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ABSTRACT

Analyzing radar signals from complex Electronic Warfare
(EW) environment is a non-trivial task. However, in the real
world, the changing EW environment results in inconsis-
tent signal distribution, such as the pulse repetition interval
(PRI) mismatch between different detected scenes. In this
paper, we propose a novel domain generalization framework
to improve the adaptability of signal recognition in chang-
ing environments. Specifically, we first design several noise
generators to simulate varied scenes. Different from con-
ventional augmentation methods, our introduced generators
carefully enhance the diversity of the detected signals and
meanwhile maintain the semantic features of the signals.
Moreover, we propose a signal scene domain classifier that
works in the manner of adversarial learning. The proposed
classifier guarantees the signal predictor to generalize to dif-
ferent scenes. Extensive comparative experiments prove the
proposed method’s superiority.

Index Terms— Emitter recognition, Domain generaliza-
tion, Data Augmentation, Adversarial Learning

1. INTRODUCTION

In the existing literature [21, 22, 9, 10], radar signals are de-
scribed using Pulse Description Words (PDWs), which con-
tain several statistical features, such as pulse width (PW),
carrier frequency (CF), pulse amplitude (PA), time of arrival
(TOA), and direction of arrival (DOA) [21]. Among these
statistical features, TOA is an easily captured one whose first-
order difference is pulse repetition interval (PRI). PRI is a
principal parameter for radar emitter recognition and PRI se-
quences often indicate the working pattern of radar emitters.

With the rapid development and usage of radar systems,
the EW environment is becoming increasingly complex, pos-
ing severe challenges to recognizing radar emitters [25]. The
high ratios of missing and spurious pulses in the pulse streams
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(a) Radar signal pulse description words

(b) Radar PRI sequence in real EW environment

Fig. 1. (a) pulse description words, with PRI being the prin-
cipal parameter. (b) shows the PRI sequence with high ratios
of missing and spurious pulse from training and testing sets
in different EW environments.

destroy the PRI regularity to a great extent. Besides, mea-
surement errors may occur when receiving the signals, which
along with noise, significantly increase the emitter signal
recognition complexity.

Deep learning models have been widely used for radar
emitter recognition, allowing complex signal data recogni-
tion [9, 10, 18]. A fundamental assumption underlying the
remarkable success is that the test data follows similar statis-
tics as the training data. However, in a real EW environment,
error ratios of the signal to be recognized are often fixed at a
value different from the detected signal. This is due to man-
made interference and environmental changes, which causes
mismatches between the training and testing sets. Therefore,
a significant yet seldom investigated problem arises: Can a
radar signal be accurately recognized when the electromag-
netic environment changes and produce a different error rate?

We found that if a model is trained on historical signal
data and is used to identify newly received signal data, the
performance will seriously deteriorate. Furthermore, in prac-
tice, collecting signals for all cases is impossible so the signal
data cannot be divided into multiple training domains. We in-
vestigate how to recognize a radar emitter in future-changing
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environments using a model trained on captured data. There-
fore, the task is considered a single-domain generalization
(DG) problem.

This paper introduces a novel framework to solve this
challenging task. To summarize, this work’s main contribu-
tions are as follows:

• We propose a novel domain generalization network for
radar emitter signal recognition. Following the pattern
of adversarial learning, the proposed method can sig-
nificantly improve the recognition performance of radar
emitters under changing EW environments.

• In our method, we proposed to use several generators to
simulate the noise of changing environments, which en-
sures the generalization of different scenes for the chal-
lenging recognition task.

• Extensive experiments on radar emitter recognition
demonstrate our method’s superior performance. Specif-
ically, the proposed method attains up to 4.9% and
9.45% improvement compared with existing DG and
emitter recognition methods, respectively.

2. RELATED WORKS

Radar Emitter Signal Recognition: Conventional feature-
based methods recognize radar emitter signals based on the
PRI’s histogram [22], posing an inefficient and untrustwor-
thy solution. In recent years, deep learning has become a key
technology for radar signal recognition. For instance, [9] used
several neural networks, including MLP, CNN, and LSTM,
to recognize radar signals. In [10], the authors proposed an
attention-based RNN to recognize radar signals, which was
effective on time-series data. The work of [14] proposed an
Asymmetric Convolution Squeeze-and-Excitation (ACSE)
network, which achieved a high recognition accuracy under
a low signal-to-noise ratio using the normalized autocorre-
lation features as input. In [2], the authors used a temporal
convolution network (TCN) for radar signal recognition,
which provided robust performance even under missing and
spurious pulses. However, current works did not consider
the inconsistent signal distribution caused by environmental
variations and electronic jamming.
Domain Generalization: Domain Generalization (DG) aims
to learn the model with data from the source domain, allowing
it to generalize unseen domains [19]. Data manipulation and
representation learning are two major methods, in which the
data manipulation method involves two popular techniques,
i.e., data augmentation [11, 5, 16, 15, 17] and data generation
[6, 3, 24, 20]. Both methods focus on manipulating the inputs
to assist in learning general representations and have achieved
promising performance on popular benchmarks while remain-
ing conceptually and computationally simple. Representa-
tion learning involves two representative techniques: domain-
invariant representation learning [23, 13, 8, 1] and feature dis-
entanglement [12, 4]. Those methods learn domain invariant
representations or disentangle the features into domain-shared

or domain-specific parts for better generalization, which are
the most popular in domain generalization. However, due to
various particularities of radar signal data and its features, not
every DG method is suitable for radar emitter signal recogni-
tion.

3. METHOD

The architecture of the proposed radar emitter recognition
method is illustrated in Fig.2. Overall, the framework in-
cludes noise generators G and a signal recognition model M.
Specifically, noise generators G are first utilized to simulate
signals in different scenes. Different G share the same struc-
ture but have different weights. The recognition model M
works in the manner of adversarial learning. M learns the
cross-domain feature of signals from different environments.

The target of the method is to train with source domain
signals S and then generalize it to the unseen target domain
T . Suppose the source domain S = {xi, yi}Ns

i=1, the target
domain T = {xi, yi}Nt

i=1, where xi, yi is the ith emitter PRI
sequence and class label, respectively. Ns, Nt represent the
number of samples in the source and target domain, respec-
tively.

3.1. Noise Generator G
G can convert the detected radar PRI sequence x to a new PRI
sequence x+:

x+ = G(x), (1)

S+ = {(G(xi), yi)|(xi, yi) ∈ S}, (2)

where x+ has the same emitter feature as x, but the envi-
ronmental error of x+ and x is different, as the latter mainly
contains missing and spurious pulses with a small amount of
measurement error.

The noise generator G is only used in training as prepro-
cessing. Given that we aim to simulate signals in various
environments through the known signals, G generates new
noise signal PRI sequences through special augmentation op-
erations. In this work, we employ three sub-operations: add
pulses, drop pulses, and Gaussian noise. During training, an
operation including random sub-operations is performed on
all data in training set S to generate a new set S+.

3.2. Signal Recognition Model M
There are three modules in M: (i) Feature Extractor F:X →
H, where X is the signal space and H is the feature space. F
includes four convolution layers followed by max pooling and
activation layers, which output a feature vector of the input
signal data. (ii) Label Classifier C: H → Y , where Y is the
label space. C includes three fully connected layers followed
by activation layers, and its task is to classify the emitter. (iii)
Domain classifier D: H → Z , where Z is domain space. D
includes one fully connected layer followed by softmax. D is
used to distinguish whether the signal data originate from the
same error environment.



Fig. 2. Overall architecture of our method. G is the noise generator that simulates signals in different scenes. Different G share
the same structure but have different weights. The recognition model M includes a feature extractor, a label predictor, and a
domain classifier.

3.3. Model Optimization
For the recognition model M, given a minibatchB = {x,y} ∈
S
⋃
S+, where x is source PRI sequence, x+ is the synthetic

PRI sequences originating from x, and y is the class label,
and the domain label z, M is optimized by:

Lce(yi, ŷi) = −
∑
m

ymi log(ŷmi ), (3)

LM = Lce(yi, ŷi) + α‖h− h+‖22 − βLce(zi, ẑi), (4)

where ŷi = C(F (xi)), ẑi = D(F (xi)), h = F (x), h+ =
F (x+), ymi and ŷmi respectively represent the mth dimension
of yi and ŷi, Lce is the cross-entropy loss used for label and
domain classification. The second term forces F to learn the
domain invariant representation between S and S+ in the em-
bedding space, and α and β are two hyper-parameter to bal-
ance the loss. In our task, we force the model to classify the
emitters better, but it is challenging to distinguish which envi-
ronment the emitters are from. Through adversarial learning,
by minimizing Eq 4, we improve the model’s generalization
ability for radar emitter recognition.

3.4. Data Augmentation in Radar Signal Recognition
To generate representative radar signals for different domains,
we designed different noise generators accordingly as indi-
cated in Fig. 2. There are many useful data augmentation
methods in the image processing area, such as crop, transla-
tion, flip, and rotation. Those methods are proved to be very
efficient in constructing training examples as they improve the
diversities of the data. However, the above traditional data
augmentation methods do not work as well for the radar sig-
nal recognition task since they could induce noises to the sig-
nal, leading to unexpected recognition results. For example,
shifting the signal curve means changing the corresponding
PRI parameter, which stands for different radar signals. In
our model, we carefully designed radar signal data augmen-
tation methods that simulate the noise EW environment and
keep the semantic feature of radar signals. As we consider

several different noise generators in the radar signal data aug-
mentation, they significantly enrich the training examples in
different noise environments and thus effectively relieve the
mismatch between training and testing sets.

4. EXPERIMENTS
4.1. Experimental Setup
As mentioned above, PRI is the principal parameter for radar
emitter recognition. There are six basic types of PRI mod-
ulation: constant PRI, jittered PRI, sliding PRI, wobulated
PRI, staggered PRI, dwell and switch PRI. Each PRI cate-
gory has different formulations associated with different radar
functions. In most cases, the remaining parameters in PDWs
are used to assist PRI for emitter recognition. Therefore, this
paper employs PRI sequences for radar emitter recognition.
Dataset and Evaluation: There is rarely a public dataset
available for radar emitter recognition due to the confidential-
ity of radar emitters. Therefore, we create a standard dataset
according to the task requirement and the typical PRI range.
The dataset contains PRI sequences of 10 emitters, six of
which have different types of PRI modulation, and the re-
maining four are staggered PRI but with different PRI val-
ues. Besides, in our experiments, each sequence is assumed
to drop a certain probability by ρm. ρm =

∑
i ai∑

i ai+bi
, where

ai is the number of lost pulses in the ith period, and bi are the
remaining pulses in the ith period. Spurious pulses are added
between two adjacent pulses with their number subjecting to
a Poisson distribution with a mean of ρn(1 − ρm). In this
way, the noise number to pulse number ratio in the streams is
guaranteed to be, on average, ρn. Additionally, measurement
errors are added to the sequences following a Gaussian distri-
bution of ρr ratio. In the training set, Ptrain : (ρr, ρm, ρn)
is set as Ptrain : (0.05, 0.2, 0.4). In the testing set, the signal
data is divided into four groups, where the error ratios are P1 :
(0.02, 0.05, 0.2) , P2 : (0.05, 0.2, 0.4) , P3 : (0.05, 0.3, 0.6)
and P4 : (0.1, 0.5, 0.8). The training set considers the emit-
ter signal in typical EW environments, and the testing sets are



Table 1. Experimental results on the created testing set. The
best results of each EW environment are bold.

Methods P1 P2 P3 P4 Avg.
CNN [9] 85.6 92.5 73.2 48.2 74.9
A-RNN [10] 86.2 93.7 75.1 50.5 76.4
ACSE [14] 86.6 93.1 74.9 49.0 75.9
TCN [2] 87.0 94.2 74.6 52.2 77.0
ERM [7] 88.2 93.3 79.3 57.4 79.6
d-SNE [23] 89.5 93.6 81.6 61.4 81.6
MADA [13] 88.9 93.1 78.6 59.7 80.1
Ours 92.7 94.0 86.5 72.6 86.5

Table 2. Recognition accuracy of radar emitters with different
PRI modulation on P4.

Methods CST JIT SLD WOB D&S STG
CNN [9] 35.7 30.4 57.4 60.8 51.5 49.4
A-RNN [10] 40.4 40.6 59.3 57.7 53.0 50.8
ACSE [14] 40.0 38.6 53.4 58.6 54.5 49.0
TCN [2] 46.4 48.3 56.3 54.9 58.5 51.6
ERM [7] 49.8 54.6 62.1 64.0 59.7 56.8
d-SNE [23] 56.6 55.9 65.3 70.7 62.8 60.8
MADA [13] 58.5 56.1 64.6 62.0 59.2 59.2
Ours 67.9 59.1 78.3 85.0 81.0 70.9

of various EW environments that cover the best to the worst
cases in real scenarios. We calculate the model’s recognition
accuracy for emitters 1) in different EW environments; 2) of
different PRI modulation; 3) of the same PRI modulation but
with different PRI values.

4.2. Experimental Results
Table 1 compares our method against state-of-the-art base-
line on the standard dataset. As reported in the table, on P1,
P3, and P4, our method outperforms the competitor meth-
ods. Specifically, our method outperforms A-RNN by 10.1%,
ACSE by 10.6%, and TCN by 9.5%. It also outperforms d-
SNE by 6.4% and MADA by 4.9%. On P2, our method’s per-
formance is comparable to the competitor schemes because
P2 has the same error ratio as the training set. The results
demonstrate that as the missing and spurious pulses ratio in-
creases, the other models can hardly recognize the radar emit-
ter accurately because the source domain is substantially dif-
ferent from the target domain. When the EW environment
is the worst, our method affords a 20.4% performance im-
provement over TCN and 11.2% over MADA. This is because
our method generates reliable emitter signals and forces the
model to learn the cross-domain features, enhancing its adapt-
ability to emitter signals in changing environments.

Table 2 compares the recognition accuracy of our method
against the baselines on different PRI modulations on P4. Our
method achieves better accuracy than the other methods on
all PRI types. However, our method’s deficiency is that the
recognition accuracy of constant PRI and jittered PRI is still
unsatisfactory because these are easily confused under high
error ratios. Table 3 compares the recognition accuracy of five

Table 3. Recognition accuracy of radar emitters with STG
PRI but different PRI values on P4.

Methods STG1 STG2 STG3 STG4 STG5
CNN [9] 51.0 56.8 47.7 43.5 49.6
A-RNN [10] 52.8 51.1 45.1 49.1 56.1
ACSE [14] 50.4 53.2 49.5 47.9 45.1
TCN [2] 56.3 53.6 47.0 47.0 54.8
ERM [7] 62.5 51.9 51.4 56.0 63.3
d-SNE [23] 62.8 60.9 61.7 57.2 63.4
MADA [13] 63.5 61.7 53.2 56.2 62.8
Ours 76.1 74.7 61.7 69.1 73.0

staggered PRI on P4, where the suggested method achieves
the best performance among all baselines on each emitter.
Both tables prove that our method can well recognize the
emitters with different or the same PRI modulations.

4.3. Evaluation of Few-shot Domain Adaptation

Fig. 3. Results of using a few samples from the testing set for
training.

Finally, we add a few samples from unlabeled target data
for training. For this trial, we use the existing DG meth-
ods with Fig.3 illustrating that fine-tuning with a few samples
from the target domain can significantly improve the model’s
performance on the target domain. Our model performs bet-
ter than d-SNE and MADA, but as the data from the testing
set increase, the improved accuracy advantage gradually de-
creases. Since the signals generated by our generator present
enough diversity, it is difficult to improve the recognition ac-
curacy with superfluous samples from the testing set.

5. CONCLUSION

This paper proposed a novel domain generalization frame-
work to improve the adaptability of signal recognition in
changing environments. Our method first designed several
noise generators which simulate varied scenes accordingly
to enhance the diversity of the detected signals but keep the
semantic features of the signals themselves. In addition, the
suggested model can learn the cross-domain signal feature
through adversarial learning. Extensive experiments on the
standard dataset demonstrate that our method achieves the
best radar emitter signal recognition performance in chang-
ing environments. Our method fills the gap in the task and
provides a promising direction to solve the radar emitter
signal recognition problem.



6. REFERENCES
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