sides are equal to the product of the Chow forms of
the components of V and this finishes the proof.

3 The Chow Form in Pn

In what follows V ⊂ Pn denotes an equidimensional projective variety of dimension r. We present an
algorithm to compute the Chow form, CFV , of V .

3.1 The case of a complete intersection

Algorithm 1 ChowForm CI

Input: f1, . . . , fn−r ∈ Z[x].
Precondition: V = V(f1, . . . , fn−r) is pure r-dimensional.
Output: The Chow form of V .

1. Consider r + 1 linear forms, Ui =
∑n

j=0 uijxj, for 0 ≤ i ≤ r .

2. Eliminate the variables xi

R = Elim({f1, . . . , fn−r, U0, . . . , Ur}, {x}) ∈ Z[ui,j].

3. Rr = SquareFreePart(R).

4. (Optional) Apply the straightening algorithm.

5. return Rr.

Assume that V ⊂ Pn is a set theoretic complete intersection over Z, i.e., V is the common zero locus
of codim(V ) = n− r many polynomials

V = V(f1, f2, . . . , fn−r) ⊂ Pn,

where fi ∈ Z[x] and deg(fi) = di. Let d := maxi di denote the maximum of the degrees. Moreover, assume
h(fi) ≤ τ , i.e., the bitsizes of fi are all bounded by τ .

5
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Let u = {uij : 0 ≤ i ≤ r, 0 ≤ j ≤ n} be a set of formal variables and consider the system of r + 1
formal linear combinations

U(u,x) :=





U0 := u00x0 + u01x1 + · · · + u0nxn = 0

U1 := u10x0 + u11x1 + · · · + u1nxn = 0
...

Ur := ur0x0 + ur1x1 + · · ·+ urnxn = 0.

We will regard each polynomial in U , Ui, as a polynomial in C[u][x]. Suppose for a specialization of
the variables u : uij ∈ C, 0 ≤ i ≤ r, 0 ≤ j ≤ n the matrix that they naturally correspond to, say
Mu ∈ C(r+1)×(n+1), is of full rank. Consequently

L = V(U(u,x)) ⊂ Pn

is an (n− r− 1)-dimensional linear subspace of Pn. Conversely, every (n− r− 1)-dimensional subspace of
Pn is of this form; that is, it induces a full rank (r + 1) × (n + 1) matrix. Moreover, V ∩ L 6= ∅ holds if
and only if the overdetermined system

U(u,x) = 0, f1(x) = 0, . . . , fn−r(x) = 0 (2)

has a solution in Pn.

Proposition 3.1. Let R ∈ C[u] be the resultant of the system of n+ 1 polynomials

U(u,x) = 0, f1(x) = 0, . . . , fn−r(x) = 0,

eliminating the variables x0, x1, . . . , xn. Then,

1. R is invariant under the action of SLr+1 on C[u] via the left multiplication, and,

2. R(u) = 0 if and only if either (the corresponding matrix) Mu has rank < r + 1, or, Mu is full rank
and V(U(u,x)) ∈ CZV .

Proof. The invariance of the resultant under matrices of determinant 1 is a standard result, see, for example,
[12, Section 3.3]. For the second claim, note that the system (2) has a solution if and only if L = V(U(u,x))
intersects V . As dimL = n− rk(u), L intersects V precisely when Mu is rank-deficient, or, Mu is full-rank
and L ∈ CZV .

Proposition 3.2. Let R = Re1
1 R

e2
2 . . .Rec

c be the irreducible factorization of R. Then c equals the number
of irreducible components of V and the square-free part R1R2 . . .Rc of R is the Chow form of V .

Proof. By Proposition 3.1, the zero locus of R coincides with the zero locus of the Chow form, CFV

(Definition 1). Thus, the square-free part of R equals CFV and the number of irreducible factors of R and
CFV are equal.

Proposition 3.3. Consider I = 〈f1, . . . , fn−r〉 ⊆ Z[x0, . . . , xn] where each fi is homogeneous of degree
at most d and has bitsize τ ; also the corresponding projective variety, V , has pure dimension r. Let
ui := (ui,0, . . . , ui,n), for 0 ≤ i ≤ r, be (n + 1)(r + 1) new variables. The Chow form of V , CFV , is a
multihomogeneous polynomial; it is homogeneous in each block of variables ui of degree at most dn−r and
has bitsize Õ(ndr−1τ). The algorithm ChowForm CI (Alg. 1) correctly computes CFV in

ÕB(n
n2+ωnd2(n−r)(r+1)(n+1)+(ω+1)n+r−1(n+ d+ τ))

bit operations, where ω is the exponent of matrix multiplication.
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Proof. The correctness of the algorithm follows from Propositions 3.1 and 3.2.
To compute the Chow form, following Alg. 1, we introduce r + 1 linear forms, say

Ui = ui,0x0 + · · ·+ ui,nxn,

where ui := (ui,0, . . . , ui,n), for 0 ≤ i ≤ r, are (n+1)(r+1) new variables. The Chow form is the square-free
part of the resultant of the system

F = {f1, . . . , fn−r, U0, . . . , Ur},

say R, where we consider the polynomials as elements in (Z[u])[x] and we eliminate the variables x; thus
CFV ∈ Z[u0, . . . ,ur].

Bounds on the degree and the bitsize. We compute the resultant R using the Macaulay matrix, M ,
corresponding to the system F , as quotient of two determinants, that is R = det(M)/det(M1), where
M1 is a submatrix of M . To avoid the case where the denominator is zero, that is det(M1) = 0, we
apply generalized characteristic polynomial technique of Canny [6]. For this we symbolically perturb the
polynomials using a new variable s; that is f̂i = fi + sxdii , for i ∈ [n− r]. Now the system becomes

F̂ := {f̂1, . . . , f̂n−r, U0, U1, . . . , Ur},

where we consider the elements in F̂ as polynomials in the variables x with coefficients in Z[u, s].
The resultant of the new system, say R̂, that we obtain after eliminating the variables x, is a poly-

nomial in Z[u, s]. We recover R as the first non-vanishing coefficient of R̂, by interpreting the latter as
a univariate polynomial in s. The resultant is a multihomogeneous polynomial in the coefficients of the
input polynomials [12, Chapter 3]. In our case, the monomials of R̂ are of the form

̺aW1
1 · · ·a

Wn−r

n−r b
Wn−r+1

0 · · · bWn
r ,

where ρ ∈ Z. The integer ρ, roughly speaking, corresponds to the lattice points of the Newton polytopes
of the input polynomials, we refer to [50] for further details. The interpretation of ai is that it represents

a product of coefficients of f̂i of total degree Wi = |Wi|, for i ∈ [n − r]. Similarly, b
Wn−r+j

j represents
a product of coefficients of Uj of total degree Wn−r+j = |Wn−r+j|, for 0 ≤ j ≤ r. Finally, Wk is the

Bézout bound on the solutions of the system F̂ if we exclude the k-th equation. It holds Wi ≤ dn−r−1, for
i ∈ [n− r], and Wn−r+j ≤ dn−r, for 0 ≤ j ≤ r.

The degree of R̂ w.r.t. s is at most (n − r)max{W1,W2, . . . ,Wn−r}. Its coefficients, and so also R,
by interpreting R̂ as a univariate polynomial in s, are multihomogeneous polynomials w.r.t. each block of
variables ui of degree bounded by Wn ≤ dn−r.

To bound the bitsize of R̂, and thus the bitsize ofR, we follow the same techniques as in [21, Theorem 5].
For a worst case bound, it suffices to consider that each ai is of the form (s+2τ ). Thus, following Claim A.1,
the bitsize of aMi

i is at most O((n − r)dn−r−1τ + (n − r)2dn−r−1 lg(nd)) which is Õ((n − r)dn−r−1(τ +
n − r)). Hence, the product of all of them has bitsize O((n − r)2dn−r−1τ + (n − r)3dn−r−1 lg(nd)) =

Õ(n2dn−r−1(n+ τ)). Similarly, each b
Mn−r+j

j has bitsize O((n− r)dn−r lg d) and the product of all of them

O((n − r)rdn−r lg d + n(n − r)2r lg(rd)) = Õ(n2(dn−r + n)). In addition, it holds that h(ρ) = Õ(n2dn−r)
[21, Table 1]. Putting all the bounds together, we deduce that the bitsize of R̂, and hence the bitsize of R
is

Õ(n2dn−r−1(n+ d+ τ)).

Computing the determinant(s). To actually compute the resultant we exploit Kronecker’s trick and

efficient algorithms for computing the determinant of matrices with polynomial entries.
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Let D1 := (n− r)dn−r−1 be a bound on the degree of s and D2 := dn−r a bound on the variables u in
the polynomial R̂. We perform the following substitutions

u0,0 → s(D1+1), u0,1 → s(D1+1)(D2+1), u0,2 → s(D1+1)(D2+1)2 , . . . , ur,n → s(D1+1)(D2+1)(n+1)(r+1)−1
.

In this way the elements of the Macaulay matrix M become univariate polynomials in s of degree at most
(D1 + 1)(D2 + 1)(n+1)(r+1) and bitsize τ . Also M is a square m×m matrix, where m corresponds to the
number of homogeneous monomials of degree

∑n−r
i=1 (d− 1) +

∑r
i=0(1− 1) + 1 = (n− r)(d− 1) + 1 in n+1

variables; that is m =
((n−r)(d−1)+1+n

n

)
≤ ((n− r)d)n.

Now we compute the quotient det(M(s))/det(M1(s)) ∈ Z[s] and we recover R from the first non-
vanishing coefficient of this polynomial. The computation of the determinants costs at most Õ(mω (D1 +
1)(D2 + 1)(n+1)(r+1)) operations and if we multiply by the bitsize of the output, then we deduce that the
computation of the resultant R costs

ÕB(2
(n+1)(r+1)nn2+ωnd[(n−r)(r+1)+1](n−r)+(ω+1)n+r−1(n+ d+ τ))

bit operations, where ω is the exponent of the complexity of matrix multiplication.
Square-free factorization. Finally, we have to compute the square-free part of R. This amounts,
roughly, to one gcd computation. For polynomials in ν variables, of degree δ and bitsize L, the gcd costs
ÕB(δ

2νL) [42, Lemma 4]. This translates to

ÕB(n
2(r + 1)2(n+1)(r+1)d2(n−r)(n+1)(r+1)+n−r−1(n+ d+ τ)).

Combining the two complexity bounds, after some simplifications, we obtain the claimed result.

3.2 The case of an over-determined system

Algorithm 2 ChowForm

Input: f1, . . . , fm ∈ Z[x], r ∈ N

Precondition: Assumption 3.5.
Output: The Chow form of V(f1, . . . , fm).

1. Λ1, . . . ,ΛN := GenericLC(f1, f2, . . . , fm).

2. for r ∈ [N ] do Fi = ChowForm CI(Λi
f );

3. return gcd(F1, . . . , FN )

Now we remove the assumption of complete intersection. Consider

V = V(f1, f2, . . . , fm) ⊂ Pn,

where m ≥ n − r = codim V . Moreover, if di := deg(fi) we further assume that d1 ≥ d2 ≥ · · · ≥ dm.
As before, we want to add to our system r + 1 linear forms and eliminate the variables x. However, if
we simply add the linear forms, then we end up with more than n + 1 polynomials. Thus, we cannot use
resultant computations, at least directly, to perform elimination.

To overcome this obstacle we consider the following observation.

Proposition 3.4. Every pure-dimensional variety V ⊂ Pn can be written as the intersection of finitely
many complete intersections: V = V1 ∩ V2 ∩ · · · ∩ Vl where ∀i, dimVi = dimV .

8
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The proposition offers a strategy to compute CFV : 1) Compute complete intersections V1, V2, . . . , Vl

such that V equals their intersection, 2) compute the Chow form CFVi
of each Xi by the means of

Algorithm 1, 3) compute the gcd of CFVi
, i = 1, 2, . . . , l. Since V is the intersection of Xi, we have

CFV = gcd(CFVi
| i = 1, 2, . . . , l) by Lemma 2.2.

In order to compute complete intersections Vi whose intersection is V , we will proceed as follows: We
replace the original system f with a generic system of codim(V ) = n− r many polynomials f̃i that vanish
on V , by choosing f̃i to be generic linear combinations of fi. We will prove that the zero locus of the new
system is a pure r-dimensional variety that contains V (Proposition 3.6). By repeating this process, say k
times, we obtain a number of pure dimensional varieties, V1, V2, . . . , Vk, all containing V . For large enough
k, the intersection V1∩· · ·∩Vk is exactly V . What the exact number of required pure-dimensional varieties
itself is an interesting question. Proposition 3.7 gives the upper bound k = ⌈ m

n−r ⌉. The Chow form of V
satisfies

CFV = gcd(CFV1 , . . . , CFVk
).

Moreover, each Vi is a set theoretic complete intersection and so we can use Alg. 1 to compute its Chow
form CFVi

.
First, we modify the set of polynomials f so that it contains only polynomials of the same degree. Let

d = maxi di. We replace each fi satisfying di < d with the set of polynomials

xd−deg fi
0 fi, x

d−deg fi
1 fi, . . . , x

d−deg fi
n fi.

The zero locus of the new system, which has less than (n + 1)m polynomials, equals the zero locus of
the original system, but now the polynomials all have the same degree. So in what follows we make the
following assumption:

Assumption 3.5. V = V(f1, f2, . . . , fm) ⊂ Pn is a pure dimensional variety of dimension dim(V ) = r,
where f1, f2, . . . , fm are homogeneous polynomials of the same degree d.

The assumption that fi all have the same degree allows us to consider linear combinations of fi.
That is, for λ1, λ2, . . . , λm ∈ C, the polynomial

∑m
i=1 λifi is also a homogeneous polynomial of degree d,

and, in particular, it defines a projective hypersurface. More generally, for an arbitrary k and a matrix
Λ = [λij ] ∈ Ck×m we define the system

Λf :=





λ11f1 + λ12f2 + · · · + λ1mfm

λ21f1 + λ22f2 + · · · + λ2mfm
...

λk1f1 + λk2f2 + · · ·+ λkmfm,

(3)

that consists of k linear combinations of fi’s. Let V(Λf ) denote the zero locus of this system. The next
proposition shows that for generic Λ ∈ Ck×m, the variety V(Λf ) is of the form

V(Λf ) = V ∪X,

where X is a pure dimensional variety of dimension n − k. The proof follows, mutatis mutandis, [24,
Section 3.4.1] which considers the case k = n.

Proposition 3.6. For a generic choice of Λ ∈ Ck×m, the components of V(Λf ) are either the components
of V or of dimension n − k. More concretely, there exists a hypersurface H ⊂ Ck×m of degree at most
kdk−1 such that the condition holds for any Λ ∈ Ck×m \H.

9
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Proof. We will proceed by induction on k. For k = 1, the condition is violated if and only if Λf =∑m
i=1 λifi ≡ 0. This is a linear condition on λi’s. To see this, consider the matrix that has the (coefficients

of the) polynomials fi as rows. Then it suffices to require Λ not belong to the left kernel of this matrix.
Let H1 be an arbitrary hyperplane (i.e., hypersurface of degree 1) containing the left kernel. Then any
Λ 6∈ H1 satisfies the condition and this proves the base case.

Let k > 1 and assume that the claim holds for k − 1. Let Λ ∈ C(k−1)×m \Hk−1 so V(Λf ) = V ∪X for
some pure (n− k + 1)-dimensional variety X. Let

X = X1 ∪X2 ∪ · · · ∪Xc

be the irreducible decomposition of X and disregard the components that are fully contained in V . By the
Bézout bound, we know that the number of irreducible components are at most c ≤ dk−1. Now we pick
arbitrary points

xi ∈ Xi \ V,

so for each i there exists j with fj(xi) 6= 0, and form the matrix

M =




f1(x1) f2(x1) . . . fm(x1)

f1(x2)
. . .

...
...

. . .
...

f1(xc) . . . . . . fm(xc)



.

Suppose µ ∈ Cm is a vector such that each entry of Mµ ∈ Cc is non-zero. Then the linear combination
f̃ := µ1f1 + µ2f2 + · · · + µmfm satisfies f̃(xi) 6= 0 for all i = 1, 2, . . . , c. In particular we have Xi 6⊂ V(f̃).
By Krull’s principal ideal theorem, (see, for example, [19, Theorem 10.1]) the intersection V(f̃) ∩ Xi is
either empty or pure dimensional of dimension dimXi− 1. Hence, the system Λf together with f̃ satisfies
the assertion.

The condition that each entry of Mµ ∈ Cc being non-zero amounts to µ avoiding c (not necessarily
distinct) hyperplanes, hence a hypersurface H ′ of degree at most c ≤ dk−1. In particular, the pairs (Λ,µ)
with Z(Λf , f̃) not satisfying the condition are contained in the hypersurface

(
Hk−1 × Cm

)
∪

(
C(k−1)×m × H ′

)
,

which has degree (k − 1)dk−2 + dk−1 ≤ kdk−1 by induction.

We apply the procedure in Proposition 3.6 with k = n − r and obtain a pure r dimensional variety
V(Λf ) that contains V . We use ChowForm CI (Alg. 1) to compute its Chow form. If V is not a set
theoretic complete intersection, then V(Λf ) 6= V (since V(Λf ) is a set theoretic complete intersection by
its construction) so V(Λf ) contains V properly. In this case, by repeating the process of Proposition 3.6
sufficiently many times we can construct varieties V(Λi

f ), each being a set theoretic complete intersection,
where V equals to their intersection. The next proposition implies that we only need ⌈ m

n−r⌉ many complete
intersections.

Proposition 3.7. Let V = V(f1, f2, . . . , fm) be as in Assumption 3.5 and N = ⌈ m
n−r ⌉. For a generic

choice of Λ1,Λ2, . . . ,ΛN ∈ C(n−r)×m, the corresponding varieties V(Λi
f ) are pure dimensional varieties of

dimension r and V =
⋂N

i=1V(Λ
i
f ). More concretely, there is a hypersurface H ⊂ CN(n−r)×m of degree at

most N(n− r)dn−r−1 +m = O(mdn−r−1) such that for any (Λ1, . . . ,ΛN ) ∈ CN(n−r)×m \H, the condition
is satisfied.

10
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Proof. Consider the matrix
Ξ = [Λ1,Λ2, · · · ,ΛN ]⊤ ∈ CN(n−r)×m,

and let V(Ξf ) =
⋂N

i=1 V(Λ
i
f ). For generic choices of Λi, the matrix Ξ has full rank. Since N = ⌈ m

n−r ⌉, we
have N(n− r) ≥ m so Ξ is injective. Thus, we have

〈Λ1
f ,Λ

2
f , . . . ,Λ

N
f 〉 = 〈f〉

which implies that V =
⋂N

i=1V(Λ
i
f ).

Note that Ξ satisfies the condition if and only if each Λi avoids the hypersurface of degree (n−r)dn−r−1

from Proposition 3.6 and Ξ is full rank. We can guarantee the second condition by enforcing a particular
maximal minor of Ξ to be non-zero. Thus, Ξ satisfies the condition if it avoids N hypersurfaces of degree
(n− r)dn−r−1 and a hypersurface of degree m.

Algorithm 3 GenericLC

Input: f1, . . . , fm ∈ Z[x], r ∈ N

Precondition: Assumption 3.5.
Output: (Λ1,Λ2, . . . ,ΛN ).
Postcondition: See Proposition 3.7.

1. N := ⌈ m
n−r⌉.

2. S := [N(n− r)dn−r−1 +m+ 1] ⊂ N

3. for (Λ1,Λ2, . . . ,ΛN ) ∈ SN(n−r)×m do
if dim(V(Λi

f )) ≤ r and Ξ is full-rank then

return (Λ1, . . . ,ΛN );

Lemma 3.8. Algorithm 3 returns N matrices Λ1,Λ2, . . . ,ΛN ∈ C(n−r)×m satisfying the requirements of
Proposition 3.7 in τm2m2+O(1)(2d)m

2n+O(n) bit operations.

Proof. The matrix Ξ = (Λ1, . . . ,ΛN ) satisfies the requirements of Proposition 3.7 if and only if it avoids a
hypersurface H ⊂ CN(n−r)×m of degree ≤ D = N(n−r)dn−r−1+m. By the bound on its degree, H cannot
contain a grid SN(n−r)m ⊂ CN(n−r)×m where S ⊂ C is a finite set of size |S| > D. By going through all
|SN(n−r)m| ≤ (2mdn−r−1)2m

2
points of the grid and testing membership to H at each step, we can generate

Ξ satisfying the requirement.
The membership test to H amounts to checking if (i) V(Λi

f ) has dimension ≤ r and (ii) Ξ has rank m.
If S is chosen to be the list of first D + 1 natural numbers, then the entries of Ξ have bitsizes logD + 1 =
O(logm+ (n − r) log d), so the polynomials in Λi

f have bitsizes bounded by O(τ + logm+ (n − r) log d).

Hence, whether dimV(Λi
f ) ≤ r can be tested in τmO(1)dO(n) (see [41, 11]). Whether Ξ is full-rank can be

tested in O(τmO(1)n log d). We repeat this process (2mdn−r−1)2m
2
times, so the total complexity becomes

τmm2+O(1)(2d)m
2n+O(n).

Theorem 3.9. Consider the ideal I = 〈f1, . . . , fm〉 ⊆ Z[x0, . . . , xn], where each fi is homogeneous of degree
d and bitsize τ ; also the corresponding projective variety, V , has pure dimension r. Let ui := (ui,0, . . . , ui,n),
for i ∈ [r+1], be (n+1)(r+1) new variables. The Chow form of V , CFV , is a multihomogeneous polynomial;

11
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it is homogeneous in each block of variables ui of degree d
r and has bitsize Õ(ndr−1τ). ChowForm (Alg. 2)

computes CFV in

ÕB(m
2m2+κ n r6nr(n− r)(ω+1)n (2d)2m

2n+ωn2r+(ω+1)n) (τ + n)),

bit operations where ω is the exponent of matrix multiplication and κ is a small constant, depending on the
precise complexity estimate of the dimension test in Alg. 3.

Proof. The correctness of the algorithm follows from the previous discussion and Proposition 3.7.
We apply Alg. 3 to generate Λ1, . . . ,ΛN such that they fulfill the assumptions of Proposition 3.7. The

cost of this algorithm is τm2m2+κ(2d)m
2n.

The bitsize of the polynomials in Λi
f is O(τ + logm+ n log d) = Õ(τ + n). Hence, we can compute the

Chow form of each V(Λi
f ) using Alg. 1 within the complexity

ÕB(n(n− r)(ω+1)nr6nr(2d)ωn
2r+(ω+1)n(τ + n)).

We multiply by the number of systems, N = O(m) to conclude.
Finally, we compute the gcd of N = O(m) Chow forms. As each Chow form has (r+1)(n+1)-variables,

bitsize Õ(ndr−1(τ + n)) and degree (r+1)dr, this operation costs ÕB(mnr2d3r(τ +n)), which is less than
the claimed cost.

Remark 1. We have assumed in Alg. 2 that r = dimV is part of the input. We could also compute r
using the algorithms in [41, 11], without changing the single exponential nature of the complexity of the
algorithm.

3.2.1 Straightening Algorithm

Let C[u] denote the ring of regular functions on the space C(r+1)×(n+1) of matrices. The Chow form CFV

of the variety V is invariant under the action of SLr+1 on C(r+1)×(n+1) by left multiplication. The first
fundamental theorem of invariant theory states that (see, for example, [52, Theorem 3.2.1]) every SLr+1

invariant polynomial can be written as a unique bracket polynomial

F = B([0, 1, . . . , r], . . . , [n − r + 1, n − r + 2, . . . , n+ 1])

in the bracket [i0, . . . , ir] polynomials. The computation of this representation of CFV can be done by
the means of Rota’s straightening algorithm or the subduction algorithm. We refer to [52, § 3] and, in
particular, [52, Algorithm 3.2.8] for more information.

3.3 The Hurwitz polynomial

Closely related to the Chow form of a projective variety V ⊆ Pn is its Hurwitz form. This is a discriminant
that characterizes the linear subspaces of dimension n − r that intersect V non-transversally. When
deg(V ) ≥ 2, these linear spaces form a hypersurface in the corresponding Grassmannian. The polynomial
of this hypersurface is named as the Hurwitz form of V by Sturmfels [53].

Remark 2. The assumption deg(V ) ≥ 2 is necessary to have a hypersurface. Intuitively, if V is a linear
subspace, then the condition that another linear space intersects V in less than deg(V ) many points actually
implies that the intersection is empty. We should consider this case as a degenerate case of the general
situation.

The computation of the Hurwitz form goes along the same lines as the computation of the Chow form.
We assume that V is a complete intersection. We introduce r linear forms Ui and one linear form M , see
Alg. 4. As V is a complete intersection, if the linear forms are generic, then the resulting system does not

12
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have any solution and hence its resultant is not zero. The resultant of the system when we eliminate the
variables x, using the Poisson formula [12], corresponds to the evaluation of M over all the roots of the
system {f1 = · · · = fn−r = U1 = · · · = Ur = 0}.

The (square-free part of the) discriminant of this multivariate polynomial, by considering it as a polyno-
mial in m, the generic coefficients of the linear form M , with coefficients in Z[u] is the Hurwitz polynomial.

Algorithm 4 HurwitzPoly

Input: f1, . . . , fn−r ∈ Z[x] (complete intersection)
Output: The Hurwitz polynomial of V(f1, . . . , fn−r).

1. Let Ui =
∑n

j=0 uijxj, for i ∈ [r]

2. Let M = m0x0 + · · ·+mnxn

3. Eliminate the variables xi

R1 = Elim({f1, . . . , fn−r, U1, . . . , Ur,M},x) ∈ Z[ui,j][m]

4. Consider the discriminant of R1

R2 = Elim({∂R1/∂m0, . . . , ∂R1/∂mn},m) ∈ Z[ui,j]

5. The Hurwitz polynomial is the square-free part of R2.

Proposition 3.10. Consider I = 〈f1, . . . , fn−r〉 ⊆ Z[x0, . . . , xn] where each fi is homogeneous of de-
gree d and has bitsize τ ; also the corresponding projective variety, V , has pure dimension r. Let ui :=
(ui,0, . . . , ui,n), for i ∈ [r], be (n + 1)r new variables. The algorithm HurwitzPoly (Alg. 4) correctly

computes the Hurwitz polynomial, in the variables ui, of V in ÕB((rd)
(n2r2)τ) bit operations.

Proof sketch. The dimension of the variety, V , defined by the polynomials fi is r. Thus, by introducing
r linear forms, Ui, if they are sufficiently generic, then the (augmented) system becomes zero dimensional
and the number of solutions is the degree of V . Furthermore, the introduction of one more linear form, M ,
results a system of n+1 polynomials in n+1 variables; we concetrate on the x variables. The polynomial
M plays the role of the u-resultant (also appear with the term separating linear form). If we eliminate the
variables x from this system, then we obtain a polynomial in coefficients of M , R1, that factors to linear
forms. The coefficients of the linear forms in this factorization correspond to the solutions of the zero
dimensional system. To force (some) of these solutions to have multiplicities we compute the discriminant
R2 of R1. If this is zero, then there are roots with multiplicities. The square-free part of R2, that is
a polynomial in u (and in the coefficients of the polynomials fi) is the Hurwitz form: The reason for
this is the prime factorization theorem of [22] and the fact that the support set of the polynomials we
are working with is a simplex. The computation of R1 is similar to the computation of the Chow form
of V (Lemma 3.9). Then, the computation of R2 results in computing the resultant of a square system
with polynomials having coefficients polynomials in Z[u] in r(n+ 1) variables, of degree O(dr) and bitsize
O(drτ).

13
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4 Multigraded Chow forms

In [46], Osserman and Trager gave a generalization of Chow forms to multiprojetive varieties, i.e., varieties
in the multiprojective space Pn :=

∏l
i=1 P

ni , given as the zero locus of multihomogeneous polynomials. The
construction of a Chow form in the multiprojective space is similar to the projective case in the sense that
the multiprojective Chow form is simply defined as the defining polynomial of the set of linear subspaces of
Pn that intersects the variety. On the other hand, this intersection is dependent on the intersection theory
of the variety, i.e., its class in the Chow ring of Pn, which leads to degenerate and non-degenerate cases.

In this section, we will introduce the multigraded associated varieties and provide algorithms to compute
them. Moreover, we extend the results of [46] to the multigraded versions of Hurwitz forms.

Throughout Pn denotes the multiprojective space Pn = Pn1 × Pn2 × · · · × Pnl. For i = 1, . . . , l,
xi = (xi0,xi1, . . . ,xini

) denotes the coordinates of Pni . We assume that

V = V(f1, f2, . . . , fk) ⊂ Pn = Pn1 × Pn2 × · · · × Pnl (4)

is an r-dimensional multiprojective variety where each fi is a multihomogeneous polynomial of multidegree

di := mdeg(fi) = (di1, di2, . . . , dil).

For a vector α ∈ Nl, |α| :=
∑l

i=1 αi denotes the 1-norm of α. In particular, |n| is the dimension of Pn

and |di| is the total degree of fi. For α,β ∈ Nl, we write α ≤ β if β dominates α, i.e., ∀i ∈ [l], αi ≤ βi
holds.

4.1 The multidegree and the support of a multiprojective variety

A linear subspace of Pn = Pn1 × Pn2 × · · · × Pnl is defined to be a product of linear subspaces:

L = L1 × L2 × · · · × Ll.

We say the format of L is α = (α1, α2, . . . , αl) if dimLi = αi. Note that as an abstract variety, L has
dimension |α| =

∑
i αi.

Contrary to the projective case, for a multiprojective variety, the number of intersection points of a
linear subspace of complementary dimension may vary with the format of the subspace. Recall that a
projective variety of degree d has d intersection points with a linear subspace of complementary dimension.
The simplest counter-examples in the multiprojective space occur when one considers the multiprojective
varieties that are products of projective varieties. For example, if V = P1 × {p} ⊂ P1 × P1 then the
intersection with linear subspaces of format (1, 0) is generically empty whereas for a linear subspace of
format (0, 1), the intersection is a singleton.

This observation leads to the following definition which aims to capture the intersection theoretic
properties of the multiprojective variety V .

Definition 2. Let V ⊂ Pn be a pure dimensional multiprojective variety of dimension r. The support
supp(V ) of V is the set of all formats α ∈ Nl such that |α| = codimV and the intersection

V ∩ (L1 × L2 × · · · × Ll)

of V with a generic linear subspace L = (L1, L2, . . . , Ll) of format α is non-empty.
The multidegree2 mdeg(V ) of V is the set of all tuples (mα,α) where α ∈ supp(V ) and mα is the

number of intersection points of V with a generic linear subspace of Pn of format α.

2This concept is also called the dimension or the multidimension of a multiprojective variety in the literature. We reserve

the term dimension for the dimension of V as a projective variety, e.g., the dimension of its Segre embedding.
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We note that the number of intersection points, mα, is finite for dimension reasons.

Example 1. For i ∈ [l], let Vi ⊂ Pni be projective varieties of dimension ri and set

V := V1 × V2 × · · · × Vl ⊂ Pn.

For a linear subspace L = L1 × L2 × · · · × Ll, the equality

V ∩ L = (V1 ∩ L1)× (V2 ∩ L2)× · · · × (Vl ∩ Ll)

clearly holds. Hence, setting β := (n1 − r1, n2 − r2, . . . , nl − rl), one can observe that V intersects with a
generic subspace of format β at

∏l
i=1 degVi many points. For any other format γ with |γ| = codimV =

|n| − dimV , there exists i such that γi + ri < ni and, thus; the intersection Vi ∩ Li is generically empty.
The equalities

supp(V ) = {β}, mdeg(V ) = {(
l∏

i=1

deg(Vi),β)}

follow.

Remark 3. The multidegree of V can be also seen as the class of V in the Chow ring of Pn. Informally, the
Chow ring of Pnis the set of all formal linear combinations of the subvarieties of Pn, modulo the relations
given by rational equivalences (see, for example, [20, Definition 1.3]). In the case of the multiprojective
space Pn, the Chow ring is generated by the cycles of the form

[L] = [L1 × L2 × · · · × Ll]

where each Li is a linear subspace of Pni. Two cycles [L] and [L′] are equal if L and L′ have the same
format.

For a multiprojective variety V ⊂ Pn, the statement

mdeg(V ) = {(d1,β1), (d2,β2), . . . , (dk,βk)},

is equivalent to the statement that

[V ] =

k∑

i=1

di[Li]

in the Chow ring of Pn, where Li = [Li1 × Li2 × · · · × Lil] has format βi.

For an index set ∅ 6= I ⊂ [l], let

πI :

l∏

i=1

Pni →
∏

i∈I

Pni

denote the projection of Pn onto
∏

i∈I P
ni . The main result of [7] is that the support of V can be easily

computed if one is given dimπI(V ) for each index set ∅ 6= I ⊂ [l].

Theorem 4.1 ([7]). Assume V is an irreducible variety in Pn. Let β ∈ Nl with β ≤ n and |β| = codimV .
Then, β ∈ supp(V ) if and only if for all ∅ 6= I ⊂ [l] we have

∑

i∈I

(ni − βi) ≤ dimπI(V ).

15



On the Complexity of Chow and Hurwitz Forms

The above result can also be generalized to non-irreducible varieties as for a pure-dimensional mul-
tiprojective variety V with decomposition V = V1 ∪ · · · ∪ Vk, one has supp(V ) = ∪ki=1 supp(Vi). See [7,
Corollary 3.13] for the exact statement.

Remark 4. Assume V is irreducible. Define the function δ from the power set 2[l] of [l] to N via δ(I) =
dimπI(V ) for ∅ 6= I ⊂ [l] and δ(∅) = 0. Then δ is a submodular function, meaning δ satisfies the
following properties:

1. δ(∅) = 0,

2. for I ⊂ J , δ(I) ≤ δ(J), and,

3. for I, J ⊂ [l], δ(I) + δ(J) ≥ δ(I ∩ J) + δ(I ∪ J).

The proof of this fact can be found in [7]. We also refer to [29] for more on the combinatorial structure of
supp(V ). We note that together with Theorem 4.1, the submodularity of dimπI(V ) implies that supp(V ) ⊂
Nl is a polymatroid. We will discuss more on this in Section 5.

4.2 Computing the support of a multiprojective variety

In this section, we provide algorithms to compute supp(V ) by the means of Theorem 4.1. The idea is
to compute dimπI(V ) for every I ⊂ [l] and iterate through each possible format α ∈ Nl of dimension
codim(V ) and test membership to α ∈ supp(V ). Here, we emphasize the crucial observation that we
do not have access to the defining equations of πI(V ), since this requires elimination of variables and
significantly increases the complexity. Instead, we will show that a small modification of the original
dimension algorithms ([41, 11]) can be used to compute the dimension of any linear projection π(V ) of a
variety, V .

For simplification, we will assume that V ⊂ Cn is an affine variety. To compute the dimension, there is
no harm in working with affine varieties compared to projective/multiprojective ones since we can always
consider the (multi)affine cone

VA ⊂

l∏

i=1

Cni+1 = C|n|+l

over V ⊂
∏l

i=1 P
ni , defined as the zero set of the same set of polynomials, f1, f2, . . . , fk. Then the dimension

of the (multi)affine cone and the multiprojective variety is related by the formulas dimVA = dimV + l and
dimπI(VA) = dimπI(V ) + |I|, and, in particular, we can compute dimπI(V ) from dimπI(VA).

The dimension algorithms in [41, 11] rely on the observation that a variety Z ⊂ Cn has dimension
at least s if and only if a generic affine subspace L ⊂ Cn of dimension n − s intersect Z. Now we take
Z = πI(V ). Assume m ≤ n and π : Cn → Cm denotes the orthogonal projection onto the first m
coordinates. Then, for an affine subspace L ⊂ Cm we have

π(V ) ∩ L 6= ∅ ⇐⇒ V ∩ π−1(L) 6= ∅.

In particular, dimπ(V ) ≥ s if and only if for a generic affine subspace L ⊂ Cm of dimension m − s we
have V ∩ π−1(L) 6= ∅. Note that π−1(L) is an affine subspace of dimension n − s and can be given as
the zero locus of s linear polynomials. The complexity of computing dimπI(V ) is hence equivalent to the
complexity of constructing a generic linear subspace L ⊂ Cm (see [41, Lemma 5.5, Theorem 5.6]) and
checking if f1, f2, . . . , fk have a common zero in L. Following [41], the complexity of these tasks is bounded
by kO(1)dO(n)O(τ).
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Theorem 4.2. Assume V ⊂ Cn is given as the zero set of polynomials f1, f2, . . . , fk ∈ C[x] of degree ≤ d
with integer coefficients of bitsize ≤ τ . Let m ≤ n. Then, the dimension of the image π(V ) of V under the
orthogonal projection π : Cn → Cm onto the first m ≤ n coordinates can be computed in

kO(1) dO(n)O(τ)

bit operations.

Theorem 4.3. Assume V ⊂ Pn =
∏l

i=1 P
ni is an irreducible multiprojective variety of dimension r,

given as the zero set of multihomogeneous polynomials f1, f2, . . . , fk, of multidegrees d1,d2, . . . ,dk and
with integral coefficients of bitsize bounded by τ .

Then, we can compute supp(V ) in time

kO(1) DO(|n|) 2lO(τ) + 2lO(

(
|n| − r

l

)
)

bit operations where D = maxi{|di|} is the maximum total degree of fi.

Proof. Using the previous theorem, for each I ⊂ [l] we can compute dimπI(V ) in

kO(1)DO(|n|)O(τ).

Iterating through the power set 2[l], the family (dimπI(V ) | I ⊂ [l]) can be computed in the claimed
complexity. Using Theorem 4.1, we can now compute supp(V ) by iterating through each possible format
α with |α| = |n| − r and decide whether for every I ⊂ [l]

∑
i∈I ni − αi ≤ dimπI(V ) holds. The number of

possible formats is bounded by
(|n|−r

l

)
and the number of constraints to be checked is bounded by 2l.

4.3 Associated varieties of multiprojective varieties

In this section, we introduce the generalization of associated hypersurfaces to multiprojective varieties.
The definitions and the results of this section follow [46].

Definition 3. Let α ∈ Nl be a format such that α ≤ n, i.e., ∀i ∈ [l], αi ≤ ni, and |α| = codimV − 1. The
associated variety of V of format α is defined to be the multiprojective variety

CZV,α =
{
(L1, L2, . . . , Ll) ∈

l∏

i=1

Gr(αi, ni) | V ∩ (L1 × L2 × · · · × Ll) 6= ∅
}
.

That is, CZV,α is the set of all linear subspaces of Pn of format α that intersect V .

As the term associated variety suggests, CZV,α is not always a hypersurface.

Example 2. Assume n1, n2 ≥ 3, let V1 ⊂ Pn1 , V2 ⊂ Pn2 be arbitrary varieties of codimension 2 and
consider Ṽ := V1 × V2 ⊂ Pn1 × Pn2. Since codim Ṽ = 4, there are four possible formats for the associated
varieties, namely α = (3, 0), (2, 1), (1, 2), (0, 3). By the symmetry of V1, V2, we will only consider (3, 0) and
(2, 1). Note that

CZ Ṽ ,(2,1) = {(L1, L2) ∈ Gr(2, n1)×Gr(1, n2) | L1 × L2 ∩ V 6= ∅}

= {(L1, L2) ∈ Gr(2, n1)×Gr(1, n2) | L2 ∩ V2 6= ∅}

= Gr(2, n1)× CZV2
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is indeed a hypersurface. However,

CZ Ṽ ,(3,0) = {(L1, p) ∈ Gr(3, n1)× Pn2 | (L1 × {p}) ∩ V 6= ∅}

= {(L1, p) ∈ Gr(3, n1)× Pn2 | p ∈ V2}

= Gr(3, n1)× V2

is a codimension 2 variety in Gr(3, n1)× Pn2 .

The formats in supp(V ) and the formats for which the associated variety is a hypersurface are closely
related. If we consider the previous example, the support supp(V ) of V is {(2, 2)} by Example 1, and the
formats α for which CZV,α is a hypersurface are (2, 1) and (1, 2). If we mark the formats in the support
of V and the formats where CZV,α is a hypersurface, we arrive at the following diagram in the partially
ordered set of the formats:

α2

α1

(2, 2)

α2

α1

(1, 2)

(2, 1)

Figure 1: Example 2. On the left, we have supp(V ), cut out by α1+α2 = 4, α1 ≥ 2, α2 ≥ 2,
as described in Theorem 4.1. On the right, we have the set of formats such that the
associated variety is a hypersurface which is cut out by α1 + α2 = 3, α1 ≥ 1, α2 ≥ 1.

This example is no coincidence and the next proposition clarifies the relation between supp(V ) and the
formats of associated varieties.

Proposition 4.4. Assume α ≤ n and |α| = codimV − 1. Then the following are equivalent.

1. CZV,α is a hypersurface.

2. There exists β ∈ supp(V ) such that α ≤ β.

3. For all ∅ 6= I ⊂ [l], we have dimπI(V ) ≥
∑

i∈I(ni − αi)− 1.

Proof. See Proposition 3.1 and Corollary 5.11 of [46].

4.4 Computing the Chow form of a multiprojective variety

In this section, we provide algorithms to compute associated varieties of multiprojective varieties. For
the rest of the section, V ⊂ Pn = Pn1 × Pn2 × · · · × Pnl is a pure dimensional multiprojective variety of
dimension r.

4.4.1 The complete intersection case

As in the case of projective varieties, we first assume that V is a complete intersection, i.e.,

V = Z(f1, f2, . . . , f|n|−r)

is the zero locus of k = |n| − r many multihomogeneous polynomials. To simplify notation for the next
lemma, we will denote n = |n| =

∑l
i=1 ni and assume that ∀i ∈ [k], j ∈ [l],deg(fi;xj) ≤ d.

18
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Algorithm 5 MultiChowForm CI

Input: f1, . . . , f|n|−r ∈ Z[x1,x2, . . . ,xl], α ∈ Nl

Precondition: V = V(f1, . . . , f|n|−r) is pure r-dimensional. CZV,α is a hypersurface.
Output: The Chow form of V corresponding to format α.

1. Consider linear forms,

U i
j :=

ni∑

k=0

uijkxij, for 0 ≤ j ≤ ni − αi − 1

for i = 1, 2, . . . , l.

2. Eliminate the variables x1, . . . ,xl.

R = Elim({f1, . . . , f|n|−r, U
i
j}, {x1, . . . ,xl}) ∈ Z[uijk]

3. Rr = SquareFreePart(R).

4. return Rr.

Lemma 4.5. Let V be a r-dimensional complete intersection, i.e., V is the zero locus V(f1, f2, . . . , fn−r)
of k := n − r many multihomogeneous polynomials and assume that deg(fi;xj) ≤ d for i ∈ [k], j ∈ [l] and

the bitsizes of fi are bounded by τ . Set Br := (dl)n−r
∑l

i=1

(
n−r

α1,...,αi+1,...,αl

)
, where the summands in the

second factor are the multinomial coefficients. If α is a format that satisfies the equivalent conditions of
Proposition 4.4, then the Chow form of V corresponding to α is a multihomogeneous polynomial in A =∑l

i=1(ni−αi)(ni+1) new variables of total degree at most Br and bitsize Õ(nBrτ). MultiChowForm CI

(Alg. 5) computes CFV,α in

ÕB(n
ω+12(ω+1)n B(ω+1)r2+2A+ω+1

r (τ + n3))

bit operations (Las Vegas) where ω is the exponent of matrix multiplication,

Proof. The proof is similar to the proof of Proposition 3.3. To exploit the multihomogeneity, we use
sparse/multiprojective resultant computations and the multihomogeneous Bézout bound. We have n − r
multihomogeneous polynomials, each having (total) degree at most dl. To compute the CFV,α we add
(ni − αi) linear forms in xi, U

i
j ; their coefficients are the variables uijk, for i ∈ [l]. The sparse resultant is

an irreducible polynomial in the coefficients of fi and uijk, which vanishes if and only if V and the linear

subspace described by U i
j intersects.

The sparse resultant is homogeneous in each set of variables ui
j . Its degree with respect to ui

j equals to

the generic number of solutions of the remaining system when ui
j is omitted, hence bounded by the multi-

homogeneous Bézout bound (dl)n−r
( n−r
α1,...,αi+1,...,αl

)
where the second factor is the multinomial coefficient :

(
N

a1, . . . , al

)
:=

N !

a1! a2! . . . al!

Thus, the resultant has total degree at most Br. The coefficients are integers of bitsize Õ(nBrτ). The
number of monomials is bounded by Õ(Br2

r ). Following [15], we compute the sparse resultant as a ratio of
two determinants using the sparse resultant matrix. The sparse resultant matrix has dimension M ×M ,
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where M = O(nenBr) and each entry of M is a coefficient of one of the input polynomials fi or the linear
forms U i

j .

It suffices to specialize uijk to numbers of bitsize O(n3 lg(d)). So the specialized matrix contains numbers

of bitsize Õ(τ + n3). We compute each determinant in ÕB(M
ω+1(τ + n3)). We need to perform this

computations Õ(Br2
r ) many times and then we recover the resultant using interpolation. The cost of all

the evaluations is ÕB(n
ω+12(ω+1)nBr2+ω+1

r (τ + n3)). The cost of interpolation is ÕB(B
ωr2+1
r (τ + n3)).

Finally, the cost of computing the square-free part is ÕB((nBr)
2A+1τ).

The algorithm is of Las Vegas type becauce of the construction of the resultant matrix (see the remark
that follows).

Remark 5. In the previous complexity estimate, we should also take into account the cost for constructing
the sparse resultant matrix. Following [9, Thm. 11.6] there is a Las Vegas algorithm for this computation
with cost ÕB(M), where M is the size of the matrix and the number of lattice points in the Minkowski sum
of the Newton polytopes of the input polynomials. In our case, as the polynomials are multihomogeneous,
the corresponding Newton polytopes are product of simplices. Therefore, we can also afford to construct the
resultant matrix using the lower hull of an appropriate (sufficiently generic) lifting of the lattice points of
the Minkowski sum of the Newton polytopes; this costs Õ(M ⌊n/2⌋) [48]. Neither complexity bound dominates
the overall complexity; this is so because the resultant matrix contains polynomials in many variables, that
is the ui

j’s.
The Las Vegas characterization is due to the sufficiently generic lifting but also due to the random

perturbation needed in order to assign the lattice points to the appropriate polynomials. We refer to [9, 15]
for further details.

To avoid the case that the denominator is zero in the resultant computations, we can apply the technique
of the generalized characteristic polynomial [6], similarly to the projective case. Now, we can apply a
symbolic perturbation to all the terms of all the polynomials [49] or only to the terms that appear in the
diagonal of the resultant matrix [44]. In both cases, we introduce one additional variable that does not
affect the single exponential behavior of the complexity bound.

4.4.2 The general case

Algorithm 6 MultiChowForm

Input: f1, . . . , fm ∈ Z[x1,x2, . . . ,xl], r ∈ N, α ∈ Nl

Precondition: V = V(f1, . . . , fm) is pure r-dimensional and CZV,α is a hypersurface.
Output: The Chow form of V .

1. Λ1, . . . ,ΛN := MultiGenericLC(f1, f2, . . . , fm).

2. for r ∈ [N ] do Fi = ChowForm CI(Λi
f );

3. return gcd(F1, . . . , FN )

Now we remove the assumption that V is a complete intersection and assume

V = Z(f1, f2, . . . , fm) ⊂ Pn,

where m ≥ |n| − r. Consider the multidegrees di = mdeg(fi) and set

d = (max
i

di1,max
i

di2, . . . ,max
i

dim).
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Note that for all i = 1, 2, . . . ,m we have di ≤ d by construction. For each i = 1, 2, . . . ,m with di < d, we
replace the polynomial fi with the collection xα1

1 xα2
2 · · ·x

αl

l fi where xj denotes the j-th block of variables
of the multiprojective space Pn and αj runs over the all possible monomials with |αj | = dj −di

j . The new

collection f̃ has the property that each polynomial in it has the same multidegree, d. Hence, without loss
of generality, we will assume throughout the rest of the section that V = Z(f1, f2, . . . , fm) where each fi
has the same multidegree, mdeg(f) = d.

As in the projective case, for Λ ∈ Ck×m we consider k linear combinations Λf of f , defined as in (3).
By the assumption that each fi has the same multidegree, each linear combination has multidegree d, and,
thus; has a well-defined zero locus in Pn.

For generic Λ ∈ Ck×m we have Z(Λf ) = V ∪ X for some pure dimensional variety X of dimension
|n| − k. The proof is essentially the same as the projective case, Proposition 3.6 and Proposition 3.7. The
only change in the proof is the bound on the number of irreducible components of a variety, where the
Bézout bound is replaced by the multihomogeneous Bézout bound.

Proposition 4.6. Let N = ⌈ m
|n|−r⌉. For generic choices of matrices Λ1, . . . ,ΛN ∈ C(|n|−r)×m, each

variety V(Λi
f ) is a pure dimensional variety of dimension r and V = ∩Ni=1V(Λ

i
f ). More concretely, there

is a hypersurface H ⊂ CN(|n|−r)×m of degree ≤ N(|n| − r)|d||n|−r−1 +m such that for any (Λ1, . . . ,ΛN ) ∈
CN(|n|−r)×m \H, the condition is satisfied.

The proposition allows us to consider the following algorithm to generate (Λ1, . . . ,ΛN ) satisfying the
condition of Proposition 4.6.

Algorithm 7 MultiGenericLC

Input: f1, . . . , fm ∈ Z[x1,x2, . . . ,xl], r ∈ N

Precondition: V(f1, f2, . . . , fm) is pure r-dimensional.
Output: Λ1,Λ2, . . . ,ΛN .
Postcondition: See Proposition 4.6.

1. N := ⌈ m
|n|−r⌉.

2. S := [N(|n| − r)|d||n|−r +m+ 1] ⊂ N.

3. for (Λ1,Λ2, . . . ,ΛN ) ∈ SN(|n|−r)m do
if dim(V(Λi

f )) ≤ r and Ξ is full-rank then

return Λ1, . . . ,ΛN ;

Lemma 4.7. Algorithm 7 returns a tuple (Λ1,Λ2, . . . ,ΛN ) satisfying the requirements of Proposition 4.6
in τm2m2+O(1)|2d|m

2n+O(|n|).

Proof. The proof goes as in Lemma 3.8. To test dimension of V(Λi
f ), we consider the affine cone C =

VA(Λ
i
f ) over V(Λi

f ). We have dimC = dimV(Λi
f ) + l, so we can compute the dimension of V(Λi

f ) from
dimC.

For the simplicity of notation, we will assume for the next theorem that d = maxi di and n = |n|.

Theorem 4.8. Consider I = 〈f1, . . . , fm〉 ⊆ Z[x1, . . . ,xl], where each fi is multihomogeneous of degree
d and bitsize τ ; also the corresponding multiprojective variety, V , has pure dimension r. Also, Br =
(dl)n−r

∑l
i=1

(
n−r

α1,...,αi+1,...,αl

)
.
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The Chow form of V corresponding to a format α is a multihomogeneous polynomial in A =
∑l

i=1(ni−

αi)(ni + 1) new variables of total degree ≤ Br and bitsize Õ(nBrτ).
MultiChowForm (Alg. 6) computes CFV in

ÕB(m
2m2+κnω+12(ω+1)n Bm2n+(ω+1)r2+2A+ω+1

r (τ + n3)),

bit operations where ω is the exponent of matrix multiplication and κ is a small constant, depending on the
precise complexity of the dimension test in Alg. 7.

Proof. The cost of generating Λ1, . . . ,ΛN is τm2m2+O(1)(2d)m
2n+O(n) by the previous lemma.

Λi
f have bitsizes bounded by O(lgm + n lg d + n lg l + τ) = Õ(τ + n). As there are N = O(m) Chow

forms to compute, the second step costs ÕB(mn424nB
(ω+1)r2+2A+6
r (τ2 + n6)).

For the last step, we need to compute the gcd of N Chow forms. As in the proof of Theorem 3.9, the
cost of this step is less than the claimed complexity, therefore we can omit it.

4.5 The multiprojective Hurwitz form

Recall that for a projective variety V ⊂ Pn of dimension r, the Hurwitz form is defined to be the defining
polynomial of the set of all linear forms L ∈ Gr(n − r, n) such that the intersection L ∩ V is non-generic,
i.e., either L ∩ V is infinite, or, L ∩ V is finite but |L ∩ V | < deg V . As in the case of the Chow forms, one
readily generalizes the Hurwitz form to multiprojective varieties.

Definition 4. Assume V ⊂ Pn is an irreducible multiprojective variety of dimension r and α ∈ Nl is a
format with |α| = codimV . We define the higher associated variety HZV,α ⊂ Pn as the set of all linear
subspaces L of format α which intersects V in non-generic way. That is, for α ∈ supp(V ), HZV,α is the
set of all linear subspaces L of format α such that V ∩ L is either infinite, or, |L ∩ V | < mdeg(V, α).
Similarly, if α 6∈ supp(V ), then we define HZV,α as the set of all linear subspaces L of format α such that
L ∩ V 6= ∅.

As in the case of the Chow forms, the higher associated variety is not always a hypersurface.

Example 3. Recall Example 2, where

Ṽ = V1 × V2 ⊂ Pn1 × Pn2

for codimension 2 varieties V1, V2. Moreover, assume that deg V1,deg V2 > 1. Note that we have supp(V ) =
{(2, 2)}. For α = (4, 0),

HZ Ṽ ,(4,0) = {L1 × {p} ∈ Gr(4, n1)×Gr(0, n2) | (L1 × {p}) ∩ Ṽ 6= ∅}

= {L1 × {p} ∈ Gr(4, n1)×Gr(0, n2) | p ∈ V2}

= Gr(4, n1)× V2

has codimension 2. For α = (3, 1), on the other hand,

HZ Ṽ ,(3,1) = {L1 × L2 ∈ Gr(3, n1)×Gr(1, n2) | L2 ∩ V2 6= ∅}

= Gr(3, n1)× CZV2

is a hypersurface. For α = (2, 2),

HZ Ṽ ,(2,2) = {L1 × L2 ∈ Gr(2, n1)×Gr(2, n2) | ♯(L1 × L2 ∩ Ṽ ) 6= deg V1 deg V2}

=
(
HZV1 ×Gr(2, n2)

)
∪
(
Gr(2, n1)×HZV2

)

is again a hypersurface.
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α2

α1

(1, 2)

(2, 1)

α2

α1

(1, 3)

(2, 2)

(3, 1)

Figure 2: Example 3. The blue points are the formats for which the associated variety
CZ Ṽ ,α is a hypersurface. The yellow points are the ones with HZ Ṽ ,α a hypersurface and
cut out by the inequalities and the equality α1 + α2 = 4, α1 ≥ 1, α2 ≥ 1.

Similar to the case of associated varieties of multiprojective varieties, we can classify all formats α
where HZV,α is a hypersurface.

Theorem 4.9. Let V ⊂ Pn be an irreducible multiprojecive variety of dimension r and let α ≤ n be a
format with |α| = codimV . If α 6∈ supp(V ), then the following are equivalent.

1. HZV,α ⊂
∏l

i=1 Gr(αi, ni) is a hypersurface.

2. For every ∅ 6= I ⊂ [l] we have ∑

i∈I

ni − αi ≤ dimπI(V ) + 1.

3. There exists a format γ ≤ α such that |γ| = codimV − 1 and CZV,γ is a hypersurface.

If α ∈ supp(V ), then HZV,α is a hypersurface if and only if mdeg(V, α) 6= 1.

Proof. The proof is similar to the proof of [46, Proposition 3.1], and it takes about two pages. (1⇒ 2) For
α 6∈ supp(V ), we have

HZV,α = {L ∈
l∏

i=1

Gr(αi, ni) | L ∩ V 6= ∅}.

Consider the incidence variety

Z = {(p, L) ∈ V ×

l∏

i=1

Gr(αi, ni) | p ∈ L}

and the double filtration
V ← Z → HZV,α.

Note that both projections are surjective. For a point p ∈ V , the fiber over p is given by

{L ∈
l∏

i=1

Gr(αi, ni) | p ∈ L}

which is itself a product of Grassmannians and has dimension
∑l

i=1 αi(ni − αi). Hence, the incidence
variety Z has dimension

r +

l∑

i=1

αi(ni − αi) =

l∑

i=1

(αi + 1)(ni − αi) = dim(

l∏

i=1

Gr(αi, ni)).
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In particular, HZV,α is a hypersurface if and only if the generic fiber over a linear subspace L ∈ HZV,α

has dimension 1. Note that for L ∈
∏l

i=1Gr(αi, ni), the fiber over L equals L ∩ V .
Assume that the inequalities in (2) are not satisfied, i.e., there exists ∅ 6= I ⊂ [l] such that

∑
i∈I ni−αi >

dimπI(V ) + 1. Then

r − dimπI(V ) > r − (
∑

i∈I

ni − αi) + 1 = 1 +
∑

i 6∈I

ni − αi

holds. In this case we will prove that dim(V ∩ L) is at least 2 for a generic linear subspace L ∈ HZV,α.
For such L, denote by LI the product

∏
i∈I Li and similarly LIc =

∏
i 6∈I Li. Then, we have

V ∩ L =
(
V ∩ π−1

I (LI)
)
∩ π−1

Ic (LIc).

Since L ∈ HZV,α, we have V ∩ π−1
I (LI) 6= ∅. This implies that πI(V ) ∩ LI 6= ∅ so V ∩ π−1

I (LI) has
dimension at least the generic fiber dimension of πI , i.e.,

dim(V ∩ π−1
I (LI)) ≥ r − dimπI(V ) > 1 +

∑

i 6∈I

ni − αi.

Since codimπ−1
Ic (LIc) =

∑
i 6∈I ni − αi, we get dim(V ∩ L) = dim(V ∩ π−1

I (LI) ∩ π−1
Ic (LIc)) > 1. Therefore,

HZV,α is not a hypersurface in this case.
(2 ⇒ 3) Assume that for each ∅ 6= I ⊂ [l] the required inequality holds. We will show that there

exists an index j ∈ [l] such that j ∈ I implies
∑

i∈I ni − αi ≤ dimπI(V ). Then, setting γ = α − ej =
(α1, . . . , αj−1, αj − 1, αj+1, . . . , αl), for any I ⊂ [l] we have

∑

i∈I

ni − γi =

{∑
i∈I ni − αi if j 6∈ I

(
∑

i∈I ni − αi) + 1 if j ∈ I
≤ dimπI(V ) + 1.

By Proposition 4.4, we deduce that CZV,γ is a hypersurface.
To prove the existence of the index j, we set

Sα := {I ⊂ [l] |
∑

i∈I

ni − αi = dimπI(V ) + 1}.

Note that Sα 6= ∅ since α 6∈ supp(V ). We recall that the function I 7→ dimπI(V ) has the property that
for I, J ⊂ [l],

dimπI(V ) + dimπJ(V ) ≥ dimπI∪J(V ) + dimπI∩J(V )

holds (Remark 4). Then, for I, J ∈ Sα, we have

∑

i∈I∪J

ni − αi =
∑

i∈I

ni − αi +
∑

i∈J

ni − αi −
∑

i∈I∩J

ni − αi

≥ dimπI(V ) + 1 + dimπJ(V ) + 1− dimπI∩J(V )− 1

≥ dimπI∪J(V ) + 1.

Thus, I ∪ J ∈ Sα. On the other hand, for I = [l] we have

∑

i∈[l]

ni − αi = |n| − |α| = r = dim(V ),

which implies that [l] 6∈ Sα. Since Sα is closed under taking unions and [l] 6∈ Sα, we deduce that there is
an index j ∈ [l] such that I ∈ Sα implies j 6∈ I. The result follows.
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(3⇒ 1) By permuting the indices if necessary we may assume without loss of generality that

α = γ + e1 = (γ1 + 1, γ2, . . . , γl).

Consider the incidence variety

Z = {(L, L̃) ∈ CZV,γ ×HZV,α | L ⊂ L̃}

and the double filtration
CZV,γ ← Z → HZV,α.

Note that both projections are surjective. For L ∈ CZV,γ , the fiber over L equals

{L̃ ∈

l∏

i=1

Gr(αi, ni) | L1 ⊂ L̃1, L2 = L̃2, . . . , Ll = L̃l}

which is isomorphic to the Grassmannian Gr(α1− γ1− 1, n1− γ1− 1) ∼= Pn1−γ1−1. Thus, Z has dimension

dim CZV,α + n1 − γ1 − 1 =
l∑

i=1

(γi + 1)(ni − γi) + n1 − γ1 − 2.

Similarly, for L̃ ∈ HZV,α, the fiber over L̃ is isomorphic to the Grassmannian Gr(γ1, α1) with dimension
α1 = γ1 + 1. Thus, we have

dimHZV,α = dimZ − α1 =
l∑

i=1

(γi + 1)(ni − γi) + n1 − 2γ1 − 3

=

l∑

i=1

(αi + 1)(ni − αi)− 1 = dim(

l∏

i=1

Gr(αi, ni))− 1.

Example 4. The condition that mdeg(V, α) 6= 1 is necessary and reminisces the condition deg(V ) 6= 1 in
the projective case. For a linear subspace L = L1 × L2 × · · · × Ll of format α we have

HZL,n−α =
{
K1 ×K2 × · · · ×Kl ∈

l∏

i=1

Gr(ni − αi, ni) | ∃j ∈ [l], dim(Kj ∩ Lj) ≥ 1
}
.

This variety is simply the union of higher associated varieties of each factor Li, each having codimension
2. Hence, HZL,n−α has itself codimension 2.

For a slightly more interesting example let V ⊂ Pn × Pn be the multiprojective variety given as the
zero set of the standard bilinear product, V = V(〈x, y〉). That is, (x, y) ∈ V iff

∑n
i=0 xiyi = 0. By direct

computation we can see that for a linear subspace L = l × {[v]} of format (1, 0) we have

V ∩ L = (l ∩ [v⊥])× {[v]},

where [v⊥] = {[w] ∈ Pn | 〈v,w〉 = 0}. For a generic L, the projective line l intersects the hyperplane [v⊥]
at a single point. Hence, mdeg(V, (1, 0)) = 1. On the other hand, V ∩ L is infinite if and only if l ⊂ [v⊥].
Consider the variety

HZV,(1,0) = {l × {[v]} ∈ Gr(1, n)×Gr(0, n) | l ⊂ [v⊥]}

and the projection π : HZV,(1,0) → Pn onto the second coordinate. Then π is surjective and the fiber over

a point [v] is isomorphic to Gr(1, [v⊥]) which has dimension 2n− 4. Hence,

dimHZV,(1,0) = n+ 2n− 4 = 3n− 4

holds. Since dimGr(1, n)×Gr(0, n) = 3n− 2, we deduce that HZV,(1,0) is not a hypersurface.
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5 Combinatorial structure of the support of a multiprojective variety

In this section, we outline an interesting connection between multiprojective varieties and the polymatroid
theory.

Recall from Theorem 4.1 that the support supp(V ) of an irreducible multiprojective variety V ⊂∏l
i=1 P

ni are cut out by the inequalities of the form

∑

i∈I

(ni − βi) ≤ dimπI(V ), (5)

where I runs over all possible subsets of [l]. It is immediate from the inequalities that supp(V ), i.e. the set
of β that satisfies (5), is the set of lattice points of a rational polytope. Remark 4 shows that the function
I 7→ dimπI(V ) has special properties, i.e., it is submodular, which further makes supp(V ) a polymatroid.
See Definition 5 below for the definition of a polymatroid.

As demonstrated in Figure 1, the set of formats α for which CZV,α is a hypersurface equals to the set
of lattice points that lie “below” supp(V ). Furthermore , the set of formats for which the higher associated
variety is a hypersurface are the lattice points that lie “above” the set of non-degenerate Chow formats as
in Figure 2. The exact meaning of lying below and above were given in Proposition 4.4 and Theorem 4.9.
In this section, we will translate these results to the language of polymatroid theory. More specifically,
we will show that the operations of taking points below or above a polymatroid correspond to truncation
and elongation of polymatroids, respectively, which also implies that the set of non-degenerate formats of
Chow/Hurwitz forms are polymatroids as well.

Definition 5. Let l ∈ N and δ : 2[l] → N. Then, δ is called submodular if

1. δ(∅) = 0,

2. for I ⊂ J ⊂ [l], δ(I) ≤ δ(J) , and,

3. for I, J ⊂ [l], δ(I) + δ(J) ≥ δ(I ∪ J) + δ(I ∩ J).

For a submodular function δ, the set

P(δ) := {α ∈ Nl |
∑

i∈I

αi ≤ δ(I), I ⊂ [l]}

is called the (discrete) polymatroid associated to δ.

In the case that δ(I) ≤ |I| for I ⊂ [l], P(δ) is called a matroid with the rank function δ. Note that in
this case P(δ) consists of binary vectors (by simply taking I = {i} we get αi ≤ 1) so we can associate the
elements of P(δ) to the subsets of [l]. In the general case, we can associate the elements of a polymatroid
with multisubsets of [l], i.e., subsets where the repetition of elements are allowed.

The polymatroids admit properties reminiscent to matroids. We refer to [28, Section 18] for proofs.

Proposition 5.1. Assume that P is a polymatroid.

1. P is downward closed, i.e., if α ∈ P and β ≤ α then β ∈ P. A vector α ∈ P which is not
dominated by any other vector in P is called a basis.

2. If α, β ∈ P with |β| < |α|, then there exists an index i ∈ [l] such that β + ei ∈ P.

3. If α ∈ P is a basis then |α| = δ([l]).
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Remark 6. For the remainder of the section, the chief example of a polymatroid to us is the support of
a multiprojective variety (and its downward closure). The polymatroids of this form are now called Chow
polymatroids,3 an interesting (and proper) subclass of polymatroids.

Now we turn our attention to multiprojective varieties and their supports. To describe the submodular
function of supp(V ), we need the following definition.

Lemma 5.2 (Dual polymatroid). Assume P ⊂ Nl is a polymatroid associated to the submodular function
δ : 2[l] → N. Let n ∈ Nl be such that ∀I ⊂ [l], δ(I) ≤

∑
i∈I ni. Then,

1. The function

δ∗(I) := δ([l] \ I)− δ([l]) +
∑

i∈I

ni

is submodular.

2. The set
P∗ := n− P = {n − α | α ∈ P}

is a polymatroid, associated to the submodular function δ∗, called the dual of P with respect to n.

Proof. To prove (1), we simply check the conditions of submodularity. First, we observe that for I ⊂ [l],

δ∗(I) = δ([l] \ I)− δ([l]) +
∑

i∈I

ni

≥ −δ(I) +
∑

i∈I

ni

≥ 0

where in the second line we used δ(I) + δ([l] \ I) ≥ δ([l]). If I ⊂ J , then

δ∗(I) = δ([l] \ I)− δ([l]) +
∑

i∈I

ni

≤ δ([l] \ J) + δ(J \ I)− δ([l]) +
∑

i∈J

ni −
∑

i∈J\I

ni

= δ([l] \ J)− δ([l]) +
∑

i∈J

ni +
(
δ(J \ I)−

∑

i∈J\I

ni

)

≤ δ∗(J).

Lastly, for I, J ⊂ [l], we have

δ∗(I) + δ∗(J) = δ([l] \ I) + δ([l] \ J)− 2δ([l]) +
∑

i∈I

ni +
∑

i∈J

ni

≥ δ([l] \ (I ∪ J)) + δ([l] \ (I ∩ J))− 2δ([l]) +
∑

i∈I∪J

ni +
∑

i∈I∩J

ni

= δ∗(I ∪ J) + δ∗(I ∩ J).

3This naming is unfortunate for us because we will later associate a polymatroid to the formats of non-degenerate Chow

forms of a variety, which are not themselves Chow polymatroids.
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Hence, δ∗ is submodular and this finishes the proof of (1). To prove the second claim, we note that a vector
β ∈ Nl is in P∗ if and only if

∀I ⊂ [l],
∑

i∈I

βi ≤ δ([l] \ I)− δ([l]) +
∑

i∈I

ni.

Rearranging the inequality we obtain
∑

i∈I(ni − βi) ≤ δ([l])− δ([l] \ I). Note that δ([l])− δ([l] \ I) ≤ δ(I)
holds by the submodularity of δ so we have ∀I,

∑
i∈I ni − βi ≤ δ(I) which implies that n − β ∈ P and

n−P∗ ⊂ P. On the other hand, (δ∗)∗ = δ so applying the same argument with the roles of P,P∗ swapped,
we deduce that P∗ = n− P and this finishes the proof.

Remark 7. Note that by the definiton of δ∗ it is immediate that for any I ⊂ [l], the inequality δ∗(I) ≤∑
i∈I ni holds. This allows us to take dual again, i.e., we can take the dual of P∗ with respect to n. By

Lemma 5.2 (2), it is easy to see that (P∗)∗ = P .

With this definition, Theorem 4.1 translates to the following.

Theorem 5.3 ([7]). Let n = (n1, n2, . . . , nl) ⊂ Nl be a vector and let V ⊂ Pn be an irreducible multipro-
jective variety. Then, supp(V ) is the set of basis vectors of a polymatroid, which is dual (with respect to
n) to the polymatroid associated to the submodular function δ(I) = dimπI(V ) where πI(V ) denotes the
projection of V onto the multiprojective space

∏
i∈I P

ni.

Proposition 4.4 and Theorem 4.9 describe two interesting combinatorial sets related to supp(V ). In
the case of Chow forms, the formats α where CZV,α is a hypersurface are all of the form β − ei where i =
1, 2, . . . , l and β ∈ supp(V ). In the case of Hurwitz forms, the formats are of the form α+ ei, i = 1, 2, . . . , l
where α is a format and CZV,α is a hypersurface. In particular, both of these sets also have a combinatorial
structure that is closely related to supp(V ). Indeed, both of these sets are also polymatroids, obtained by
applying structure preserving operations to supp(V ).

Proposition 5.4. Let P ⊂ Nl be a polymatroid associated to the submodular function δ and n ∈ Nl be a
vector with ∀I ⊂ [l],

∑
i∈I ni ≥ δ(I). Then, the sets

PT := {α− ej | α ∈ P, j ∈ [l], αj ≥ 1}

PE := {α+ ej | α ∈ P, j ∈ [l], αj < nj}

are also polymatroids, called the truncation and elongation of P, respectively. Moreover, we have
((P∗)T )

∗ = PE , i.e., the elongation of P is the dual of the truncation of the dual of P where the dual
is taken with respect to n.

Proof. Define a new submodular function δ′ as

∀I ⊂ [l], δ′(I) := min{ δ(I) , δ([l]) − 1 }.

It is straightforward to show that δ′(I) is submodular. We claim that PT is the polymatroid associated to
δ′. We first prove that P(δ′) ⊂ PT . Suppose β ∈ Nl satisfies ∀I,

∑
i∈I βi ≤ δ′(I). In particular, we have

|β| ≤ δ′([l]) = δ([l]) − 1. By Proposition 5.1 (2) and (3), there exists ei such that β + ei ∈ P so β ∈ PT .
For the reverse inclusion, we assume that β = α− ej ∈ PT where α ∈ P and αj ≥ 1. We need to prove

that β satisfies the inequalities
∑

I βi ≤ δ′(I) for I ⊂ [l]. There are two cases. If j ∈ I then

∑

i∈I

βi =
∑

i∈I

αi − 1 ≤ δ(I) − 1 ≤ δ′(I).
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Hence we may assume that j 6∈ I. To reach a contradiction, assume that
∑

i∈I βi =
∑

i∈I αi > δ′(I). Then
we must have δ(I) = δ([l]) and δ′(I) = δ([l])− 1. This implies that

∑
i∈I αi = δ([l]). Since |α| ≤ δ([l]) also

holds, we deduce that
∑

i 6∈I αi = 0. This contradicts αj ≥ 1 and finishes the proof that PT = P(δ′).

The claim ((P∗)T )
∗ = PE follows from Lemma 5.2 (2) and implies that PE is a polymatroid since the

dual and the truncation operators preserve being a polymatroid.

Now we state Proposition 4.4 and Theorem 4.9 in the language of polymatroids.

Theorem 5.5. Let V ⊂ Pn be an irreducible multiprojective variety and assume that mdeg(V, α) 6= 1 for
α ∈ supp(V ). If P denotes the polymatroid with basis vectors in supp(V ), then

1. the set of basis vectors of the truncation PT of P equals the set of all formats α such that the associated
variety CZV,α is a hypersurface, and,

2. the set of basis vectors of the elongation PE
T of PT equals the set of all formats β such that the higher

associated variety HZV,β is a hypersurface.
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A Auxiliary results

The proof of Proposition 3.3 relies on the following that bounds on the bitsize of multivariate polynomial
multiplication; see [44].

Claim A.1 (Polynomial multiplication). The following bounds holds:
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(i) Consider two multivariate polynomials, f1 and f2, in ν variables of total degrees δ, having bitsize
τ1 and τ2, respectively. Then f = f1f2 is a polynomial in ν variables, of total degree 2δ and bitsize
τ1 + τ2 + 2 ν lg(δ).

(ii) Using induction, the product of m polynomials in ν variables, f =
∏m

i=1 fi, each of total degree δi
and bitsize τi, is a polynomial of total degree

∑m
i=1 δi and bitsize

∑m
i=1 τi +12 ν m lg(m) lg(

∑m
i=1 δi).

(iii) Let f be a polynomial in ν variables of total degree δ and bitsize τ . The m-th power of f , fm, is a
polynomial of total degree mδ and bitsize mτ + 12νm lg(δ).
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