
File-Handling Within FORTRAN

~/~ALCOLM C. HARRISON
Courant Institute of Mathematical Sciences,
New York University, New York

This note describes some FORTRAN subroutines to facilitate
handling of tape files. They allow symbolic naming of informa-
tion files, without violating the casual scientific programmer's
idea of simplicity. Some comments on two years use of these
subroutines are given.

I n t r o d u c t i o n

In any large system of programs making extensive use of
magnetic tape, it is convenient to use some consistent
method for the allocation of permanent and temporary
tape storage. In particular, a system of programs which
communicate via magnetic tape, and which may be the
work of many programmers, runs the risk of growing ex-
tremely ponderous if every reference to magnetic tape re-
quires knowledge of the whole data structure. Also, even
trivial alterations or improvements to such a system some-
times involve so much work that they are just not worth
the trouble.

The subroutines described below constitute a particu-
larly simple solution to this problem, and have been found
very effective for the casual scientific programmer. The
subroutines are written in FORTRAN I I and PAP for the
IB M 709/90/94, and allow complete freedom in the form
in which the data is written on the tape, including the
standard FORTRAN input /output statements.

M e t h o d

The unit of information is the file, which may consist of
any number of records. Each file is given a symbolic name
by the programmer when written on the tape, and subse-
quent references to this file are made by using this name.

On the tape each file is terminated by an end-of-file
mark, and is preceded by an identifying record (IDR) con-
taining the names of the file and the names of all the pre-
ceding files on that tape. This enables any file to be located
by reading the record after any end-of-file mark, and
searching it for the required file name. If it is found, the
tape is rewound the required number of files. Otherwise,
the tape is moved forward until the file is located.

All the tape manipulation is done by three subroutines:
LOAD, F I L E and F I L E N D . The algorithms used by the
subroutines are as follows:

LOAD (NTAPE, TAPNAM)
1. Rewind NTAPE, and write EOF.
2. Write identifying record containing TAPNAM, 3 (the num-

ber of words in the record), and zero (denoting the last file).
3. Write EOF, and backspace over 2 EOFs.

The work presented in this paper was supported by the US
Atomic Energy Commission under Contract no. AT(30-1)-1480.

FILE (FILNAM, NTAPE, TABLE)
1. Move NTAPE forward over first EOF.
2. Read identifying record tape, which will contain first the

name of the tape, then the number of words in the record,
and then the names of the files up to and including the next.
Store in TABLE.

3. Search the file names for FILNAM.
4. If not found, and if not the last file on the tape (denoted by a

zero in the last file-name position), move tape forward over
EOF, and go to 2.

5. If not found, and if last file, replace zero with FILNAM,
rewrite identifying record followed by EOF, backspace over
EOF, and return.

6. If found, backspace tape over correct number of EOFs, read
and check the identifying record after the EOF, and return.
If the record is not correct, print an error message, and
terminate the job.

FILEND (NTAPE, TABLE)
1. Write EOF on NTAPE.
2. Add zero to the list of file names in TABLE, to denote that

there are no more files, and step up the word counter.
3. Write identifying record, followed by EOF.
4. Backspace over 2 EOFs.

The subroutine LOAD prepares a scratch tape to use the
remaining subroutines F I L E and F I L E N D .

The subroutine F I L E (FILNAM, NTAPE, TABLE)
searches the tape on unit N T A P E for the file named
F I L N A M . If it finds it, the tape is left positioned after the
I D R ready to read the information. If it does not find the
file, it assumes that the file is about to be written so it
writes an I D R after the last file on the' tape containing
T A P N A M and the names of all the files together with
F ILNAM. I t then writes an end-of-file mark, and leaves
the tape positioned just after the new IDR. TABLE is an
array of temporary storage in which F I L E leaves the I D R
it has written or read last, and which must be at least
three words longer than the maximum number of files.

The subroutine F I L E N D (NTAPE, TABLE) is used to
terminate a file which has been written on NTAPE. I t
writes an end-of-file mark, followed by an I D R containing
a zero to denote that there are no files on the tape follow-
ing, and a further end-of-file mark. The tape is then back-
spaced over the two end-of-file marks, and is again ready
for use.

I t should be noted that the name of the tape T A F N A M
is included in each IDR, but never referred to. This is in
anticipation of an improved version, where the tapes may
also be given symbolic names. T A P N A M and F I L N A M
are normally written into the program as Hollerith char-
acters. The example given below illustrates the use of the
subroutines.

DIMENSION TABLE (10)
. . .

NTAPE = 11

CALL LOAD (NTAPE, 6HTAPE-Z)
...
CALL FILE (6HFILE-1, NTAPE, TABLE)
WRITE TAPE NTAPE, A, B, (C(I), I = 1, 10)
CALL FILEND (NTAPE, TABLE)

514 Communica t ions of the ACM Volume 8 / Number 8 / August, 1965

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365474.365530&domain=pdf&date_stamp=1965-08-01

100

CALL FILE (6HFILE-3, NTAPE, TABLE)
WRITE OUTPUT TAPE NTAPE, 10O, D, E
FORMAT 2A6
WRITE TAPE NTAPE, F, G
CALL FILEND (NTAPE, TABLE)

CALL FILE (6HFILE-1, NTAPE, TABLE)
READ TAPE NTAPE, AA, BB, (CC(I), I = 1, 10)

CALL FILE (6HFILE-5, NTAPE, TABLE)
WRITE TAPE NTAPE, I, J
CALL FILEND (NTAPE, TABLE)

CALL EXIT
END

C o m m e n t s

Severa l conseqnences of t he a lgor i thms m a y b e noted .
Rewr i t i ng a file has t he effect of eras ing any files which m a y
have followed it. A n a t t e m p t to read a nonex is ten t file
will resul t in an end-of-file be ing read (and a consequent
er ror exit in FORTRAN). N o in fo rma t ion is k e p t in core
a b o u t t he con ten t s of t he t apes (except be tween F I L E -
F I L E N D pairs when wr i t ing a file), so t apes m a y be re-
moved , changed, rewound, or have the i r pos i t ions a l te red
dur ing a p rog ram, except when files are ac tua l ly be ing used.

T h e subrout ines descr ibed here have been in use for over
two years , in p rog rams as different as t he ca lcula t ion of
molecu la r wave funct ions and a u t o m a t i c d i f fe ren t ia t ion of
formulas . One pa r t i cu l a r a d v a n t a g e of the i r use has been
the ease wi th which p r o g r a m m i n g effort has been sp l i t be-
tween m a n y people, w i th each p r o g r a m m e r be ing able to
read or wr i t e files on any t a p e wi th the knowledge t h a t t he
ope ra t ion of o the r p rog rams will no t be affected. Also, pro-
g rams using only a smal l po r t i on of the d a t a have been
wr i t t en wi th the knowledge of th is d a t a alone.

T h e p resen t s imple subrou t ines are, of course, on ly a
first a p p r o x i m a t i o n to t he so lu t ion of t he t a p e - m a n i p u l a -
t ion p rob lem, b u t t h e y have p roved so successful t h a t the
au tho r canno t foresee himself wr i t ing ano the r p r o g r a m
using t apes w i thou t some such procedure . I n fact , he would
suggest t h a t t he symbol ic naming of i n fo rma t ion s tored on
t ape should be considered for inco rpora t ion into the scien-
tific p r o g r a m m i n g languages.

Acknowledgments. T h e subrout ines descr ibed here were
w r i t t e n while t he a u t h o r was engaged in molecu la r calcu-
la t ions a t the M I T Coopera t ive C o m p u t i n g L a b o r a t o r y
sponsored b y the N a t i o n a l Science F o u n d a t i o n , the Office
of N a v a l Research , and the Air Force Office of Scientific
Research .

RECEIVED FEBRUARY, 1965

REFERENCES

1. HARRISON, M. C. File-handling routines. C.C.L. Tech. Note
19, MIT, Cambridge.

2. CSIZMEDIA, 1. G., HARRISON, M. C., MONKOWITZ, J. W., SEUNG,
S., SUTCLIFFFE, B. T., AND BARNETT, M.P . The POLYATOM
system, part I: basic subroutines. C.C.L. Tech. Note 36,
MIT, Cambridge.

P R A C N I Q U E S

The Techniques Department is interested in publishing short de-
scriptions of Techniques which improve the logistics of information
processing. To quote from the policy statement, Communications of
the ACM 1 (Jan. 1958), 5: "It is preferable that techniques con-
tributed be factual and in successful usage, rather than speculative
or theoretical. One of the major criteria for acceptance and the ques-
lion one should answer before submitting any material is--Can the
reader use this tomorrow?" Clear, concise statments of fairly well-
known but rarely documented methods will contribute significantly
to raising the general level of professional competence.--C.L.McC.

NEGATIVE AND ZERO SUBSCRIPTS IN
FORTRAN II PROGRAMMING
FOR THE IBM 1620

The requirement that subscripts be unsigned integers creates
some inconvenience in FORTRAN programming for summarization
of completed questionnaires in which the responses may be scaled
beginning at zero.

Suppose that a response range is the set of integers from 0 to 4.
The array can be dimensioned as M(5), and tallied by repetitive
reading of the response I, followed by the statement M (I + I) =
M (I + i) + 1. If there is a large number of questionnaires with
many categories execution time is increased because of the neces-
sity for subscript modification.

The apparent inability to employ zero as a subscript seemed
illogical under appropriate conditions. Also, circumvention of the
published requirement that integer subscripts be unsigned and
positive would be of advantage. The possibility of the extension
of the range of subscript values was therefore investigated on the
IBM 1620 (without index registers) both in FORMAT FORTRAN
and in FORTRAN II . I t was found that the requirement is imposed
by the processor and not by virtue of programming logic. Thus,
while

M(0) = M(0) + 1

will not compile, the satement I=0, followed by M([) = M(I) + 1
will compile, and operate correctly if appropriate storage is
reserved.

In FOI~MAT FOR'raiN storage is reserved by serial listing ill
the dimension statement. For the problem above the specification
is:

DIMENSION L(1), M(4)

In FORTRAN II the equivalence statement can be used to ad-
vantage :

DIMENSION L(5), M(4)
EQUIVALENCE (L(2), M)

The remainder of the routine for N values (N assumed available)
is:

DO 1 I = 1, 5
1 L(I) = 0

D O 2 J = 1, N
READ 10, I

2 M(I) = M(I) + 1
J - ~ 0
PRINT 11, (I,M(I), I = J,4)

The routine was useful in tallying 142 one-way categories of
approximately 600 questionnaires (140 categories were scaled
beginning at zero).

Volume 8 / Number 8 / Augus t , 1965 C o m m u n i c a t i o n s of the ACM 515

