Check for
Updates

D. E. KNUTH, Editor

A Contribution to the Development of ALGOL

Nikpatrs WIRTH C. A. R. Hoare
Stanford University™ AND Elliott Automation Computers Lid.,
Stanford, California Borehamwood, England

A programming language similar in many respects to ALGolL
60, but incorporating a large number of improvements based
onsix years' experience with that language, is described in de-
tail. Part | consists of an introduction to the new language
and a summary of the changes made to AtGoL 60, together
with a discussion of the motives behind the revisions. Part il is
a rigorous definition of the proposed language. Part il de-
scribes a set of proposed standard procedures to be used with

the language, including facilities for input/output.

PART I.

1. Historical Background

A preliminary version of this report was originally
drafted by the first author on an invitation made by IFIP
Working Group 2.1 at its meeting in May, 1965 at Prince-
ton. It incorporated a number of opinions and suggestions
made at that meeting and in its subcommittees, and it
was distributed to members of the Working Group as
“Proposal for a Report on a Successor of ALGOL 60”7
(MR75, Mathematical Centre, Amsterdam, August 1963).

However, at the following meeting of the Group at
Grenoble in October, 1965 it was felt that the report did
not represent a sufficient advance on ArcoL 60, either in
its manner of language definition or in the content of the
language itself. The draft therefore no longer had the
status of an official Working Document of the Group and
by kind permission of the Chairman it was released for
wider publication.

At that time the authors agreed to collaborate on revis-
ing and supplementing the draft. The main changes were:

(1) verbal improvements and clarifications, many of
which were kindly suggested by recipients of the original
draft;

(2) additional or altered language features, n par-
ticular the replacement of tree structures by records as
proposed by the second author;

(3) changes which appeared desirable in the course

This work was supported by the National Science Foundation
(GP 4053 and GP 4298), and it is also published with due acknowl-
edgment to Elliott-Automation Computers Litd.

* Computer Science Department.

Volume 9 / Number 6 / June, 1966

GENERAL INTRODUCTION

of designing a simple and efficient implementation of the
language;

(4) addition of introductory and explanatory ma-
terial, and further suggestions for standard procedures, in

. particular on input/output;

(5) use of a convenient notational facility to abbrevi-
ate the description of syntax, as suggested by van Wijn-
gaarden in “Orthogonal Design and Description of a
TFormal Language” (MR76, Mathematical Centre, Am-
sterdam, Oct. 1965).

The incorporation of the revisions is not intended to
reinstate the report as a candidate for consideration as a
successor to Arcor 60. However, it is believed that its
publication will serve three purposes:

(1) To present to a wider public a view of the general
direction in which the development of ALGoL is proceeding;

(2) To provide an opportunity for experimental im-
plementation and use of the language, which may be of
value in future discussions of language development;

(3) To describe some of the problems encountered
in the attempt to extend the language further.

2. Aims of the Language

The design of the language is intended to reflect the
outlook and intentions of IFIP Working Group 2.1, and
in particular their belief in the value of a common pro-
gramming language suitable for use by many people in
many countries. It also recognizes that such a language
should satisfy as far as possible the following criteria:

(1) The language must provide a suitable technique
for the programming of digital computers. It must there-

Communieations of the ACM 413

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365696.365702&domain=pdf&date_stamp=1966-06-01

fore be closely oriented toward the capabilities of these
machines, and must fake into account their mherent
limitations. As a result it should be possible to construct a
fast, well-structured and reliable translator, translating
programs into machine code which makes economic use
of the power and capacity of a computer. In addition, the
design of the language should act as an encouragement to
the programmer to coneceive the solution of his problems
in terms which will produce effective programs on the
computers he is likely to have at his disposal.

(2) The language must serve as a medium of com-
munication between those engaged in problems capable
of algorithmie solution. The notational structure of pro-
grams expressed in the language should correspond closely
with the dynamie structure of the processes they describe.
The programmer should be obliged to express himself
explicitly clearly and fully, without confusing abbrevia-
tions or implicit presuppositions. The perspicuity of pro-
grams is believed to be a property of equal benefit to
their readers and ultimately to their writers.

(3) The language must present a conceptual frame-
work for teaching, reasoning and research in both theo-
retical and practical aspects of the science of computation.
It must therefore be based on rigourous selection and
abstraction of the most fundamental concepts of computa-
tional techniques. Its power and flexibility should derive
from unifying simplicity, rather than from proliferation
of poorly integrated features and facilities. As a conse-
quence, for each purpose there will be exactly one obvi-
ously appropriate facility, so that there is minimal scope
for erroneous choice and misapplication of facilities,
whether due to misunderstanding, inadvertence or inex-
perience.

(4) The value of a language is increased in proportion
to the range of applications in which it may effectively
and conveniently be used. It is hoped that the language
will find use throughout the field of algebraic and numeric
applications, and that its use will begin to spread to non-
numeric data processing in areas hitherto the preserve of
special purpose languages, for example, the fields of simu-
lation studies, design automation, information retrieval,
graph theory, symbol manipulation and linguistic research.

To meet any of these four requirements, it is necessary
that the language itself be defined with utmost clarity
and rigor. The Report on ArgoL 60 has set a high stand-
ard in this respect, and in style and notation its example
has been gratefully followed.

3. Summary of New Features

A large part of the language is, of course, taken directly
from Arcor 60. However, in some respects the language
has been simplified, and in others extended. The following
paragraphs summarize the major changes to Arcor 60,
and relate them to the declared aims of the language.

3.1. Data Tyrers
The range of primitive data types has been extended
from three in ArcoL 60 to seven, or rather nine, if the

414 Communications of the ACM

long variants are included. In compensation, certain
aspects of the concept of type have been simplified, In par-
ticular, the own concept has been abandoned as msyff.
ciently useful to justily its position, and as leading to
semantic ambiguities in many circumstances.

3.1.1. Numeric Data Types

The type complex has been introduced into the lan-
guage to simplify the specification of algorithms involving
complex numbers.

Ior the types real and complex, a long variant is pro-
vided to deal with caleulations or scctions of caleulations
in which the normal precision for floating-point number
representation is not sufficient. It is expected ihat the
significance of the representation will be approximately
doubled.

No provision i made for specifying the exact required
significance of floating-point representation in terms of
the number of binary or decimal digits. It is considered
most important that the values of primitive types should
occupy a small integral number of computer words, so
that their processing can be carried out with the maxi-
mum efficiency of the equipment available.

3.1.2. Bequences

The concept of a sequence occupies a position in
mediate between that of an array and of other simple d
types. Like single-dimensional arrays, they consist
ordered sequences of elements; however, unlike arrays
the most frequent operations performed on them are
the extraction or insertion of single elements, but rat
the processing of whole sequences, or possibly subsequences
of them.

Sequences are represented in the language by two new
types, bits (sequence of binary digits), and string fse-
quence of characters). Operations defined for bit seq
include the logical operations —, /\ and \/, and those of
shifting left and right.

The most important feature of a bit sequence is that
its elements are sufficiently small to occupy only a frac-
tion of a “computer word,” i.e. a unit of information which
is in some sense natural to the computer. This means that
space can be saved by “packing,” and efficiency can be
gained by operating on such natural units of information.
In order that use of such natural units can be made by
an implementation, the maximum number of elements in
a sequence must be specified, when a variable of that type
is declared. Operations defined for string sequences include
the catenation operator eat.

3.1.3. Type Determination at Compile Time

The language has been designed in such a way that the
type and length of the result of evaluating every expres-
sion and subexpression can be uniquely determined by 2
textual scan of the program, so that no type testing
required at run time, except possibly on procedure entry.
3.1.4. Type Conversions

The increase in the number of daia types has ca
an even greater number of possibilities for type conversion;
some of these are intended to be inserted automatically i

Volume 9 / Number 6 / June, 1966

peettied by the

and others

hy use of s + functions pro-

> purpose.

POL

ic nsertion of

type corversion has been con-

s where there could * e no possible confusion

o versa, Automatbic

conversions are also performed from shorter to longer

} i te. .
to complex, but nev vi

ants of the data types; and in the case of numbers,
ront Jong 1o short as well.

For all other conversions explicit standard procedures
it he used. This ensures that the complexity and pos-
i3 not hidden

stence of addi-

»anefficiency of the conversion proces
froms the programmer; furthermore, the ex
tional parameters of the procedure, or a choice of proce-

ex, will drasw his attention to the faet that there is
more than one way of performing the conversion, and he
is thereby encouraged to seleet the alternative which
corresponds to his real requirements, vather than rely on
a built-in “default” conversion, about which he may have
only vague or even mistaken ideas.

3.2, CONTROL OF SEQUENCING

The only changes made to facilities associated with
control of sequencing have been made in the direction of
maplification and clarification, rather than extension.
3.2.1. Switches and the Case Construction

The switeh declaration and the switeh designator have
peen abolished. Their place has been taken by the case
construction, applying to both expressions and state-
ments, This construction permits the selection and execu-
tion Cor evaluation) of one from a list of statements (or
expressions); the seleetion is made in accordance with the

value of an integer expression.

The case construction extends the facilities of the ALgoL
conditional to circumstances where the cholce is made
from more than two alternatives. Like the conditional, it
mirrors the dynamic structure of a program more clearly
statements and switches, and it eliminates

thanr go to

the need for introducing a large number of labels in the
program.
3.2.2. Labels

The concept of a label has been simplified so that it
merely serves as a link between a goto statement and its
destination; it has been stripped of all features suggesting
that it is a manipulable object. In particular, designational

A further simplification is represented by the rule that
a goto statement cannot lead from outside into a condi-
tional statement or case statement, as well as iterative
staterment.

The ArgoL 60 integer labels have besn eliminated.
3.2.3. Iterative Statements

The purpose of iterative statements is to enable the
programmer to specify iterations in a simple and perspicu-
ous maunner, and to protect himself from the unexpected

Yolume 9 / Number 6 / June, 1966

effecis of some subtie or careless error. They also signalize
to the wanslator that this is a special case, susceptible of
simple optimization.

It 1s notorious that the ArcoL 60 for statement fails to
satisfy any of these requirements, and thervefore a drasiic
simplifieation has been made. The use of iterative state-
ments has been confined to the really simple and common
cases, rather than extended to cover more complex re-
quirements, which can be more flexibly and perspicuously
dealt with by explicit program instructions using labels.

The most general and powerful iterative statement,
capable of covering all requirements,; is that which indi-
ates that a statement 18 to be executed repeatedly while
a given condition remains true. The only alternative type
of iterative statcment allows a formal counter to take
successive values in a finite arithmetic progression on
each execution of the statement. No explicit assignments
:an be made to this counter, which is implicitly declared
as loeal to the iterative statement.

3.3. PROCEDURES AND PARAMETERS

A few minor changes have been made to the procedure
concept of Arcor 60, mainly in the interests of clarifiea-
tion and efficiency of implementation.

3.3.1. Value and Result Parameters

As in Arcor 60, the meaning of parameters is explained
in terms of the “copy rule,” which preseribes the literal
replacement of the formal parameter by the actual pa-
rameter. As a counterpart to the “value parameter,”
which is a convenient abbreviation for the frequent case
where the formal parameter can be considered as a vari-
able local to the procedure and initialized to the value of
the actual parameter, a “result parameter” has been
introduced. Again, the formal parameter is considered as
a local variable, whose value is assigned to the correspond-
ing actual parameter (which therefore always must be a
variable) upon termination of the procedure.

The facility of calling an arvay parameter by value has
been removed, It contributes no additional power to the
language, and it contravenes the gencral policy that opera-
tions on entire arrays should be specified by means of
explicit iterations, rather than concealed by an implicit
notation.

3.3.2. Statement Parameters

A facility has been provided for writing a statement as
an actual parameter corresponding to a formal specified
as procedure. The statement can be considered as a
proper procedure body without parameters. This repre-
sents a considerable notational convenience, since it
enables the procedure to be specified actually in the place
where it is to be used, rather than disjointly in the head
of some embracing block.

The label parameter has been abolished; its function
may be taken over by placing a goto statement in the
corresponding actual parameter position.

3.3.3. Specifications

The specification of all formal parameters, and the

correct matching of actuals to formals, has been made

Communications of the ACM 415

obligatory. The purpose of specifications is to inform the
user of the procedure of the correct conditions of its use,
and to ensure that the franslator can check that these
conditions have been met.

One of the most important facts abour a procedure
which operates on array parameters is the dimensionality
of the arravs it will accept as actual parameters. A means
haz therefore been provided for indicating this in the
specification of the parameter.

To compensate for the obligatory nature of specifica-
tions, their notation has been simplified by including
them in the formal parameter list, rather than placing
them in a separate specification part, as in ALcor 60.

3.4 Dars STRUCTURES

The concept of an array has been taken from Avcor 60
virtually unchanged, with the exception of a slight nota-
tional simplification.

To supplement the array concept, the language has
been extended by the addition of a new type of structure
(the 7ecord) consisting, like the array, of one or more
elements (or fields). With cach record there is associated a
unique value of type reference which is said to refer to
that record. This reference may be assigned as the value
of a suitable field in another record, with which the given
record has some meaningful relationship. In this way,
groups of records may be linked in structural networks of
any desired complexity.

The concept of records has been pioneered in the AED-I
language by D. T. Ross.

3.4.1. Records and Fields

Like the array, a record is intended to occupy a given
fixed number of locations in the store of a computer. It
differs from the array in that the types of the fields are
not required to be identical, so that in general each field
of a record may occupy a different amount of storage.
This, of course, makes it unattractive to select an element
from a record by means of a computed ordinal number,
or index; instead, each field position is given a unigue
invented name (identifier), which is written in the pro-
gram whenever that field is referred to.

A record may be used to represent inside the computer
some discrete physical or conceptual object to be exam-
ined or manipulated by the program, for example, a person,
a town, a geometric figure, a node of a graph, ete. The
fields of the record then represent properties of that object,
for example, the name of a person, the distance of a town
from some starting point, the length of a line, the time of
joining a queue, ctc. Normally, the name of the field
suggests the property represented by that field.

In contrast to arrays, records are not created by decla-
rations; rather, they are created dynamically by state-
ments of the program. Thus their lifetimes do not have
to be nested, and stack methods of storage control must
be supplemented by more sophisticated techniques. It is
intended that automatic “‘garbage collection” will be
applicable to records, so that records which have become

416 Communications of the ACM

maceessible may be defected, and the space they occupy
released for other purposes,
3.1.2.

The normal data types (string. veal, intéger, cfe.) are
sufficient to represent iy, propertics of the objects repre-
sented by records; but ., new type of data 1= required to
represent relationships holding between these objeets.
Provided that the relationship iz a funetional relationship
(i.c. many-one or one-one), it can be represented by plae-
ing as a field of one record a veference to the other record
to which it is related. or example, il a vecord which repre-
sents a person has a field named father, then this is likely
to be used to contain a reference to the record which repre-
sents that person’s father. A similar freatment is possible
to deal with the relationship between a town and ihe next
town visited on some journcy, between a customer and
the person following him in some queue, between a directed
line and its starting point, ete.

References are also used to provide the means by which
the program gains access to records; for this purpose,
variables of type referenee should be declared in the head
of the block which uses them. Such variables will at any
given time refer to some subset of the currently existing
records. Fields of records can be referred to directly by
associating the name of the field with the value of the
variable holding a reference to the relevant record. If that
record itself has fields containing references to yet further
records outside the initial subset, then fields of these other
records may be accessed indirectly by further associating
their names with the construction which identified the
reference to the relevant record. By assignment of refer-
ences, records previously accessible only indirectly can be
made directly accessible, and records previously directly
acecessible can lose this status, or even become totally
inaccessible, in which case they are considered as deleted.

Thus, for example, if B is a variable of type rveference
declared in the head of some enclosing block, and if age
and father are field identifiers and if B contains a reference
to a certain person, then

References

771

age (B)

(called a field designator) gives that person’s age;

Sfather(B)

is a reference to that person’s father, and

age (father(B))

gives his father’s age.
3.4.3. Record Classes

Two records may be defined as similar if they have the
same number of fields, and if corresponding fields in the
two records have the same names and the same types.
Similarity in thic sense is an equivalence relationship and
may be used to split all records into mutually exclusive
and exhaustive equivalence classes, called record classes.
These classes tend to correspond to the natural classifica-
tion of objects under some generic term, for example:

Volume 9 / Number 6 / June, 1966

persorz, lown or quadrilaleral. T

introduced in & program by means of a rees

&=

tion, which associates a name with the class

members of the class.

One of the major pitfalls in the use of references is the
mistaken assumption that the value of a reference vari-
able, ~field or ~parameter refers to a record of some given
class, whereas on execution of the program it turns ouf
that the reference value is associated with some record
of quite a different class. If the programmer attempts to
access a field inappropriate to the actual class referred to,
he will get a meaningless result; but if he attempts to
make an assignment to such a field, the consequences
could be disastrous to the whole scheme of storage con-
trol. To avoid this pitfall, it is specified that the program-
mer can associate with the definition of every reference
variable, —field or —parameier the name of the record
class 10 which any record referred to by it will belong. The
translator is then able to verify that the mistake described
carl never occur,

3.4.4. Efficiency of Implementation

Many applications for which record handling will be
found useful are severely limited by the speed and capacity
of the computers available. Tt has therefore been a major
aim in the design of the record-handling facilities that in
implementation the accessing of records and fields should
be accomplished with the utmost efficiency, and that the
tayout of storage be subjected only to a minimum ad-
ministrative overhead.

4. Possibilities for Language Extension

In the design of the language a number of inviting
possibilities for extensions were considered. In many
cases the investigation of these extensions seemed to reveal
inconsistencies, indecisions and difficulties which could
not readily be solved. In other cases it seemed undesirable
to make the extension into a standard feature of the
language, in view of the extra complexity involved.

In this section, suggested extensions are outlined for
the consideration of implementors, users and other
language designers.

4.1. FurRTHER STRING OPERATIONS

Tor some applications it seems desirable to provide
facilities for referring to subsequences of bits and strings.
The position of the subsequence could be indicated by a
notation similar to subscript bounds, viz.

S[Z:71 the subsequence of S consisting of the dth to
Jth elements inclusive.

This notation is more compact than the use of a stand-
ard procedure, and it represents the fact that extraction is
more likely to be performed by an open subroutine than a
closed one. However, the notational similarity suggests
that the construction might also appear in the left part of
an assignment, in which case it denotes insertion rather
than extraction, L.e. assignment to a part of the quantity.

Yolume 9 / Number 6 / June, 1966

Apavt from the undesirability of the same construction
denoting two different operations, this would require
that strings be classified as structured values along with
ALTAYS,

4.2, I'vrrner Dara Types

Suggestions have been made for facilities to specify the
precision of numibers in 2 more “flexible” way, eg. by
mmdicating the number of required decimal places. This
solution has been rejected beecause 1t ignores the funda-
mental distinetion between the number itself and one of
its possible denotations, and as a consequence is utterly
inappropriate for caleulators not using the decimal number
representation. As an alternative, the notion of a precision
hierarchy could be introduced by prefixing declarations
with a sequence of symbols long, where the number of
longs determines the precision class. l'or reasons of sim-
plicity, and in order that an implementation may closely
reflect the properties of a real machine (single vs. double
precision real arithmetic), allowing for only one long was
considered as appropriate. Whether an implementation
actually distinguishes between real and long real can be
determined by an environment enquiry (ef. Part IIT, 2).
4.3. Intrian Varnues anp Locan CoNSTANTS

It is a minor notational convenience to be able to assign
an Initial value to a variable as part of the declaration
which introduces that variable. A more important advan-
tage is that the notation enables the programmer {o ex-
press a very important feature of his caleulations, namely,
that this is an unigue initial assignment made once only
on the first entry to the block; furthermore it completely
rules out the possibility of the clementary but all too
common error of failing to make an assignment before
the use of a variable.

However, such a facility rests on the notions of “com-
pile time” and “run time” action, which, if at all, should
be introduced at a conceptually much more fundamental
level.

In some cases it is known that a variable only cver
takes one value throughout its lifetime, and a means may
be provided to make these cases notationally distinet
from those of initial assignment. This means that the
intention of the programmer can be made explicit for the
benefit of the reader, and the translator is capable of
checking that the assumption of constaney is in fact justi-
fied. TFurthermore, the translator can sometimes take
advantage of the declaration of constancy to optimize a
program.

4.4. ArraY CONSTRUCTORS

To provide the same technique for the initialization of
arrays as for other variables, some method should be
provided for enumerating the values of an array as a
sequence of expressions. This would require the definition
of a reference denotation for array values, which, if avail-
able, would consequently suggest the introduction of
operations on values of type array. The reasons for not
extending the language in this direction have already
been explained.

Communications of the ACM 417

4.5. REcorp Crass DISCRIMINATION

In general, the rule that the values of a particular refer-
ence variable or field must be confined to a single record
clags will be found to present little hardship; however,
there are circumstances in which it is useful to relax this
rule, and to permit the values of a reference variable to
range over more than one record class. A facility is then
desirable to determine the record class to which a referred
record actually belongs.

Two possibilities for record class discriminations are
outlined as follows.

1. A record union declaration is introduced with the

form

union (record union identifier) ((record class identifier list}))

The record class identifier accompanying a reference vari-
able declaration could then be replaced by a record union
identifier, indicating that the values of that reference
variable may range over all record classes included in
that union. An integer primary of the form

(record union identifier) ({reference expression))

would then yield the ordinal number of the record class in
that union to which the record referred to by the reference
expression belongs.

2. Record class specifications in reference variable
declarations are omitted, and a logical primary of the form

{reference primary) is {record class identifier)

could be introduced with the value true, if and only i
the reference primary refers to o record of the specified
record class.

While the introduction of a new kind of declaration (1)
may seerm tndesivable, solution (2) reintroduces the dan-
gerous pitfalls described in 3.4.3.

4.6. PROCEDURE PARAMETERS

It has been realized that in most implementations an
actual parameter being an expression constitutes a func-
tion procedure declaration, and that one being a state-
ment constitutes a proper procedure declaration. These
quasi-procedure declarations, however, are confined to
being parameterless. Samelson has suggested a notation
for functionals which essentially does nothing more than
remove this restriction: an actual parameter may include
in its heading formal parameter specifications (¢f. ALGOL
Bulletin 20.3.3.). In a paper by Wirth and Weber, the
notational distinetion between procedure declarations
and actual parameters has been entirely removed. [ef.
Comm. ACM 9, 2 (Feb. 1966), 89 ff.]. This was done along
with the Introduction of a new kind of actual parameters
similar in nature to the references introduced here in con-
nection with records.

However, neither ad hoc solutions nor a radical change
from the parameter mechanism and notation of Arcow 60
seemed desirable.

PART II. DEFINITION OF THE LANGUAGE

CONTENTS

1. Terminology, notation, and basic
definitions
1.1 Notation
1.2 Definitions
2. Sets of basic symbols and syntac-
tic entities
2.1 Basic symbols
2.2 Syntactic entities
3. Identifiers
4, Values and types
4.1, Numbers
4.2. Logical values
4.3. Bit sequences
4.4, Strings
4.5. References
. Declarations
5.1, Simple variable declarations
5.2. Array declarations
5.3. Procedure declarations
5.4. Record class declarations
6. Expressions
6.1. Variables
6.2. Function designators
6.3. Arithimetic expressions
6.4. Logical expressions
6.5. Bit expressions
6.6, String expressions
&.7. Reference expressions
7. SBtatements
7.1. Blocks
7.2. Assignment statements
7.3. Procedure statements
74. Goto statements
7.5. If staterments
7.4%. Cuse statements
7.1, Tterative statements

[

o

418 Communications of the ACM

1. Terminology, Notation and Basic Definitions

The Reference Language is a phrase structure language,
defined by a formal system. This formal system makes
use of the notation and the definitions explained below.
The structure of the language ALcoL is determined by the
three quantities:

(1) U, the set of basic constituents of the language,
(2) U, the set of syntactic entities, and
(3) @, the set of syntactic rules, or productions.

1.1 Notrarion

A syntactic entity is denoted by its name (a sequence
of letters) enclosed in the brackets (and). A syntactic
rule has the form

(A) 1= x

where (A) is a member of U, x is any possible sequence of
basic constituents and syntactic entities, simply to be
called a “‘sequence”. The form

Ay =y -z

is used as an abbreviation for the set of syntactic rules

(A) ==z
(A) =y
(A} 1= 2

Volume 9 / Number 6 / June, 1966

2 DErRINTTIONS
1. A sequence @ 1s said to divecily produce a sequence
5 if and only if there exist (possibly enipty) sequences u

s0 that either {7} for some (4) in U, x = wid) w,

and o,

g = ww, and {d) 1 = v ixaruein ®; or (&Y x = we,
i o= we and ¢is a “comment” (see below.

2. A sequence x 1s said fo produce a sequence y I and
ounly if there exists an ordered set of sequences sl0], s{1],

-, shnl, so that = = s§[0], sin] = y, and s[i—1] directly
produces sid forall¢ = I, --- , n.

3. A sequence x is said to be an Argor program if and
only if its constituents are members of the set T, and «
¢an be produced from the syntactic entity (program).

The sets T and U are defined through enumeration of
their members in Section 2 of this Report (ef. also 4.4),
The members of the set of syntactie rules are given
thiroughout the sequel of the Report. To provide explana-
tions for the meaning of Avcon programs, the letter
scquences denoting svntactic entities have been chosen
to be English words describing approximately the nature
of that syntactic entity or construct. Where words which
have appeared in this manner are used elsewhere in the
rext, they refer to the corresponding syntactic definition.
Along with these letter sequences the symbol 3 may oceur.
Tt is understood that this symbol must be replaced by
any one of a finite set of English words (or word pairs).
Trnless otherwise specified in the particular section, all
occurrences of the symbol 3 within cne syntactic rule
must be replaced consistently, and the replacing words
are

integer logical
real bit

long real string
complex reference

lorig complex

It is recognized that typographical entities of lower
order than basic symbols (cf. 2.1), called characters, exist.
Some basic symbols may be identical with characters;
others, so-called word-delimiters, are generally repre-
sented as a sequence of two or more characters. Neither
the set of available characters nor the decomposition of
basic symbols into them is defined here. It is understood
that basic symbols are not the same as characters and
that there may exist characters which are neither basic
sy mbols nor constituents of them; these characters may,
however, enter the program as constitutents of strings, i.e.
character sequences delimited by so-called string quotes.

The symbol comment followed by any sequence of
characters not containing semicolons, followed by a semi-
colon (;), iz called a comment. A comment has no effect
on the meaning of a program, and is ignored during execu-
tion of the program. An identifier immediately following
the basic symbol end is also regarded as a comment.

The basic constituents of the language are the basic
swvmbols (ef. 2.1), strings (cf. 4.4), and comments.

All quantities referred to in a program must be defined.
Their definition is achieved either within the Avrgor pro-

Volume 9 / Number 6 / June, 1966

gram by so-called declarations and label definitions, or is
thought fto be done in a text, possibly written in another
language, in which the Avgor program is embedded. :

program containing references to quantities defined in the
fatter way can only be executed in an environment where
these quantities are known, and this environment is con-
sidered to be a block containing that program.

The execution of a program can be cousidered as a
sequence of units of action. The sequence of these units of
action is defined as the evaluation of expressions and the
execution of statements as denoted by the program. In
the definition of the language the evaluation or execution
of certain constructions is (1) either not precisely defined,
e.g. real arithmetic, or (2) is left undefined, e.g. the order
of evaluation of primaries in expressions, or (3) is even
said to be undefined or not valid. This is to be interpreted
in the sense that a program which uses copstructions of
the first two categories fully defines a computational proc-
ess only if accompanying information specifies what is
not given in the definition of the language. If in case (2)
this information is not supplied, then a unique result
of such a process is defined only if all possible alterna-
tives lead to the same result. No meaning ean be attrib-
uted to a program using constructions of the third cate-
gory.

2. Sets of Basic Symbols and Syntactic Entities
2.1. Basic SyMBOLS
i e d,e f'g'h ijikitimintolplgirisit!l

PH []J KiLIM|INIO|PQ]
Xivz |
I 61718 : 91
ilbitrue]false| ' | null!
integer | real | complex i logical | bits |

long { array | procedure | record [

string | reference |

, A (|) ! (111 begin | end | if | then | else | case | of |
i X /5dn31uu§"?§ahs;\/:/_,——.!ilcat§=,i?f§
< 5 | > | >

:= | goto | for | step . until ! do | while | comment ! value |
result

2.2. Syxrtacrtic ExTrTiEs

(with corresponding section numbers)

{actual parameter list) 7.3 {declaration) 3

{actual parameter) 7.3 (digit) 3.1

(array declaration) 5.2 {equality operator) 6.4

{bit factor) 6.5 ({expression list) 6.7

¢{bit primary) 6.5 (field list) 5.4

(bit secondary) 6.3 (for clause) 7.7

(bit sequence) 1.3 (formal parameter list) 5.3

{bit termj} 6.5 (formal parameter

(bit} 4.3 segment) 5.3

(block body?) 7.1 (formal type} 5.3

(block head) 7. (go to statement) : 7.4

{block) 7.1 {(identifier list) 3.1

(bound pair list) 5.2 (identifier) 3.1

(bound pair) 3.2 (f clause) 6

{case clause) 6 (if statement? 7.5

{case statement) 7.6 (imaginary part} 4.1

{control identifier) 3.1 {(increment) 7.7

Communications of the ACM 419

finttial value; 77 isimple 3 3
{fiterative staltement; i e 1
Habel definition; 7.1 .\lmi;l('
Tabel identifier; 31 declaratinn
letter) S0 stgtement
{limit; 7.7 fsigtement
{logieal facior; 6.4 FIng primary’ .6
{logical primary} i {string 1.4
Jogiceal secondary G4 isubseripts 6.1
Aogical term; 6.V 40 array designator; 61
dogieal values .2 40 array identifier) 31
{lower bound; 0.2 {0 assignment statement 7.2
mull reference: 1.5 6
{procedure declaration; 4 T [4
‘procedure heading? 5.9 i3 factors H.3
iprocedure identifier; 3.1 3 field designator: 6.1
{procedure statement) T3 3 field wdentiher; 3t
{program; 7 3 funetion designator) .2
ipraper procedure body; 5.3 3 function sdentifier; 41
ipraper procedure 3 function procedure
declaration) 5.3 hody; H¥
freal part) 4.1 &3 function procedure
irecard class deelaration; 5.4 declaration? 5.9
frecord cluss identifier) 3.1 43 left purt) 7.2
{record designaior) 6.7 {3 number; 1.1
{relation) 6.4 primary; 4.4
{relational operaior; G4 O3 secondary) 1.3
{seule faetor) 1.1 {3 ierm) 0.3
fRign 4.1 (3 varisble identifier; a1
ssimple bit expression} 6.5 {3 variable; 6.1
isimple logieal expressions 6.4 {types 5.4

funscaled real;
6.7 {unsigned 3 number:

fsimple reference
CXPTessIon)

imple statement? 7 fupper hound?

=~ LY e e
~F L e

simple siring expressiony GG dwhile elaused
3. ldentifiers

3.0, SYNTAX

= (ettery | (ddemifiery detters | Gdentifier

ddentifier)
3 variable dentifier)

= {dentifier;
Gdentifier:
c= ddentifier;

0 array identifier)

tprocedure identifier) :
4 function identifiery :
record class identifier)
1 field identifierd ::e= {deatifier:
label identifiery :: dentifier:

eontrol identifiery o

th

{identifier:
= {dentifiery

fwioelip!

FAINOIPIQ

(8
Adentifier hst) @ s 1 didentifier listy, {identitier:
3.2, SEMANTICS
Variables, arrays, procedures, record classes and record
ficlds are said to be quantities. Identifiers serve to identify
quantities, or they stand as labels, formal parameters or
control identifiers. Tdentifiers have no inherent meaning,
and can be chosen freely.
Every identifier used in @ program must be defined.
This is achieved through
{(a) udeclaration (cf. Section 33, if the identifier identifies
a quantity. It is then said to denote that quantity
and to be a 3 variable-, 3 array-, procedure-, 3

420 Communications of the ACM

funetion-, reeord o

the svmbol 3 stands

(b n label definition
a label This then
(¢} its oceurrence in o formal paran

1. 3 PP H
110 he s torual e

iz then s

(i iis accurrence in a lor use folie the svn

for (cf. 7.75. I 1= then said 1o be a coutral ide

frer.
The identification of the definition of ¢
i defermined by the foliowing rules:
Step 1 If the identifer i defined withs

block cmbracing the given cecurrencee of
4 4

a declaration of & quantity or by its standi :
then it denotes that quantity or that labell A staremen:
following o procedure heading or o for elause 35 consid

o be o block,

Step 2. Otherwise, if that block 1= a procedure body

1 x5
[N

and if the given identifier = wentiea hoa formal pa

rumeter in the assoclated procedure heading, then
stands as that formal parameter,
Siep 3. Otherwise, if that block is preceded by

clause and the identifier = wdentical to the control
of that for clause, then it stands as that control ¥
Otherwise, these rules are applied con

adering ih

lext, block embracing the block which has previous
considered.
If ¢ither step 1 or step 2 could lead to nuore

definition, then the identifiention is undefined.
The seope of a quantity, u Label, « formal parameter

@ contral wentifier is the set of statenenis in which

rences of an identifier may refer by the shove rules {o 15

definition of that quantity, label, formal parmeter
control identifier.
3.3, Exavrres

l’é‘l'.\iurl

clder sihiling

rld

4. Yalues and Types

Constants and variables are said 1o possess a value. Th
value of a4 constant is determined by the denotation of the

constant. In the language, every constant {exeept refer-
ences) has a reference devotation (ef. £.1-445. The value
of a variable is the one most recently assigned
variable. A value is (recursivelyy defined as either being :

t
simple value, or a structured value, e, an ordered set of

aid to be of a cent

one or more values. Every value is s
type. The following types of simple values ure

tinguished:
integer: the value is an integer,
real or long real: the value is a real number,
complex or long complex: the value is a complex
number,
logical: the value is a logieal value,
bits: the value is a lincar sequence of bits,

Volume 9 - Number 6 7/ June, 1965

string: the value is a linear sequence of characters.

reference: the value is a reference to a . ;ord.

The following types of structured values are distin-
guished:

array: the value is an ordered set of values, all of identi-

-al type and subseript bounds,

record: the value is a set of simple values.

A procedure may yield a value, in which case it is said
10 be a function procedure, or it may not yield a value, in
which case it is called a proper procedure. The value of a
function procedure is defined as the value which results
from the execution of the procedure body (ef. 6.2.2).

Subsequently, the reference denotation of constants is
defined. The reference denotation of any constant consists
of a sequence of characters. This, however, does not imply
that the value of the denoted constant is a sequence of
characters, nor that it has the properties of a sequence of
characters, except, of course, in the ease of strings.

4.1. NUMBERS
1.1.1 Syntax

In the first rule below, every occurrence of the symbol 3
must be systematically replaced by one of the following
words (or word pairs):

integer

real

long real
complex

long eomplex

:3 number) ::= {unsigned J number) | (sign){unsigned 3 number)
unsigned long complex number; ::=

long {unsigned complex number)
‘unsigned complex number} ::= {real parti{imaginary part}
ireal party ::= (unsigned real number) | (unsigned integer number
dmaginary part) ;:= (real number} | {integer number)
1:= long {unsigned real number) |

‘unsigned long real number)
long (unsigned integer number)
{unsigned real number) ::= (unscaled real) | {unscaled real)
{seale factor; | (unsigned integer number)(scale factor)
funsecaled realy ::= (unsigned integer number),
{unsigned integer number) | {(unsigned integer number;
scale factor) 1= i{integer number)
‘unsigned integer number) ::= (digit) |
{unsigned integer number} {digit)
siguys: = 4 | —
4.1.2. Semantics
Numbers are interpreted according to the conventional
decimal notation. A seale factor denotes an integral power
of 10 which is multiplied by the unscaled real or integer
number preceding it. Each number has a uniquely defined

type.
4.1.3 Examples

1 D li—1
—0100 ¢ Lie3 —0.3310.67

3.1416 17 6.0248610+23 long 0il
+long 2.718281828459045235360287

Note that —0.33i0.67 denotes — (0.33i0.67).

Volume 9 / Number 6 / June, 1966

4.2 Locican VALUEs

4.2.1 Syntax

dogical value):: = true | false
4.3. Brr SEQUENCES
4.3.1. Syntax

tbit sequence} :
bity =011

1= bébit) | {bir sequenceXbit)

4.3.2. Semantics
The number of bits in a bit sequence is said to be the
length of the bit sequence.

14.3.3. Examples

b10011
b001

4.4. STRINGS
4.4.1. Syntax
{stringd = ""(sequence of characters)'
4.4.2, Semanties

Strings consist of any sequence of characters enclosed
by but not containing the character", ealled string quote.
They are considered to be buasic constituents of the lan-
guage (ef. Section 1). The nunmber of characters in a string
excluding the quotes is said to be the length of the string.

4.5. REFERENCES
4.5.1. Syntax
(null reference} 1= null
1.5.2. Semantics

The reference value null fails to designate a record; if a
reference expression oceurring in a field designator has this
value, then the field designator is undefined.

5. Declarations

Declarations serve to associate identifiers with the
quantities used in the program, to attribute certain per-
maunent properties to these quantities (e.g. type, structure),
and to determine their scope. The quantities declared by
declarations are simple variables, arrays, procedures and
record classes.

Upon exit from a block, all quantities declared within
that bloek lose their value and significance (¢f. 7.1.2 and
7.4.2).

Syntax:

variable declaration) |

{declaration) ::= {(simple
{array declaration) | (procedure declaration) i
{record class declaration;

5.1. SivpLE VARIABLE DECLARATIONS

5.1.1. Syntax

simple variable declaration) ::= (simple type; {identifier list;
simple type) ::= integer | real | long real | complex i
long complex | logical | bits ({upsigned integer numben))
bits | string | reference (({record elass identifier})

5.1.2. Semantics
Fach identifier of the identifier list is associated with a

Communications of the ACM 421

variable which is declared to be of the indicated type. A
variable is called a simple variable, if its value is simple
(cf. Section 4). If a variable is declared to be of a certain
type, then this implies that only values which are assign-
ment compatible with this type (¢f. 7.2.2) can be assigned
to it.

It is understood that the value of a variable of type
integer is only equal to the value of the expression most
recently assigned to it, if this value lies within certain
unspecified limits. It is also understood that the value of a
variable of type real is available only with a possible,
unspecified deviation from the value of the expression
most recently assigned to it. If in a declaration the symbol
real is preceded by the symbol Iong, then this deviation
is expected to be not greater than when the symbol long
is missing. In the case of a variable of type long complex
this holds separately for the real and imaginary parts of
the complex number.,

In the case of a variable of type bits the integer en-
closed in parentheses indicates the actual length of the
sequence which constitutes the value of this variable. If
this specification is missing, then the length is assumed
to be equal to the value of the environment enquiry func-
tion bits in word (cf. 111.2).

In the case of a variable of type reference, the record
class identifier enclosed within parentheses indicates the
record class to whose records that reference variable may
refer.

5.1.3. Examples

integer i, j, k, m, n

real z, y, z

long complex ¢

logical p, ¢

bits g, h

string 7, 8, ¢

reference (Person) Jack, Jill

5.2. ARRAY DECLARATIONS
5.2.1. Syntax

{array declaration} ::= (simple type} array (bound pair list}
(identifier list)

(bound pair list) ::= (bound pair) ; (bound pair){bound pair list}

(bound pair) ::= [{lower bound):{upper bound)]

(lower bound} ::= (integer expression}

(upper bound) ::= {integer expression)

5.2.2, Semantics

Each identifier of the identifier list of an array declara-
tion is associated with a variable which is declared to be
of type array. A variable of type array is an ordered set
of variables. Their number is determined by the leftmost
clement of the bound pair list. If the bound pair list con-
sists of onc element only, then their type is the simple
type preceding the symbol array. Otherwise their type is
array, and the number of elements and the type of these
arrays are in turn defined by the given rules when applied
to the remaining bound pair list.

422 Commmunications of the ACM

Every elenmymt of an array is ldentified by an index.
The indices are the integers between and including the
ralues of the lower bound and the upper bound. Every
expression in the bound pair list 1s evaluated exactly onece
upon cniry to the block in which the declaration occurs.
In order to be valid, for every bound pair, the value of the
upper bound must not be less than the value of the lower
bound.

5.2.3. Examples
integer array [1:100] H
real array [l:m] {L:n] A,B
string array [j:hk+1] sireet, town, cily

53.3. PrROCEDPURE DECLARATIONS

5.3.1. Syntax

{procedure declaration) ::= (proper procedure declaration; i
{3 funetion procedure declaration}
{proper procedure declaration) ::= procedure
(procedure heading); {(proper procedure body?}
(3 function procedure declaration) ::= {simple type) procedure
{procedure heading); (J function procedure body?}
{proper procedure body} ::= (statement)
{J function procedure body) ::= (J expression) |
{block body)¥J expression} end
{procedure heading) ::= (identifier} |
(identifier) ((formal parameter list})
{formal parameter list) ::= (formal parameter segment) |
(formal parameter list); {(formal parameter segment)
{formal parameter segment) ::= (formal type) (identifier list;
{formal type) ::= (type) | (simple type) value |
(simple type) result | (simple type} value result |
{simple type) procedure | procedure | reference
{type) ::= (simple type} | {type) array

5.3.2. Semantics

A procedure declaration associates the procedure body
with the identifier immediately following the symbol
procedure. The principal part of the procedure declara-
tion is the procedure body. Other parts of the block in
whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper
procedure is activated by a procedure statement (cf. 7.3),
a function procedure by a function designator (cf. 6.2).
Associated with the procedure body is a heading, contain-
ing the procedure identifier and possibly a list of formal
parameters.
5.3.2.1. Specifications of formal parameters. All formal
parameters of a formal parameter segment are of the same
indicated type. It must be such that the substitution of
the formal by an actual parameter of this specified type
leads to correct ArcoLn expressions and statements (cf.
7.3.2). The word array should be repeated as many times
as appropriate.
5.3.2.2. The effect of the symbols value and result ap-
pearing in a formal type is explained by the following
rewriting rule which is applied to the procedure body
before the procedure is invoked:

(1) The procedure body is enclosed by the symbols
begin and end if it is not already enclosed by these sym-
bols;

Volume 9 / Number 6 / June, 1966

(23 For every formal parameter whose formal tvpe con-
tains the symbol value or vesult (or both),

{a) a declaration followed by a semicolon is inseried
it the heading of the procedure body, with a simple type
as indicated m the formal type, and with an identifier
different fromi any identifier valid at the place of the
declaration.

(b} throughout the procedure body, every oceur-
rence of the formal parameter identifier is veplaced by the
identifier defined in step 2a;

(¢) if the formal type contains the symbol value, an
assignment statement followed by a semicolon iz mserted
after the declarations of the procedure body. Its left part
containg the identifier defined in step 2a, and its expression
consists of the formal parameter identifier. The symbol
value 1z then deleted;

(dy if the formal type contains the symbol result,
an assignment statement preceeded by a semicolon is in-
scrted before the symbol end which terminates a proper
procedure body. In the case of a function procedure, an
assignment statement followed by a semicolon is inserted
hefore the final expression of the function procedure body.
Its left part contains the formal parameter identifier, and
iIts expression consists of the identifier defined in step 2a.
The symbol result iz then deleted.

5.3.3. Examples

procedure [ncrement; z = x+1

real procedure max (real value x, y); if r < y then y else x
procedure Copy (real array array U, V; integer value a, b};
for?{ ;= 1 step | untila do

for j := 1 step 1 until b do Ulijij] 1= F[]l7]

real procedure Horner (real array a; integer value n;

real value x);

begin real s;

fori := 0 step l until n do s := s X z + ali]; s
end
long real procedure sum (integer k, n; long real z);
begin long real y; y 1= 0; k 1= n;

while £ > 1ldobeginy :=y +u;k =k ~ 1

end; ¥
end

reference (Person) procedure youngest uncle
(reference (Person) R,

begin reference (Person} p, m;
p = youngest offspring (father(father (B}});
while (p 5 null) A (—male(p)) V (p = Jather(R)) do

p = elder sibling (p};

m := youngest offspring (mother (nother(R)));
while (m = null) A (= male(m)) do m := elder sibling (m);
if p = null then m else
if m = null then p else
if age (p) < age (m) then p else mn

end

5.4. REcorp Crass DECLARATIONS

5.4.1. Syntax

irecord class declaration) ::= record {(record class identifier?
({field list))

{field list}
(field list);

(simple variable declaration) |
{(simple variable declaration)

Volume 9 / Number 6 / June, 1966

5.4.2. Semanties

A record class declaration serves to define the structural
properties of records belonging to the class. The principal
constituent of a record eclass declaration is a sequence of
simple variable declarations which define the fields and
their types of the records of this class and associate identi-
fiers with the individual fields. A record class identifier
can be used in a record designator to construct a new
record of the given class.
3.4.3. Examples

record Node (reference {(Nodei left, right)

record Person (string name; integer age; logical male;

reference (Person) father, mother, youngest offspring,
elder sibling

6. Expressions
Expressions are rules which specify how new values are

computed from existing oves. These new values are ob-
tained by performing the operations indicated by the
operators on the values of the operands. According to the
type of their value, several types of expressions are dis-
tinguished. Their structure 18 defined by the following
rules, in which the symbol 3 has to be replaced consistently
as described in Section 1, and where the triplets 3y, 31, 5
have to be either consistently replaced by the words

logical

bit

string

reference
or by any combination of words as indicated by the fol-
lowing table, which yields 3, given 3 and 3

~. 3“ :)
. S integer real complex
Ji
integer integer real complex
real . real real complex
complex complex complex complex

56 has the quality “long” if either both 3 and 3, have

that quality, or if one has the quality and the other is
“integer”.

Syntax:

{3 expression) ::= (simple J expression} !
{case clause) ((J expression list})
{3, expression) ::= (if clausejsimple J, expression} else
{3, expression)
{3 expression list) ::= (J expression;
{3y expression list) 1= {J; expression list), (3, expression)
;= if (logical expression) then

(if clause) :
= case {integer expression) of

{case clause) ::

The operands are either constants, variables or function
designators or other expressions between parentheses. The
evaluation of the latter three may involve smaller units of
action such as the evaluation of other expressions or the
execution of statements. The value of an expression
between parentheses is obtained by evaluating that ex-
pression. If an operator operates on two operands, then
these operands may be evaluated in any order, or even in

Communications of the ACM 423

parallel, with the exception of the case mentioned n
6.4.2.2, The construction

{f clausex(simple 31 expression) else (3, expression;
causes the selection and evaluation of an expression on the
basis of the current value of the logical expression con-
tained in the if clause. If this value 18 true, the simple
expression following the if clause is selected, if the value is
false, the cxpression following else is selected. The con-
struction

{case clause; ({3 expression list})

causes the selection of the expression whose ordinal num-
ber in the expression list is equal to the current value of
the integer expression contained in the case clause. In
order that the ease expression is defined, the current value
of this expression must be the ordinal number of some
expression in the cxpression list.

6.1. VARIABLES
6.1.1. Syntax

(3 variable) ::= (J variable identifier;|{J field designator
(3 array designator) {subscript}
(3 field designator) ::= (J field identifier) ((reference expression))
{3 array designator) ;1= (3 array identifier)]
{3 array designatorisubseript)
{subseripty ::= [{integer expression)|

6.1.2. Semantics

A subseripted array designator denotes the variable
whose index, in the ordered set of variables denoted by
the array designator, is the current value of the expression
in the subscript. This value must lie within the deelared
bounds.

The value of a variable may be used in expressions for
forming other values, and may be changed by assignments
to that variable.

A field designator designates a field in the record re-
ferred to by its reference expression. The type of the field
designator is defined by the declaration of that field
identifier in the record class designated by the reference
expression of the field designator (ef. 5.4).

6.1.3. Examples

xr

Alil
ME+jlli~j)
father {(Jack)

mother (father(Jill))
6.2. Fuxcrion DESIGNATORS
6.2.1. Syntax

(3 function designator) ::= & function identifier)]
{3 function identifier) ({actual parameter list})

6.2.2. Semantics
A function designator defines a value which can be ob-
tained by a process performed in the following steps:
Step 1. A copy is taken of the body of the function

424 Communications of the ACM

vrocedure he fune-

tion desi e fatter,
Steps .
Step 5. The copy of the function procedure body,
modified as indicated in steps 2.4, 15 executed. The value
of the function designator iz the value of the expression
which constitutes or is part of the modified function pro-
cedure body. The type of the function designator iz the
type preceding procedure preceding the heading of the
corresponding function procedure declaration.

6.2.3. FExamples

max (x5 2, yX2)

suin (2, 100, H{i];

sum (1, m, sum{y, n, AL
youngest uncle (Jill)

stn (2, 10, X[@]X Yii]i
Horner (X, 10, 2.7

6.3. ArrruveTric EXpPRESsIoNs
6.3.1. Syntax
In any of the following rules, every occurrence of the

symbol J must be systematically replaced by one of the
following words (or word pairs):

iriteger

real

fong real

complex

fong complex
The rules governing the replacement of the symbols 3,
31 and 3, are given in 6.3.2.

{simple J expression) ::= (3 term)j + 3 term}} — 3 term>

{simple 3, expression) ::= &imple J, expression) + (3, term’
(simple 3, expression) — (3. term)

3 termy s:= {3 factor)

{3 term} 1= (3, term} X {3, factor)

3y term) 1= (3, term)/{3, factory

{integer term) ::= (integer term) div (integer factor)]

(integer ierm) rem (integer factor)
{3 factor) ::= (3, secondary)|(3, factor) I {integer secondary
{3y secondary) 1= (J primary}{{unsigned 3 number)
{3y secondary) := abs (0 primary)abs (unsigned 3, number:
{dong 3o primary) ::= long (3, primary}
{3 primary} 1= (J variable)!{d function designator)]

((3 expression))
6.3.2. Semantics

An arithmetic expression iz a rule for computing u
number.

According to its type it is either called an integer-.
real~, long real-, complex-, or long complex expression.
6.3.2.1. The operators 4, —, X and / have the conven-
tional meaning of addition, subtraction, multiplication
and division. In the relevant syntactic rules of 6.3.1 the
symbols 34, 3; and 3. have to be replaced by any combina-
tion of words according to the following table which indi-
cates Jy for any combination of given J; and Js .

Operators 3 int 1 1
: integer rea complex

+i- m & ; !
integer integer real complex
real ¢ real real complex
complex complex complex complex

Yolume 9 / Number 6 / June, 1966

1

hoth '51 zmd I, have the

3 hus the quality “long” if 2
: . o
ruality ~“long”, or 11 one has the quality “long” and the
gther iz “integer”’

Operator \ o

integer real
X J ’

I P,

complex

long real fong complex
long real long complex
long complex

integer inieger
real ¢ long real
long eom- long com-

plex plex

complex

3 or 3y having the quality “long” does not affect the

ivpe of the result.

therator a .]
’ _ nteger real complex
.)l) S —————
mteger real real complex
real i real real complex
complex complex complex complex

The specifications for the quality “long” are those given
i'rn' -%— and —

...... The ()pemtor — standing as the first symbol of a
mnplc expression denotes the monadie operation of sign
inversion, The type of the result is the type of the operand.
The operator + standing as the first symbol of a simple
expression denotes the monadic operation of identity.
5.3.23. The operator div is mathematically defined as

a div b = sgn{axXh) X d{abs «, abs b)
where the funetion procedures sgn and d are declared as

integer procedure sgn(integer value a);
if a < 0 then —1 elze 1

integer procedure diinteger value a, b);
if a < b then 0 else dia—h, b)) -+ 1

5.3.2.4. The operator rem (remainder) 18 mathematically
de fnwd as

aremb = o — (ndivb) X b
.3.2.5. The operator denotes exponentiation of the
first operand fo the power of the zecond operand. In the
relevant syntactic rule of 6.3.1 the symbols 3, and 3; have
in be replaced by any of the following combinations of

words:
real . integer
real . real
complex complex
s has the quality “long” if and only if 3; does.

$.3.2.6. The monadic operator abs yields the absolute
value of the operand. In the relevant syntactic rule of 6.3.1
the symbols J; and 3; have to be replaced by any of the
following combinations of words:

Je 5
integer integer
real real
real complex

If 3; has the quality “long”, then so does 3, .

Yolume 9 / Number 6 / June, 1966

6.3.2.7. Precedence of operators, The syntax of 6.3.1
tmplies the following hierarchy of operator precedences:

long
abs

X 7 div rem

Sequences of operations of equal preecedence shall be exe-
cuted in order from left to right.
6.3.2.8. Precision of arithmetic. If the result of an arith-
metic operation is of type real or complex, then it is the
mathematically understood result of the operation per-
formed on operands which may deviate from the actual
operands. In case of the operands being of a type with the
quality “long”, this deviation, as described in 5.1.2, is
intended to be smaller, and is expected to be not greater
than if that quality is missing.

In the relevant syntactic rule of 6.3.1 the symbols Gy
and 3; must be replaced by any of the following combina-
tions of words (or word pairs):

Operator
long
long real . real
loug real i integer
long complex complex
6.3.3. Examples
x + ¢/Hij~1

¢ + Altl X Bl?]
arp (—x/(2Xstgma))/sqrt (2Xsigma)

6.4. L.oGican EXPRESSIONS
6.1.1. Syntax
In the following rules for (relation) the symbols Ty
and 3, must either be identically replaced by any one of
the following words:
bit
string
reference

or by any of the words from:

complex

long complex
real

long real
integer

and the symbols 3, and 3; must be replaced by any of the
last three: real, long real, integer.

{simple logical expression) ::= {logical termj|(relation)
{logical term} ::= (logical factor}{ldogical term) V/ {ogical factor)
{ogical factor; {logical secondary;
dogical factor) A (logical secondary;
{logical secondary) ::= {logical primary);~(logical primary}
dogical primary) ::= (logical value;{(logical variable)]
{dogical function designator;|({logical expression))
{relation) 1=
{simple J, expressioni{equality operator)simple J, expression}}
{logical term)equality operatorylogical termj|
{simple J; expression){relational operator){simple J; expression)
{relational ('ypemtor) = LIz
{equality operator) ::= =}

Communications of the ACM 425

6.4.2. Semantics

A logical expression is o rule for computing a logical
value.
6.4.2.1. The relational operators have their conventional
meanings, and yield the logical value true if the relation
is satisfied for the values of the two eperands; false, other-
wise. Two references are equal if and only if they are both
null or both refer to the same record. Two strings are
equal if and only if they have the same length and the
same ordered sequence of characters.

A comparison of two bit sequences of different lengths
is preceded by insertion of an appropriate number of 0’s
after the symbol b of the shorter operand.

6.4.22. The operators — (mot), A (and), and V (or),
operating on logical values, are defined hy the following
equivalences:

—r if « then false else true
« /vy if z then y else false
z V y if x then true else y

6.4.2.3. Precedence of operators. The syntax of 6.4.1 im-
plies the following hierarchy of operator precedences:

.
A
\
<L =2 >

6.4.3. Examples

JAVARSY]

x<y) /N (y<z)

(i=37) = (m=mn)

youngest offspring (Jack) # null

6.5. Brr Exprussions

6.5.1. Syntax

isimple bit expression) = {bit term}]
{simple bit expression} \V/ {bit term}

{bit term) 1= {(bit fuctor}idbit termy A {bit factor)

{bit factor) bit sccondary}

= (bit secondary?j—{

ibit secondaryy 1= it prima

(it secondary) T {iuteger secondary)|
bit secondary) | {integer secondary}

{(bit primary) ::= {bit sequence){{bit variable}]
(it function designatord] ((bit expression))

6.5.2. Semantics
A bit expression is a rule for computing a bit sequence.
The operators V/, /A and — produce a result of type
bits, every bit being dependent on the corresponding bit(s)
in the operand(s) as follows:

x y R E R ANV I AV
0 4] 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators T and | denote the shifting operation
to the left and to the right respectively by the number of
bit positions indicated by the absolute value of the inte-

426 Communications of the ACM

oor seeonds o eft

T
i In

are a 1 the bi

respectively

the case of the /A~ and 7 operators the two operands are
not of cqual length, then the shorter operand 18 extended

an appropriate number of s after the

by insertion of

~

svinbol b, The length of the result of o bit operator iz

cquad to the lengih of the operand
6.5.3. Examples
g/~ kN bLII00G
g - (g LS
6.6. StrING IEXPRESSIONS
6.6.1. Syntax

/simple string expression: 1= fsiring primary;:

{simple string expression: cat {siring primary:

(string primaryy 1= (stringzéstring varlables

imtring function designator: (string expression:;

6.6.2. Semantics

A string expression 15 a rule for computing o string
(sequence of characters).
6.6.2.1. The operator cat (caicnate; vieldzs the string
consisting of the sequence of characters resulting frowm
evaluation of the first operand, immediately followed by
the scquence of characters resulting from evaluation of
the sccond operand, mathematically defined as

1 w1t

[P 1", . ot (1 IR §
{sequence-17"" eat " {sequence-2) = {sequence-lisequence-?

The length of the result is the sum of the lengths of the
operands.
6.6.3. Lxample
s cat "utu'" car ¢
6.7. REFERENCE EXPRESSIONS

6.7.1. Syntax

{simple reference expression) ::= {(null referencer;
{reference variableji{reference function designators
{record designator) {({reference expression})

frecord designatory = {record class identifiery;
{record class 1dentifiery ({expression list)

{expression list)
{expression listy, {3 expression}

= {3 expression)!

60.7.2. Semantics

A reference expression is a rule for computing a reference
to a record. All simple reference expressions in a reference
expression must be of the same record class.

The value of a record designator is the reference o a
newly created record belonging to the designated record
class, If the record designator contains an expression list,
then the values of the expressions are assigned to the fields
of the new record. The entries in the expression list are
taken in the same order as the fields in the record class
declaration, and the types of the fields must be assignment
compatible with the types of the expressions (ef. 23.

6.7.3. Example

Person ("'Carol'', 0, false, Jack, Jill, null,
youngest offspring(Jack))

VYolume 9 / Number 6 / June, 1966

7. Stateinents

A statement s sald (o denote s unit of action. By the
execution of a statement is meant the performance of this
unit of action which may consist of smaller units of action
such wis the evaluation of expressions or the execution of
other statements.

A statement containing no symbols denotes 1o action.

Syntax:
program; ::= {block
'statement’ 1= {simple statement: ‘{iterative statement’

[statementiicase statement;
simple statement) ::= (block}i{3 assignment statement)!
{procedure statement){goto statement)

7.1. Brocks

7.1.1. Syntax

2= {block body} stutement) end

= {(block headiiblock bodyXstatement};
{block bodyjiilabel definition:

‘block head; ::= begini(block beaddeclaration;

label definition} ::= {identifier::

bHlock:
bloek body}

7.1.2. Semantics
Every block introduces a new level of nomenclature.
This is realized by execution of the block in the following
steps:
Step 1. If an identifier defined in the block head or in
a label definition of the block body is already defined at
the place from where the block is entered, then every
occurrence of that identifier within the block is systemati-
cally replaced by another identifier, which is defined
neither within the block nor at the place from where the
block is entered.
Step 2. If the declarations of the block contain array
bound expressions, then these expressions are evaluated.
Step 3. Exccution of the statements contained in the
block body begins with the execution of the first state-
ment following the block head.
After execution of the last statement of the block bhody
{unless it is a goto statement) a block exit oceurs, and the
stutement following the entire block is executed.

7.1.3. Example

begin real u;
W= X I=Y; Y=g oz = U

end
7.2. ASSIGNMENT STATEMENTS
7.2.1. Syntax

In the following rules the symbols 3¢ and 3; must be
replaced by words as indicated in Section 1, subject to
the restriction that the type 3 is assignment compatible
with the type 5 as defined in 7.2.2,

assignment statement) 1= (3 left part)J, expression)]
({3, left part)3 assignment statement)
{3 left party ::= (3 variable) :=

7.2.2. Semantics
The execution of assignment statements causes the

Volume 9 / Number 6 / June, 1966

ment of the value of the expression to one or several

vartables. The assignment is performed after the evalua-
tion of the expression. The types of all lefi part variables
must be assignment compatible with the type of the ex-
pression.

A type 5 1s said to be assignment compatible with a
type &, if cither ‘

(1) the two types are identical (except possibly for
length speeifications), or
(2) 3¢ is real or long real, and 3, is integer, real, or
long real, or
(3) 5 is complex or long complex, and 3, is integer,
real, long real, complex or long complex.

In the case of the type bits, the length specified for 5,
must be not less than the length specitied for 3,.

If the length of a bit sequence to be assigned is smaller
than the length specified for 3, , then a suitable number of
(’s are inserted after the symbol b.

In the case of a reference, the reference to be assigned
must refer to a record of the class specified by the record
class identifier associated with the reference variable in
its declaration.

7.2.3. Examples

¢ = age (Jack) := 28
r =y + abs z
ci=14+ x4 ¢
pi=x ¥y
7.3. PROCEDURE STATEMENTS
7.3.1. Syntax
{procedure statement) ::= {procedure ideutif
(procedure identifier; ({actual parameter lis())
{nctual parameter)!

{actual parameter Hst} ::
(actual parameter list;, {actual parameter)
(actual parameter) {expression)i{statement}|
(3 array designator;i{procedure ideuntifier}{(3 function identifier)
7.3.2. Semantics
The execution of a procedure sfatement is cquivalent
to a process performed in the following steps:

Step 1. A copy is taken of the body of the proper
procedure whose procedure identifier is given by the proce-
dure statement, and of the actual parameters of the latter.

Step 2. If the procedure body is a block, then a
systematic change of identifiers in its copy is performed
as specified by step 1 of 7.1.2,

Step 3. The copies of the actual parameters are
treated in an undefined order as follows: If the copy is
an expression different from a variable, then it is enclosed
by a pair of parenthescs, or if it is a statement it is en-
closed by the symbols begin and end.

Step 4. In the copy of the procedure body every
occurrence of an identifier identifying a formal parameter
is replaced by the copy of the corresponding actual pa-
rameter (cf. 7.3.2.1). In order for the process to be defined,
these replacements must lead to correct ALGOL expressions
and statements.

Step 5. The copy of the procedure body, modified
as indicated in steps 2-4, is executed.

Communications of the ACM 427

7.3.2.1. Actual formal correspondence

The correspondence between the actual parameters
and the formal parameters is established as follows: The
actual parameter list of the procedure statement (or of
the function designator) must have the same number of
entries as the formal parameter list of the procedure
declaration heading. The correspondence is obtained by
taking the entries of these two lists in the same order.
7.3.2.2. Formal specifications

If a formal parameter is specified by value, then the
formal type must be assignment compatible with the type
of the actual parameter. If it is specified as result, then
the type of the actual variable must be assignment com-
patible with the formal type. In all other cases, the types
must be identical. If an actual parameter is a statement,
then the specification of its corresponding formal param-
eter must be procedure.
7.3.3. Examples

Increment
Copy (A, B, m, n)

7.4. Goro STATEMENTS
7.4.1. Syntax
{goto statement) ::= goto (label identifier)

7.4.2. Semantics

An identifier is called a label identifier if it stands as a
label.

A goto statement determines that execution of the text
be continued after the label definition of the label identi-
fier. The identification of that label definition is accom-
plished in the following steps:

Step 1. If some label definition within the most re-
cently activated but not yet terminated block contains
the label identifier, then this is the designated label
definition. Otherwise,

Step 2. The execution of that block is considered as
terminated and Step 1 is taken as specified above.

7.5. Ir STATEMENTS

7.5.1. Syntax

(if statement} ::= {f clause)statement)]

(if clause)(simple statement) else (statement)
{f clause) ::= if (logical expression) then
7.3.2. Semantics

The execution of if statements causes certain state-
ments to be executed or skipped depending on the values
of specified logical expressions. An if statement of the form

(f clause)(statement)

is executed in the following steps:

Step 1. The logical expression in the if clause is
evaluated.

Step 2. If the result of Step 1 is true, then the state-

428 Communications of the ACM

ment following the if clause is executed. (therwise step 2
causes no action to be taken at all.
An if statement of the form

{f clausey{simple statement} else {statemeni;

1s executed in the following steps:

Step 1. The logical expression in the if clause is evalu-
ated.

Step 2. If the result of Step 1 1s true, then the simple
statement following the if clause is exeeuted. Otherwise
the statement following else is executed.

7.5.3. Examples

if x = y then goto L
ifr <ythenu :=zelseify < zthenu := yelsev := z

7.6. CASE STATEMENTS
7.6.1. Syntax

{case statement) ::= (case clause} begin {(statement list) end
(statement list) ::= (statemeni){{statement list); {(statement
{case clause) ::= case (integer expression; of
7.6.2. Semantics
The execution of a case statement proceeds in the foi-
lowing steps:
Step 1. The expression of the case clause is evaluated.
Step 2. The statement whose ordinal number i the
statement list is equal to the value obtained in Step 1 is
executed. In order that the case statement is defined, the
current value of the expression in the case clause must be
the ordinal number of some statement of the statement
list.

7.6.3. Examples

case i of

begin z := & + y;
yi=y+z
z:=2+z

end

case j of

begin H[i] := —H[i];
begin H[t—1] := H{i—1]
begin H{i—1] := H[i—1]
begin H{H[i-1]] := H[i]; 7 :=1 — 2 end

end

X +
e

7.7. ITERATIVE STATEMENTS
7.7.1. Syntax

(iterative statement) ::= (for clause)(statement)!
(while clause)(statement)
{for clause) ::= for (control identifier) :=
(initial value) step {increment) until {limit) deo
{initial value) ::= (integer expression)
(inerement) ::= (integer expression)
{(dimit) ::= (integer expression})
{while clause) ::= while (logical expression) do

7.7.2. Semantics

The iterative statement serves to express that a state-
ment be executed repcatedly depending on certain condi-
tions specified by a for clause or a while clause. The staie-

Volume 9 / Number 6 / June, 1966

ment following the for clause or the while clause always
acts as a block, whether it has the form of a bloek or notl.
(a) An iterative statement of the form

for «control identifiery 1= el step €2 until €3 do {statement:
is exuctly equivalent to the block

Gtatement-0y; (statemeni-1%; (slatement—);

{statemeni-n) end

begin

when in the ¢th statement every occurrence of the control
identifier is replaced by the reference denotation of the
value of the expression el + < X e2, enclosed in paren-
theses.

The index n of the last statement is determined by
n < (e3—el)/e2 < n + 1. If n < 0, then it is understood
that the sequence is empty. The expressions el, €2, and 3

are evaluated exactly once, namely before execution of
{statement-0).
(b) An iterative statement of the form

while ¢ do {statement}
is exactly equivalent to

if ¢ then

begin (statement);
while ¢ do {(statement)

end

7.7.3. Examples

for v := I step luntiln — 1 do s := s + A][v]
for & := m step — 1 until 1 do

if Hik—1] > Hik] then

begin m := H[k—1]; Hk—-1] := H[k];

while (j>0) A (city [j]#s) doj := j — 1

HIE] := m end

PART I1II. PROPOSED SET OF STANDARD PROCEDURES

The principal language features described in previous
sections should be supplemented by additional facilities
supplied in the form of procedures, which are assumed to
be declared in the environment in which an ArngoL pro-
gram is executed. It is recommended that some or all of
the procedures listed in this section be so treated. They
are classified into the following groups:

(1) Input/output procedures
(2) Environment enquiries
(3) Functions of analysis

(4) Transfer functions

1. Standard Inpuat/OQutput Procedures

1.1. INxTRODUCTION
This proposal is based on suggestions of Jan V. Garwick
[ALGOL Bull. 19, 39-40].

1.2. DEsigN CRITERIA

1.2.1. The input/output proposal is essentially simple,
and the various facilities provided are relatively inde-
pendent of one another. No attempt is made to provide
diserimination, looping and sequencing facilities within
the input/output proposal, since this merely duplicates
features which are already provided in the general purpose
language which the proposal supplements.

1.2.2. It is plainly recognized that different input/output
media have radically different properties, and no attempt
is made to introduce an artificial similarity into their use,
nor to mislead a programmer by such an apparent simi-
lanty.

1.2.3. Advantage is taken of the essential differences
between Input and output, in particular of the fact that
input of numbers does not require the same variety of
format specifications as output.

1.2.4. Facilities are provided such that the specification
of all matters associated with input and output can be
written explicitly in a single sequence of instructions;

Volume 9 / Number 6 / June, 1966

errors duc to incorrect mating of a format string and the
sequence of input/output data which it is intended to
control therefore cannot occur.

1.2.5. The number of digits of a number to be output can
be specified by means of an integer expression, which can
readily be calculated by the program itself.

1.2.6. The proposal is not intended to satisfy every re-
quirement, but only to provide facilities adequate for
most circumstances and capable of being used to build
more complex input/output algorithms for more unusval
requirements. Furthermore, there is no embargo on the
provision of yet further standard procedures to perform
additional, more complex functions.

1.3. SumMMARY

Input and output channels of a computer are classified
into three essentially different categories:

(1) Legible input channels, on which the information
is presented in a form closely mapping its legible tran-
scription. The main representatives of this class are card
readers and paper tape readers.

(2) Legible output channels, in which the form of the
information output either is, or closely maps, its legible
transcription. The main representatives of this class are
line printers, card punches, paper tape punches, and CRT
character displays.

(8) Input/output channels, in which the information
is stored in a form not suitable for human inspection, and
can be read only by a computer. Input/output channels
are divided into two classes, those with random access
(e.g., drums, disks, or bulk core memories) and those
with which access is essentially serial (e.g., magnetic
tapes).

Legible output is achieved in two stages; first an “out-
put line” of characters is assembled, and then it is trans-
mitted on a specified channel. Since these operations are
clearly distinet, they are performed by distinet procedures.

Communications of the ACM 429

Facilities provided for legible input are the simplest,
since in general no specifications of format are required.

Operations on (nonlegible) input/output channels are
defined only for arrays, which are transferred in their
entirety to and from the input/output mediam.

On serial input/output channels, the positioning of the
information is determined by the current position of the
medium. On random access channels, the output instrue-
tion provides the programmer with an integer position
identification, which he may use for specifying reinput of
the same information.

1.4. LEciBLE Ovurpur CHANNELS

procedure scaled (string value result line; integer value
postiion, length; long real value exrpression);

comment This procedure is used when the order of magnitude
of a number is unknown. The value of expression is converted to
decimal form, and placed in the length character positions of the
string line starting at position position. The character position
position is occupied by a minus sign if the number is negative or
a space otherwise. The next position is occupied by a digit, the
following position by a decimal point. The fourth last character
position is occupied by 10, the next position by a plus or minus
sign, and the remaining two positions by digits.

Examples: 1.234104-01

—1.23410—-70
1.23410+-00
0.000:0+00;

procedure aligned (string value result line; integer value
position, length, decimals; long real value expression);

comment This procedure is used when the order of magnitude
of a number is known. The value of expression is converted to
decimal form, and placed in the length character positions of
the string line, starting at position position.

The last dectmals character positions of the field are occupied
by digits and preceded by a decimal point, which itself is pre-
ceded by digits. Leading zeros are suppressed, up to but not
including the last position before the point, and a minus sign
(if any) precedes the leftmost digit.

Examples: 1.234

—123.456
—~0.123
0.000 :

If the absolute value of the number is too great for it to be

expressed in this way, the result is undefined;

procedure decimal (string value result line; integer value
posttion, length, expression);
comment The value of expression is converted to decimal form,
and placed in the length character positions of the string line,
beginning at position position.
Leading zeros are suppressed up to, but not including the last
digit. The first digit is preceded by either a space or aminus sign.

Examples: —12
1234
0
123
If the absolute value of the number is too great for it to be
expressed in this way, the result is undefined;

procedure tnsert (string value result line; integer value
positton; string value message);

comment The string message is inseried in the string line, be-
ginning at position position;

430 Communications of the ACM

siring proceduare substring (string value line;
postion, length),
comment The substring consists of the length eharaciers be-

ginning at position position of the string line;

integer value

procedure output (integer value channel, n;
line);

comment The first n characters of the string line are output on
the specified legible output channel. If the channel has a natural
unit of information and is incapable of accommodating in rhis
unit (e.g. print line) the number of characters rransmitted, the
result is undefined. If it can accommodate more characters, then
the remaining character positions arve filled with spaces;

siring value

integer procedure lasicol (integer value channel};

comment This is an environment enquiry, and enablex i
programmer to find the number of characters in the natur :
of information on the specified legible channel, if there is such &
unit. This procedure also applies to legible input channels;

1.5. LeGiBLE IxpuT CHANNELS

procedure <nreal (integer value channel; rveal resalt z);

comment The next real or integer number (defined in accord-
ance with II. 4.1.1) is read in from the specified chaunel, and its
value is assigned to the variable z.

In each case, the characters read consist of an initial sequence
of nonnumeric characters, followed by a sequence of numeric
characters, terminated by, but not including, a nonnumeric
character. The decimal digits and the delimiters . 10 + and — are
numeric characters, and all other characters (including space,
tab, and change to a new line) are nonnumeric. If the sequence
of numeric characters does not conform to the definition of a
real or integer number, the consequences are undefined;

procedure ininteger (integer value channel; integer result i);

comment This procedure is identical to énreal, except that the
numeric sequence must conform to the definition of an integer
number, and the result is assigned to the integer variable ¢;

procedure inpuf (integer value channel, n; string result line);

comment 7 characters are read on the specified legible input
channel and assigned to the string variable line. If the channel
has a natural unit of information (e.g., card record) and the
number of characters in that unit is greater than n, then the
remaining characters are ignored, and if it is smaller than n
then the result is undefined;

1.6. SeriaL Ixpur/OuTPUT CHANNELS

procedure ouiserial (integer value channel; array information};

comment The channel is a serial input/output channel. The en-
tire array is output to the next available position of the mediunm
in such a way that it can be read in by tnserial. If there is insuffi-
cient room on the medium to write the information, the result
is undefined. This procedure may be used for arrays of any type,
order, or size;

procedure rewind (integer value channel);
comment On a serial channel, the medium is rewound to the
position of the first information output;

procedure inserial (integer value channel; array information);

comment On aserial channel, the next array stored on the me-
dium is input. This array must be of the same type and order,
and have identical subscript bounds to the array output in this
position; otherwise the result is undefined. Furthermore, output

Volume 9 / Number 6 / June, 1966

instructions must be separated by a rewind from any input
instruction. An attempt to read information which has not bein
written leads to undefined results. The procedure may be used
for arrays of any type, order or size;

1.7. Ranpoum Inrur/Qurpur CHANNELS

procedure outrandom (integer value channel;
integer result identification; array information);

comment The entire array is output on the specified random
access channel, and the variable corresponding to the formal
parameter identification is assigned a value which identifies the
position of the information on the channel. If there is insufficient
room on the medium, the result is undefined;

procedure wnrandom (integer value channel, identification;
array information);

comment The array which was output with the identification
specified is reinput. The type, order and dimensions of the
array must be the same as that which was output;

procedure overwrile (integer value channel, identification;
array information);

comment The array is output to the specified random access
channel, overwriting the information which originally was given
the identification specified by the second parameter. The type,
order and dimensions of the array must be the same as those
which were originally written;

procedure resetrandom (integer value channel, identification);

comment All information on the channel written at the position
specified by the identification is deleted, and the space which it
occupied becomes free for further use;

1.8. OPERATING PROCEDURES

procedure open input (integer result channel;
string value device);

comment The variable channel is assigned the number of the
legible input channel identified by the string parameter;

procedure open oulput (integer result channel;
string value device);

comment The variable channel is assigned the number of the
legible output channel identified by the string parameter;

procedure open serial input (integer result channel;
string value file label);

comment Similar to open input, for a serial input/output chan-
nel;

procedure open serial output (integer result channel;
string value file label);

comment The variable channel is assigned the number of some
available serial input/output channel, and that channel is made
unavailable. The implementation ensures that if the output
medium is later removed, it has the identification specified by
the string parameter;

procedure open random input (integer result channel;
string value file label);

comment Similar to open inpul, for a random input/output
channel;

procedure open random output (integer result channel;
string value file label);

comment Similar to open output, for a random input/output
channel;

procedure open serial (integer result channel);

comment The variable channel is assigned the number of some
available serial input/output channel, and that channel is
made nonavailable. This procedure is recommended for claim-
ing “seratch” tapes;

Volume 9 / Number 6 / June, 1966

procedure open random (integer result channel);

comament The variable channel is assigned the number of some
available random input/output channel, and that channel is
made unavailable. This procedure is recommended for claiming
“serateh” files;

close (integer value channel);
The specified channel is made available for reuse;

procedure
comment

2. Standard Environment Enquiries

2.1 INTrRODUCTION

It is recognized that different implementations of the
language must adopt different techniques for dealing with
certain language features. The programmer may wish to
obtain information on these points, so that he may adapt
his algorithmic methods accordingly, or even indicate that
the algorithm is inappropriate.

The concept of an environment enquiry was originated
by Peter Naur [ALGOL Bull. 18.3.9.1].

2.2 Funcrions PROVIDED

real procedure epsilon;

comment The smallest possible number such that both
1 + epsilon # 1 and 1 — epsilon = 1;

long real procedure epsilon squared;

integer procedure intmax;

comment The largest positive integer provided by the imple-
mentation;

real procedure realmaz;

comment The largest positive real number provided by the
implementation;

integer procedure bits in word;

comment The number of elements of a bit sequence which is
accommodated in a single word;

integer procedure lowerbound (array A);

comment The value of the lower subscript bound of the array
A, which may be of any type or order;

integer procedure upperbound (array A);

comment The value of the upper subseript bound of the array
A, which may be of any type or order;

integer procedure string length (string s);

comment The number of characters in the string s;

3. Standard Functions of Analysis
real procedure sin (real value x);

real procedure cos (real value x);

real procedure arctan (real value x};
comment — w/2 < arctan(z) < 7/2;
real procedure In (real value z);
real procedure exp (real value z);
real procedure sgri (real value x);
real procedure arcsin (real value z);
— 7/2 < arcsin(z) < w/2;

real procedure arccos (real value 2);
~ 7/2 < arccos(zx) < 7/2;

comment

comment
real procedure fan (real value 2);

real procedure pi;
comment = with the aceuracy available for real numbers;

(Continued on page 432)

Communications of the ACM 431

A New Uniform Pseudorandom
Number Generator

Davip W. HurcHINSON
Unaversity of California,* Berkeley

A new multiplicative congruential pseudorandom number
generator is discussed, in which the modulus is the largest prime
within accumulator capacity and the multiplier is a primitive
root of that prime. This generator passes the usual statistical
tests and in addition the least significant bits appear to be as
random as the most significant bits—a property which gener-
ators having modulus 2% do not possess.

1. Introduction

In the past five or six years several papers have appeared
on pseudorandom number generators for binary machines
using the congruential method. These generators produce
pseudorandom integers which then can be transformed to
fixed-point fractions or floating-point numbers. The
method which has come to be known as “multiplicative
congruential” generates the ith pseudorandom integer by
the recursion relation:

where A is the multiplier and M, the modulus, is usually
chosen to be 2° for a machine with a k-bit accumulator.
See [1] and [2] for a description of how to choose A, M and

* Statistics Department. This work was supported by the
United States Public Health Service Grant GM-10525.

R. M. GRAHAM, Editor

X, to achieve a sufficiently long period and for results of
some tests of randommess.
The “mixed congruential” method is:

X = AX,+ C (mod M)

where € is an odd integer {1, 2I.

In the mixed congruential method, A is usually chosen
to be 2941 so that the multiplication can be effected by a
shift and add. This saves time but leads to generators
which can have serious defects, depending on the choice
of ¢ (see {1, 3]). On an IBM 7094 the multiplicative con-
gruential method is faster than the mixed congruential.
However, even on computers where this is not true it is
doubtful that the gain in time is worth the risk of the
poorer statistical behavior of the mixed congruential
method.

2. The Lehmer Method

It was the poor behavior of a mixed congruential gen-
erator which caused us to have a talk with D. H. Lehmer
who first proposed the congruential method for generating
pseudorandom integers [4]. Lehmer said we were being t00
miserly with time in trying to do a shift and add rather
than a full multiplication. He suggested the generator:

X = AX;mod(2® — 31)

(for a 7094), which involves doing yet an additional divi-
sion. Here 2° — 31 is the largest prime less than 2% and A
is a primitive root of 2% — 31,say, A = 550r5°. A =5
is also a primitive root, but has only two bits and testing
has proved it to be unsatisfactory. If 4 is a primitive root

Continued from page 431
It is understood that also long variants of these proce-
dures exist, e.g.,

long real procedure longsin (long real value z);

4. Standard Transfer Functions

integer procedure round (real value z);

integer procedure truncate (real value x);

integer procedure entier (real value x);

real procedure realpart (complex value z);

real procedure imagpart (complex value z);

long real procedure longrealpart (long complex value x);

long real procedure longimagpart (long complex value);

432 Communications of the ACM

complex procedure complex (real value z, y);

long complex procedure longcomplez (long real value x, y);
logical procedure odd (integer value z);

bits procedure bitstring (integer value 1);

integer procedure number (bits value b);
comment the number with binary representation b;

integer procedure decode (string value char);

comment The numeric code of the character in the single-ele-
ment string char;

string procedure code (integer value n);
Acknowledgment. The authors wish to thank the

referee for his most exacting and valuable suggestions.

RECEIVED JANUARY, 1966; rEvISED FEBRUARY, 1966

Volume 9 / Number 6 / June, 1966

