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Multi-view clustering has attracted significant attention and application. Nonnegative matrix factorization is
one popular feature of learning technology in pattern recognition. In recent years, many semi-supervised non-
negative matrix factorization algorithms were proposed by considering label information, which has achieved
outstanding performance for multi-view clustering. However, most of these existing methods have either
failed to consider discriminative information effectively or included too much hyper-parameters. Addressing
these issues, a semi-supervised multi-view nonnegative matrix factorization with a novel fusion regulariza-
tion (FRSMNMF) is developed in this article. In this work, we uniformly constrain alignment of multiple views
and discriminative information among clusters with designed fusion regularization. Meanwhile, to align the
multiple views effectively, two kinds of compensating matrices are used to normalize the feature scales of
different views. Additionally, we preserve the geometry structure information of labeled and unlabeled sam-
ples by introducing the graph regularization simultaneously. Due to the proposed methods, two effective
optimization strategies based on multiplicative update rules are designed. Experiments implemented on six
real-world datasets have demonstrated the effectiveness of our FRSMNMF comparing with several state-of-
the-art unsupervised and semi-supervised approaches.
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1 INTRODUCTION

Clustering is a very important multi-variant analysis technology in pattern recognition and ma-
chine learning. In past decades, many clustering methods [1, 21, 50, 63] have been proposed such
as k-means [15], Gaussian mixture model, spectral clustering, hierarchical clustering algorithm,
and so on. While most of them are designed for single view data. However, in many cases, the
data in the real world are collected from multiple sources [18, 34, 55], which characterizes the
objects from various perspectives and is usually termed as multiple views or modalities in these
literatures [9, 47, 51, 61]. The different views generally contain interaction and complementary in-
formation which can be integrated for enhancing the recognition performance for different tasks.
Therefore, for multiview clustering tasks, how to effectively fuse the information from the mul-
tiple views to enhance the clustering performance is the most important issue in the learning
process [2, 59].

Among various outstanding multiview clustering methods [7, 8, 45, 48, 56, 57], nonnegative
matrix factorization (NMF) [24, 25] based methods are widely studied owing to the excellent
feature learning ability of NMF. Under the framework of multi-view nonnegative matrix fac-
torization (MVNMF) [35, 38, 64], each point can be represented with an efficient low dimensional
feature vector. From the perspective of whether to utilize label information, MVNMF methods [32]
can be divided into unsupervised methods [46] and semi-supervised methods [28]. Many unsuper-
vised MVNMFs focus on exploring the fusion mechanism of multiple views in hidden space. For
example, in [46], a novel pair-wise co-regularization was proposed to align the multiple views,
which can consider the similarity of the inter-view. In [14], a nonredundancy regularization was
developed to discover the distinct contributions of the different views. In [42] and [27], the inter-
view diversity terms are developed to learn more comprehensive information of data. Additionally,
unsupervised MVNMFs usually take some normalizing operations to improve the performance of
the model. For instance, in [41], to ensure the numerical stablility of NMF, in each iteration the
column summation of the basis matrix is normalized to be 1, i.e., >;; WY =1 (v denotes the vth
view). Furthermore, to make the representations of the different views comparable at the same
scale, in [52], [39], and [32], the same normalization operation in [41] is adopted and the norms
of the basis matrix are compensated into the coefficient matrix in the co-regularization term. To
guarantee the solution uniqueness of NMF, in [17], the row-summation of the coefficient matrix is
normalized to be 1, i.e., ), j HZ; = 1, where each column denotes a data point. These methods have
failed to consider the label information that the data may provide. In fact, effectively utilizing the
label information provided by a small proportion of the data, the clustering performance can be
further enhanced. Under this consideration, in recent years, some semi-supervised MVNMFs are
developed trying to employ the label information.

Most recently proposed semi-supervised MVNMF methods are based on constrained NMF
(CNMF) [30] which is a semi-supervised NMF method for single view data. The shortage of CNMF-
based semi-supervised MVNMFs [5, 6, 43, 54] is that they all have failed to discover the discrimina-
tive information among the different classes. In these methods, the data points of the same classes
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are presented by the same feature vectors. By this means, the distances among the data points re-
siding in the same classes are zeroed. However, the distances among the data points residing in the
different classes are not maximized. Another problem of these CNMF-based methods is that they
all have failed to make use of the local geometrical information of the data. In [22], Jiang et al. have
tried to discover the discriminative information of data by regressing the partial coefficient matrix
to the label matrix. The work in [31] has also considered the discriminative information of data.
Unfortunately, both of these methods have ignored the geometrical information of data. The de-
fect of these methods has been overcome in the work of [28] which has extended the work of [31]
by including a graph regularization. Liang et al. [29] have tried to make use of the geometrical
information of data by involving an adaptive local structure learning module. In [58], hypergraph
regularization is used to encode the structure of data.

Although, the methods in [28], [29], and [58] have considered both discriminative information
and geometrical information of the data. The price is that too many hyper-parameters make these
methods hard to get satisfying performance for different datasets. Another problem is that, nor-
malizing strategy is widely disccussed in unsupervised MVNMF methods; however, it is rarely ex-
plored under the framework of semi-supervised MVNMF. Addressing these issues, in this article, a
semi-supervised multi-view nonnegative matrix factorization with fusion regularization
(FRSMNMF) is proposed. In this method, the discriminative term and the feature alignment term
are fused as one regularization prior termed as fusion regularization. The meaning of this regu-
larization comes from two aspects. On the one hand, the features of different views are fused by
this regularization. On the other hand, the feature fusion constraint and discriminative constraint
are integrated as one constraint with this regularization, which effectively reduces the number of
hyper-parameters. Additionally, to further make use of geometrical information of the data, graph
regularization is also constructed for each view. To align the feature scale of different views, two
different feature normalizing strategies are adopted, which corresponds to two variants denoted
as FRSMNMF_N1 and FRSMNMF_N2. And the influences of these two normalizing strategies are
compared in the experiments. For the two variants, corresponding specific iterative optimizing
schemes are also designed. The contributions of this article are summarized as follows:

— A novel fusion regularization based semi-supervised MVNMF is presented. In this work, the
exploration of discriminative information and feature alignment are achieved in one term
which reduces the number of hyper-parameters and enlarges the inter-class distinction;

— Two feature normalizing strategies are adopted to align the feature scales of different views,
which produces two variants of the proposed framework;

— For the two variants of the proposed framework, two specific iterative optimizing schemes
are designed to solve the corresponding minimization problems effectively;

— The effectiveness of the proposed methods is evaluated by comparing with some recently
proposed representative unsupervised and semi-supervised MVNMFs on six datasets.

The rest of this article is organized as follows: Section 2 introduces some related works on multi-
view clustering. In Section 3, the details of the proposed semi-supervised multi-view nonnegative
matrix factorization with fusion regularization (FRSMNMF) and its two specific variants are in-
troduced. Section 4 gives the corresponding optimizing strategy, convergence proof and compu-
tational complexity analysis. In Section 5, the experimental results are demonstrated. Finally, the
conclusion of this article is made in Section 6.

2 RELATED WORK

In this section, we briefly review the related unsupervised and semi-supervised multi-view clus-
tering methods.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 157. Publication date: April 2024.



157:4 G. Cui et al.

2.1 Unsupervised Multi-view Clustering

Most of unsupervised MVNMF methods are based on the idea of aligning the multiple views in a
shared common subspace to fuse the information. In [32], Liu et al. proposed a pioneer MVNMF
method which tries to learn a consensus representation by minimizing a centroid co-regularization.
With this regularization, the feature matrices of the different views are pushed toward a consensus
feature matrix, and then multiview alignment is achieved. Furthermore, a feature scale normaliza-
tion matrix is introduced to constrain the feature scales of different views to be similar hoping
to facilitate the feature alignment. In [39], Rai et al. have adopted the same strategy to make the
scales of different views comparable. In [52], Yang et al. have explored another way to reduce the
distribution divergences of the feature matrix. They presented a MVNMF based on nonnegative
matrix tri-factorization [53]. In order to restrict the feature scale of different views to be similar,
the column-summation of the product matrix of basis matrix and shared embedding matrix are
constrained to be 1. Essentially, Liu et al. [32], Rai et al. [39], and Yang et al. [52] have adopted
the same feature normalizing strategy, in which the column-summation of the basis matrix is con-
strained to be 1, i.e., 3; WY = 1, and the norms are compensated to the coefficient matrix in the
co-regularization term. Actually, to improve the performance of unsupervised MVNMFs, various
normalizing operations are explored. For example, to guarantee the numerical stability of NMF,
Shao et al. [41] have constrained the column-summation of the basis matrix to be 1 and do not
compensate the norms to the coefficient matrix in the co-regularization term. To ensure the so-
lution uniqueness of NMF, Hu et al. [17] have constrained the row-summation of the coefficient
matrixtobe 1,1e., 2}; HY, = 1. Most of existing methods are based on the centroid co-regularization.
While, in [46], a pair-wise co-regularization was proposed to align the multiple views pair-wisely.
By minimizing this co-regularization, the alignment is acquired through pushing the representa-
tions of different views together. Until now, we can find that, most of the MVNMF methods were
developed from aligning the multiple views, and ignored the diversity of the different views. Ad-
dressing this issue, in [42], an MVNMF called diverse nonnegative matrix factorization has been
proposed. In this method, a diverse term is designed to encourage the heterogeneity of different
views and try to learn some more comprehensive information. Recently, with the flourish of deep
learning in computer vision and pattern recognition, some “deep” models are proposed for multi-
view clustering task [13]. For example, a deep multi-view semi-nonnegative matrix factorization
is proposed in [60]. In this method, an adaptive weighting strategy is adopted to balance the ef-
fect of different views. Similarly, a deep MVNMF is proposed in [26]. The graph regularization is
applied in all layers not only in the final layer like [60] and all factor matrices are restricted to be
nonnegative. All of the previously reviewed methods focus on dealing with “well-established” data.
It means that all views have the corrected correspondence on sample-level. In [20], Huang et al.
have developed a partially view-aligned clustering method which can tackle the multi-view data
not fully view-aligned. “Partially view-aligned” means that only a part of data have the corrected
correspondence on sample-level.

2.2 Semi-Supervised Multi-View Clustering

In recent years, several semi-supervised MVNMFs are proposed and promising results are obtained
with label information. Wang et al. [43] have proposed a semi-supervised MVNMF based on CNMF
for the first time. In this work, an adaptive weighting strategy is applied to balance the effect of
different views. To learn a consensus representation, a similar centroid co-regularization like [32]
is utilized in their method. In [5] and [6], Cai et al. have developed two semi-supervised MVNMF
methods; these two methods are also based on CNMF. Both methods have adopted pair-wise co-
regularization with Euclidean distance to align multiple views like [46]. The difference between [5]
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and [6] is the second regularizing term. In [5], {5 1-norm regularization of the auxiliary matrix is
used, and an orthonormality constraint on the auxiliary matrix is used in [6]. The former one tries
to get sparse representations for each view, and the latter one tries to constrain the feature scale
of different views to be similar. Yang et al. [54] have improved the work in [6] by relaxing the
label constraint matrix. The common drawback of above methods is that they all have ignored the
discriminative information of data. To make use of this information, Jiang et al. [22] have proposed
a unified latent factor learning model trying to reconstruct the label matrix with the product of
partial shared coefficient matrix and an auxiliary matrix. Further, Liu et al. [31] have improved the
above work by splitting the coefficient matrix into the private part and the common part. Based

n [31], Liang et al. [28] have tried to improve the performance of the method by imposing a
graph regularization on the coefficient matrix. The problem with [28] is that it uses too many
hyper-parameters, which makes this method very complex and hard to fine-tune. Wang et al. [44]
have presented a semi-supervised multi-view clustering model with weighted anchor graph em-
bedding, in which the anchors are constructed based on label information. Nie et al. [36] have
developed a semi-supervised multi-view learning method which can model the structure of data
adaptively. Based on this work, Liang et al. [29] have presented a semi-supervised MVNMF method
based on label propagation. Zhang et al. [58] have proposed a semi-supervised MVNMF method,
called dual hypergraph regularized partially shared NMF, in which hypergraph regularization was
imposed on both the coefficient matrix and the basis matrix. Similar to [28], these two methods
also suffer from involving too many hyper-parameters. Recently, some deep multi-view cluster-
ing methods were also developed. Zhao et al. [62] have proposed a deep semi-supervised MVNMF
method which encodes the discriminative information of data by constructing an affinity graph for
intra-class compactness and a penalty graph for inter-class distinctness. Chen et al. [11] have pre-
sented an autoencoder-based semi-supervised multi-view clustering method which encodes the
discriminative information of data by introducing a pairwise constraint.

From above review, we can find that, although various matrix normalizing strategies are widely
explored in many unsupervised MVNMF methods, these stategies are rarely discussed under the
semi-supervised MVNMF framework. In these previously introduced normalizing strategies, the
column-summation of the basis matrix is usually normalized to be 1, and sometimes the norms
are compensated to the coefficient matrix in the co-regularization term. However, it is more rea-
sonable to constrain the columns of the basis to be unit vectors, i.e., ||Wz;||2 = 1. Additionally,
recently proposed semi-supervised MVNMF methods have involved too many hyper-parameters,
which has made these methods very complex and hard to fine-tune. Addressing these issues, in
the following sections, we will introduce a novel semi-supervised MVNMF framework with fusion
regularization. This framework can be implemented with two different feature normalizing strate-
gies. And the fusion regularization can make use of the discriminative information of data and
reduce the number of hyper-parameters.

3 SEMI-SUPERVISED MULTI-VIEW CLUSTERING WITH FUSION REGULARIZATION

For a traditional MVNMF framework, the objective function can be written as follows:

DX - WEHE | + AR(HY), (1)

where X? € R™"X" ' W? € R™"*@” and HY € R¢"™*" are the data matrix, the basis matrix and the
coeflicient matrix of the vth view, respectively. m“ and d“ are the dimensions of original space
and latent space for the vth view, and n is the size of the dataset. R(HY) denotes the regulariza-
tion term which is employed to introduce extra prior or constrains for enhancing the clustering
performance, such as manifold regularization, co-regularization. A is the hyper-parameter which
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regulates the participation of these constraints in the optimization process. Both the selection of
hyper-parameter A and regularization prior R(H") play the important role in the design of the
model. In order to achieve satisfactory clustering result, enlarge the inter-class distinction, shrink
the distance of intra-class, and achieve multi-view feature alignment effectively are crucial. How-
ever, most of the existing multi-view NMF methods have failed to consider discriminative informa-
tion and feature alignment simultaneously. Although some algorithms like AMVNMF, MVCNMF,
and MVOCNMF have adopted label information of the data, they have not further considered the
distinguishability among classes. Therefore, performance of clustering is limited. In addition, the
model should avoid introducing too many hyper-parameters while integrating more regular priors
R(H) for feature learning.

For enforcing the inter-class distinctness with multi-view features, in this article, we first con-
struct a novel fusion regularization which considers the distinct information among clusters and
alignment of different views together. It can be formulated as follows:

1Y, He] = [H7, HE 11 )

u

where Y € {0, 1}%”%™ is the label matrix and H} € Rivxn’ is the feature matrix of labeled samples
for the vth view. n; is the number of labeled data points. H, € Rfﬂxn“’ denotes the common
feature matrix and HY, € Rfvxn"’ is the feature matrix of unlabeled data points for the vth view.
n, is the number of unlabeled data points. Obviously, in this work, d' = d? = --- = d" = C. Cis
the number of classes. A general way to simultaneously consider discriminative information and
feature alignment is to define them separately as follows:

Y~ |2+ [[H ~ B, )
where H” = [H}, H?, ] and H; = [H},, H]. Then, Equation (3) can be further written as follows:
1Y - H||% + ||[H},, H.] - [H},H, || (4)

In Equation (4), the first term is used to align the coeflicient matrix of the labeled samples (i.e., H)
to the label matrix (i.e., Y), and the second term is used to align the whole coefficient matrix of all
samples (i.e, H” = [H}, H},]) to the common consensus matrix H; = [H;, H.]. We can see that
the representation of the labeled samples (H}') is aligned by both Y and H,. The goal of aligning
HJ to Y is to discover the discriminative information of data. While, the goal of aligning H} to H,
is to align the multiple views to push the representations of different views (H;’, v=12,...,V)
close to each other. Actually, by aligning H} to Y can also achieve this goal, because the label
matrix Y is shared by all views. With this intuition, we substitute H?, with Y in Equation (4) and
remove the first term, then, we can get the proposed Equation (2). Until now, we can see that by
aligning H;’ with Y, the discriminative information can be discovered and H;’ v=12,...,V)of
different views can be pushed close to each other. And sz;l (v=1,2,...,V)of different views can
be pushed together by aligning them to H.. The meaning of fusion regularization has two folds: (1)
the features of different views are fused by this regularization; (2) the feature fusion constraint and
discriminative constraint are integrated as one constraint with this regularization, which reduces
the introduction of hyper-parameters.

In Equations (2), (3), and (4), the label matrix Y is approximated by H}. We can denote the
data matrix X“ as X = [X},X? ] corresponding to the low dimensional representation H” =

u

H?,H?,]. Then H? is the low dimensional representation of X?. Actually, the label matrix Y can
ul I p I Y;

also be seen as a feature representation of XV, which contains the discriminative information of
data. So, by subtracting Y with HY, i.e., minimizing ||Y — H;’ | |129, Y is reconstructed by HY, then the
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discriminative information in Y can be learned by H;’ Note that, we do not constrain the column
summation of H;’ tobe 1,ie., ); H;’(i) # 1, so Hf’ is a relaxed representation of Y.

Additionally, to make use of the geometry information of the multi-view data in each view
for decreasing the intra-class diversities, a graph regularizer is constructed based on both labeled

samples and unlabeled samples, which is defined as follows:

n n
Z Z |[h? — h?|128% = w(HYTLYH?), 5)

i=1 j=1

where LY =D — 8%, D7, = 3; SZ. (or D}, = 3; S;’i). S? is defined as follows:
v { 1 if hf € Ni(h7) or hY € Ni(hy)
ij

0 otherwise

: (6)

where Ni(h}) consists of k nearest neighbors of hY'.

Considering the above properties of inter- and intra-class, the overall objective function of our
proposed semi-supervised multi-view nonnegative matrix factorization with fusion regu-
larization (FRSMNMF) can be described as follows:

\4
OFRSMNMF = 2, {||Xv - ‘IVUI‘Iv”%7 + atr(HvTLUHU)
v=1

U v 7
+ BIIIY, H ] - [HY, H?,]|I2} )
s.t. WY, H°, H, > 0.

To tackle multi-view tasks, another important issue is to align multiple features effectively for
aggregating the information of different views. Instead of optimizing Equation (7) directly, we
first restrict the scales of multiple features to be comparable-level. For this target, the column
vectors of W? are constrained be ||W3-||2 =1lor ||W73| |1 = 1. One possible way to account for the
above constraints is to add an extra regularization term to Equation (7), but this would make the
optimization problem very complicated. Instead of taking the direct strategy, an alternative scheme
is to compensate the norms of the basis matrix into the coefficient matrix. Then, the objective
function of FRSMNMF in Equation (7) can be rewritten as:

v
Orsvnvr = X {I1X? = WOH? |2 + atr(QUHYLYH®TQvT)

o 2 (8)
+ BIIY, He] - Q“H?|[5}
s.t. WY, HY, H, > 0,
where QY is defined as
mY mY m°
QY = Diag Z v, Zw;jzz, o ngdvz \ (9)
i=1 i=1 i=1
or
m? m? m®
QY =Diag | > Wi, > W, > WE L. (10)
i=1 i=1 i=1

For simplicity, the proposed methods with ||W1;||2 = 1land ||WZ;||1 = 1 are denoted as FRSM-
NMF_N1 and FRSMNMF_N2, respectively, corresponding to two different normalization manners.
In following sections, the optimization algorithms of FRSMNMF_N1 and FRSMNMF_N2 will be
introduced in detail.
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4 OPTIMIZATION PROCEDURE
4.1 Optimization Algorithm of FRSMNMF_N1
The optimization problem of minimizing Equation (8) is not direct. In this section, an alternating
optimization strategy is developed, which breaks the original problem into several subproblems
such that each subproblem is tractable.

For a specific view v, its optimization with W® and H” does not depend on other views. The
problem of minimizing Equation (8) can be written as follows:

min ||X® - WPH?||2 + atr(QHLH°T Q)

W, H?, H, 20 (11)
+ BIILY, He] - Q“HY||%
4.1.1  Fixing H., updating W* and H®. (1) Fixing H, and H", updating W®
When H, and H” are fixed, the above equation is equivalent to the following problem:
min ||X? - WZH?||2 + atr(Q*H?LYH*TQ°T)
W9 20 F Q Q (12)

+ ﬂtr(QvHvHvTQvT _ 2HZ}H§CQ‘UT),

where Hy. = [Y,H,].
Let
Y? = [HL*H*T] o1
=YPr -Y)o (13)
YY = [H'HY | oL,
where © is the element-wise product operator, I is the identity matrix and the matrices Y{* and
Y™ are defined as

Yo+ = [HYD*HY ] o1

Y)” = [H’S*H*7] oL (14
Then, Equation (12) with QY defined as in Equation (9) can be further rewritten as
min |[X? - WYH?|[2 + atr(WY?W®T)
W >0 (15)

+ pr(WoYyW*T — 2HYH! Q°").

As WY > 0, introducing the Lagrangian multipliers ;;, for the constraints W7, > 0. Let ¥ =
[#/in]. Then, the Lagrangian function £ is as follows:

L =|X? - WYHY|[2 + atr(W?YYW?T)

+ e (WOYy WO — 2HVH] .QV7) + tr(¥W*T) (16)
The partial derivative of tr(HngC Q°T) with respect to W9 is
Otr(H"H, Q") O(HHY,), /X1, WY, °
oW, owy,
_ oryT Wih 17
- (H Hyc)hh p ( )
m'U
k=1 Wik

= (W?(Q")'(H"Hy, © D)
= (W2(Q*)™'Y5)in,

where Y = [H'H] ] o L
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Until now, the partial derivative of (16) with respect to W¥ can be written as follows:

0L

W " 2WYHVHYT - 2XVH®T + 2aW9Y?

+ 2BWUYY—2FW?(Q¥) YU+ V.

(18)

Setting above equation to zero and using the Karush-Kuhn-Tucker (KKT) condition [3] of
Yin W7, = 0, then have
20WYHYHT);;, WY, — 2(X°H®T);, W,
+ 2a(WPYY);, WY, + 2B(W2YY);, WY,

- 2BW(Q) Y)W, 1
= O,
which leads to the following update rule:
XUHT + aW2Y}™ + fW2(QY)1YY),
wo - WY ( i+ BWRQY) YD), 20)

ih
"O(WUHYHOT + aWOYYt + fWUYY)

(2) Fixing H. and W?, updating H”
After the updating of W¥, the column vectors of W are normalized with Q in Equation (9)
and then the norm is conveyed to the coefficient matrix H?, that is:

W? & WY(QY)" !, HY & QYH". (21)
When H, and W? are fixed, Equation (11) is equivalent to the following problem:
min ||X? - WYH?|[2 + atr(H'LYH®T)
HY >0 ; (22)
+ ptr(HYHY" — 2H"H],.).

AsH? > 0,introducing the Lagrangian multipliers ¢;, for the constraints H;’ > 0.Let® = [¢n].
Then, the Lagrangian function £ is as follows:

L =||X° - WYH||2 + atr(H'LYH®T)

+ prr(H'H®T — 2H"H] ) + tr(®H""). (23)

The partial derivative of (23) with respect to HY is as follows:

0L
— zvawvHv _ 2vaxv
OHY (24)
+ 2¢HDY — 2aH“S” + 2fH" — 2fH, + ®.

0

Similarly, setting 8If - =0 and using KKT condition of ¢ szj = 0, then we have
z(vawvHv)th;;j - 2(W?TX?), /Hj, + 22(H"D?), Hy,
- Za(H”S”)thZj + Zﬁ(H”)thZj - Zﬁ(Hyc)thZj (25)
=0,

which leads to the following update rules:

o o (WUTX? 4 aHYS + fHyc)h;

= H, : 26
W (WeTWPH? + gHYDY + fHY)y,; (26)
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ALGORITHM 1: Optimizing scheme for FRSMNMF_N1

Input: Multi-view data Dy ={X',..., XV}
Parameters @ > 0, f > 0, and the number of k nearest neighbors: K
Output: H” and H,
for eachv € V do .
Initialize WY € RTdev, HY? € RTJX”, H, € Ri XMul \with the random values from (0, 1] uniform
distribution;
Construct k-NN graph with 0-1 weight;
end
repeat
for each v € V do
S1: Fix HY and H, update W with Equation (20);
S2: Normalize W? and H® with Equation (21),
while QY is defined as Equation (9);
S3: Fix W¥ and H, update HY with Equation (26);
end
Fix W% and HY, update H, with Equation (28);
until convergence

4.1.2  Fixing W? and H®, updating H.. As W? is normalized in each iteration, the partial deriv-
ative of (8) with respect to H, is as follows:

9O0ersvnmr _ 9 Yoo BIHY - H|[Z

BHC v 6HC (27)
Y [-2fHY +2fH,] = 0.

v=1

Then, the exact solution for H, is

\%4
HU
=1
H, = UTI > 0. (28)

The optimizing scheme of FRSMNMF_NT1 is summarized in Algorithm 1.

4.2 Optimization Algorithm of FRSMNMF_N2

Comparing with FRSMNMF_N1, the main difference of optimizing procedure for FRSMNMF_N2
lies in the updating rule of W¥. So, in this section, only the updating rule of W¥ is deduced. Fixing
H. and H®, the objective function of FRSMNMF_N2 with respect to W? is written as follows:

min ||XY - WYH?|[2 + atr(QUHYLYH®T Q")
- (29)
+ BIIIY. He] - Q“H?|[Z,

where QY is defined as in Equation (10).
As WY > 0, introducing the Lagrangian multipliers ;5 for the constraints W7, > 0. Let ¥ =
[#/in]. Then, the Lagrangian function £ is as follows:

L =|X° - WPH?||2 + atr(QH L H*TQ"")

+ pr(QUHYHTQYT — 2HYH,, Q%" + tr(¥W*T). (30)
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ALGORITHM 2: Optimizing scheme for FRSMNMF_N2

Input: Multi-view data Dy ={X',..., XV}
Parameters @ > 0, > 0, and the number of k nearest neighbors: K
Output: HY and H,
for eachv € V do .
Initialize W? € RTUde, HY € Rivxn, H, € Ri XMul \ith the random values from (0, 1] uniform
distribution;
Construct k-NN graph with 0-1 weight;
end
repeat
for eachv € V do
S1: Fix HY and H, update W? with Equation (33);
S2: Normalize W? and H® with Equation (21),
while QY is defined as Equation (10);
S3: Fix WY and H, update HY with Equation (26);
end
Fix W% and HY, update H, with Equation (28);
until convergence

The partial derivative of (30) with respect to W¥ can be written as follows:
oL T
——— = 2(WYHH""),;, - 2(X*H"T);
8W§’h ( )zh ( )zh
+ 2a(QY)nn + 2B(Q Y )hn = 2B(X3)hn + Yin.
where Y7, Y7 and Y7 are defined in Equation (13) and Equation (17).
Setting the above equation to zero and using the KKT condition of 1;, W, = 0, then we have
20WYHYHT);;, WY, — 2(X°H"T);,W¥,
+ 2a(QY)nn + 2B(Q°Y)nn W7, (32)
= 2B(YJ)nn = 0,
which leads to the following update rule:
WY = W? (XUHUT)ih + (anYik + ﬂYg)hh .
T WEOHHE ) + (aQYTT + QYY)
The updating rules of H® and H, in FRSMNMF_N2 are the same as those in Equation (26)

and Equation (28). The optimizing scheme of FRSMNMF_N2 is summarized in Algorithm 2. The
convergence proofs for FRSMNMF_N1 and FRSMNMF_N2 are presented in the Appendix.

(31)

(33)

4.3 Computational Complexity Analysis of FRSMNMF_N1 and FRSMNMF_N2

In this section, the computational complexity of FRSMNMF_N1 and FRSMNMF_N2 is analyzed.
The computational complexity is expressed in a big O notation [12]. For a specific view v of FRSM-
NMF_N1 in one iteration, updating W needs to calculate wWvHYH*T, X?H*T, WoY?, WY,
and W9(Q?)"'Y?. WYHYHYT and XVH?” cost O((n+m?)d*?) and O(m?nd®), respectively. Total
cost of W?YY, W?Y? and W?(Q®)'YY is O(m?d” + Kd’n + d*?n). K is the number of k near-
est neighbors in graph. So, the cost for updating W% is O(Kd%n + m¥nd"). Normalize W* and
H? in Equation (21) needs O(nd® + m“d”) computation. The main cost of updating H” is on the
calculation of W?TX?, W*TWYH?, H’S” and H’D?. The cost on W?7X? and W?TW?HY are
O(m®nd®) and O((n + m®)d%?). While H*S” and H’D? need O(Kd“n) and O(d°n) computation
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Table 1. Database Description

dataset Size Views Features Classes
Yale 165 3 2048/256/1024 15
ORL 400 3 2048/256/1024 40
FEI 700 3 2048/256/1024 50
3sources 169 3 3560/3631/3068 6
Texas 187 2 187/1703 5
Carotid 1378 2 17/17 2

respectively. The cost for updating H” is O(Kd“n + m“nd®). Comparing with the cost of updating
W? and H?, the computation cost on updating H, is ignorable. So, the final cost for FRSMNMF_N1
is O(tVm®nd?). t is the number of iterations and V denotes the number of views.

For FRSMNMF_N2, the main difference of computation cost resides on the updating of W¥.
Except the computation cost on calculating WYH?H?T and X?H®7, it also need to compute Q°Y?,
Q°YY and Y. The total computation cost on these additional terms is O(Kd“n + d¥?n). So, the
cost for updating W¥ in FRSMNMF_N2 is O(Kd®n + m¥nd?). The final cost for FRSMNMF_N2 is
O(tVm®nd®).

5 EXPERIMENTS
5.1 Evaluation Metrics

Two widely used clustering metrics are adopted to evaluate the performance of the methods: clus-
tering accuracy (AC) [49] and normalized mutual information (NMI) [40].

AC is defined as
i=1 0(gnd;, map(z;))

n

where n is the number of samples in each multiview dataset. gnd; is the ground truth label of x;.
z; corresponds to the label that is obtained by clustering methods due to the sample x;. map(-) is
an optimal mapping function [33] which can map the obtained label z; to match the ground truth
label provided by the datasets. §(a, b) is an indicator function. (a, b) = 1, when a = b, otherwise,
d(a,b) =0.

NMI is defined as follows:

AC =

(34)

MI(C, C)

JH(O)H(C) ’

where C and C are two cluster sets, one for ground truth and another for the label obtained by
clustering methods. H(C) and H(C) denote the entropy of cluster sets C and C. MI(C, C) is the
mutual information between C and ¢ , which is defined as

MIC,C) = > plei,élog,

c;eC, éj Eé

NMI(C, €)= (35)

plci, ¢j)

2’ (36)

where p(c;, cj) denotes the joint probability that a randomly selected item belongs to ¢; and c;
simultaneously, while p(c;) and p(c;) denote the probability that a randomly selected item belongs
to ¢; and ¢; , respectively.

5.2 Datasets

In the experiments, six multiview datasets are used to evaluate the effectiveness of the proposed
method on the clustering task. The statistics are summarized in Table 1.
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(1) Yale' Dataset. This dataset contains 165 grayscale images collected from 15 people. Each
person has 11 images with different facial expressions or configurations and all these images
are normalized to 32 X 32 pixel array.

(2) FEIPart 1* Dataset. The FEI part 1 dataset is a subset of the original FEI database. This dataset
contains 700 color images captured from 50 people. Each person has 14 images taken from
different views. The original 640 X 480 resolution images were downsampled to 32 X 24
grayscale pixels.

(3) ORL? Dataset. This dataset has 400 grayscale face images collected from 40 people, each 10
images. These images are taken in different light conditions, with different facial expression
and with/without glasses. From this database, two subsets are produced for testing.

(4) Texas* Dataset. The dataset contains 187 documents over the 5 labels (student, project, course,
staff, faculty). The documents are described by 1,703 words in the content view, and by 187
links between them in cites views.

(5) 3sources [16] Dataset. This dataset has 948 texts collected from three news sources, i.e., BBC,
Reuters, and the Guardian. In this article, the experiments are conducted on the subset with
169 news articles and six topical labels that are reported in all three sources. The dimensions
of this dataset’s three views are 3,560; 3,631; and 3,068, respectively.

(6) Carotid Dataset. This dataset is an Electronic Medical Record dataset which has 1,378 records
with 34 attributes. This dataset is a subset of the raw data collected from stroke screening
and prevention project conducted by Shenzhen Second People’s Hospital (Ethical approval
Number: 20200116002). There are two classes in this dataset, i.e., abnormal carotid artery and
normal carotid artery. Two views are constructed by splitting the whole attributes evenly,
each has 17 attributes. The whole attributes are ranked by mean feature importance score of
six feature importance scoring methods [19]. Odd-ranked attributes are used to construct one
view and even-ranked attributes are used to construct the other view. The feature importance
scores are provided by the work in Reference [19].

For Yale, ORL, and FEI datasets, the multiple views are the image intensity, Gabor [23], and
LBP [37] with the dimensions of 1,024; 2,048; and 256, respectively.

The clustering results are obtained by conducting k-means clustering method on the learned
representations of above algorithms. To avoid errors from randomness, all unsupervised meth-
ods were tested 10 times, and the average value is reported. To evaluate the performance of
semi-supervised methods, for parameter analysis experiments, 10%, 20%, and 30% data points are
labeled randomly for 5 times, and the average clustering results are reported. For comparison
experiments, 10%, 20%, and 30% data points are labeled randomly for 20 times, and the average
clustering results and statistically significant differences (p-value) are reported.

5.3 Comparative Algorithms

To evaluate the effectiveness of the proposed methods, they are compared with several represen-
tative NMF-based multi-view clustering approaches, including seven unsupervised ones and four
semi-supervised ones. These methods are described as follows:

VAGNMF. Conduct GNMF [4] on each view individually and average feature of multiple views
are treated as final representation.

Uhttp://cve.yale.edu/projects/yalefaces/yalefaces.html
Zhttp://fei.edu.br/~cet/facedatabase.html
Shttp://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
4http://lig-membres.imag.fr/grimal/data.html
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VCGNMF. Conduct GNMF on each view individually and concatenate the features of multiple
views as final representation.

LP-DiNMF [42]. The objective function of this method involves a diverse term which is defined
to enforce the heterogeneity of the different views. Local geometric structure information is also
utilized to improve the performance.

rNNMF [10]. This method attempts to deal with the noise and outliers among the views through
defining a reconstruction term and a neighbor-structure-preserving term with ¢, ;-norm.

MPMNMEF 1 [46]. This method has adopted the Euclidean distance based pair-wise co-
regularization to align multiple features. Graph regularization is constructed to encode the ge-
ometry information of each view.

MPMNMF _2[46]. This method has adopted the kernel based pair-wise co-regularization to align
multiple features. Graph regularization is constructed to encoding the geometry information of
each view.

UDNMF [52]. This method factorizes the each view into three matrices and constrain the
columns of product matrix of basis matrix and shared embedding matrix to be unit vector. Graph
regularization is imposed on the coefficient matrix of each view. Centroid co-regularization is used
to learn a common consensus matrix as the final representation.

MVCDMF [60]. This is a deep multi-view semi-NMF algorithm. “semi-nonnegative” means that
it only constrains the shared coefficient matrix to be nonnegative. Graph regularization is also
used to utilize the geometrical structure information of data. The shared coefficient matrix is used
as the final representation.

MvDGNMF [26]. This is a deep multi-view NMF algorithm. It iteratively factorizes the coeffi-
cient matrix in each layer to get hierarchical representations of data. Similar to UDNMEF, it adopts
centroid co-regularization to fuse the multiple views to obtain the final representation.

AMVNMEF [43]. This method factorizes each view in CNMF [30] framework and try to learn
a consensus auxiliary matrix. The entries summation of each columns of auxiliary matrix is con-
strained to be 1. An auto-weighting strategy is imposed on the consensus learning terms.

MVCNMEF [5]. This method factorizes each view in CNMF framework and align multiple views
with Euclidean distance based pair-wise co-regularization. £, ;-norm regularization is imposed on
the auxiliary matrix in each view.

MVOCNMEF [6]. This method factorizes each view in CNMF framework and align multiple views
with Euclidean distance based pair-wise co-regularization. An orthonormality constraint is im-
posed on the auxiliary matrix in each view to normalize the scale of the feature.

GPSNMF [28]. This method is a semi-supervised partially shared MVNMF, which tries to make
use of both distinct and shared information of multiple views. A graph regularization is also con-
structed for each view.

The results of above methods with optimal parameter settings (obtained by grid search) are
reported. Note that, before conducting all methods, the data points of the original data are normal-
ized as unit vectors. The source code of this paper is available at: https://github.com/GuoshengCui/
FRSMNME.

5.4 Convergence Analysis

To verify the convergence of FRSMNMF_N1 and FRSMNMF_N2, the convergence curves on six
datasets with labeling ratios of 10%, 20%, and 30% are visualized in Figure 1. We also visualize the
variation of clustering performance with different iterations. In each figure, the left y-axis denotes
the objective function value, the right y-axis denotes the clustering accuracy and the x-axis is the
iteration number. We can see that the proposed methods converge on all datasets and the clustering
performances on all datasets become stable in 300 iterations.
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Fig. 1. Convergence curves and clustering performances of FRSMNMF_N1and FRSMNMF_N2 with labeling
ratios of 10%, 20% and 30% on six datasets. (Best viewed in color.)

5.5 Parameter Analysis and Comparisons

5.5.1 Parameter Analysis. There are three hyper-parameters, i.e., the graph regularization pa-
rameter «, the fusion regularization parameter  and k nearest neighbor parameter, in FRSM-
NMF_N1 and FRSMNMF_N2. The number of hyper-parameters in our methods is the same as the
most unsupervised MVNMFs, such as LP-DiNMF, MPMNMF_1, MPMNMF_2 and UDNMF; and
less than the most semi-supervised MVNMFs, such as MVCNMF, MVOCNMF, GPSNMF, and the
method in [31]. Figure 2 demonstrates the influence of parameters « and § to FRSMNMF_N1 and
FRSMNMF_N2 on six datasets with different labeling ratios, i.e., 10%, 20%, and 30%. From this fig-
ure, we can see that the performance varying trends of the proposed methods on « and f are very
similar. This phenomenon indicates that the value of a/p is relatively stable on all datasets. The
best parameter settings of the proposed methods on six datasets with different labeling ratios are
demonstrated on Table 2. We can see that the value of a/f with best results are always locating
in the sets of {1, 10, 100} with & around 10° or 10.

Figure 3 has demonstrated the performance variation of GPSNMF, FRSMNMF_N1, and FRSM-
NMF_N2 versus the parameter k on six datasets with different labeling ratios. We can see that
on most datasets, FRSMNMF_N1 and FRSMNMF_N2 have obtained better performance than GP-
SNMF on a large range of k. Basically, the varying trends of these three methods on six datasets
are familiar.

5.5.2  Comparisons. In Table 3, the comparing results of our methods and several recently pro-
posed semi-supervised MVNMFs are demonstrated. Statistical significant differences (p-value) be-
tween FRSMNMF_N1 and the other methods are also reported. AMVNMF, MVCNMF, and MVOC-
NMF are all CNMF-based MVNMFs, and their performances are obviously not as good as GPSNMF,
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Fig. 2. Clustering performances of FRSMNMF_N1 and FRSMNMF_N2 versus parameters & and f with la-
beling ratios of 10%, 20%, and 30% on six datasets.

Table 2. The Best Parameter Settings of FRSMNMF_NT1 and
FRSMNMF_N2 on Six Datasets, the Labeling Ratios are 10%,
20%, and 30%

FRSMNMF_N1 FRSMNMF_N2
10% 20% 30% 10% 20% 30%
Yale  (0,-1) (5.4 (5.4) (1) (20 (21)
ORL  (0,-1) (0,-1) (0,-1) 3.2) (5.5) (5,4)
FEI G.4) (5.3) (5.4 (6.4 (53) (5 4)
3sources (0, —1) (0,-1) (0, —1) (0, —2) (0, —2) (0, —1)
Texas (5,5 (1,-1) (0,-1) (5,5) (5,5) (1,-1)
Carotid (5,5) (5,5) (5.5) (5.5) (5,5) (5,5)
The values in brackets are (log(a), log(p)).

FRSMNMF_N1, and FRSMNMF_N2. One reason is that, the former three methods have not con-
sidered geometrical information of the data. The second reason is that, the former three methods
have all failed to explore the discriminative information of the data, although they have considered
intra-class compactness due to the basis of CNMF. On Yale, ORL, FEI, and 3sources datasets, the ad-
vantage of FRSMNMF_NT1 is significant comparing to the other semi-supervised MVNMF methods
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Fig. 3. Clustering performances of FRSMNMF_N1, FRSMNMF_N2, and GPSNMF versus parameter k near-
est neighbors with labeling ratios of 10%, 20% and 30% on six datasets.

(except FRSMNMF_N2). On Texas and Carotid datasets, the advantage of FRSMNMF_N1 is signifi-
cant comparing to AMVNMF, MVCNMF and MVOCNME. On these two datasets, the performances
of GPSNMEF are approaching FRSMNMF_NT1 as the labeling ratios increase. Overall, on all datasets,
FRSMNMF_N1 usually report the best results. And in many cases, the performance differences of
FRSMNMF_N1 and FRSMNMF_N2 are not that significant. Although FRSMNMF_N1 is slightly bet-
ter than FRSMNMF_N2 which indicates that the former feature normalizing strategy works better.

Our methods are also compared with several recently proposed unsupervised MVNMFs. The
comparing results are shown in Table 4. The last two rows are our methods with 10% labeled data
points. Similarly, statistical significant differences (p-value) between FRSMNMF_N1 and the other
methods are also reported. We can see that the advantage of the proposed FRSMNMF_N1 and
FRSMNMF_N2 is very obvious comparing to the other methods. On ORL and 3sources datasets,
FRSMNMF _NT1 is superior to FRSMNMF_N2. On Yale, FEI, Texas and Carotid datasets, the per-
formance differences of FRSMNMF_N1 and FRSMNMF_N2 are not that significant. And on all
datasets, FRSMNMF_NT1 is significantly better than the other unsupervised MVNMFs.

We also have tested the performance variation of all semi-supervised MVNMFs with different
labeling ratios. The varying curves are demonstrated in Figure 4 with the mean results of all un-
supervised methods as baseline. We can see that on the whole labeling ratios, GPSNMF, FRSM-
NMF_N1 and FRSMNMF_N2 are above the baseline. When the number of labeled data points is
small, AMVNMF, MVCNMF and MVOCNMF sometimes behave worse than the baseline. Note that
all unsupervised MVNMFs have considered geometrical information of the data. This means that

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 157. Publication date: April 2024.



157:18

G. Cui et al.

Table 3. Clustering Performance (AC(%) and NMI(%)) of Several Semi-supervised MVNMFs on Six
Datasets with Different Labeling Ratios

Datasets Yale ORL
10% 20% 30% 10% 20% 30%
AC  p-value AC p-value AC  p-value AC p-value AC p-value AC  p-value
AMVNMEF [43]  49.97 <0.001 5580 <0.001 6295 <0.001 63.65 <0.001 68.02 <0.001 7257  <0.001
MVCNMF [5] 50.93  <0.001 57.93 <0.001 6356 <0.001 66.17 <0.001 70.07 <0.001 7422  <0.001
MVOCNMF [6] 51.14 <0.001 5803 <0.001 6498 <0.001 6640 <0.001 70.75 <0.001 7530 <0.001
GPSNMF [28] 57.73  <0.001 67.50 <0.001 7406 <0.001 6882 <0.001 81.24 <0.001 84.09 <0.001
FRSMNMF_N2  62.25 0.777 70.79 0.484 78.00 0.903 72.05  <0.001 82.65  <0.001 8798 0.015
FRSMNMF_N1 62.01 - 71.41 - 78.07 - 76.40 - 85.48 - 89.24 -
NMI  p-value NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value
AMVNMEF [43] 53.11 <0.001 59.62 <0.001 6642 <0.001 79.27 <0.001 82.23 <0.001 84.81 <0.001
MVCNMF [5] 54.60 <0.001 61.62 <0.001 67.19 <0.001 81.07 <0.001 83.69 <0.001 86.01 <0.001
MVOCNMF [6] 5459  <0.001 6151 <0.001 6813 <0.001 81.13 <0.001 84.02 <0.001 86.64 <0.001
GPSNMF [28] 59.27 <0.001 66.00 <0.001 72.05 <0.001 8335 <0.001 90.04 <0.001 91.46  <0.001
FRSMNMF_N2 61.11 0.001 68.03 0.298 75.15 0.980 8397 <0.001 89.77 <0.001 92.33 0.020
FRSMNMF_N1  63.14 - 68.77 - 75.16 - 86.63 - 90.96 - 93.05 -
Datasets FEI 3sources
10% 20% 30% 10% 20% 30%
AC  p-value AC p-value AC p-value AC p-value AC p-value AC  p-value
AMVNMEF [43] 56.65 <0.001 60.06 <0.001 6636 <0.001 59.27 <0.001 6583 <0.001 70.79 <0.001
MVCNMF [5] 59.19  <0.001 63.58 <0.001 69.60 <0.001 61.65 <0.001 69.83 <0.001 7272 <0.001
MVOCNMF [6] 59.88 <0.001 63.47 <0.001 69.68 <0.001 57.44 <0.001 7230 <0.001 81.12 <0.001
GPSNMF [28] 8145 <0.001 8456 <0.001 88.84 <0.001 80.79 <0.001 8830 <0.001 91.05 <0.001
FRSMNMF_N2  83.67 0.506 87.03 0.428 91.78 0.796 87.91 0.020 92.06 0.083 9345  <0.001
FRSMNMF_N1  83.88 - 86.79 - 91.83 - 89.91 - 93.30 - 95.24 -
NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value
AMVNMF [43] 76.13  <0.001 7816 <0.001 8236 <0.001 55.62 <0.001 61.02 <0.001  65.74 <0.001
MVCNMF [5] 7743  <0.001 80.33 <0.001 8435 <0.001 60.00 <0.001 66.76 <0.001 66.67 <0.001
MVOCNMF [6] 7779 <0.001 80.16 <0.001 8437 <0.001 51.77 <0.001 59.36 <0.001 68.13 <0.001
GPSNMF [28] 90.04 0.009 91.51 0.111 93.60 <0.001 6739 <0.001 75.00 <0.001 7856 <0.001
FRSMNMF_N2 90.53 0.739 91.93 0.659 95.04 0.895 74.57  <0.001 82.21 0.029 84.04  <0.001
FRSMNMF N1  90.88 - 91.84 - 95.06 - 79.39 - 84.70 - 88.06 -
Datasets Texas Carotid
10% 20% 30% 10% 20% 30%
AC  p-value AC  p-value AC p-value AC p-value AC  p-value AC  p-value
AMVNMEF [43] 4555 <0.001 49.66 <0.001 5573 <0.001 5347 <0.001 56.61 <0.001  54.53  <0.001
MVCNMF [5] 64.61 <0.001 67.80 <0.001 70.77 <0.001 56.47 <0.001 6049 <0.001 61.65 <0.001
MVOCNMF [6]  66.32  <0.001 67.91 <0.001 6980 <0.001 56.43 <0.001 60.01 <0.001 6545 <0.001
GPSNMF [28] 64.57 <0.001 70.12  <0.001 75.25 0.032 70.23 0.062 75.56 0.086 78.88 0.194
FRSMNMF_N2  69.29 0.224 72.23 0.002 73.54  <0.001 71.04 0.870 75.91 0.687 79.19 1.000
FRSMNMF_N1  69.96 - 73.96 - 77.20 - 71.11 - 76.03 - 79.19 -
NMI  p-value NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value
AMVNMF [43] 2031 <0.001 2337 <0.001 2857 <0.001 0.93 <0.001 3.41 <0.001 2.11 <0.001
MVCNMF [5] 32.27 <0.001 36.23 <0.001 41.71 <0.001 1.98 <0.001 4.88 <0.001 8.65 <0.001
MVOCNMF [6] 3249 <0.001 36.14 <0.001 40.78 <0.001 1.90 <0.001 4.51 <0.001 7.06 <0.001
GPSNMF [28] 26.44 0.098 39.96 0.185 53.80 <0.001 12.50 0.125 20.29 0.333 26.00 0.501
FRSMNMF N2 28.87 0.731 37.01 <0.001 47.10 0.525 13.41 0.945 20.49 0.656 26.31 1.000
FRSMNMF_N1  29.16 - 41.52 - 46.42 - 13.45 - 20.70 - 26.31 -

The best results are highlighted in bold and the second best results are in italic.

both label information and geometrical information of the data are important for the learning of
meaningful representation.

5.5.3 Studying the Effects of Individual Views. To study the effect of each individual view,
we apply k-means algorithm on the feature of each view and report the clustering results. To
validate the clustering performance of FRSMNMF_N1 and FRSMNMF_N2, we select MVCNMF
and MVOCNMF as baselines. Statistical significant differences (p-value) between FRSMNMF_N1
and the other methods are also reported. Table 5 provides the clustering results on Yale, ORL,
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Table 4. Clustering Performance (AC(%) and NMI(%)) of the Proposed Methods and Several Unsupervised
MVNMFs on Six Datasets

Datasets Yale ORL FEI 3sources Texas Carotid
AC  p-value AC p-value AC p-value AC p-value AC p-value AC p-value
VCGNMF [4] 5424 <0.001 7133 <0.001 69.54 <0.001 59.17 <0.001 6251 <0.001 61.51 <0.001
VAGNMF [4] 50.00 <0.001 69.13 <0.001 68.83 <0.001 62.66 <0.001 54.28 <0.001 57.17 <0.001
LP-DiNMF [42] 50.85 <0.001 7043 <0.001 69.54 <0.001 62.78 <0.001 5535 <0.001 57.03 <0.001
rNNMF [10] 5042 <0.001 6558 <0.001 55.26 <0.001 62.07 <0.001 60.37 <0.001 57.89 <0.001
UDNMF [52] 47.88 <0.001 6795 <0.001 7471 <0.001 62.78 <0.001 54.71 <0.001 60.86 <0.001

MPMNMF _1 [46] 50.85 <0.001 70.40 <0.001 69.04 <0.001 72.13 <0.001 6572 <0.001 57.20 <0.001
MPMNMF _2 [46] 50.12 <0.001 69.20 <0.001 68.76 <0.001 65.27 <0.001 61.71 <0.001 56.99 <0.001
MVCDMF [60] 53.52 <0.001 69.28 <0.001 68.84 <0.001 77.28 <0.001 56.74 <0.001 57.49 <0.001
MvDGNMF [26] 50.79 <0.001 70.45 <0.001 74.17 <0.001 71.66 <0.001 58.13 <0.001 56.79 <0.001
FRSMNMF_N2 62.25 0.777 72.05 <0.001 8367  0.254 8791 <0.001 69.29  0.050 71.04  0.333

FRSMNMF_N1 62.01 76.40 83.88 89.91 69.96 71.11

NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value
VCGNMF [4] 57.55 <0.001 8468 <0.001 8540 <0.001 58.68 <0.001 28.70 <0.001 3.97  <0.001
VAGNMF [4] 52.74 <0.001 83.67 <0.001 8448 <0.001 5650 <0.001 21.48 <0.001 236 <0.001
LP-DiNMF [42] 53.81 <0.001 84.65 <0.001 8450 <0.001 5637 <0.001 2449 <0.001 234 <0.001
rNNMF [10] 52.56 <0.001 80.91 <0.001 7413 <0.001 57.83 <0.001 27.89 <0.001 231 <0.001
UDNMEF [52] 50.69 <0.001 82.22 <0.001 87.17 <0.001 5841 <0.001 2293 <0.001 444 <0.001

MPMNMF _1 [46] 5439 <0.001 84.21 <0.001 85.09 <0.001 6571 <0.001 31.48 <0.001 238 <0.001
MPMNMF 2 [46] 52.54 <0.001 84.46 <0.001 85.08 <0.001 5861 <0.001 2646 <0.001 259 <0.001
MVCDMF [60] 56.05 <0.001 84.27 <0.001 84.54 <0.001 71.59 <0.001 25.12 <0.001 2.16 <0.001
MvDGNMF [26] 53.44 <0.001 84.53 <0.001 87.15 <0.001 61.67 <0.001 2839 <0.001 211 <0.001
FRSMNMF_N2 61.11 0.001 83.97 <0.001 90.53  0.372 74.57 <0.001 28.87  0.026 1341 0.691
FRSMNMF_N1 63.14 - 86.63 - 90.88 - 79.39 - 29.16 - 13.45 -

The best results are highlighted in bold and the second best results are in italic.

--A-- Mean Unsup-Methods —e— AMVNMF MVCNMF —A— MVOCNMF
--7---- GPSNMF --4-- FRSMNMF_N1 --B8-- FRSMNMF_N2
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01 012 014 016 018 02 022 024 026 028 03 01 012 014 016 018 02 022 024 026 028 03 01 012 014 016 018 02 022 024 026 028 03

ratio ratio ratio

(a) Yale (b) ORL (c) FEI

AC (%)

20 10 10
01 012 014 016 018 02 022 024 026 028 03 01 012 014 016 018 02 022 024 026 028 03 01 012 014 016 018 02 022 024 026 028 03
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(d) 3sources (e) Texas (f) Carotid

Fig. 4. Clustering performances of FRSMNMF_N1and FRSMNMF_N2 versus different labeling ratios on six
datasets.
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Table 5. Individual View Clustering Performance (AC(%) and NMI(%)) of MVCNMF, MVOCNMF,
FRSMNMF_N1, and FRSMNMF_N2 on Yale, ORL, 3sources and Carotid Datasets

Datasets Yale ORL
viewl view?2 view3 viewl view2 view3

AC  p-value AC p-value AC p-value AC p-value AC p-value AC p-value
MVCNMEF [5] 60.95 <0.001 6470 <0.001 56.56 <0.001 74.13 <0.001 74.54 <0.001 74.14 <0.001
MVOCNMF [6] 6391 <0.001 63.97 <0.001 64.07 <0.001 75.06 <0.001 7537 <0.001 7442 <0.001
FRSMNMF_N2  77.84 0954 77.96 0954 76.71 0.954 88.01 0.133 88.41 0.133 87.35 0.133
FRSMNMF_N1 77.98 - 77.93 - 76.67 - 89.16 - 89.61 - 88.17 -

NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value
MVCNMF [5] 64.68 <0.001 68.03 <0.001 61.01 <0.001 8599 <0.001 86.22 <0.001 86.02 <0.001
MVOCNMF [6] 67.64 <0.001 67.64 <0.001 67.63 <0.001 86.65 <0.001 86.70 <0.001 86.28 <0.001
FRSMNMF_N2 7469 0952 74.93 0.952 73.88 0.952 92.24  0.084 92.55  0.084 91.77  0.084
FRSMNMF_N1 74.76 - 74.92 - 73.85 - 92.92 - 93.32 - 92.34 -
Datasets 3sources Carotid -

viewl view?2 view3 viewl view2 -

AC  p-value AC p-value AC p-value AC p-value AC p-value - -
MVCNMEF [5] 71.65 <0.001 69.54 <0.001 68.89 <0.001 63.78 <0.001 64.73 <0.001 - -
MVOCNMF [6] 81.75 <0.001 81.72 <0.001 81.74 <0.001 65.22 <0.001 6522 <0.001 - -
FRSMNMF_N2  93.01 0.004 92.86 0.004 93.30 0.004  76.58 1.000 72.96  1.000 - -
FRSMNMF_N1 95.18 - 94.58 - 94.87 - 76.58 - 72.96 - - -

NMI p-value NMI p-value NMI p-value NMI p-value NMI p-value - -
MVCNMEF [5] 67.38 <0.001 65.82 <0.001 64.77 <0.001 12.01 <0.001 10.71 <0.001 - -
MVOCNMF [6] 69.13 <0.001 69.07 <0.001 69.09 <0.001 6.82 <0.001 6.82 <0.001 - -
FRSMNMF_N2 8264 <0.001 8254 <0.001 8382 <0.001 21.81 1.000 1596 1.000 - -
FRSMNMF_N1 87.99 - 86.11 - 87.46 - 21.81 - 15.96 - - -

The labeling ratios are all set to 30%. The best results are highlighted in bold and the second best results are in italic.

Table 6. Ablation Study of FRSMNMF_N1 and FRSMNMF_N2 on Yale, ORL, 3sources and Carotid

Datasets
Yale ORL
Norm Method AC NMI AC NMI
None FRSMNMF 61.55 + 3.02 60.97 + 2.17 69.69 + 2.03 82.35 + 1.40
FRSMNMF_N1 62.01 + 2.31 63.14 £ 1.62 76.40 £ 1.39 86.63 £ 0.71
||sz||2 =1 FRSMNMF_N1w|o GR 58.43 + 2.40 59.74 + 1.91 71.24 + 1.50 82.97 + 0.73
FRSMNMF_N1 w|o FR  49.78 + 0.91 5323 +054 6797 £0.71  82.96 +0.29
FRSMNMF_N2 62.25 + 3.01 61.11 £ 2.00 72.05 £ 1.51 83.97 + 0.76
IIW?j.Ill =1 FRSMNMF N2 w|o GR 44.48 + 1.14  48.05+0.71  62.56 + 0.79  78.60 + 0.40
FRSMNMF_N2 w]|o FR 51.47 £ 0.99 54.97 £ 0.86 68.64 + 0.71 83.51 + 0.28
3sources Carotid
Norm Method AC NMI AC NMI
None FRSMNMF 84.35 + 3.90 67.82 + 5.68 69.07 + 1.48 10.91 £ 1.74
FRSMNMF_N1 89.91+249 79.39+341 71.11+1.49 13.45+ 1.96
||sz||2 =1 FRSMNMF_NI1w|o GR 85.04 + 4.17 73.76 + 3.63 61.11 + 1.09 4.14 £ 0.58
FRSMNMF_NT1 w|o FR 60.55 + 2.53 56.42 + 1.86 55.76 £ 0.12 2.54 £ 0.07
FRSMNMF_N2 8791+ 2.71 74.57 £ 3.95 71.04 + 1.46 1341+ 1.90
||WZ;||1 =1 FRSMNMF_N2w|o GR 53.68 + 1.76 50.50 £+ 1.60 58.48 + 0.29 3.32 £ 0.17
FRSMNMF_N2 w|o FR 59.10 + 0.64 55.08 + 0.85 57.17 £ 0.81 2.60 £ 0.41

The labeling ratio is set to 10%. The best results are highlighted in bold and the second best results are in italic.

3sources and Carotid datasets. The labeling ratios are all set to 30%. From Table 5, we can see that
the proposed methods FRSMNMF_N1 and FRSMNMF_N2 outperform MVCNMF and MVOCNMF
in each view. This phenomenon verifies the feature quality of each view in FRSMNMF_N1 and

FRSMNMF_Nz2.
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Table 7. Performances of FRSMNMF_N1 and FRSMNMF_N2 on Yale, ORL, FEI and Carotid datasets
polluted by different levels of noises (10%, 20% and 30%). The labeling ratio is set to 20%.

Yale
Noise 10% 20% 30%
Method AC NMI AC NMI AC NMI
MVCNMF [5] 5645+ 1.69 60.18 £1.68 53.32+1.71 57.85+134 49.01 +£1.46 5340+ 1.17
MVOCNMF [6] 56.61 + 1.66 60.44+ 1.37 53.82+1.68 5822+ 1.53 50.02+ 1.57 54.22+ 1.31
FRSMNMF_N2 5759+ 254 56.16 = 1.79 54.60+ 2.78 52.14 +2.23 5237+ 2.62 50.03 + 2.40
FRSMNMF_N1 65.59 + 1.86 64.85 + 1.97 61.71+ 1.94 61.15 + 1.89 59.38 + 2.55 58.39 + 2.03
ORL
Noise 10% 20% 30%
Method AC NMI AC NMI AC NMI
MVCNMF [5] 67.06 £ 1.11 81.10 £ 0.51 64.21 £1.09 78.64 +£0.69 5894+ 1.16 74.74+0.49
MVOCNMF [6] 66.92 +0.76 80.92 + 0.45 64.12+ 1.00 78.64 +0.53 58.90 = 0.92 74.92 + 0.41
FRSMNMF N2 7842+ 1.69 8535+ 1.12 7570+ 1.92 8324+ 112 7182+ 151 80.01=+ 1.14
FRSMNMF N1 82.26 + 1.45 88.68 + 0.84 80.09 + 1.20 86.91 + 0.82 75.43 + 1.24 83.69 + 0.78
FEI
Noise 10% 20% 30%
Method AC NMI AC NMI AC NMI
MVCNMF [5] 60.09 + 0.85 77.25+0.51 54.76 £ 1.20 73.23 £0.62 51.48 +0.87 70.29 + 0.54
MVOCNMF [6] 59.85+0.90 77.04 +0.60 54.63 +1.08 73.27 +0.51 51.08+0.86 70.22 +0.57
FRSMNMF N2 83.68+ 1.05 90.18+ 0.70 7954+ 1.36 87.16+ 0.76 76.93 + 1.21 84.74 + 0.75
FRSMNMF N1 83.79 + 1.13 90.21 +0.72 79.72 + 1.59 87.20 £+ 0.81 7687+ 1.11 84.70 + 0.67
Carotid
Noise 10% 20% 30%
Method AC NMI AC NMI AC NMI
MVCNMF [5] 59.88 +1.65 454+1.06 59.07+1.12 3.89+0.78 58.62 + 0.81 5.06 + 0.65
MVOCNMF [6] 59.69 +1.54 4.39+096 5882+1.12 3.71+0.74 59.54+0.56 4.18 +0.31
FRSMNMF N2 74.56 = 1.02 18.28 + 1.47 7388+ 1.36 17.26+ 1.90 72.74+ 1.97 1570+ 2.71
FRSMNMF_N1 7454+ 0.88 1823+ 1.28 73.95+0.96 17.34 + 1.39 73.23 + 1.29 16.33 + 1.86

The best results are highlighted in bold and the second best results are in italic.

5.5.4 Ablation Study. In this subsection, we will further explore the influences of graph regu-
larization, fusion regularization, the constraints ||WZ;||2 = 1and ||WZ;||1 = 1. We denote FRSM-
NMF_N1 w|o GR as FRSMNMF_N1 without graph regularization, FRSMNMF_N1 w|o FR as FRSM-
NMF_N1 without fusion regularization, FRSMNMF_N2 w|o GR as FRSMNMF_N2 without graph
regularization, FRSMNMF_N2 w|o FR as FRSMNMF_N2 without fusion regularization. We fur-
ther denote FRSMNMF as FRSMNMF_N1 or FRSMNMF_N2 without the constraint ||WZ; [l =1or
||W3. |l = 1. The performances of above methods on Yale, ORL, FEI and Carotid datasets with the
labeling ratios of 10% are reported. The experimental results for the ablation study of FRSMNMF
N1 and FRSMNMF N2 on Yale, ORL, 3sources and Carotid datasets are reported in Table 6. From
Table 6, we can see that, on all datasets, the performances of FRSMNMF_N1 and FRSMNMF_N2
decrease without graph regularization or fusion regularization. This indicates that both graph reg-
ularization and fusion regularization contribute to the performances of FRSMNMF_N1 and FRSM-
NMF_N2. Comparing the results of FRSMNMF_N1, FRSMNMF_N2, and FRSMNMF, it can be seen
that the performance of FRSMNMF decreases without the constraint ||WZ;||2 =1lor ||Wz;||1 =1
It means that the constraints ||W$-||2 = 1and ||W$-||1 = 1 contribute to the performances of
FRSMNMF_N1 and FRSMNMF_N2, respectively.
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Fig. 5. The feature visualization of FRSMNMF_N1, FRSMNMF_N2, MVCNMF, and MVOCNMF on the Yale
dataset. The labeling ratio is 30%. Rows are features and columns are data points.

5.5.5 Performance on Noise Datasets. In this section, we will evaluate the performances of the
proposed methods on noise datasets. Specifically, we manually pollute Yale, ORL, FEI and Carotid
datasets with different levels of noise. And the different levels of pollution are simulated by ran-
domly discarding 10%, 20% , and 30% data points in each view. The performances of FRSMNMF_N1
and FRSMNMF_ N2 are evaluated on above constructed noise datasets with MVCNMF and MVOC-
NMF as baselines. The labeling ratios of all methods are set to 20%. Before applying above methods,
the missing data points in each view are filled with the average value of existing data points in
the corresponding view. The experimental results on noise datasets are reported in Table 7. As can
be seen from Table 7, the performances of all methods decrease with the increase of noise level.
FRSMNMF_NT1 is superior to FRSMNMF_N2 in most cases. On the Yale dataset, we find that the
performance of FRSMNMF_N1 decreases dramatically, indicating that the constraint ||W3||2 =1
is more robust-to-noise than the constraint ||sz| L =1

5.5.6 Feature Visualization. In this section, we visualize the fused features learned by MVOC-
NMF, MVCNMF, FRSMNMF_N1, and FRSMNMF_N2 in Figure 5 (on the Yale dataset) and Figure 6
(on the FEI dataset). In this figure, rows are features and columns are data points. In Figures 5(a)
and 5(b), the features of the first 60 data points, whose labels are given in the dataset, are with
clear block diagonal structure. The block diagonal structure means that the distances between the
data points with the same labels are minimized, approaching zero, while the distances between
the data points with the different labels are maximized. In Figures 5(a) and 5(b), the feature matrix
of the rest unlabeled data points also shows block diagonal structure, although with some noises.
From Figures 5(c) and 5(d), we can see that, for the first 60 data points, although the distances of
the data points with the same labels are zero (the data with same labels are represented with the
same feature vectors), the distances of the data points with different classes are not minimized.
This means that the label information is not effectively used in MVOCNMF and MVCNMEF. The
similar phenomenon can also be found in Figure 6, in which the labels of the top 250 data points
are given.
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Fig. 6. The feature visualization of FRSMNMF_N1, FRSMNMF_N2, MVCNMF, and MVOCNMF on FEI
dataset. The labeling ratio is 30%. Rows are features and columns are data points.

6 CONCLUSION

In this article, a novel semi-supervised MVNMF framework with fusion regularization (FRSMNMF)
is proposed. In our work, the discriminative term and the feature alignment term are fused as one
regularizing term, this effectively enhances the learning of discriminative feature and reduces the
number of hyper-parameters which makes the proposed framework more easy to fine tune than ex-
isting semi-supervised MVNMFs. The geometrical information is also considered by constructing
graph regularizer for each view. To align multiple views effectively, two feature scale normaliz-
ing strategies are adopted, two corresponding specific implementations and iterative optimizing
schemes of the proposed framework are presented. The effectiveness of our methods is evaluated
by comparing with several state-of-the-art unsupervised and semi-supervised MVNMFs on six
datasets.
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