
ii:.:!:~.~ • i.. ~" . :...: " ~". :~..::~~::i.: ii~ ~:::.:::.~:: ~ !: ::,....(:.:i::..i.~ .. .:~ z. ~. .i"..:. !..~. : !:. :" :. '. '¸~ ::. ::::..: '~: ::?:!:~:~ '~ i. i::~.L ~i,~ i:'!i,~.:::i ~?~::!:~i.i:i/i~i !:!i~!!.i ~!~ !ii::!::~ii !i.i:ii :i~.! iiiii~!ii!il i! !:iiii~ii:i,iiiiii! ii.i

}:::..:::::. :. iS es ing. .LS,,i si !i:!iii ii:iiiiiii!i! iiii.ii:iiii !i!i::i!{!ii!!i:
i

D. E. KNUTH, Editor

: P,

~BROU .:

A Contribution to the Development of ALGOL
NIKLAL-S ~'IRTH C . A . R . HOARE

Stanford Ut~ive-rsity* AND Elliott Automation Computers Ltd.,
Sta~(ib,'d, Cal tilbrt~,ia Borehamwood, England

A programming language similar in many respects to ALGOL
60, but incorporating a large number of improvements based
on six years' experience with that language, is described in de-
tail. Part I consists of an introduction to the new language
and a summary of the changes made to ALGOL 60, together
with a discussion of the motives behind the revisions. Part II is
a rigorous definition of the proposed language. Part III de-
scribes a set of proposed standard procedures to be used with
the language, including facilities for input/output.

P A R T I. G E N E R A L I N T R O D U C T I O N

1. Historical Background

A preliminary version of this report was originally
drafted by the first author on an invitation made by IFIP
Working Group 2.1 at its meeting in May, 1965 at Prince-
ton. It incorporated a number of opinions and suggestions
made at that meeting and in its subcommittees, and it
was distributed to members of the Working Group as
"Proposal for a Report on a Successor of ALGOL 60"
(MR75, Mathematical Centre, Amsterdam, August 1965).

However, at the following meeting of the Group at
Grenoble in October, 1965 it was felt that the report did
not represent a sufficient advance on A~GOL 60, either in
its manner of language definition or in the content of the
hmguage itself. The draft therefore no longer had the
status of an official Working Document of the Group and
by kind permission of the Chairman it was released for
wider publication.

At that time the authors agreed to collaborate on revis-
ing and supplementing the draft. The main changes were:

(1) verbal improvements and clarifications, many of
which were kindly suggested by recipients of the original
draft;

(2) additional or altered language features, in par-
ticular the replacement of tree structures by records as
proposed by the second author;

(3) changes which appeared desirable in the course

This work was supported by the NationaI Science Foundation
(GP 4053 and GP 4298), and it is also published with due acknowl-
edgment to Elliot.t-Automation Computers Ltd.

* Computer Science Department.

of designing a simple trod efficient implementation of the
1 anguage;

(4) addition of introductory and explanatory ma-
terial, and further suggestions for standard procedures, in
particular on input/output;

(5) use of a convenient notational facility to abbrevi-
ate the description of syntax, as suggested by van Wijn-
gaarden in "Orthogonal Design and Description of a
Fornial Language" (MR76, Mathemat.ical Centre, Am-
sterdam, Oct. 1965).

The incorporation of the revisions is not intended to
reinstate the report as a candidate for consideration as a
successor to ALGOL 60. However, it is believed that its
publication will serve three purposes:

(1) To present to a wider public a view of the general
direction in which the development of ALGOL is proceeding;

(2) To provide an opportunity for experimental im-
plementation and use of the language, which may be of
value in future discussions of language devdopment;

(3) To describe some of the problems encountered
in the attempt to extend the language further.

2. Aims of the Language

The design of the language is intended to reflect the
outlook and intentions of IFIP Working Group 2.1, and
in particular their belief in the value of a common pro-
gramming language suitable for use by many people in
many countries. It. also recognizes that such a language
should satisfy as far as possible the following criteria:

(1) The language must provide a suitable technique
for the programming of digital computers. I t must there-

Volume 9 / Number 6 / June, 1966 C o m m u n i c a t i o n s o f tile ACM 413

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365696.365702&domain=pdf&date_stamp=1966-06-01

fore be closely oriented toward ihe capabilities of these
machines, and must take into aeeount~ their inherent
limitations. As a result it should be possible to construct a
fast, well-structured and reliable translator, translating
programs into machine code which makes economic use
of the power and capacity of a computer. In addition, the
design of the language should act as an encouragement to
the programmer to conceive the solution of his problems
in terms which will produce effective programs on the
computers he is likely to have at his disposal.

(2) The language must serve as a medimn of com-
munication between those engaged in problems capable
of algorithmic solution. The notational structure of pro-
grams expressed in the language should correspond closely
with the @namie structure of the processes they describe.
The programmer should be obliged to express himself
explicitly clearly and flflly, without confnsing abbrevia-
tions or implicit presuppositions. The perspicuity of pro-
grams is believed to be a property of equal benefit to
their readers and ultimately to their writers.

(3) The language must present a conceptual frame-
work for teaching, reasoning and research in both theo-
retical and practical aspects of the science of computation.
I t must therefore be based on rigourous selection and
abstraction of the most fundamental concepts of computa-
tional techniques. Its power and flexibility should derive
front uni~-ing simplicity, rather than from proliferation
of poorly integrated features and facilities. As a conse-
quence, for each purpose there will be exactly one obvi-
ously appropriate facility, so that there is minimal scope
for erroneous choice and misapplication of facilities,
whether due to misunderstanding, inadvertence or inex-
perience.

(4) The value of a language is increased in proportion
to the range of applications in which it may effectively
and conveniently be used. I t is hoped that the language
will find use throughout the field of algebraic and numeric
applications, and that its use will begin to spread to non-
numeric data processing in areas hitherto the preserve of
special purpose languages, for example, the fields of sinm-
lation studies, design automation, information retrieval,
graph theory, symbol manipulation and linguistic research.

To meet any of these four requirements, it is necessary
that the language itself be defined with utmost clarity
and rigor. The Report on ALGOL 60 has set a high stand-
ard in this respect, and in style and notation its example
has been gratefully followed.

3. S u m m a r y of New F e a t u r e s

A large part of the language is, of course, taken directly
from ALGOL 60. However, in some respects the language
has been simplified, and in others extended. The following
paragraphs summarize the n:tajor changes to ALGOL 60,
and relate them to the declared aims of the language.

3.1. DATA TYeES
The range of primitive data types has been extended

from three in ALGOL 60 to seven, or rather nine, if the

414 Communications of the AC3I

long va=riants are included, lln compcmsaLion, certain ~i:.:
aspects of 1he co!n>pB or" type have be{m simplified, fn pal'-] '
t itular, the own concept has been aban(hm.ed as i.nsufli- iLL.

i }: ciently usefui to jus | ify it.s positiou, and as leading to : .:>
semantic ambiguities ia many circumsta,aces. :~
3.1.1. Numeric Data Tvpes 7-"

The type complex has been introduced into the lan-
guage to simplify the specification of algorithms involving :(i:
complex numbers. ::

vided to deal with calculations or sections of calculations
in wtfich the normal precision for floating-point, mm~ber
representation is not suflieient. I t is expected ihai; the
significance of the representation will be approximareiy
doubled.

_No provision is nmde for speeit~qng the exact required
significance of floating-point representation in terms of
tlle number of binary or decimal digits. I t is considered
most important tha t the values of primitive types should
occupy a small integral number of computer words, so
that their processing can be carried out with the maxL
mum efficiency of the equipment available.
3.1.2. Sequences

The concept of a sequence occupies a position inter-
mediate between tha t of an array and of other simple da~
types. Like single-dimensionM arrays, they consist of
ordered sequences of elements; however, unlike arrays,
the most frequent operations performed on them are ,~o~
the extraction or insertion of single elements, but rather
the processing of whole sequences, or possibly subseque~ees ::::: i~
of them. L. :.:

{ : ~ e ; :

Sequences are represented in the language by two new { :
types, b i t s (sequence of binary digits), and s t r ing (<~'- : i : :
quence of characters). Operations defined for bit sequeI:ces : - • ~ b : =

include the logical opm'ations - , , / \ and V, attd those c,f i~-
shifting left and right. : i.;

its elements are sufficiently small to occupy only a frao- :;~~
tion of a "computer word," i.e. a unit of information which :< ~: ;
is in some sense natural to the computer. This means that
space can be saved by "packing," and efficiency can be
gained by operating on such natural units of information.
In order that use of such natural units can be made by
an implementation, the maximum number of elements in
a sequence must be specified, when a variable of that type
is declared. Operations defined for string sequences include
the cat enation operator eat .
3.1.3. Type Determination at Compile Time

The language has been designed in such a way that the
type and length of the result of evaluating evelT expres-
sion and subexpression can be uniquely determined by a
textual scan of the program, so that no type i)esting is
required at run time, except possibly on procedure entry.
3.1.4. Type Conversions

The increase in the number of data typos has cau::-cd
an even greater number of possibilit.ies for type cotwer.<ion
some of these are intended to be inserted automatieg, liy i~

Volume 9 / Nllmber 6 / June, i.966

?
:5

d:

the tr:,a~iafor, at~d otl~ers have ~o bc specified by ~he
programmer t,y use of sta~tdard transfer f,,mctions pro-
vided i,)r the l)urpo,-e,

Auvoma~ie i>.sertio,q of type co~.version has been eoa-
fhaed to cg~es where ~.i~ere ('ottld " e no possible cc)tffusi,m
.} .. f ,-- ',c~ co>versioll is J.!ltet~-[~c{: from in tege r to real,
aE~d real ~o complex, }:)tt~ n,>t: vice versa. Attto[liaiie
{.oavcrsi(,tts arc also performed from shorter to kruger
~ariants of the data types; and in the ease of !lulttbers,
.:r<n.. ~o,, .~'5 {o <her! as w,qI.

[:or all other conversions explicit standard procedures
must Be used. This ensures that the complexity and pos-
sible inefiicieney of the conversion process is not bidden
flOla the programnler; furthermore, 1he existence of addi-
~iotmi paran~eters of the procedure, or a choice of proee-
dm'es, will draw his attention to the fact dmt there is
!nor(' !hau one way of performing the conversion, and tie
is thereby encouraged to select the alternative which
eorrespo~Ms to his real requirements, rather than rely on
a built-in "default" conversion, about which he may have
only vague or even mistaken ideas.

~{,2. CON'l'ilOf. OF SEQUENCING

The only changes made to facilities associated with
control of s(,(tueneing have been made in tile direction of
tin@if!cation and clarifieadan, rather than extension.
:L2.1. Switches and the Case Construction

The switch declaration and the switch designator have
}:con abolished. Their place has been taken by the ease
(.,o>.struetio:l, applying i() both expressions and st.ate-
m{,.~:ts. This ('(ms!ruction permits ihe selection and exeeu-
vion (or e\:Mttaiion) of one from a list of stalelnents (or
expr(,ssiot>':.; the <el(net!on is nmd(: in .'.tceordanee with the
value . f an irxt;eger expression.

The ease construction extends the facilities of the ALGOl,
('end!!tonal to circumstances where the choice is made
from nlore than two alternatives. Like the conditional, it
mirrors the dynamic strueiure of a program more dearly
t.h~!~ go to statements and switches, and it eliminates
die need for introdueing a large number of labels in the
program.
3.2.2. Labels

The concept of a label has been simplified so that it
merely serves as a link between a t o t e statement attd its
destination; i~ has been stript)ed of all features suggesting
tidal i~ is a man!pitiable object. In particular, designational
expressions have been abolished, and labels can no longer
be passed as parameters of procedures.

A further simplification is represented by the rule that
a tote statement cannot lead from outside into a condi-
timml statement or ease statement, as well as iterative
statement.

The ALGOL 60 integer labels have be,m eliminated.
3.2.3. Iterative Statements

The purpose of iterative statements is to enable the
prc)grammer to specify iterations in a simple and perspicu-
ous rnammr, and to protect himself from the unexpected

Volume 9 / Number 6 / June, 1966

(,ffec(.s of some sub~ie or careless error. TEe2~" also signalize
,;o the mmsiator that this is a special ease, susceptible of
.-,a ~,,: optinfization.

It is notorious that the ALGOL 60 for statement fails to
satisfy any of ' ~ . these, requirements, and therefore a drastic
simplifieathm has been made. The use of iterative state-
nlents has been cotdiued to the really simple and conmmn
eases, rather than extended to cover nlore complex r(>
quirements, which can be more flexibly and perspicuously
dealt with by explicit program instructions using labels.

The most general and powerful iterative statement,
31 eapaI Le of covering all requirements, is that which indi-

crees that a stateinent is to be executed repeatedly while
a giwm. con(titkm remains true. The only alternative t.ype
of iterative statement allows a formal counter to take
successive values in a finite arithmetie progression eli
each execution of the s ta tement . No explicit assignments
can be made to this counter, which is implicitly declared
as local to the iterative s ta tement .

3 . 3 . PROCEDURES AND I)A]:,L~METERS

A few nfinor changes h:-~ve been made to the procedure
concept of ALGOL 60, mainly in the interests of clarifica-
tion mid efficieney of implenmntat, ion.
3.3.1. Vahte and ' 1 .[tesu t Pa ramete r s

.:ks in AL(;OL 60, the meaning of parameters is explained
in terms of the "copy rule," whieh tu,eseribes the liLeral
rel:flacement of the formal parameter by tile actual pa-
rameter. As a counterpart to the "value paranleter,"
which is a convenient abbrevi~ttion for the frequent case
where the fornml paranteter can be considered as a vari-
able local to the procedure and initialized te the value of
the actual parameter, ~t " resul t) r ' " ta alnete! has been
introduced. Again, the formal pm'mneter is considered as
a local variable, whose vahle is assigned to the correspond-
ing actual parameter (wMeh therefore ahvays must be a
variable) upon termination of the procedure.

The faeility of calling an axray parameter by value has
been removed. I t contributes no additionM power to the
language, ant[it contravenes the. general policy that opera-
tions on entire arrays should be specified by means of
explicit iterations, rather than eoneeMed by an imI)licit
notation.
3.3.2. Sl~atement I utam(.t.ers

A facility has been provided for writing a statement as
an actual parameter corresponding to a formal specified
as procedure. The s t a t e m e n t can be considered as a
proper procedure body wi thou t parameters. This repre-
sents a considerable no!at!ohM convenience, since it
enables the procedure to be specified acmMly in the plate
where it is to be used, rattmr than disjointly in the head
of some embracing block.

The label parameter tins been abolished; its function
may be taken over by [)lacing a gore statement in the
corresponding actual paran-mter position.
3.3.3. Specifications

The specification of all formal parameters, and the
correct matching of actuals to formals, has been made

Comnturtlcations of the &CM 415

obligato]T. The purpose of specifications is to inform the
user of the procedure o{ the correct cotlclition~ of its ttse:
and to ensure that t~e tran~!ator can cheek that tixese
conditions have beett met.

One of the most hnport:mi facts about a procedure
which operates on array parameters is the dimensionality
of the arrays it will aeeep{ as actual parameters. A in(RillS
has therefore been provided for indicating this in the
specification of the parameter.

To compensate for the obligatory nature of specifica-
tion% their notation has been ~implified by inehtding
them in ihe formal parameter list, rather than placing
them in a separate specification part, as in ALGOL 60.

3.4 D XTA STRUCTURE5
The concept of an re'ray has been taken from ALGOL 60

virtually unchanged, with the exception of a slight nota-
tional simplification.

To supplement the array concept, the language has
been extended by the addition of a new gype of s tructure
(the record) consisting, like the array, of one or more
elements (or fields). With each record there is associated a
unique value of type r e f e r e n c e which is said to refer to
tha t record. This reference may be assigned as the value
of a suitable field in another record, with which the given
record has some meaningful relationship. In this way,
groups of records may be linked in structural networks of
any desired complexity.

The concept of records has been pioneered in the AED I
language by D. T. Ross.
3 .4 .1 . Records and Fields

Like the array, a record is intended to occupy a given
fixed number of locations in the store of a computer. I t
differs from the array in that the types of the fields are
not required to be identical, so that in general each field
of a record may occupy" a different amount of storage.
This, of course, makes it unat t ract ive to select an element
from a record by means of a computed ordinal number,
or index; instead, each field position is given a unique
invented name (identifier), which is written in the pro-
gram whenever tha t field is referred to.

A record may be used to represent inside the computer
some discrete physical or conceptual object to be exam-
ined or nmnipulated by tl{e program, for example, a person,
a town, a geometric figure, a node of a graph, etc. The
fields of the record then represent properties of tha t object,
for example, the name of a person, the distance of a tox~m
from some starting point, the length of a line, the time of
joining a queue, etc. Norinally, the name of the field
suggests the property represented by that field.

In contrast to arrays, records are not created by decla-
rations; rather, they are created dynamically by state-
ments of the program. Thus their lifetimes do not have
to be nested, and stack methods of storage control must
be supplemented by more sophisticated techniques. It: is
intended that. automatic "garbage collection" will be
applicable to lvcords, so that records which have become

416 C o m n m n i c a t i o n s o f the AC~I

inaccessible may be deiected, ami the s!m~-c iim 3 w,'eupy
ro]e~ised for o/her purpose-,.
3° 1.2. I~eferem:es

The normal da |a types (s t r ing . real . in teger~ etc.) are
sufi[i<'k'ni Io represent ~ ~" properties of the ,,)bjects repre-
sented by records; but .~. zww type of data is required to
represenl relationships iholding between these objects.
Provided that the relauonship is a i'uuctional reI:uionship
(i.e. many one or one-one), it can be reprcsctlt(,d by t)lae-
lug as a field of one record a re%rence to the other record
to which it is related. For example, if a record which repre-
sents a person has a field named i'.Zhe~', then lhis is likely
to be used to contain a reference to the record which repre-
sents tha t person's father. A similar treallnenl is possible
to deal with the relationship between a town and itp:~ n~'xt
town visited on some journey, between a customer and
the person following him in some queue, between a directed
line and its starting point=, etc.

References are also used to provide the means by which
the program gains access to records; for this purpose,
variables of type r e f e r e n c e should be declared in the head
of the block which uses them. Such variables will at. any
given time refer to some subset of the current ly existing
records. Fields of records can be referred to directly by
associating the name of the field with the vMue of the
variable holding a reference to the relevant record. If theft
record itself has fields containing references to ye t further
records outside the initial subset, then fields of these other
records m~v be accessed indirectly by further associating
their names with the construction which identified the
reference to the relevant record. By assignment of refer-
ences, records previously accessible only indirectly can be
made directly accessible, and records previously directly
accessible can lose this status, or even become totally
inaccessible, in which case they are considered as deleted.

Thus, for example, if B is a variable of type r e fe rence
declared in the head of some enclosing block, and if" age.
and .lather are field identifiers and if B contains a reference
to a certain person, then

age (B)

(called a field designator) gives tha t person's age;

jather(B)

is a reference to that person's father, and

age (father(B))

gives his father's age.
3 .4 .3 . Record Classes

Two records may be defined as sinfilar if they have the
same number of fields, and if corresponding fields in the
two records have the same names and the same types.
Similarity in t hi~ sense is an equiwflence relationship and
may be used to split all records into mutual ly exclusive
and exhaustive equivalence classes, called record classes.
These classes tend to correspond to the natural classifica-
tion of objects under some generic term, for example:

Volume 9 / Number 6 / June, 1 (~66

:7

. i

i?{

%

t)erso-,~ ., h_;m~t o r T~c~dPi2ah.-ra ' .]'],.<it cooer, .5-:t~..~ ;ii~.tt:~i. 1"¢!
introduced iP, a progi 'a i i t OV nlea l l s o{ a !'oo<~i ,.:iris:..: dec]a i';t

lion, which associates a mmm with the class and specifies
the names and types of the fields which eharaeterize ttm
members of the class.

One of ttxe nmjor pitfalls itt the use of references is {he
mistaken assumption that the \Mue of a referenee vari-
able, -field or- t}:wameter refers to a record of some given
class, whereas on execution of the program it tttrns 01115
that the reference value is associated with some record
of quite a different class. I f the programmer a t tempts to
access a field inappropriate to the actual class referred to,
tie will get a meaningless result; but if he a t tempts to
nmke an assignment to such a field, the consequences
could be disastrous to the whole scheme of storage con-
{roI. To avoid this pitfall, it is specified that the program
met can associate with the definition of every reference
variable, field or -pa rameie r the name of the record
class to which any reeord referred to by it will belong. Tlie
translator is then able to verify tha t the nfistake described
can never Occur.

3.4.4. EtIieiency of Implementa t ion
M a n y applications for which record handling will be

found useful are severely limited by the speed and eapaeity
of the eomputers available. I t has therefore been a major
aim in the design of the reeord-handling faeilities that in
implementat ion the aeeessing of reeords arid fields should
be accomplished with the u tmost eflieieney, and that the
layout of storage be subjected only to a minimum ad-
ministrat ive overhead.

4. Poss ib i l i t i e s for L a n g u a g e E x t e n s i o n

In the design of the language a number of inviting
possibilities for extensions were considered. In many
eases the investigation of these extensions seemed to reveal
inconsistencies, indecisions and difftieulties which could
not readily be solw:d. In other eases it seemed undesirable
to make the extension into a s tandard feature of the
language, in view of the extra complexity involved.

In this seetion, suggested extensions are outlined for
the consideration of implementors, users arid other
language designers.

4.1. FURTHER STRING OPERATIONS

For some applications it seems desirable to provide
facilities for referring to subsequenees of bits and strings.
The position of the subsequenee could be indicated by a
notation similar to subscript bounds, viz.

S[f :j] the subsequenee of S consisting of the ith to
j t h elements inclusive.

This notation is more compact than the use of a stand-
ard procedure, and it represents the fact that extraction is
more likely to be performed by an open subroutine tha.ii a
closed one. However, the notat ional similarity suggests
tha t the construction might also appear in the left par t of
an assignment, in which case it denotes insertion rather
than extraction, i.e. assignment to a part of the quanti ty.

Volume 9 / Number 6 / June, 1966

Apart i'ron~ tlle undesirability of the same construction
denoti~lg Bye different operations, this would require
that strings be classified as structured values along with
arrays._

4.2. }'ISRTHEt~. iDA.TA TYPES

Suggestions have been made for facilities to specify the
precision of numbers in a more "flexible" way, e.g. by
indicating the number of required decimal places. This
solution has been rejected because it ignores the funda-
mental distinction between the number itself and one of
its possible denotations, and as a consequence is ut terly
inappropriate for calculators n, ol: using the deeinml number
representation. As an alternative, the notion of a precision
hierarchy could be introduced by prefixing deehu'ations
with a sequence of symbols long, where the number of
longs determines the precision class. For reasons of s im-
pl ic i ty , arid in oMer that an implementation may closely
reflect the properties of a real machine (single vs. double
precision real arithmetic), allowing for only one long was
eonsklered as appropriate. Whether an implementation
actually distinguishes between rea l and long real can be
determined by an environment enquiry (el. Par t I I I , 2).

4..3. INITIAL "VALUES AND LOCAL CONSTANTS
I t is a minor notational eonvenienee to be able to assign

an initial value to a variable as part of the deelaratiou
whieh introduces that variable. A more important adwm-
tage is that the notation enables the programmer to ex-
press a very important feature of his calculations, namely,
that this is an unique initial assignment inade once only
on tt~e first entry to the bloek; furthermore it completely
rules oul the possibility of the elementary but all too
common error of failing to make an assignment before
the use of a variable.

However, such a facility rests on the notions of "com-
pile t ime" arid " run t ime" action, which, if at all, should
be introduced at a conceptually much more fundamental
level.

In sonie eases it is known that a variable only ever
takes one vah te throughout its lifetime, and a means may
be provided to make these eases notationally distinct
frorn those of initial assignment. This means that the
intention of the programmer ea t be nmde explicit for the
benefit of the reader, mM the translator is capable of
checking that the assumption of constancy is in faet justi-
fied. Furthermore, the translator can sometimes take
advantage of the declaration of constancy to optimize a
program.

4.4. ARRAY CONSTRUCTORS
To provide the same technique for the initialization of

arrays as for other variables, some method should be
provided for enumerating the values of an array as a
sequence of expressions. This would require the definition
of a reference denotation for array vahms, which, if avail-
able, would consequently suggest the introduction of
operations on values of type array. The reasons for not
extending the language in this direction have already
been explained.

Communications of the AC~[417

4.5. R E C O ~ D C L A S S I)ISCI[[I2~IINA[I2ION

In general, the rule that the rallies of ~.~ part.icul:~r refer-
ence variable or field must be con:fined t,o a single record
class will be found to present little hardship; however,
thel'e are circumstances in which it is usefld to relax this
rule, and to permit the values of a reference variable to
range over more than one record class. A facility is then
desirable to determine the record class to which a referred
record actuaflly belongs.

Two possibilities for record class discriminations are
outlined as follows.

1. A record mlion declaration is introduced with the
form

un ion (record union identifier} ((record class identifier list))

The record class identifier accompanying a reference vari-
able declaration could then be replaced by a record union
identifier, indicating that the values of that reference
variable may range over all record classes included in
that union. An integer primaw of the form

(record union identifier} ((reference expression))

would then yield the ordinal number of the record class in
that union to which the record referred to by the reference
expression belongs.

2. Record class specifications in reference variable
declarations are omitted, and a logical primary of the form

(reference primary} is (record class identifier}

could be introduced with the value t rue, if :LI~(l only if
the reference primary refers to t~ record of the st)ecil}ed
record class.

While the it~troducl~ion of a new kind of declaration (1)
may seem ~u~(lesi~'lmtble, sohltion (2) reintroduces tile dan~
gerous pitfalls des~:dbed in 3.4.3.

4.6. Paocg~)vm~:]~AI~AMETEI~S

I t has been realized that, in most implementations an
actual parameter being an expression constitutes a func-
tion procedure declaration, and that one being a state-
ment constitutes a proper procedure deelaratio:n. These
quasi-procedure declarations, however, are confined to
being parameterless. Samelson has suggested a notation
for functionals which essentially does nothing more than
remove this restriction: an actual parameter ratty include
in its heading formal parameter specifications (el. ALGOL
Bulletin 20.3.8.). In a paper by Wirth and Weber, the
notational distinction between procedure declarations
and actual parameters has been entirely removed [cf.
Comm. ACM 9, 2 (Feb. 1966), 89 ff.]. This was done along
with the introduction of a new kind of actual parameters
similar in nature to the references introduced here in con-
neat[on with records.

Itowever, neither ad hoe solutions nor a radical change
from the parameter mechanism and notation of ALGOL 60
seemed desirable.

P A R T II . D E F I N I T I O N O F T H E L A N G U A G E

C O N T E N T S

1. Terminology, notation, and basic
definitions

1.1 Notation
1.2 Definitions

2. Sets of basic symbols and syntac-
tic entities

2.1 Basic symbols
2.2 Syntactic entities

3. Identifiers
4. Values and types

4.1. Numbers
4.2. Logical values
4.3. Bit sequences
4.4, Strings
4.5. References

5. Declarations
5,1. Simple variable declarations
5.2. Array declarations
5.3. Procedure declarations
5.4. Record class declarations

6. Expressions
6,1. Variables
62, Function designators
6.3. Arithmc'tie expressions
6.4. Logical expressions
6.5. Bit expressions
6,6, String expressions
6.7, Refcrenr.~ expressions

7, Statements
7.1, Blocks
7.2. Assignment statements
7,3. Pro(~tdure statements
7.4, Goto statement, s
7.5. If statements
7.6. Case statements
7.7, Iterative statements

1. Terminology, Notat ion and Basic Definitions

The Reference Language is a phrase structure language,
defined by a formal system. This formal system makes
use of the notation and the definitions explained below.
The structure of the language ALGOL is determined by the
three quantities:

(1) ~, the set of basic constituents of the language,
(2) % the set of syntactic entities, and
(3) 5 ~, the set of syntactic rules, or productions.

1.1 NOTATION
A syntactic entity is denoted by its name (a sequence

of letters) enclosed in the [)rackets (and }. A syntactic
rule has the form

(A) ::= z

where (A} is a member of %, x is any possible sequence of
basic constituents and syntactic entities, simply to be
called a "sequence". The form

<A} ::= x l y l . - . I~

is used as an abbreviation for the set of syntactic rules

(A) ::= z
(A} ::= y

(A} ::= z

418 Communicat i¢,ns of the ACM Volume 9 / Number 6 / June , 1966

: =;: =/: :
=::::==: ; : ::

e, if:

)f deCk<i:
re&tee- ;

plemer:~::;
ast!va~ '
~e beir~g: ~ ~
eeIaraf!<
are ee)g

: : 2 : "
iest~d :a 5:
0t iti11~, k-::

~etef m~::!,:
t i o a s =i;::.:.. -:

dis v---: ~°':
l . : ~.etllgl 5%-:

r a ::ra&i::
atioa:dL: :

7

;tructua~L2
aal s~%::=G
s explai~ }
deterr~:!~

r prod:~ii:: :

namei.~ ~::
m d ~i ~ ~: i

. =: : (;>
: : :): :

,0ssibie ~:* :

l .~ o DEFI:XFr~ONS
J. A sequence :c is said to di,'eciI!/ p~'(),h,:c a sequence

y if and only if there exist (possibly empty) se(iue~ ces u
z t u d ~'. so tha t either (i) for some (A) in ~tt, x = ~(.4) w.
.y = .~ww, and (A) :: = t' is a rule in (P; or (ill x = ~vw,
-. = -uvw and ~, is a " commen t " (see below). t j

2. A sequence x is said to prod.ace a :aequence y if attd
o n l y if there exists an ordered set of sequences s[0], s[1],
• • -, sin l, so tha t x = s[0], s[n] y, and @ : - 1] directly
p r o d u c e s .s[i] for all i = 1, - - . , n..

3. A sequence x is said to be an ALGOL prograln if and
ot~ly if its const i tuents are members of the set "C, and :r
(~ t t I t be produced from the syntact ic ent i ty (program).

Tim sets "C and ~ are defined through enumerat ion of
t h e i r members in Section 2 of this Repor t (el. also 4.4).
T h e members of the set of syntact ic rules are given
t h r o u g h o u t the sequel of the Report . To provide explana-
t i o n s for the meaning of AIX;OL programs, the letter
s equences denot ing syntactic entities have been chosen
t o be English words describing approximately the nature
o f that syntact ic ent i ty or construct . Where words which
h a v e appeared in this nmnner are used elsewhere in the
t e x t , they refer to the corresponding syntact ic definition.
A l o n g with these letter sequences the symbol 5 m a y occur.
I t : is understood that this symbol mus t be replaced by
a n y one of a finite set of English words (or word pairs).
I~Tnless otherwise specified in the part icular section, all
occu r r ences of the symbol 5 within ene syntact ic rule
n m s t be replaced consistently, and the replacing words
LI I ' (?

integer logical
real bit
long real string
complex reference
long complex

I t is recognized that typographical entities of lower
o r d e r than basic symbols (of. 2.1), called characters, exist.
S o m e basic symbols may be identical with characters;
o the r s , so-called word-delimiters, are generally repre-
s e n t e d as a sequence of two or more characters. Neither
t h e set of av:dlable characters nor the decomposi t ion of
b a s i c symbols into them is defined here. I t is unders tood
r h a t basic symbols are not the same as characters and
t h a t there nlay exist characters which are neither basic
s y m b o l s nor const i tuents of them; these characters inay,
h o w e v e r , enter the program as const i tutents of strings, i.e.
c h a r a c t e r sequences delimited by so<ai led str ing quotes.

• ~ ::=: ~,i=:: The symbol c o m m e n t followed by any sequence of
lieu, s~,~.: = cha rac t e r s not containing semicolons, followed b y a semi-

" c o l o n (;), is called a comment . A comment has no effect / :

: : ?

i ::?)

: : : :::::: =:::: 2

:; :=:; :::=:::

o n the meaning of a program, and is ignored during execu-
t.ion of the program. An identifier immediately following
t h e basic symbol e n d is also regarded as a comment .

The basic const i tuents of the language are the basic
s y m b o l s (of. 2.1), strings (of. 4.4), and comments .

All quanti t ies referred to in a program must be defined.
'~ 'heir definition is achieved either within the ALGOL pro-

Vo lume 9 / Number 6 / June, 1966

gram by so-called declarations and label definitions, or is
thought to be done in a text, possibly writ ten in attother
language, in which the ALC~OL program is embedded. A
program conlairting references to quantities defined in the
i auer way can only be executed in an environment where
these quanti t ies are known, and this environment is con-
sidered to be a block containing that program.

The execution of a program can be considered as a
sequence of units of action. Tim sequence of these units of
action is defined as the evaluat ion of expressions and the
execution of s ta tements as denoted by the program. In
the definition of the language the evaluation or execution
of certain constructions is (1) either not precisely defined
e.g. real arithmetic, or (2) is left undefined, e.g. the order
of evahmtion of primaries in expressions, or (3) is even
said to be undefined or not valid. This is to be interpreted
in the sense tha t a program which uses constructions of
the first two categories fully defines a computa t ional proc-
ess only if accompanying infornmtion specifies what is
not given in the definition of the language. If in ease (2)
this information is not supplied, then a unique result
of such a process is defined only if all possible altenm-
t i res lead to the same result. No meaning can be attrib-
uted to a program using constructions of the third cate-
gory.

2 . S e t s o f B a s i c S y m b o l s a n d S y n t a c t i c E n t i t i e s

2 . 1 . B_~stc S~~IBOLS

a] b i c d i e f l g l b i i j
u [v i w ! x]y] z i

A] B] C D i E I " ! G H
t e i S i T I U V I W X F i Z I

0 1 1 1 2 1 3 ! 4 1 5 1 6 7 i 8 ! 9 1
i i b i t r u e] fa l se i " i n u l l i
i n t e g e r i real i e o m p l e x l o g i c a l

l o n g i arra? I p r o c e d u r e i record
, i : -] (I) i [] i begin end
+ -- X I / [d i v i rein ~ abs

< _ < l > _ l > t
:= i go to i for I s t e p unti l

r e s u l t

k I i m i ~ , ' o i p q i r s t

[] J i K i L i M I - V P'Qj

bi t s s t r i n g r e f e r e n c e

i f t h e n i e l se l e a s e i o f l
V /'\ i -n] b l e a t ! =] # i

do i while '~ comment value [

2.2, g ENTrrIES ~.YNTACTiC
(with corresponding section nunlbers)

(actual parameter list) 7.3
(actual parameter) 7.3
(array declaration) 5.2
(bit factm:) 6.5
(bit primary) 6.5
(bit secondary} 6.5
(bit sequence) 4.3
(bit term) 6.5
(bit) 4.3
(block body) 7.1
(block head) 7.1
(block) 7.1
(bound pair list) 5.2
(bound pair) 5.2
(case clause) 6
(case statement) 7.6
(control identifier) 3.1

(declaration)
(digit)
(equality operator)
(expression list)
(field list>
(for clause>
(formal parameter list,)
(formal parameter

segment)
(formal type)
(go to statement)
(identifier list)
(identifier)
(if clause)
(if statement)
(imaginary part)
(increment)

5
3.1
6.4
6.7
5.4
7.7
5.3

5.3
5.3
7.4
3.1
3.1
6
i .O

-1.1
7.7

C o m m u n i c a t i o n s o f t h e ACM 419

(i!lii ial v a l u c }
~iierai ive si li.{~lllerilJ
,."hit e d(:f ini i i ()n-
~lal)el ider, t i f lcr)
dei.i er)
(liinit?
(logival f<'lci or)
,"loKical primar3Q G.'I
(h)~i("d see< dary), (i.4
<logical I t! ri-n- B..i
(logical value', .1.2
,£h,wer t}ou d) 5.2
/ i t ! i l l /'e f e rl.m ce} t .5
(p rocedure dcelara l ion) 5.3
i } r o (~ e (h l r e t ie~' i{ l i l i~} :5.:I
(pro(.{M,~re i le iifierT 3. I
(I}ro{~edu re si ; t i :einen t) 7 .3
q)r, iKrani) 7
(pr(il)er procedure t) .dy) 5.3
(lil',i|)e r proc(~dll r{...

d~,cl ira(h}n) 5.3
(real par() .I. I
(r{ ,e.rd cfass d{ (!l,<l raLicm/ .5.1
. ' lecord {:[ass iden(i f icr) 3.1
(re(!or(l {ll:}signui (it) (}.7
(r (h , ,,) {iA
, r e h i , i ,) i m i o |) (~ r a i { i t - G.4
-seM(! f,'l{'h)i} 4. I
(SilL!i} 'I. i

~'Mmple I .~ ical eXlWessio!,. 6.4
~ i l l | |) J { ! I'(~ f #) i ' (!H (' (!

(,x|)rcssion) {;.7
• "~i!ul)h~ s ia le i leui) 7
! !n i l)h , si !'il lg expression) (;.(i

7.7 i~iml}!(~ 2-i exp "~:ss{ ,~ :
7.7 (Mmph, %'pc?

7. I & impl { . vat'ia}}]e
3. I d{,x-]'~rat }<m-
~.1 /;<1 D. ,'m.+:nt= list;,
7.7 . si ai (!ha,oil! {'>
! ; . ' | S I l'iIi~ iJi'i!fi:l.!"~'[

/.!I i- in V
- s i l ~) s c r i p i -

;3 ~'irr;).2." f tes ig l !a l . f) r_
".~ "ll'!';t.')" J d - n ! i f i e r
(.~i ; l b ? S i ~ l l f ! l l " ! } 1 ~ ! , < i l C I i i i : l l ' ,

,..5 ~,xl)rexsion li:~i/
i3 exl)resMo!i~
<3 r u e (o f
-3 field desigii,'d<)r;
(5 field ide~i~ifier)
,~ f i l i i e i i o l i (l(!sig!,::d,)r-
/3 fu,)Pi ion i<len~ lib:r/
i,-j f l l t } (' i ion t) l 'O{:{ 'dl l I~

t .My .
¢~ l t l hO{ iO!l I ')rol ' : f ;(hl l ' { '

d e , ' l a l - i l l {O i l)
~5 lef t !mr(/
~'~ n i l i i i i i l ~ r -
i ~ [) r i I l ' i ; t l ' V -

<,'J. s t ~ e o n (l a r y }
/7] i t~!'l f i -
"5 vuriabh~ ide!aifier.:
(3 wir iahle>
(15,1}(,-
&i l~c:ded rcalli
(ul(sil4Ued ~ nnrnber)
{Ulq. , r I}(.u nd;,
-whi le ('l;lllS(6

0.3
5. I

5.!
7.(i
7

-l.'t
(;. !
6.1
3.1
7.2
6
(i
&:i

(;.l
3, l
(1.2
3.1

:3.:I

5.:5
7.2
• 1. /
&3
(1.3
(;.3
3. l
(LI
5.:;
4.1
I. !
5.2
7.7

3. h l e n t i f i c r s

%1. SYNTAX

/ i den l i l i e r) ::,= (h l i t r) i { i d e n i i l i e r) cloth,r- (ideili l ier}((| i~it '>
<5 v:u'i:d)l(~ i(h l i f ic r) ; := & l e l i l i t i e r .
(~ l l l 'Hiy ide l i f ter) : : = l i l le i l i f ier"
{i)l.O(:(,dur(: i(h!nl i t er) : := i i(h,niif ior.. '
<,3 funv l ion d(q i i i f ier) : := / i (l cn l i f ie r
<'rocord class dcn i i th ! r ; : : - 7i(lenl i l i (' l ' -
<5 fMd de!di fh ' r) : : = .':hhm(ifi('r>
'htl)(d de l l i fh,r) : := (dei i i f i (' i '~
{ ' (Ji l l r{)I i { |eni i t ier) :: = {i{h,nl i t i('r-
< l o i l o r " : : = it . b i (' , l . (: . f ,q i t i i j jig i i m ,,i o p i

,17 r * i t " } v , u ' , : r } q z
A I I { C i l } i f ' ; i I " i G { H / . I / (I" i f [N O l ' Q
~¢ S i T U i i " { I F i . V i Z

(digit> : := 0 } 1 ["2 i a 14 i (~ 7 s (.)
. ; idenl i f ier I isi) : := (Mcni i f ie r) (i den l i l i e r l is i) <i<.hmlitier>

3.2. S E ~ x ' l ' ~ c s
Var ia l} les , a r r i l y s , pl'O{.{.Rhll't's, I'O{!(.)l'{i (:l:lsses ;tll(.I rc('or(.l

fields are said to be q-uanUtie,,'. Ideniifier~ serve (o ident i fy
qt t ' t i i t i t iOS, o r i:|i(~y st, : lnd ;.is hd)e ls , f o r l i l a l paral i lC- i {q 's o r
c o n i r o [i d e n i H i e r s . I d e n t i f i e r s h a v e l io i nhe rcn i , n i c : l nh i g ,

~i.lld cttn bP (th(}:4011 f ree ly .
E v e r y identifier used h t a t)rograIn niust t)e defin('d.

This is achieved th rough
(a) a dee lara l ion (el. Seei ion 5), if the identifier identi/ies

a (luan t i~Y. I t is t h e n s a i d to d e n o t c i h a t q u a n t i t y

a n d to b e a 5 v a r i a b l e - - , 5 a r r ay - - , l ,) r o c e d u r e , ;5

4 2 0 ~ m i n l u n i c a t i o n s o f t h e A C M

, 1 . . ~ i } ::>~ u.. lal/el ,.,iefinitioi: b.) , .11 , ~) ih,,-, j, ,q ~ f<,,- , "-i tit I- ~ g ~

a label. I~ i~ lhe.~i ~Md i o be ._] . b - i i~iui~ifi<':;
(i.,=} {l~ t)C('lllTOl]f'f:~ ill ;I i((}!'|il~i.i D::i ' ; t l l lO[bF !i>i {~'}'. ,~.:¢,.]7 =... ,

{< t i{ 11 Ri-i{d tO })(" ~t ~OI',~ll,'~i [i~il 'filllfq('Y:

(d} iiis <)omurer,P~']I~. a for <'la.:lso folJowi~)~ ih{, s.vmD~,}
t~Jr (<'f. 7.7). l i is ' h u . >;rid m i)o a <:(:lii: '(}i i{:h,,.~t;-
fie,.

"l 'hc idcmif i< 'a i}0 : t o[i i ie del :] : , i i i (m of a ~}v(,H i<i '_ ~.=-~-

ia de t<}rnf ined })y (he f o l l o w i n g tub"s :

S l e p 1. I f i h e i d - i i t f!or is dutill(,<t wii}:il i .h<. ~m~ii~>~

t) lOek (: l l i l l ruu"i t l~ ,h (, Riv{!li (i{:('illT{qlcq, ,fJi t+l!Izi +i]<L~,!il ;,rio f }) \

a (I{~ls 'at <)n of a q!_ia)ltii3' ()r |}v i t s slat ill i ~ ns :~ i:~};~.{.

| ;hc i i ii d{,noh: 's ~:hat: (t t l : t l l ! i iy o r i}lal hd}(-l. A s t s t e m { . ~

fo l lowi l ig a p r o e e d u r P } ieadi : l~ o r a for UDlllS(! }5 ~.(}ii<{/Du=s

io t)e a h k c k .
S le l . 2. O t h e r w i - , e . if t h t t l b l o c k is ..), p r o c e (i u r , D,d ' ,

a n d if (l ie g i v e n d~nt i f i (. r i< h l e n l i c a l w;) i , a fo rmt : l i ~

raziii?t(q' ill i lm asso(:iaie,c] p r ()cod!a ' e }itq~{l]ltK, {}K'li i~

s'i:alidS as i h ~(iOr l i la] lmral i i (! t t !P,
Sl(' t 3, Ot tmrwise, i f iha l , bloci< is t r(,.'..o(ied l>v ~ f,)s-

(' i i t I IS(J ; t l l (' l t i m de., t t i e r is i d c n i i (' a i lo i h c cC)I I I l ' (i i { ! i , ; 'F{ i t }+ :

o [ih.'-ii (or t:l~.).tls(}, lh(2n i t ! l a n d s as i t ! a t .-otl.l to! hh-.~if{, +

() ih (' rwis (, , ' , ! w < s ! ~ . tn('s(' i 'u les :il'(~ gq:)l:)lh'd (' ons idc r } ! i g "

I('si hl(i(:k (,mhr i,"in g t i m hh:iek w h M / ires . r< 'v i , ,u:- iv i,,,,=.

consi(l (' rc(l .
I f e i t h e r s t e p 1 o r si{, l) 2 c o u l d lead {o jiifii(, *l , , i , o~p,

(I (, ih i i i ion, t hen the i (l (') , l i f i ('a l i on is t u ,de f in ('d .
T h u s(.'til)e o [a q l i a l i i i i y , a Hi)el , -t f o r l n a i I):.,_r:tlii<qiq. {}<"

;t POlii ro i i , ,h, l l ! i f i (' r is i h o s(' l () i S i t l i (' l i t (' l l i s i,,l whi . i) .,>-<:~
i'(qiCl,S o f +ilt Mvn t i f i e r l l l l i y I'tPi'(PI ' t}y i t e "lbfiVO !'ul<+s i+) i i+:

(l (qh i i i } (i l i Of l l t t i l (t t l { i l i i i i .V> label, fOl'!li-'.il pa i " i ! i i { ' { { ' ! +"c

('O l i l I'()i i(h~ni i t i (;r .

:1.3. I;2X A ~.l PLI.;s.
I

J)(,F8~#t
c!d~'r sl 'bh~q

:r15

I . Va lu t ; .~ lu ! td "I'+vpe~

(' l ! l i s t ; i l i l [s l i . l id v ' t l ' i ab les tll'C said to possess a !,at .,". 1'i,..,.
*.-'tthl(' o f a coll.-_'(~tiit i8 d() t {~rn i i l ied t)y the d e n o t a t i o n o f ! l ie

(:OllSlalii . lit i l l(']:tIlgtlaT(' , (' v o r y tt(}llSi:itlii: (ux0cl)l i('i{q-

{~nccs) l i : is :t rcf(Tcric(~ d e n o t a t i o n (el . 4.1--I . -1). T i i e va l ! iu

of a va i ' i :d i l e is hilt' (}lie liiOst r (' c e n t t : : <,<,ig,,c,i ~<, tha t
var iab le . A vah le is (re(.urs ive ly) (lef im(d as c i * , c , be i , a a
s i n i p l e va l t l { ' , o r a s t r u c l t l r o d V i) . h l o , i . e . t i l l <r, . i (Ted sot (>f

Olip o1" I1101"o }-f i l l ies. I !]very v a h l o is s-t i l t t(:) bc o f a ccr l a'.t~
(2/pc. T h e lollowin(,.~ l y t i es o f s i n l p l c v a h l c s 'arc ,.-ii>

l i n g u i s h e d :
i n t e g e r : t h e v a l u e is an h i i e g o r ,
r e a l o r h) n g r e a l : t h e v a l u e is a rea l n tLmbor ,
c o n l p l e x o r l o n g c o m p l e x : l i l t ' v a h l c is a 0<:)P.,~.i}i{'x

l i l l n l i) o r .

l o g i c a l : t h e v a h l c is a l og i c :d v;J.hle,

i) i t ~ : t h e v a h i e is a l i n e a r s e q u e n c e of b i t s ,

l i ' t i h i l l l e 9 / N i l n i b (~ l r 6 / J u n e , 196e"

T
iuliciio,t, , :.w:oid <'i,-~ .">r 5 .fi<id ido,..~ti~i<,," -,~, h{~r<'
!.m: _<vnibOi .i :~tah(i: ~ io r .~Jq<, aRi)r{>iw:mic v,'~r<i

,rcfler~ting ihe type of th,~. ,-ie.L~rud qa~;{ i~y; ~ :}

> : ~ ::

. -2 :

~ ~2 ~ 2

2:,>! [

:7:: i

: iii< ;: i

:: !i~ ~ ; ~
!!5 ;

!ii! 1 ,p iq

e,{i!i

fk ~.

ti!c :!

the;::

i{b:~

t s~{;i
i<,:

Iai;;

i ;

:~:) :i

~i{!e:l

?i

~es:[:
.~ :.t=

(

i:

{

iiil
ii i?
d i!:
ii iii

: i

;J:

(

2:;

2;:,)

s t r i ng : ihe vMue is a linear sequence o'i-,charztctcrs.
refere,l(:e: the wdue is a refererme to a > ,grd. ..._~

The following types of s t ructured values are distin-

guished:
a r r a y : the wdue is an ordered set of values, all of identi-

cal type and sut)seript bounds,
r eco rd : the value is a set of simple values.
A procedure m a y yield a value, in which case it is said

to be a function procedure, or it m ay not yield a wflue, in
which case it is called ~t proper procedure. The value of a
function procedure is defined as the value which results
from the execution of the procedure body (of. 6.2.2"~.

Sui)sequently, the reference denotat ion of constants is
defined. The reference denotat ion of any constant consists
of a sequence of characters. This, however, does not imply
,hat the value of the denoted constant is a sequence of
characters, nor tha t it has the properties of a sequence of
(:haraeters, except, of course, in the ease of slrings.

1.l . NUXIBERS
4.1.1 Syntax

ht the first: rule below, every occurrence of the symbol 5
must be systematical ly replaced by one of the following
words (or word pairs):

integer
real
long real
complex
long complex

=5 mmd)er) : := (unsigned 3 number) i (sign)(unsigned 3 n unber}
tmsigned long complex number) ::=

long (unsigned complex nuinber)
u,signed complex nurnber} ::= (real part)i(imaginary part}
{real part} :: = {unsigned real number)] (unsigned integer number)
(imaginary part) ::= (real number)] (integer number)
.unsigned long real number) ::= long (unsigned reid number) I

long (unsigned integer numi)er}
(tmsigned real numl)er) ::= (unsealed real) [(unsealed real)

(scale faetor:, i (unsigned integer number)(seale f~tc|or}
unsealed real) ::= (unsigned integer mmlber).

(unsigned integer number) i .(unsigned integer number)
(scale factor) ::= ~)(integer number)
:)resigned integer tmmber} ::= (digit) i

(unsigned integer rmmber) (digit)
(sigu}:: = +] --

4.1.2. Semantics
Numbers are interpreted according to the conventional

decimal notation. A scale factor denotes an integral power
of 10 which is multiplied by the unsealed real or integer
nurnber preceding it. Each number has a uniquely defined

type.

4.1.3 Examples

1 .5 l i - 1
--0100 ~ h03 --0,33i0.67
3.1416 ~ ~:7 6.02486~0+23 long 0il
+ Ion g~2.718281828459045235360287

Note that --0.33i0.67 denotes - (0 .33i0.67) .

Volume 9 / Number 6 / June, 1966

4.2 I,o¢;ICAL VALUES

4.2.1 Syntax

~logical value):: = true fal,~c

4.3. Bye SEQUENCES
I..3.1. Syntax

(.tilt sequence) ::= b(l)it) (t)il sequen(.e)(bit)
,,bit) ::= 0 1

L 3 2 . Semantics
The number of bits in a bit se(luenee is said to bo tit(>

length of the bit sequence.

4.3.3. Examples

bl(R}ll
b(101

4.4. STR[N'GS
4,.-t.l. Syntax

(st ring) :: = U(scquence of characi('rs}"

t.4.2. Senmnties
Strings eollsist of any seqtttqtee of (:hara('ters enclosed

by but not containing the (:haraeter", ealh,d string quote.
They are considered to t>e basic constituents of tit(, hm-
guage (el. Section 1). The nund)er of characters in a si ring
excluding the quotes is said I() be the length of the siring.

4 . 5 . [{ E F E R E N C E S

4.5.1. Syntax

(null reference} ::= null

4..5.2. Semantics
The reference value nu l l fails lo designate a record; if a

reference expression occurri | |g in a field designator has this
vahie, then the field designator is undefined.

5. I) e e l a r a t i o n s

Declarations serve to associate identifiers with the
qua, nl, ities use(l in the program, to at lr ibute certain per-
ntanenl, properties to these (lua||tities (e.g. type, structure),
and to determine their scope. The quantities declared by
declarations are simple variables, arrays, procedures and
record classes.

Upon exit from a block, all quantit ies declared within
tha t block lose their value and significance (el. 7.1.2 and
7.4.2).

Syntax:

(declaration) ::= (simple variable declaration} i
(array declaration> i (procedure declaration) i
(re.cord class declaration)

5.1. SIMPLE I!,~RIABLE DECLARATIONS
5.1.1. Syntax

(simple variable declaration) ::= (simple type) (identifier list)
(simple type) ::= integer i real long real i complex [

long complex i log ica l i b i t s ((unsigned integer numl)er))
bits i s tr ing I reference ((record class identifierD

5.1.2. Semantics
Each identifier of the identifier list, is associated with a

C o m m u n i c a t i o n s o f t h e A C M 421

variable which is declared t:o be of the indicated type. A
variable is called a simple variaI)ie, if its value is simple
(ef. Section 4). If a wtriable ia declared to he of a certain
type, then this implies that only values which are assign-
ment compatible with this type (of. 7.2.22) can be assigned
to it.

I t is understood that the value of a variable of type
i n t e g e r is only equal to the vahm of the expression most
recently assigned to it, if this value lies within certain
unspecified limits. I t is also understood that the value of a
variable of type rea l is available only with a possible,
unspecified deviation from the value of the expression
most recently assigned to it. If in a declaration the symbol
rea l is preceded by the symbol long, then this deviation
is expected to be not greater than when the symbol long
is missing. In the case of a variable of type l ong c o m p l e x

this holds separately for the real and imaginary parts of
the complex number.

In the case of a variable of type b i t s the integer en-
closed in parentheses indicates the actual length of the
sequence which constitutes the value of this variable. If
this specification is missing, then the length is assumed
to be equal to the value of the environment enquiry flmc-
tion bits in word (cf. III.2).

In the case of a variable of type re fe rence , the record
class identifier enclosed within parentheses indicates the
record class to whose records tha t reference variable may
refer.

5.1.3. Examples

i n t e g e r i , j , k, m, n
real x, y, z
l o n g con~plex c
log ica l p, q
b i t s g, h
s tr ing r, s, l
r e ference (Person) Jack, Ji l l

5.2. ARm~Y DECLAR:tTIONS

5.2.1. Syntax
(array declaration) ::= (simple type) array (bound pair list)

(identifier list)
(bound pair list) ::= (bound pair) i (bound pair}(bound pair list)
(bound pair) ::= [(lower bound}:(upper bound}]
(lower bound) ::= (integer expression),
(upper bound} ::= (integer expression}

5.2.2. Semantics
Each identifier of the identifier list of an array declara-

tion is associated with a variable which is declared to be
of type a r ray . A variable of type a r r a y is an ordered set
of variables. Their number is determined by the leftmost
elcment of the bound pair list. If the bound pair list con-
sists of one element only, then their type is the simple
type preceding the symbol a r ray . Otherwise their type is
a r ray , and the number of elements and the type of these
arrays are in turn defined by the given rules when applied
to the remaining bound pair list.

422 C o m m u n i c a t i o n s o f t h e AC~I

JEvetT eien)v~i of an array is identified by an index.
The indices are the integers between and including the
values of the lower bound and ~he upper bound. Every
expression in the bound pair list is evaluated exactly once
upon entry to the block in which Ihe declaration occurs.
In order to be valid, for every bound pair, the value of the
upper bound must not be less than the value of the lower
bound.

" 9 0.- .3. Examples
in teger array [1:100] H
real array [l :ml [1 :n] A,B
string array [j:k+l] street, town. cil!f

5.3. PROCEI)URE DECLARATIONS

5.3.1. Syntax

(procedure declaration) ::= (proper procedure declaration} i
(3 function procedure declaration;

(proper procedure declaration) ::= procedure
(procedure heading); (proper procedure body}

(3 function procedure declaration} ::= ,:silnple type) procedure
(procedure heading}; <3 function procedure body>

(proper procedure body) ::= (statement?
(3 function procedure body) ::= (5 expression} j

(block body)(3 expression) end
(procedure heading) ::= (identifier) i

(identifier) ((formM parameter list.))
(formal parameter list} ::= (formal parameter segment} J

(formal parameter list); (formal parameter segment)
(fornlal parameter segment) ::= (formal type) (identifier list}
(formal type) ::= (type) I (simple type} value]

(simple type) result] (simple type) value result i
(simple type} procedure I procedure] r e f e r e n c e

(type} ::= (simple type} i (type) array

5.3.2. Semantics
A procedure declaration associates the procedure body

with the identifier immediately following the symbol
p rocedu re . The principal par t of the procedure declara-
tion is the procedure, body. Other parts of the block in
whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper
procedure is activated by a procedure statenlent (ef. 7.3),

function procedure by a function designator (ef. 6.2).
Associated with the procedure body is a heading, contain-
ing the procedure identifier and possibly a list of formal
parameters.
5.3.2.1. Specifications of formal parameters. All forlnal
parameters of a formal parameter segment are of the same
indicated type. I t must be such that the substitution of
the formal by an actual parameter of this specified type
leads to correct ALOOL expressions and statements (ef.
7.3.2). The word a r r a y should be repeated as many times
as appropriate.
5.3.2.2. The effect of the symbols va lue and r e s u l t ap-
pearing in a formal type is explained by the following
rewriting rule which is applied to the procedure body
before the procedure is invoked:

(1) The procedure body is enclosed 'by the symbols
b e g i n and e n d if it, is nor already enclosed by these sym-
bols;

V o l u m e 9 / N u m b e r 6 / J u n e , 1966

:i!!

. : th:
:i ._:the

i:.~' dc
i::: if t

;:d ~:-: (i~(
:::::, the

. . 1!

:g :E~q! .@i

::" ~ " " ~ l i . £P : . -

<:?_~sior

J

i. L X&:1i11 i '

i
j :.:-.?e~ u r

I
I =~<edur
i:
i:d~,e ;::.
: =
i::ed s:

~as~ re,
i . } k !-

:::~..:.:~ (P,?~

:~;:geren,

},~ii l . i ~,i

:: : 1¢

: :W:N~ : ::::::: :<::
.-;,22:::::: :::::::

:g

,~ L4

=N:
i

: }

dine 1

e :: : : , e~ :

: ? :

;(:
: : : : ? :

(2) iF-or ev(wy formal parameter whose formal type con-
tains ihe symbo! vMue or r e su l t (or both'i,

(a) a declaration followed bv a semicolon is inseried
ill the heading of the procedure body, witil a simple tyl)e
:is i~di0ated in the formal lype, aim with an ideniifier
different from any identifier valid at the place of the
declaration.

(b) throughout the procedure body, evmT occur-
fence of the formal paranleter identifier is replaced by the
identifier defined in step 2a;

(e) if the formal type contains the symbol value, aa
assignment statement followed by a senfieolon is inserted
af ter the declarations of the procedure body. I ts left parr
contains the identifier defined in st ep 2a, and its expression
consists of the formal parameter identifier. The symbol
va lue is then deleted;

(d) if the formal type contains the symbol resul t ,
an assignment statement preeeeded by a selnieolon is in-
serted beh)re the symbol end which terminates a proper
procedure body. In the ease of a function procedure, an
assignment s ta tement followed by a semicolon is inserted
before the final expression of the function procedure body.
I t s left part cent:tins the formal parameter identifier, and
its expression consists of the identifier defined in step 2a.
The symbol r e su l t is then deleted.

5.3.3. gxaniples

p r o c e d u r e Incremen£; x := x + l

r e a l p r o c e d u r e max (rea l v a l u e x, !/) ; i f x < y t h e n y e l se x

p r o c e d u r e Copy (r ea l a r r a y a r r a y U, V; i n t e g e r v a l u e a , b);
f o r i := 1 s t e p 1 u n t i l a do
f o r j := l s t e p 1 u n t i l b do U[i]ij] := V[i][j]

r e a l p r o c e d u r e Homer (real a r r a y a; i n t e g e r v a l u e n;
r e a l x a l u e x);

b e g i n r e a l s ; s := 0;
f o r i := 0 s t e p 1 u n t i l n do s := .~ X x + a[i]; s

e n d

l o n g r e a l p r o c e d u r e sum (i n t e g e r k, n; l o n g rea l x) ;
b e g i n l o n g rea l y; y := O; k := n;

w h i l e k > 1 do b e g i n !/ := !~ + x ; k := k - 1
e n d ; y

e n d

r e f e r e n c e (Per.sots) p r o c e d u r e !]o~nflest uncle
(r e f e r e n c e (Person) [~);

b c g i n r e f e r e n c e (Person) p, m;
p := youngest offspring (father(falher(R)));
w h i l e (p # n u l l) / \ (-~male(p)) V (p = father(R)) d o

I9 := elder sibling (/9);
m := youngest ojr, p,inq (mother(mother(R)));
w h i l e (m ¢ n u l l) / \ (-7 male(m)) d o m := elder aibUng (m);
i f p = n u l l t h e n m e l s e
i f m = n u l l t h e n p e l s e
i f age (p) < age (m) t h e n p e l se m

e n d

SAc. I~ECORD CLASS DECLARATIONS

5.4.1 . Syntax
(record c lass declarat ion} : := r e c o r d (record class identifier)

((field l ist})
(f ie ld l ist) : := (s imple var iable declarat ion)]

(field l ist); (s imple var iable declarat ion)

V o l u m e 9 / N u m b e r 6 / J u n e , 1966

5.t .2. Semantics
A record class (leelaration serves to define the structural

properties of records belonging to the class. Tim principal
constituent of a record class deehu'ation is a sequence of
simple variable declarations which define the fields and
iheir lypes of the records of this class and associate identi-
tiers wil:h the individual fields. A record class identifier
can be used in a record designator to construct a new
record of the given class.

5.4.3. Examples

r e c o r d Node (r e f e r e n c e i.Vod(') h:ft, right)

r e c o r d Person (s t r i n g name; i n t e g e r ag~; l og i ca l male;
r e f e r e n c e (Person) fit!her, mother, youngest offspring

elder sibling)

6. Express ions

Ii;xpressions are rules which specify how new vahws are
eomt)uted from existing elms. These new vahIes are ob-
tained by perfornfing the operations indicated by the
operators on the wdues of the operands. According to the
type of their vahte, several types of expressions are dis-
tinguished. Their structure is defined by the foUowing
rules, in which the symbol 3 has to be replaced consistently
as described in Section 1, and where the triplets 30, at , 3.2
have to be either eonsist¢ntly replaced by the words

Iogieal
lilt
s t r ing
reference

or by any eolnMnation of words as indicated by the fol-
lowing iable, which yields 30 given :'it and 3.a :
"" a
_ i L i a in teger real complex
o~ ~ .

in teger :: in teger real complex
real real real complex
complex complex complex complex

5o has the quality "long" if either both 5, and 5e have
that quality, or if one has the quality and Ihe other is
"integer".

Syntax:

C5 expression) : := (simple a expression)
Cease clause) ((5 expression list}))

(.30 expression) : := (if elause)(simple 5t expression) e l s e
(52 expression)

(5 express ion list} : := (3 express ion)
(5o expression list) : := (3~ expression list), (,3~ expression)
(if clause) : := i f (logical expression) t h e n
(case clause) :: = c a s e (integer expression) o f

The operands are either constants, variables or function
designators or other expressions between parentheses. The
evaluation of the latter three may involve smaller units of
action such as the evahtation of other expressions or the
execution of statements. The value of an expression
between parentheses is obtained by evaluating that ex-
pression If an operator operates on two operands, then
these operands may be evaluated in any order, or even in

C o m m u n i c a t i o n s o f t h e AC~[423

: {

i i : i

{2; { }

2: : I

})7)

.: i(:}
? z ? :

5:;?: i = ; $: :!
:?

:!i /i':

ij',i :;il

: : , t

?i i;i:

parallel, with the excel)ti(m <>film (:a~-e mentioned m
6.4.2.2. The construction

(if elause)(simple 3~ expressio@ eisc 73:~ ,'~xlprcssion)

causes the selection attd evahlation of an expression on the
basis of the current wdue of the logical expression (ton-
tained in the if clause. If this value is t rue , the sinqfle
expression following the if obtuse is selected, if the value is
false, the expression following else is selected. The con-
struction

(ease. clause) (<3 expressi(,n list))

causes the selection of the expression whose ordinal num-
ber in lhc expression list is equal to the current value of
the integer exl)ression contained in lhe case clause. In
order that the case cxpression is defined, the current value
of this expression nmst be the ordinal number of some
expression in the expression list;.

6.1. VAIIIABLES

6.1.11. Syntax

(5 wtriable) : := (5 v~riable idcnt tiler)!(5 field designm or):
(3 array designator) (subscript}

{5 field designator) : := {5 tield identifier) ((r(ference expression))
(3 array designator} : := (5 array identifier) I

(5 array (tesigmm)r)(subscript)
(subscript) ::= [(integer expression) l

6.1.2. Semantics
A sul)scripted array dcsignator denotes the variaMe

whose index, in the ordered set of variables denoted by
the array designator, is thc current vahm of the express ion
in the subscript. This value must lie within the. declared
bounds.

The value of a variable may be used in expressions for
forming other wdues, and may be changed by assignmcn|s
to that wu'iable.

A field designator designates a field in the record re-
ferred to by its reference expression. The type of the field
designator is defined by the (lechmttion of that fiekl
identifier in the record class designated by the reference
expression of the field designator (cf. 5.4).

6.1.3. Exanapk~s

x

A [i]
M[i+j][i- j]
Jhther (Jack)
mother (father (Jill))

6.2. i;UNCTIOX DESIGNATORS

6.2.1. Syntax

{3 ftmction designator) ::= (5 function identifier}]
(5 function identifier) ((actual parameter listS)

6.2.2 . Semantics
A function designator defines a va lue which can be ob-

tained by ~ process performed in the following steps:
Step 1. A copy is taken of the body of the function

424 C o m n m n i e a t i o n s of t he ACM

~) P o (. (~ (h u o v.} ,o~.(~ :,root. i .r,, idci~lifi,,:r is ,aSvo!i by tilv tlmc- '!=~
l ion dc~ ,SUit to t att(j of I}~c ac iua l paran~c, icr~ of tho '-~i •

Si(~ps _,9 3,. 4. As spe{fifh::,d in 7.2L2,

Step 5. The ,opy of tim function procedure body:
modified :is indica,<ed in steps 2 4, is executed. The value
of the function d('sigmtJor is the vahie of the ext)rossion
which c(mstitutes or is pari of the modified funcdon pro-
cedure body. The type of ihe function designator is (he
type preceding p rocedu re preceding the heading of the
corresl)onding function procedure declaration.

6.2.3. Examl)les

max (:c ~ 2, yX2)

s u m (i, m., s u m (j , ¢~,,-1.[i]ijif,
!lOUngesl -uacle (dil&
sum if, 10, X[i]X Y[i])
[lorner (X, t0, 2.7)

6.3. AItITIIMETIC I ~ X P f t E S S I (} N S

6.3.1 . Syntax
In any of the following rules, every oecurren<~e of ~h(-

symbol 5 nlust be systeinati('ally replaced by one of !}t~ ~
following words (or word pairs):

integer
real
long real
COIIIpI(!X

l o n g (~ o n t t) l e x

The rules governing Ihe I ' ep laeenlen t of the symbols 5~
5l and 3, are given in 6.3.2.
(simple 3 expression) ::= (5 term}] + (5 term) I -- (75 terrn~
(simple 50 expression} ::= ~sirnple 3, expression) + (Se |erm.,

(simple 5t expression} -- (5:.. term)
(3 term) : := (3 factor)
(50 term} ::= (3, term) X (3~ factor)
(30 term) : := (3t ternl)/(3~ factor?
(integer term) : := (integer term) div (integer factor)]

(inleger term) rein (integer factor)
(3t factor) ::= (50 seeondary)i(St factor)~" (integer secondary
(3,) secondary) : := 45 primary)i(unsigned 5 nulnl,er)
(30 secondary) ::= abs (5~ primary)iabs (unsigned 5t numl~er
(hmg 30 primary) : := long (5t primary)
(3 primary) ::= 45 variable~i(5 function designator}i

(C3 expression))

6.3 .2 . Semantics
An arithmetic expression is a rule for computing a

number.
According to its type it is either called an integer .

real--, long real-, complex-, or long complex expression.
6.3.2.1. The operators + , - , X a n d / have the conven
tional meaning of addition, subtraction, multiplication
and division. In the relevant syntactic rules of 6.3.1 l:il(~
symbols 50,3~ and 3~ have to be replaced by any combina-
tion of words according to the following table which indi
cates 30 for any combination of given 5~ and 32.

Operat ors 3 " ~ .
+:. _ integer real complex

integer integer real complex
real real real complex
complex complex complex complex

Volume 9 / N u m b e r 6 / J u n e , 1906

I
i [I

:i|

i

:ii
i:i
:..~

:i

C<ot:",$~

tO~J: . . ;
::: : : : i } :

":2::::: ::)
;:: ? i

5~, has the (tuaiity "long" it' both 5, and 75.2 have the
,iuality : long". or if one has tit,,> qual i ty " long" a n d the
other is 'qwteger".

Operator ~ 5e h ' e cr red em~plex
X 5t " ~ . " g " ' "

integer imeger 1 mg real long eomplcx
real long real long real l(mg conlplex
complex long corn- long corn- long complex

plex plcx

5, or 3.2 having tile (luatity " long" does not affect the
type of the result.

ilperai<w i imegcr real eoml)lex
Ot " ~

imeger real l-eat comt)lex
real real real eoillplex
complex complex c,)mplex complex

Th(' spet:ifieations for the qualiiy "'long" are ihose given
~or + and -- .
:}.,)._._.)') The operator - stan(ling as the first swnbol~ of a
Ample expression denotes the monadie opera t ion of sign
reversion. The type of the result is the type of the operaad.
Th(, operai:or + standing as the first syInbol of a simple
expression denotes the monadic operat ion of identi ty.
EL'2.3 The operator div is mathemat ical ly defined as

(t div b = xgt {aXb. X d (a b s a , a b s b)

w}l('l'e the i'tln(:lion pro(:e(ltn'es .~41flll g:tlld d are declared as

integer procedure .~qn (trite_gee value a) ;
i fa < 0 t|len --[else l;

integer procedure (/(integer value, a, b);
i f a < 6 then 0 vine d (a - - b , b) + 1

!i.3.2.-I. The operator re in (remainder) is nmthentat ieal ly
,t,tined as

a r e i n 6 = a - (a div b) X b

6.3.2.5. The operator ~ denotes exponentiat ion of the
ih'st operand to t h e power of the second operand. In the
r('hwant syntactic rule of 6.3.l tile symbols 3. and 31 have
it, be replaced by any of i h e following eolnbinat ions of
'.vo I'd s :

5,, 5,.

real integer
rcal real
complex complex

5o has the quality " long" if and only if 31 does.

6.3.2.6. The monadic operator a b s yields the absolute
vahte of the opermtd. In tile relevant syntact ic rule of 6.3.1
the symbols 50 and 3~ have to be replaced by a n y of tile
(olktwing combinations of words:

50 5~

integer integer
real real
real c,mplex

I f 5~ has the quali ty "long", then so does & .

V o l u m e 9 / N u m b e r 6 / J u n e , 1966

6.1.2.7. Precedence of operators. The syn tax of 6.3.1
implies the following hierarchy of operator precedences:

long
abs
?
X :" (ill rein
} _

Sequences of operations of equal precedence shall be exe-
cuted in order from left to right.
6.3.2.8. Precision of arithmetic. I f the resuh, of air a rkh -
metic operation is of type rea l or c o m p l e x , then it is the
mathematical ly understood resuh of the operat ion per-
formed on operands whMt lnay deviate from the ac tual
operands. In case of the operands being of a t ype with the
quali ty "long", this deviation, as described in 5.1.2, is
intended to be snmller, and is expected to be no t greater
fhan if that quality is missing.

In the relevant syntactic rule of 6.3.1 ihe symbols 50
and 5, must be replaced by any of the following combina-
tions of words (or word pairs):

Operator 3,, 3:
long

long real real
long real i integer
long e(mqflex complex i

6 . 3 . 3 . Examples

x + c / H [j - I]

c + Al i l X B[i]
cxp (- - x / (g x s i g m a)) / s q r l (2 X s i q m a)

6.4. I.ocalcab EXPRESSIONS

6.4.1. Syntax
In the following rules for (relation) the symbols 30

aim at must either be idenfieally rephteed by a n y one of
the folk)wing words:

bit
string
reference

or by any of the woMs from:

e o n t p l e x

long eornplex
real
long real
integer

and the symbols 3,., and 3a must be replaced by an y of tile
last three: real, long real, integer.

(simple logical expression) ::= (logical term)[(relation)
(logical term) ::= (logical faetor)i(logieal term) \ / d o g i c a l factor)
(logical factor) : := {logieal secondary)[

dogical factor) /x (logical secondary;
(logical secondary) ::= (logical primary]i ~ (logical primary)
<logical primary) ::= (logical wdue)idogieat variable)i

(logical function designator}] fflogieal expression?)
,:'relation) ::=

(simple 50 expression>(equality operator)~simple 5r expression)
(logical term}(equality oper-~tor)(logical term}i
(simple 5~ expressionXrelational operator)(simple 3a expression)

(relational operator) ::= < i -<- i -> :i >
(equality operator) :: = = i #

C o m m u n i c a t i o n s o f t h e ACN! 4 2 5

6.4.2. Semantics
A logical expression is , rtth: for c,omput, ing gt logical

wdue.
6.4.2.1. The relational operators t:::LX'(: t}mir <:ottvemi(mat
meanings, and yield the lo~ic,,l yah!t+ t r u e if the relation
is satisfied f<>r the values <,f the two <)p(:rawts; false, <>!her-
wise. Two references are (:(ltttt] if at!<t only ii: i:h¢~y are [)el}!
n u l l or both refer to the sat+le reeoF(l. TWO strings are
equal if and only if th%" have the same length and the
same ordere<l s(,qttetl(:(~ of charac|iers.

A comparison of two bit sequences of difl'erc.nt let~gths
is preceded by insertion of an appropriate tmmber of 0's
after the symbol b of the shorter operand.
6.4.2.2. The operators -n (not), A (and), and V (or),
operat ing on logical vahtes, are (left!m([by tit(', folhm'ing
equivalences:

--ira if ~: then false else lrue
:c / \ g if a: then !!else false
;c V y if.c then true e lsey

6.4.2.3. Precedence of operators. The syntax of 6A.1 im-
plies the folh>wing hierarchy of operator precedences:

A
V

6.4.3. Exatnples

p V -,q
(z<!/) /'x (!/<z)
(i = j) = (m=.n)
!lO+Utq/est ,!~ffSpt'i.~tg (,/(It 'L') ~ n u l l

6.5. Brr EXt'ltESStoxs

6.5.1. Syntax

(s i t i / p l e bit e x p r e s s i o n } : : = Chit t+ernl}]

(sin!i!le bit expression} V (bit term)
(bit term) ::= (bit factor;'.i(bit iertw./\ (bit factor)
(bil lacier) ::= (bit secm!d:try', i -,(bit secondary}
(bit secondary} ::= (bit priinary)i

(bit secondary} 1" (ititmger se('(m(lary) i
<bit secondary} [(ittteger secondary)

(bit primary~ ::= (bit sequenee?i(I.dt wtriable}~i
','bit funct ion des ignator) i t (b i t express!o!!})

6 . 5 . 2 . Semanties
A bit expression is a rule for comput ing a bit, sequence.
The operators V, A and -1 produce a result, of type

lilts, every bit being dependent on the corresponding bit(s)
in the operand(s) as follows:

x !I -ha, x / \ ! ! x V !]

0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators T and ,~ denote the shifting operation
to the left and to the right respectively by tile number of
bit. positions indicated by the absolute vahte of the inte-

4 2 6 C o m m u n i c a t i o n s o f t h e A C M

gt~r s~:r'ot/iar3. \~ica~,er[}~Jt positions tr) the right; !a ieft
re>po(:tiveiy ~:re .assigne!i the bit sequence vahte bO. If in
{he eas!) of (1,. / ' a)~d , / opor:.~tors the ~wo ope;'ands are
not of eqtm[ie,~gth, ihe)~ ~he short~2r Ol)erand is (:xtendc.d
by insertion of aa appropriate mm-~ber of 0'< after the
symbol b. T h e ie.<at!.: of the t'esttlt of a bit oper:~lor is
equal to tim leugth of the operaud(s).
6.5.3. E×ampies

g /" h '¢' blllO00
.q / -~ (h V : /) , .~

6.6. S'rPaxc; I!2XPRESslOX~,

6.6.71. Syntax

/simple siring expressiol~} ::= s;ril!g primaryl
(simple stri~,g expressio. ~ eat -string primary-

(stri!!g primary) ::= /striug--string va:'iatde-
• "siring futmticm desigt;a~o!'--gstrit,K expressicm-)

6 . 6 . 2 . Semantics
A string expression is a rule for comt!ulitt~.' a strina

(sequenee of characters).
6.6.2.1. The operator c a t (catenate) yields the stri~Jg
consisting of the sequence of (' ha ra t : l e r s resttl,tin~ from
evahtatioI~ of the ilrst operand, immediately followo<i by
the seqttence of characters resulting front (?valua{:io~ !,t
the second operand, nlathernatically (:let!trod as

~ (s e q t t e n e o - l / ~ e a t ! l , ; S e (l l l e l i c e - 2) tl = I I { s e q t l e n e e - l - / s e q u e n e c - 2 1 !~

The lengl|t of the result is the stun of the lengths of th+"
operands.

6.6.3. Exantple

s e a t S ~ u - [- u ~t (' , a t /,

6.7. I{EFERENCE lY~X.PItESSIONS

6.7.1. Syntax

{simple l ' e f e l ' e l l e e expressio!L, : : = [IIi iH Fefe l ' e l l (. e i

(referenee variaMe) i-refereuee ft!lwtion designator) i
(record designator) :g;,refe!'ence expression?)

(record designator> ::= q'eeo!'d class ide!!lifier,
{record class identifier) ffexpressioti list>)

,:]expressiou list3 ::= (5 expressiotf~ l
(express ion l ist- , (5 express ion)

6 . 7 . 2 . Semantics
A reference expression is a rule for comput ing a reference

to a record. All simple reference expressions in a reference
expression nntst be of the same record class.

The value of a record designator is the reference to a
newly created record belonging to the designated record
class. I f the record designator contains at, expression list,
then the values of t~he expressions are assigned to .the fields
of the new record. The entries in the expression list are
taken in die same order as the fields in the record class
declaration, and the .types of the ileitis must be assignment
compatible with the types of the expressions (ef . 7 . 2 . 2) .

6.7.3. Example

Person (!!Carol '!, 0, false, Jack, J i l l , null,
you ngest offspring (&ck))

Volume 9 / Number 6 / June, 1966

:l,:ii

= ! i!!!+
iili~:

ii+

:+p:

!+?;

=.
~ ;?i;i

:~!!!i

-:?
;:!
:i[,

iiii ?!

7. S t a t e m e n t s

A statement is said to denote a trail of a(.:io:i. By the
cxecutio::: of a statement is nleant the performat:ee of this
unit of action which nmy consist of smaller units of aetiol,
such as !he evaluation of expressions or the executioa of
oilier 5.t &{ (,1Befit s.

A statement containing ilo symbols denotes >,o action.

Syntax :

program ::= -block
s:aienmn(, ::= ,simple statement, :iterative statemem...

:if statement':.,ease s ta tement . .
simple statement? ::= ~bloek- (5 assigmnent statement?i

• :procedure statement, (goto statement.)

7.1. BLOCKS

7.11.1. Syntax

b l o c k : := (block bod3? (statement> e n d
block body) : := <block head) ~block body , (s t a t emeu t) ;

,block body?(label definition-
block head) ::= begin i(bloek bead'.',(deelaration);
iabel definition) ::= (identifier}:

7.1.2. Semantics
Every block introduces a new level of nomenclature.

This is realized by exeeution of the block in the following
st eps:

Step 1. If ml identifier defined in the block head or in
a label definition of the block body is already defined at
the place from where the block is entered, then every
occurrence of that identifier within the block is systemati-
cally replaced by another idm/tifier, which is defined
neither within the block nor at the place from where the
block is entered.

Step 2. If the declarations of the Mock contain array
bound expressions, then these expressions are evaluated.

Step 3. Execution of the statements contained in the
block body begins with the exeeution of the first state-
ment following the block head.

After exeeution of the last statement of the block body
(unless it is a gore statement) a block exit occurs, and the
statemenl following the entire block is executed.

7.1.3. Example

b e g i n r e a l u;
u := x; x := y; y := z; z := ~t

el l(|

7 .2 . ASSIGNMENT STATEMENTS

7.2.1. ,~ ~.yntax

fn the following rules the wmbols % and 3, must be
replaced by words as indicated in Section 1, subject to
the restriction that the type 50 is assignment compatible
with the type 3~ as defined in 7.2.2.

/5.-. assignment statemcnt) ::= (50 left parle<el expression):
(Su left part)(5, assignment statement)

(5 left part) ::= (5 variable} :=

7.2.2. Semantics
The execution of assignment statements causes the

Volume 9 / Number 6 / June, 1966

,qSSi~:I:P4"-I/(O[I!W v a h l e o f t h e expression ~o o n e o r several
\uriables. "Fb.e assignment is t)erformed after the evalua-
i ion of :he expression. The types of all left part variables
musl be assigmnent compatible with the type of the ex-
pression.

A type 50 is said to be assigmneut compatible with a
type 7it, if either

(1) the two type,, are identical (except possibly for
length specifications), or

(2) 5a is real or long real, mid :it is integer, real, or
long real, or

(3) 50 is complex or long eomplex, and at is integer,
real, long real, complex or long complex.

In tim case of the type lilts, the length specified for 50
ntust be no~ less than the length specitied for at.

If the length of a bit sequence to be assigned is smaller
than the length specified for .%, then a sui(able lllllnber of
0's are inserted after the symbol b.

In the case of a reh,mtwe, the reference to be assigned
nmst refer to a record of the class specified by the record
class identifier associated with the reference variable in
its declaration.

7.2.3. Examples

z := affe (, lack) := 2~

x := y + abs z
c : = i + : r + c
p : = x # y

7.3. PROCEI)URE STATEMENTS

7.3.1. Syntax

(procedure s t a t emen l) : := q~rocedure identitier)i
(procedure Menlifier) ((actual p a r a m e t e r lisl))

(actual pa ramete r list> : := (aclmtl parameter) I
(aeiual p a r a m e t e r lisl), (actual parameter)

(actual parameter) : := (express iow!(s ta tement) i
(3 array des ignator) i (procedure ideutifier}[(3 funct ion identifier)

7.3.2. Semantics
The execution of a procedttre statement is equivalent

to a process performed in the following steps:
Step 1. A copy is taken of the body of tit(: proper

procedure whose procedure identifier is giwm by the I)roc(>
dure statement, and of the actual parameters of the latter.

Step 2. If the procedure body is a block, then a
systematic change of identifiers in its copy is performed
as specified by step 1 of 7.1.2.

Step 3. The copies of the actual parameters are
treated in an undefined order as Mlows: If the copy is
an expression different from a variable, then it is enclosed
by a pair of parerttheses, or if it is a statement it is en-
closed by the symbols begin and end.

Step 4. In the copy of the procedure body every
occurrence of an identifier identifying a formal parameter
is replaced by the copy of the eorresponding acttml pa-
ranmter (el. 7.3.2.1). In order for the process to be defined,
these replacements must lead to correct ALGOL expressions
and statements.

Step 5. The copy of the procedure body, modified
as indicated in steps 2-4, is executed.

C o m m u n i c a t i o n s o f t h e ACM 427

IIIII

7.3.2.1. Actual formal ~:orrespo~det~_(:e
The correspondence between the actual parameters

and the formal parameters is established as i'ollows: The
actual parameter list. of the procedure statement (or of
the function designator) nmst have the same number of
entries as the formal parameter list of the procedure
declaration heading. The correspondence is obtained by
taking the entries of these two lists in the same order.
7.3.2.2. Formal specifications

If a formal parameter is specified by value , then lhe
formal type must be assignment compatible with the type
of the actual parameter. If it is specified as r e su l t , then
the type of the actual variable nmst be assignment com-
patible with the formal type. In all other cases, the types
must be identical. If an actual parameter is a statement,
then the specification of its corresponding formal param-
eter nmst be p r o c e d u r e .

7.3.3. Examples

Increment
Copy (A, B, m, n)

7 . 4 . GOTO STATEMENTS

7.4.1. Syntax

(goto st a t emen t) :: = got() (label identif ier)

7.4.2. Semantics
An identifier is called a label identifier if it stands as a

label.
A goto statement determines that execution of the text

be continued after the label definition of the label identi-
fier. The identification of that label definition is accom-
plished in the following steps:

Step 1. If some label definition within the most re-
cently activated but not yet ternfinated block contains
the label identifier, then this is the designated label
definition. Otherwise,

Step 2. The execution of that block is considered as
terminated and Step 1 is taken as specified above.

7.5. IF STATEMENTS

7.5.1. Syntax

(if s t a t ement} : := (if c l auseys t a t emen t)]
(if c lause)(s imple s t a t e m e n t) e l s e (s t a t emen t)

(if clause} : := i f (logical expression} t h e n

7.5.2. Semantics
The execution of if statements causes certain state-

ments to be executed or skipped depending on the values
of specified logical expressions. An if s ta tement of the form

(if clause)(statemenQ

is executed in the following steps:
Step 1. The logical expression in the if clause is

evaluated.
Step 2. I f the result of Step 1 is t rue , then the state-

428 C o m m u n i c a t i o n s o f t h e A C M

me~t tb!lowiag the if clause is executed. Otherwise step 2
causes no action i.o be taken ~| all.

An if s tatement of the form

,'if clause}<simple s ta te room} e l s e ,s tzt[emet, te

is executed in the t~)llowing steps:
Step 1. The logical expression in the if clause is evalu-

ate&
Step 2. If the result of Step 1 is t rue , then the simple

statement following the if clause is executed. Otherwise
the statement following else is executed.

7.5.3. Examples

i f x = y t h e n g o t o L
i f x < y t h e n u := x e l s e i f g < z t h e n i* := y e l s e v := ;

7.6. CASE STATEMENTS

7.6.1. Syntax

(case s t a t emen t} :: = (case clause} b e g i n (s t a t e m e n t list.} e n d
(s t a t e m e n t list) : := (s t a t emen t) ' i (s t a t emen t list}; (s ta tenle t~!
(case clause} : : = c a s e (in teger expression'~ o f 1

7.6.2. Semantics
The execution of a case s tatement proceeds in the fo[

lm~dng steps:
Step 1. The expression of the case clause is evaluated
Step 2. The s tatement whose ordinal number in the

statement list is equal to the vahm obtained ill Step I i~
executed. In order that the case statement is defined, the
current value of the expression in the case clause must b(
the ordinal number of some statement of the s t a t eme~
list.

7.6.3. Examples

c a s e i o f

b e g i n x := x + y;
y : = y + z ;
Z : = Z - ~ - X

e n d

c a s e j o f
b e g i n Hill := - -H[i] ;

b e g i n H [i - 1] := H[i - -1] + H[i] ; i := i -- 1 e n d ;
b e g i n H[i - -1] := H [i - 1] X H[i]; i := i -- 1 e n d ;
b e g i n H[H[i--1]] := H[i]; i := i -- 2 e n d

e n d

7.7. ITERATIVE ST.akTEMENTS

7.7.1. Syntax

(i t e ra t ive s t a t e m e n t) : := (for c lause}(s ta tement) i
{while c lause) (s ta tement}

(for clause) : := f o r (cont ro l identifier} :=
(initial value) s t e p (increment} u n t i l (limit} d o

(ini t ial value) : := (in teger expression)
(increment} : := (in teger express ion)
(limit} : := (in teger expression}
(while clause) : := w h i l e (logical expression} d o

7.7.2. Semantics
The iterative statement serves to express that a state

ment be executed repeatedly depending on certain condi-
tions specified by a for clause or a while clause. The stat(-

V o l u m e 9 / N u m b e r 6 / J u n e , [966

:l

!I
i:i I

L
i=:

t:i

me~tt following the for clause or the while claus~e always
acts as a block, whether it, has the [orm of a block or not.

(a) .:\n iterative statement of the form

f o r (:,~hlr,)l idenbifier) : = el s t e p e2 H n t i l e3 d o (s i ; a t emenp

is exaeily equivalent to the Mock

b e g i n ~s in tement- ()) ; (s t a t e m e n i - - l ' ; . . . ; islatement-i,;
. . . ; : .s tatement-re} e n d

when in the/ t t l s tatement every occurrence of the control
identifier is replaced by the reference denotation of the
value of the expression el -4- i X e2, enclosed in paren-
theses.

The index n of the last s tatement is determined by
,~. <_ (e3--el)/e2 < n. 4- 1. If n < 0, then it is understood
that the sequence is empty. The expressions el, e2, and e3

are evaluated exactly once, nanmty before execution of
(statement-0).

(b) An iterative statement of the form

w h i l e e do (s t a t e m e n t

is exactly equivalent to

i f e t h e n

b e g i n (s t a t e m e n t) ;

w h i l e e d o (s i a t e m e n O

e n d

7.7.3. Examples

for v := I s t e p 1 u n t i l ? ~ -- 1 do s := s -t- A[t~][v]

t i) r £ := m s t e p -- 1 u n t i l 1 do

i f H l k - 1] > tt[k] t h e n
b e g i n m := H[k- -1] ; H[k--1] := H[k]; H[k] := m e n d

w h i l e (j > 0) A (cily [j]¢s) d o j := j -- 1

?

L

P A R T I I I . P R O P O S E D S E T O F

The principal language features described in previous
sections should be supplemented by additional facilities
supplied in the form of procedures, which are assumed to
be declared in the environment in which an ALGOL pro-
gram is executed. I t is recommended that some or all of
the procedures listed in this section be so treated. They
are classified into the following groups:

(1) Inpu t /ou tpu t procedures
(2) Environnmnt enquiries
(3) Functions of analysis
(4) Transfer functions

1. Standard Input /Output Procedures

1.1. IXTRODUCTION
This proposal is based on suggestions of Jan V. Garwick

[ALGOL Bull. 19, 39-60].

1.2. DEsmx CRITERIX
1 .2.1. The input /output proposal is essentially simple,
:rod t, he various facilities provided are relatively inde-
pendent of one another. No at tempt is made to provide
dis(-rimination, looping and sequencing facilities within
the input /output proposal, since this merely duplicates
features which are rdready provided in the general purpose
language which the proposal supplements.
1.2.2. I t is plainly recognized that different input /output
media have radically different properties, and no a t tempt
is made to introduce an artificial similari V into their use,
nor to mislead a programmer by such an apparent simi-
larity.
t .2 .3. Advantage is taken of the essential differences
between input and output, in particular of the fact that
input of numbers does not require the same variety of
format specifications as output.
1.2.4,. Facilities are provided such tha t the specification
of all matters associated with input and output can be
written explicitly in a single sequence of instructions;

V o l u m e 9 / N u m b e r 6 / J u n e , 1966

S T A N D A R D P R O C E D U R E S

errors due to incorrect mating of a format string and the
sequence of input /output data which it is intended to
control therefore cannot occur.
1.2.5. The number of digits of a number to be output can
be specified by means of an integer expression, which can
readily be calculated by the program itself.
1.2.6. The proposal is not intended to satisfy every re-
quirement, but only to provide facilities adequate for
most circumstances and capable of being used to build
more complex input /output algorithms for more unusual
requirements, trurthermore, there is no embargo on the
provision of yet further standard procedures to perform
additional, more complex functions.

1.3. Su~nI:~RY
Input and output channels of a computer are classified

into three essentially different categories:
(1) Legible input channels, on which the information

is presented in a form closely mapping its legible tran-
scription. The main representatives of this class are card
readers and paper tape readers.

(2) Legible output channels, in which the form of the
information output either is, or closely maps, its legible
transcription. The main representatives of this class are
line printers, card punches, paper tape punches, and CRT
character displays.

(3) Input/output channels, in which the information
is stored in a form not suitable for human inspection, and
can be read only by a computer. Input /output channels
are divided into two classes, those with random access
(e.g., drums, disks, or bulk core memories) and those
with which access is essentially serial (e.g., magnetic
tapes).

Legible output is achieved in two stages; first an "out-
put line" of characters is assembled, and then it is trans-
mitted on a specified channel. Since these operations are
clearly distinct, they are performed by distinct procedures.

C o m m u n i c a t i o n s o f t h e ACM 429

Fac i l i t i e s p r o v i d e d %r l eg ib le i n p u t a re t h e s implesL

s ince in g e n e r a l no spec i f i ca t ions of f o r m a t a r e r equ i r ed .

O p e r a t i o n s on (non leg ib le) i n p u t / o u t . p u g c h a n n e l s a re

de f ined o n l y fo r a r rays , w h i c h a re t r a n s f e r r e d in the i r

e n t i r e t y to a n d f r o m t h e i n p u t / o u t p u t m e d i u m .

Ott ser ia l i n p u t / o u t p u t channe l s , t h e p o s i t i o n i n g of t h e

i n f o r m a t i o n is d e t e r m i n e d b y t h e c u r r e n t p o s i t i o n of t h e

m e d i u m . On r a n d o m access e h a n n d s , t h e o u t p u t i n s t ruc -

t i on p r o v i d e s the p r o g r a m m e r w i t h an i~lteger pos i t i on

i den t i f i ca t i on , w h i c h he m a y use for s p e c i f y i n g r e i n p u t of

t h e s a m e i n f o r m a t i o n .

1.4. LEGIBLE OUTPUT CHANNELS

p r o c e d u r e scaled (s t r ing va lue r e s u l t line; i n t e g e r va lue
position, length; l o n g rea l va lue expression);

c o m m e n t This procedure is used when the order of magnitude
of a number is unknown. The vahm of expression is converted to
decimal form, and placed in the length character positions of the
string line star t ing at position position. The character position
position is occupied by a minus sign if the number is negative or
a space otherwise. The next position is occupied by a digit, the
following position by a decimal point. The fourth last character
position is occupied by 10, the next position by a plus or minus
sign, and the remaining two positions by digits.

Examples: 1.234~0+01
-- 1.234,o--70

1.234,o+00

0.000,0+00;

p r o e e d u r c aligned (s t r ing va lue r e s u l t line; i n t e g e r va lue
position, length, decimals; l o n g rea l va lue expression);

c o m m e n t This procedure is used when the order of mag2fitude
of a number is known. The value of expression is converted to
decimal form~ and placed in the length character positions of
the string line, start ing at position position.

The last decimals character positions of the field are occupied
by digits and preceded by a decimal point, which itself is pre-
ceded by digits. Leading zeros are suppressed, up to but not
including the last position before the point, and a minus sign
(if any) precedes the leftmost digit.

Examples : 1.234
- 123.456

--0.123

0.000

If the absolule value of the number is too great for it to be
expressed in this way, the result is undefined;

p r o c e d u r e decimal (s t r i ng va lue r e s u l t line; i n t e g e r va lue
position, length, expression);

c o m m e n t The value of expression is converted to decimal form,
and placed in the length character positions of the string line,
beginning at posit ion position.

Leading zeros are suppressed up to, but not including the last
digit. The first digit is preceded by either a space or a minus sign.

Examples: - 12
1234

0
123

If the absolute value of the number is too great for it to be
expressed in this way, the result is undefined;

p r o c e d u r e insert (s t r i ng va lue r e s u l t line; i n t e g e r v a l u e
position; s t r i n g va lue message);

c o m m e n t The string message is inserted in the str ing line, be-
ginning at position position;

430 C o m m n n i e a t i o n s o f t h e ACM

s t r i n g p r o c e d u r e s~tbstria.g (s t r i ng vah te line; i n t e g e r value
postion, length) ;

c o m m e n t q'tm substring consis(s of {he length cha.racters be-
ginning tit position position of the string line;

p r o c e d u r e o~dput (i n t e g e r v a l u e channel, n; s t r i n g value
line) ;

c o m m e n t The first n characters of the string line are ou~pu~ on
the specified legible output channel. If the channel has a natural
unit of information and is incapable of accommodating in this
unit (e.g. pr int line) the number of characters t ransmit ted, the
result, is undefined. [f it can accommodate more characters, then
the remaining character positions are filled with spaces;

i n t e g e r p r o c e d u r e laslcol (i n t ege r va lue channel);
c o m m e n t This is an environinei~r enquiry, and cnal)ics ti~.-~

programmer to find the number of characters i~ the P, a t m'a~ ~i!~it

of information on the specified legible channel, if there is such a
unit:. This procedure also applies to legible i~lput chammis;

1.5. LEGIBLE INPUT CHANNELS

p r o c e d u r e inreal (in t ege r v a l u e channel; rea l r e s u l t x);
c o m m e n t The next real or integer number (defined in accord

ance with [[. 4.1.1) is read in from the specified channel, and its
vahm is assigned to the variable x.

It1 each case, the characters read consist of" an initial sc(p, te.,;ce
of nonnumeric characters, followed by a sequence of numeric
characters, terminated by, but nor including, a nonnumeric
character. The decimal digits and thede l imi te r s . ~ + and -- are
numeric characters, arid all other characters (including space:
tab, and change to a new line) are nonnumeric. If the sequeJicc
of numeric characters does not conform to the definition of a
real or integer number, the consequences are undefined;

p r o c e d u r e ininteger (i n t e g e r va lue channel; i n t e g e r r e s u l t i);
e o n n n e n t This procedure is identical to inreal, except that the

numeric sequence must conform to the definition of an integer
number, and the result is assigned to the integer variable i ;

p r o c e d u r e input (i n t e g e r va lue channel, n; s t r i n g r e s u l t line);
c o m m e n t n characters are read on tim specified legible input

channel and assigned to the string variable line. If the channel
has a natural unit of information (e.g., card record) and *he
number of characters in that unit is greater than n, then the
remaining characters are ignored, and if it is smaller than n
then the result is undefined;

1.6. SERIAL INPUT/OuTPUT CHANNELS

p r o c e d u r e outserial (i n t e g e r va lue channel; a r r a y information);
e o m l u c n t The channel is a serial input /ou tpu t channel. The en-

tire array is output to the next available position of the nmdium
in such a way that it can be read in by inserial. If there is insuffi-.
cleat room o21 the medium to write the infornmtion, the result
is undefined. This procedure may be used for arrays of any type,
order, or size;

p r o c e d u r e rewind (in teger va lue channel);
c o m m e n t On a serial channel, the medium is rewound to the

position of the first information output ;

p r o c e d u r e iaserial (i n t e g e r va lue channel; ar ray information);
e o m m e u t On a serial channel, the next array stored oil the me-

dium is input. This array must, be of tile same type and order,
and have identical subscript boumts to the array output in this
position; otherwise the result is undefined. Furthermore, output

V o h n n e 9 / N u m b e r 6 / J u n e , 1966

\t

 liii:

;!

~7

instructions must be separated by a rewind from any input
instruction. An attempt to read informa.tion which has not be;;n
written leads to undefined results. The procedure may be used
for arra.ys of any type, order or size;

1.7. RANDO~I INPuT/OUTPUT CHANNELS

procedure outrandom (integer value channel;
integer resul t identification; array information);

comment The entire array is output on the specified random
access channel, and the variable corresponding to the fornml
paranmter identification is assigned a value which identifies the
position of the informatiou on the channel. If there is insufficient
room on the medium, the result is undefined;

procedure inrandom (integer value channel, identification;
array information) ;

cormnent The array which was output with the identification
specified is reinput. The type, order and dimensions of the
array must be the same as that which was output;

procedure overwrite (integer value channel, identification;
array information) ;

comment The array is output to the specified random access
channel, overwriting the information which originally was given
the identification specified by the second parameter. The type,
order and dimensions of the array must be the same as those
which were originally written;

procedure resetrandom (integer value channel, identification);
comment All information on the channel written at the position

specified by the identification is deleted, and the space which it
occupied becomes free for further use;

1.8. OPERATING PROCEDURES

procedure open input (integer resul t channel;
string value device);

comment The variable channel is assigned the number of the
legible input channel identified by the string parameter;

procedure open output (integer result channel;
string value device) ;

comment The variable channel is assigned the number of the
legible output channel identified by the string parameter;

procedure open serial input (integer result channel;
string value file label) ;

comment Similar to open input, for a serial input/output chan-
nel;

procedure open serial output (integer resul t channel;
string value file label) ;

comment The variable channel is assigned the number of some
available serial input/output channel, and that channel is made
unavailable. The implementation ensures that if the output
medium is later removed, it has the identification specified by
the string parameter;

procedure open random input (integer result channel;
string value file label);

comment Similar to open input, for a random input/output
channel;

procedure open random output (integer result channel;
string value file label) ;

comment Similar to open output, for a random input/output
channel;

procedure open serial (integer result channel);
comment The variable channel is assigned the number of some

available serial input/output channel, and that channel is
made nonavailable. This procedure is recommended for claim-
ing "scratch" tapes;

Volume 9 / Number 6 / June , 1966

procedure open "random (integer resul t channel);
comnient The variable channel is assigned the munber of some

available random input/output channel, and that channel is
made unavailable. This procedure is recommended for claiming
"scratch" files;

procedure close (integer value channel);
eonunent The specified channel is made available for reuse;

2. S t a n d a r d E n v i r o n m e n t E n q u i r i e s

2.1 INTRODUCTION

I t is recognized tha t different implementa t ions of" the

language must adopt different techniques for dealing with

cer ta in language features. The p rogrammer m a y wish to

ob ta in information on these points, so tha t he m a y adapt

his algori thmic methods accordingly, or even indicate t ha t

the a lgor i thm is inappropriate.

T h e concept of an envi ronment enquiry was or iginated

by Pe te r Naur [ALGOL Bull. 18.3.9.l].

2.2 FUNCTIONS PROVIDED

real procedure epsilon;
emnment The smallest possible number such that both

1 + epsilon # 1 and 1 - epsilon ~ 1;

hmg real procedure epsilon squared;

integer procedure intmax;
c o m m e n t The largest positive integer provided by the imple-

mentation;

real procedure realmax;
eonnnent The largest positive real number provided by the

implementation;

in teger procedure bits in word;
c o m m e n t The number of elements of a bit sequence which is

accommodated in a single word;

integer procedure lowerbound (array A);
comlnent The value of the lower subscript bound of the array

A, which may be of any type or order;

integer procedure upperbound (array A);
c o m m e n t The value of the upper subscript bound of the array

A, which may be of any type or order;

integer procedure string length (string s);
comment The number of characters in the string s;

3. S t a n d a r d F u n c t i o n s o f A n a l y s i s

real procedure s in (real value X) ;

real procedure cos (real value x);

real procedure aretan (real value x);
comment -- ~r/2 < arctan(x) < r/2;

real procedure In (real value x);

real procedure exp (real value x);

real procedure sqrt (real value x);

real procedure arcsin (real value x);
comment -- ~r/2 < arcsin(x) < ~r/2;

real procedure arecos (real value x);
comment - 7r/2 < arceos(x) ~ rr/2;

real procedure tan (real value X);

real procedure pi;
comment r¢ with the accuracy available for real numbers;

(Continued on page ~32)

Communicat ions o f the &CM 431

2 /

)

R. M, ~R~H&I~I, Editor

A New Uniform Pseudorandom
Number Generator

i)AVID W. HUTCHINSON
University of Calij~mia,* Berkeley

A new multiplicative congruential pseudorandom number
generator is discussed, in which the modulus is the largest prime
within accumulator capacity and the multiplier is a primitive
root of that prime. This generator passes the usual statistical
tests and in addition the least significant bits appear to be as
random as the most significant bits--a property which gener-
ators having modulus 2 k do not possess.

1. I n t r o d u c t i o n

In the past five or six years several papers have appeared
on pseudorandom number generators for binary machines
using the congruential method. These generators produce
pseudorandom integers which then can be transformed to
fixed-point fractions or floating-point numbers. The
method which has come to be known as "multiplicative
c.ongruential" generates the ith pseudorandoln integer by
the recursion relation:

X~+i = a x i (mod M)

where A is the multiplier and M, the modulus, is usually
chosen to be 2 k for a machine with a]c-bit accumulator.
See [1] and [2] for a description of how to choose A, M and

* Statistics Department. This work was supported by the
United States Public Health Service Grant GM-10525.

X0 to achieve a sufiiciently long period and for results of
some tests of randomness.

The "mixed congruential" method is:

X,~+l = AXi + C (m o d M)

where C is an odd integer [1, 2].
In the mixed eongruential method, A is usually chosen

to be 2 q + l so that the multiplication can be effected by a
shift and ~dd. This saves time but leads to generators
which cart have serious defects, depending on the choice
of q (see [1, 3]). On an IBM 7094 the multiplicative con-
gruential method is faster than the mixed congruential.
However, even on computers where this is not t rue it is
doubtful tha t the gain in t ime is worth the risk of the
poorer statistical behavior of the mixed congruentiai

method.

2. T h e L e h m e r M e t h o d

I t was the poor behavior of a mixed congruential gen-
erator which caused us to have a talk with D. H. Lehmer
who first proposed the congruential method for generating
pseudorandom integers [4]. Lehmer said we were being too
miserly with time in trying to do a shift and add rather
than a full multiplication. He suggested the generator:

Xi+l = AX~ rood(2 ~5 - 31)

(for a 7094), which involves doing yet an additional divi-
sion. Here 23~ - 31 is the largest prime less than 235 and A
is a primitive root of 2 a~ - 31, say, A = 55 or 5 ~a. A = 5
is also a primitive root, but has only two bits and testing
has proved it to be unsatisfactory. If A is a primitive root

C(mtinued from page 431

I t is mlderstood that also Long variants of these proce-
dures exist, e.g.,

long real p rocedure longsin (long rea l value x);

4. S tandard Transfer F u n c t i o n s

integer procedure round (real va lue x);

integer procedure truncate (real value x);

integer procedure entier (real value x);

real p rocedure realpart (complex value x);

real p rocedure imagpart (complex value x);

long real p rocedure longrealpart (long complex value x);

long real p rocedure longimagpart (long complex value x);

432 Communica t i ons of the ACM

complex procedure complex (real value x, y);

long complex procedure longcomplex (long real va lue x, y);

logical procedure odd (integer value x);

bits procedure bitstring (integer value i) ;

integer procedure number (bits value b);
comment tile number with binary representation b;

integer procedure decode (s t r ing value char);
comment The numeric code of the character in the single-ele-

ment string char;
s t r ing p rocedure code (integer value n);

A&nowledgment. The authors wish to t hank the
referee for his most exacting and valuable suggestions.

RECEIVED JANUARY, 1966; REVISED :FEBRUARY, 1966

Volume 9 / Number 6 / J u n e , I966

