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Stanford Ut~ive-rsity* AND Elliott Automation Computers Ltd., 
Sta~(ib,'d, Cal tilbrt~,ia Borehamwood, England 

A programming language similar in many respects to ALGOL 
60, but incorporating a large number of improvements based 
on six years' experience with that language, is described in de- 
tail. Part I consists of an introduction to the new language 
and a summary of the changes made to ALGOL 60, together 
with a discussion of the motives behind the revisions. Part II is 
a rigorous definition of the proposed language. Part III de- 
scribes a set of proposed standard procedures to be used with 
the language, including facilities for input/output. 

P A R T  I. G E N E R A L  I N T R O D U C T I O N  

1. Historical Background 

A preliminary version of this report was originally 
drafted by the first author on an invitation made by IFIP 
Working Group 2.1 at its meeting in May, 1965 at Prince- 
ton. It incorporated a number of opinions and suggestions 
made at that meeting and in its subcommittees, and it 
was distributed to members of the Working Group as 
"Proposal for a Report on a Successor of ALGOL 60" 
(MR75, Mathematical Centre, Amsterdam, August 1965). 

However, at the following meeting of the Group at 
Grenoble in October, 1965 it was felt that  the report did 
not represent a sufficient advance on A~GOL 60, either in 
its manner of language definition or in the content of the 
hmguage itself. The draft therefore no longer had the 
status of an official Working Document of the Group and 
by kind permission of the Chairman it was released for 
wider publication. 

At that time the authors agreed to collaborate on revis- 
ing and supplementing the draft. The main changes were: 

(1) verbal improvements and clarifications, many of 
which were kindly suggested by recipients of the original 
draft; 

(2) additional or altered language features, in par- 
ticular the replacement of tree structures by records as 
proposed by the second author; 

(3) changes which appeared desirable in the course 

This work was supported by the NationaI Science Foundation 
(GP 4053 and GP 4298), and it  is also published with due acknowl- 
edgment to Elliot.t-Automation Computers Ltd. 

* Computer Science Department. 

of designing a simple trod efficient implementation of the 
1 anguage; 

(4) addition of introductory and explanatory ma- 
terial, and further suggestions for standard procedures, in 
particular on input/output; 

(5) use of a convenient notational facility to abbrevi- 
ate the description of syntax, as suggested by van Wijn- 
gaarden in "Orthogonal Design and Description of a 
Fornial Language" (MR76, Mathemat.ical Centre, Am- 
sterdam, Oct. 1965). 

The incorporation of the revisions is not intended to 
reinstate the report as a candidate for consideration as a 
successor to ALGOL 60. However, it is believed that its 
publication will serve three purposes: 

(1) To present to a wider public a view of the general 
direction in which the development of ALGOL is proceeding; 

(2) To provide an opportunity for experimental im- 
plementation and use of the language, which may be of 
value in future discussions of language devdopment; 

(3) To describe some of the problems encountered 
in the attempt to extend the language further. 

2. Aims of the Language 

The design of the language is intended to reflect the 
outlook and intentions of IFIP Working Group 2.1, and 
in particular their belief in the value of a common pro- 
gramming language suitable for use by many people in 
many countries. It. also recognizes that such a language 
should satisfy as far as possible the following criteria: 

(1) The language must provide a suitable technique 
for the programming of digital computers. I t  must there- 
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fore be closely oriented toward ihe capabilities of these 
machines, and must take into aeeount~ their inherent 
limitations. As a result it should be possible to construct a 
fast, well-structured and reliable translator, translating 
programs into machine code which makes economic use 
of the power and capacity of a computer. In addition, the 
design of the language should act as an encouragement to 
the programmer to conceive the solution of his problems 
in terms which will produce effective programs on the 
computers he is likely to have at his disposal. 

(2) The language must serve as a medimn of com- 
munication between those engaged in problems capable 
of algorithmic solution. The notational structure of pro- 
grams expressed in the language should correspond closely 
with the @namie structure of the processes they describe. 
The programmer should be obliged to express himself 
explicitly clearly and flflly, without confnsing abbrevia- 
tions or implicit presuppositions. The perspicuity of pro- 
grams is believed to be a property of equal benefit to 
their readers and ultimately to their writers. 

(3) The language must present a conceptual frame- 
work for teaching, reasoning and research in both theo- 
retical and practical aspects of the science of computation. 
I t  must therefore be based on rigourous selection and 
abstraction of the most fundamental concepts of computa- 
tional techniques. Its power and flexibility should derive 
front uni~-ing simplicity, rather than from proliferation 
of poorly integrated features and facilities. As a conse- 
quence, for each purpose there will be exactly one obvi- 
ously appropriate facility, so that  there is minimal scope 
for erroneous choice and misapplication of facilities, 
whether due to misunderstanding, inadvertence or inex- 
perience. 

(4) The value of a language is increased in proportion 
to the range of applications in which it may effectively 
and conveniently be used. I t  is hoped that  the language 
will find use throughout the field of algebraic and numeric 
applications, and that  its use will begin to spread to non- 
numeric data  processing in areas hitherto the preserve of 
special purpose languages, for example, the fields of sinm- 
lation studies, design automation, information retrieval, 
graph theory, symbol manipulation and linguistic research. 

To meet any of these four requirements, it is necessary 
that  the language itself be defined with utmost clarity 
and rigor. The Report on ALGOL 60 has set a high stand- 
ard in this respect, and in style and notation its example 
has been gratefully followed. 

3. S u m m a r y  of  New F e a t u r e s  

A large part of the language is, of course, taken directly 
from ALGOL 60. However, in some respects the language 
has been simplified, and in others extended. The following 
paragraphs summarize the n:tajor changes to ALGOL 60, 
and relate them to the declared aims of the language. 

3.1. DATA TYeES 
The range of primitive data  types has been extended 

from three in ALGOL 60 to seven, or rather nine, if the 
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long va=riants are included, lln compcmsaLion, certain ~i:.: 
aspects of 1he co!n>pB or" type have be{m simplified, fn pal'- ] '  
t itular, the own concept has been aban(hm.ed as i.nsufli- iLL. 

i }: ciently usefui to jus | ify it.s positiou, and as leading to : .:> 
semantic ambiguities ia many circumsta,aces. :~ .... 
3.1.1. Numeric Data  Tvpes 7-" 

The type complex  has been introduced into the lan- 
guage to simplify the specification of algorithms involving :(i: 
complex numbers. :: 

vided to deal with calculations or sections of calculations 
in wtfich the normal precision for floating-point, mm~ber 
representation is not suflieient. I t  is expected ihai; the 
significance of the representation will be approximareiy 
doubled. 

_No provision is nmde for speeit~qng the exact required 
significance of floating-point representation in terms of 
tlle number of binary or decimal digits. I t  is considered 
most important tha t  the values of primitive types should 
occupy a small integral number of computer words, so 
that  their processing can be carried out with the maxL 
mum efficiency of the equipment available. 
3.1.2. Sequences 

The concept of a sequence occupies a position inter- 
mediate between tha t  of an array and of other simple da~ 
types. Like single-dimensionM arrays, they consist of 
ordered sequences of elements; however, unlike arrays, 
the most frequent operations performed on them are ,~o~ 
the extraction or insertion of single elements, but rather 
the processing of whole sequences, or possibly subseque~ees ::::: i~ 
of them. L. :.: 

{ :  ~ e ; :  

Sequences are represented in the language by two new { :  
types, b i t s  (sequence of binary digits), and s t r ing (<~'- : i : :  
quence of characters). Operations defined for bit sequeI:ces : - • ~ b : =  

include the logical opm'ations - , ,  / \  and V, attd those c,f i~- 
shifting left and right. : i.; 

its elements are sufficiently small to occupy only a frao- :;~~ 
tion of a "computer word," i.e. a unit  of information which :< ~: ;  
is in some sense natural to the computer. This means that 
space can be saved by "packing," and efficiency can be 
gained by operating on such natural  units of information. 
In order that  use of such natural units can be made by 
an implementation, the maximum number of elements in 
a sequence must be specified, when a variable of that type 
is declared. Operations defined for string sequences include 
the cat enation operator eat .  
3.1.3. Type Determination at Compile Time 

The language has been designed in such a way that the 
type and length of the result of evaluating evelT expres- 
sion and subexpression can be uniquely determined by a 
textual scan of the program, so that  no type i)esting is 
required at run time, except possibly on procedure entry. 
3.1.4. Type Conversions 

The increase in the number of data  typos has cau::-cd 
an even greater number of possibilit.ies for type cotwer.<ion 
some of these are intended to be inserted automatieg, liy i~ 

Volume 9 / Nllmber 6 / June, i.966 



? 
:5 

d: 

the tr:,a~iafor, at~d otl~ers have ~o bc specified by ~he 
programmer t,y use of sta~tdard transfer f,,mctions pro- 
vided i,)r the l)urpo,-e, 

Auvoma~ie i>.sertio,q of type co~.version has been eoa- 
fhaed to cg~es where ~.i~ere ('ottld " e no possible cc)tffusi,m 
.} .. f ,-- ',c~ co>versioll is J.!ltet~-[~c{: from in tege r  to real, 
aE~d real ~o complex,  }:)tt~ n,>t: vice versa. Attto[liaiie 
{.oavcrsi(,tts arc also performed from shorter to kruger 
~ariants of the data types; and in the ease of !lulttbers, 
.:r<n.. ~o,, .~'5 {o <her! as w,qI. 

[:or all other conversions explicit standard procedures 
must Be used. This ensures that the complexity and pos- 
sible inefiicieney of the conversion process is not bidden 
flOla the programnler; furthermore, 1he existence of addi- 
~iotmi paran~eters of the procedure, or a choice of proee- 
dm'es, will draw his attention to the fact dmt  there is 
!nor(' !hau one way of performing the conversion, and tie 
is thereby encouraged to select the alternative which 
eorrespo~Ms to his real requirements, rather than rely on 
a built-in "default" conversion, about which he may have 
only vague or even mistaken ideas. 

~{,2. CON'l'ilOf. OF SEQUENCING 

The only changes made to facilities associated with 
control of s(,(tueneing have been made in tile direction of 
tin@if!cation and clarifieadan, rather than extension. 
:L2.1. Switches and the Case Construction 

The switch declaration and the switch designator have 
}:con abolished. Their place has been taken by the ease 
(.,o>.struetio:l, applying i() both expressions and st.ate- 
m{,.~:ts. This ('(ms!ruction permits ihe selection and exeeu- 
vion (or e\:Mttaiion) of one from a list of stalelnents (or 
expr(,ssiot>':.; the <el(net!on is nmd(: in .'.tceordanee with the 
value . f  an irxt;eger expression. 

The ease construction extends the facilities of the ALGOl, 
('end!!tonal to circumstances where the choice is made 
from nlore than two alternatives. Like the conditional, it 
mirrors the dynamic strueiure of a program more dearly 
t.h~!~ go to statements and switches, and it eliminates 
die need for introdueing a large number of labels in the 
program. 
3.2.2. Labels 

The concept of a label has been simplified so that it 
merely serves as a link between a t o t e  statement attd its 
destination; i~ has been stript)ed of all features suggesting 
tidal i~ is a man!pitiable object. In particular, designational 
expressions have been abolished, and labels can no longer 
be passed as parameters of procedures. 

A further simplification is represented by the rule that 
a tote statement cannot lead from outside into a condi- 
timml statement or ease statement, as well as iterative 
statement. 

The ALGOL 60 integer labels have be,m eliminated. 
3.2.3. Iterative Statements 

The purpose of iterative statements is to enable the 
prc)grammer to specify iterations in a simple and perspicu- 
ous rnammr, and to protect himself from the unexpected 
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(,ffec(.s of some sub~ie or careless error. TEe2~" also signalize 
,;o the mmsiator that this is a special ease, susceptible of 
.-,a ~,,: optinfization. 

It  is notorious that the ALGOL 60 for statement fails to 
satisfy any of ' ~ . these, requirements, and therefore a drastic 
simplifieathm has been made.  The  use of iterative state- 
nlents has been cotdiued to the really simple and conmmn 
eases, rather than extended to cover nlore complex r(> 
quirements, which can be more  flexibly and perspicuously 
dealt with by explicit program instructions using labels. 

The most general and powerful iterative statement, 
31 eapaI Le of covering all requirements, is that which indi- 

crees that a stateinent is to be executed repeatedly while 
a giwm. con(titkm remains true. The only alternative t.ype 
of iterative statement allows a formal counter to take 
successive values in a finite arithmetie progression eli 
each execution of the s ta tement .  No explicit assignments 
can be made to this counter, which is implicitly declared 
as local to the iterative s ta tement .  

3 . 3 .  PROCEDURES AND I)A]:,L~METERS 

A few nfinor changes h:-~ve been made to the procedure 
concept of ALGOL 60, mainly in the interests of clarifica- 
tion mid efficieney of implenmntat, ion. 
3.3.1. Vahte and ' 1 .[tesu t Pa ramete r s  

.:ks in AL(;OL 60, the meaning of parameters is explained 
in terms of the "copy rule," whieh tu,eseribes the liLeral 
rel:flacement of the formal parameter  by tile actual pa- 
rameter. As a counterpart  to the "value paranleter," 
which is a convenient abbrevi~ttion for the frequent case 
where the fornml paranteter can be considered as a vari- 
able local to the procedure and initialized te the value of 
the actual parameter, ~t " resul t  ) r ' " ta  alnete! has been 
introduced. Again, the formal pm'mneter is considered as 
a local variable, whose vahle is assigned to the correspond- 
ing actual parameter (wMeh therefore ahvays must be a 
variable) upon termination of the procedure. 

The faeility of calling an  axray parameter by value has 
been removed. I t  contributes no additionM power to the 
language, ant[ it contravenes the. general policy that opera- 
tions on entire arrays should be specified by means of 
explicit iterations, rather than eoneeMed by an imI)licit 
notation. 
3.3.2. Sl~atement I utam(.t.ers 

A facility has been provided for writing a statement as 
an actual parameter corresponding to a formal specified 
as procedure.  The s t a t e m e n t  can be considered as a 
proper procedure body wi thou t  parameters. This repre- 
sents a considerable no!at!ohM convenience, since it 
enables the procedure to be specified acmMly in the plate 
where it is to be used, rattmr than disjointly in the head 
of some embracing block. 

The label parameter tins been abolished; its function 
may be taken over by [)lacing a gore statement in the 
corresponding actual paran-mter position. 
3.3.3. Specifications 

The specification of all formal  parameters, and the 
correct matching of actuals  to  formals, has been made 
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obligato]T. The purpose of specifications is to inform the 
user of the procedure o{ the correct cotlclition~ of its ttse: 
and to ensure that  t~e tran~!ator can cheek that  tixese 
conditions have beett met. 

One of the most hnport:mi facts about a procedure 
which operates on array parameters is the dimensionality 
of the arrays it will aeeep{ as actual parameters. A in(RillS 
has therefore been provided for indicating this in the 
specification of the parameter. 

To compensate for the obligatory nature of specifica- 
tion% their notation has been ~implified by inehtding 
them in ihe formal parameter  list, rather than placing 
them in a separate specification part, as in ALGOL 60. 

3.4 D XTA STRUCTURE5 
The  concept of an re'ray has been taken from ALGOL 60 

virtually unchanged, with the exception of a slight nota- 
tional simplification. 

To supplement the array concept, the language has 
been extended by the addition of a new gype of s tructure 
(the record) consisting, like the array, of one or more 
elements (or fields). With each record there is associated a 
unique value of type r e f e r e n c e  which is said to refer to 
tha t  record. This reference may be assigned as the value 
of a suitable field in another record, with which the given 
record has some meaningful relationship. In this way, 
groups of records may be linked in structural networks of 
any desired complexity. 

The concept of records has been pioneered in the AED I 
language by  D. T.  Ross. 
3 .4 .1 .  Records and Fields 

Like the array, a record is intended to occupy a given 
fixed number of locations in the store of a computer. I t  
differs from the array in that  the types of the fields are 
not  required to be identical, so that  in general each field 
of a record may occupy" a different amount  of storage. 
This, of course, makes it unat t ract ive to select an element 
from a record by  means of a computed ordinal number, 
or index; instead, each field position is given a unique 
invented name (identifier), which is written in the pro- 
gram whenever tha t  field is referred to. 

A record may be used to represent inside the computer  
some discrete physical or conceptual object to be exam- 
ined or nmnipulated by tl{e program, for example, a person, 
a town, a geometric figure, a node of a graph, etc. The  
fields of the record then represent properties of tha t  object, 
for example, the name of a person, the distance of a tox~m 
from some starting point, the length of a line, the time of 
joining a queue, etc. Norinally, the name of the field 
suggests the property represented by that  field. 

In  contrast to arrays, records are not created by  decla- 
rations; rather, they are created dynamically by  state- 
ments of the program. Thus their lifetimes do not  have 
to be nested, and stack methods of storage control must  
be supplemented by more sophisticated techniques. It: is 
intended that. automatic "garbage collection" will be 
applicable to lvcords, so that  records which have become 
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inaccessible may be deiected, ami the s!m~-c iim 3 w,'eupy 
ro]e~ised for o/her purpose-,. 
3° 1.2. I~eferem:es 

The normal da |a  types (s t r ing .  real .  in teger~ etc.) are 
sufi[i<'k'ni Io represent ~ ~" properties of the ,,)bjects repre- 
sented by records; but  .~. zww type of data is required to 
represenl relationships iholding between these objects. 
Provided that the relauonship is a i'uuctional reI:uionship 
(i.e. many one or one-one), it can be reprcsctlt(,d by t)lae- 
lug as a field of one record a re%rence to the other record 
to which it is related. For example, if a record which repre- 
sents a person has a field named i'.Zhe~', then lhis is likely 
to be used to contain a reference to the record which repre- 
sents tha t  person's father. A similar treallnenl is possible 
to deal with the relationship between a town and itp:~ n~'xt 
town visited on some journey, between a customer and 
the person following him in some queue, between a directed 
line and its starting point=, etc. 

References are also used to provide the means by which 
the program gains access to records; for this purpose, 
variables of type  r e f e r e n c e  should be declared in the head 
of the block which uses them. Such variables will at. any 
given time refer to some subset of the current ly existing 
records. Fields of records can be referred to directly by 
associating the name of the field with the vMue of the 
variable holding a reference to the relevant record. If theft 
record itself has fields containing references to ye t  further 
records outside the initial subset, then fields of these other 
records m~v be accessed indirectly by further associating 
their names with the construction which identified the 
reference to the relevant record. By  assignment of refer- 
ences, records previously accessible only indirectly can be 
made directly accessible, and records previously directly 
accessible can lose this status, or even become totally 
inaccessible, in which case they are considered as deleted. 

Thus, for example, if B is a variable of type  r e fe rence  
declared in the head of some enclosing block, and if" age. 
and .lather are field identifiers and if B contains a reference 
to a certain person, then 

age (B) 

(called a field designator) gives tha t  person's age; 

jather(B) 

is a reference to that  person's father, and 

age (father(B)) 

gives his father's age. 
3 .4 .3 .  Record Classes 

Two records may be defined as sinfilar if they have the 
same number  of fields, and if corresponding fields in the 
two records have the same names and the same types. 
Similarity in t hi~ sense is an equiwflence relationship and 
may be used to split all records into mutual ly  exclusive 
and exhaustive equivalence classes, called record classes. 
These classes tend to correspond to the natural  classifica- 
tion of objects under some generic term, for example: 
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lion, which associates a mmm with the class and specifies 
the names and types of the fields which eharaeterize ttm 
members  of the class. 

One of ttxe nmjor pitfalls itt the use of references is {he 
mistaken assumption that  the \Mue of a referenee vari- 
able, -field or- t}:wameter  refers to a record of some given 
class, whereas on execution of the program it tttrns 01115 
that  the reference value is associated with some record 
of quite a different class. I f  the programmer  a t tempts  to 
access a field inappropriate to the actual class referred to, 
tie will get a meaningless result; but  if he a t tempts  to 
nmke an assignment to such a field, the consequences 
could be disastrous to the whole scheme of storage con- 
{roI. To avoid this pitfall, it is specified that  the program 
met can associate with the definition of every reference 
variable, field or -pa rameie r  the name of the record 
class to which any reeord referred to by it will belong. Tlie 
translator is then able to verify tha t  the nfistake described 
can never Occur. 

3.4.4. EtIieiency of Implementa t ion  
M a n y  applications for which record handling will be 

found useful are severely limited by the speed and eapaeity 
of the eomputers available. I t  has therefore been a major  
aim in the design of the reeord-handling faeilities that  in 
implementat ion the aeeessing of reeords arid fields should 
be accomplished with the u tmost  eflieieney, and that  the 
layout  of storage be subjected only to a minimum ad- 
ministrat ive overhead. 

4. Poss ib i l i t i e s  for  L a n g u a g e  E x t e n s i o n  

In the design of the language a number of inviting 
possibilities for extensions were considered. In  many  
eases the investigation of these extensions seemed to reveal 
inconsistencies, indecisions and difftieulties which could 
not readily be solw:d. In  other eases it seemed undesirable 
to make the extension into a s tandard feature of the 
language, in view of the extra complexity involved. 

In  this seetion, suggested extensions are outlined for 
the consideration of implementors, users arid other 
language designers. 

4.1. FURTHER STRING OPERATIONS 

For  some applications it seems desirable to provide 
facilities for referring to subsequenees of bits and strings. 
The position of the subsequenee could be indicated by a 
notation similar to subscript bounds, viz. 

S[f :j] the subsequenee of S consisting of the ith to 
j t h  elements inclusive. 

This notation is more compact  than  the use of a stand- 
ard procedure, and it represents the fact that  extraction is 
more likely to be performed by an open subroutine tha.ii a 
closed one. However, the notat ional  similarity suggests 
tha t  the construction might  also appear  in the left par t  of 
an assignment, in which case it denotes insertion rather 
than extraction, i.e. assignment to a part  of the quanti ty.  
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Apart  i'ron~ tlle undesirability of the same construction 
denoti~lg Bye different operations, this would require 
that  strings be classified as structured values along with 
arrays._ 

4.2.  }'ISRTHEt~. iDA.TA TYPES 

Suggestions have been made for facilities to specify the 
precision of numbers in a more "flexible" way, e.g. by 
indicating the number of required decimal places. This 
solution has been rejected because it ignores the funda- 
mental  distinction between the number itself and one of 
its possible denotations, and as a consequence is ut terly 
inappropriate for calculators n, ol: using the deeinml number 
representation. As an alternative, the notion of a precision 
hierarchy could be introduced by prefixing deehu'ations 
with a sequence of symbols long,  where the number of 
longs  determines the precision class. For reasons of s im-  
pl ic i ty ,  arid in oMer that  an implementation may  closely 
reflect the properties of a real machine (single vs. double 
precision real arithmetic), allowing for only one long  was 
eonsklered as appropriate. Whether an implementation 
actually distinguishes between rea l  and long real  can be 
determined by an environment enquiry (el. Par t  I I I ,  2). 

4..3. INITIAL "VALUES AND LOCAL CONSTANTS 
I t  is a minor notational eonvenienee to be able to assign 

an initial value to a variable as part  of the deelaratiou 
whieh introduces that  variable. A more important adwm- 
tage is that  the notation enables the programmer to ex- 
press a very important  feature of his calculations, namely, 
that  this is an unique initial assignment inade once only 
on tt~e first entry to the bloek; furthermore it completely 
rules oul the possibility of the elementary but  all too 
common error of failing to make an assignment before 
the use of a variable. 

However, such a facility rests on the notions of "com- 
pile t ime" arid " run  t ime" action, which, if at all, should 
be introduced at a conceptually much more fundamental  
level. 

In  sonie eases it is known that  a variable only ever 
takes one vah te throughout its lifetime, and a means may  
be provided to make these eases notationally distinct 
frorn those of initial assignment. This means that  the 
intention of the programmer ea t  be nmde explicit for the 
benefit of the reader, mM the translator is capable of 
checking that  the assumption of constancy is in faet justi- 
fied. Furthermore, the translator can sometimes take 
advantage of the declaration of constancy to optimize a 
program. 

4.4. ARRAY CONSTRUCTORS 
To provide the same technique for the initialization of 

arrays as for other variables, some method should be 
provided for enumerating the values of an array as a 
sequence of expressions. This would require the definition 
of a reference denotation for array vahms, which, if avail- 
able, would consequently suggest the introduction of 
operations on values of type array. The reasons for not  
extending the language in this direction have already 
been explained. 

Communications of the AC~[ 417 



4.5. R E C O ~ D  C L A S S  I)ISCI[[I2~IINA[I2ION 

In general, the rule that the rallies of ~.~ part.icul:~r refer- 
ence variable or field must be con:fined t,o a single record 
class will be found to present little hardship; however, 
thel'e are circumstances in which it is usefld to relax this 
rule, and to permit the values of a reference variable to 
range over more than one record class. A facility is then 
desirable to determine the record class to which a referred 
record actuaflly belongs. 

Two possibilities for record class discriminations are 
outlined as follows. 

1. A record mlion declaration is introduced with the 
form 

un ion  (record union identifier} ((record class identifier list)) 

The record class identifier accompanying a reference vari- 
able declaration could then be replaced by a record union 
identifier, indicating that the values of that reference 
variable may range over all record classes included in 
that union. An integer primaw of the form 

(record union identifier} ((reference expression)) 

would then yield the ordinal number of the record class in 
that union to which the record referred to by the reference 
expression belongs. 

2. Record class specifications in reference variable 
declarations are omitted, and a logical primary of the form 

(reference primary} is (record class identifier} 

could be introduced with the value t rue,  if :LI~(l only if 
the reference primary refers to t~ record of the st)ecil}ed 
record class. 

While the it~troducl~ion of a new kind of declaration (1) 
may seem ~u~(lesi~'lmtble, sohltion (2) reintroduces tile dan~ 
gerous pitfalls des~:dbed in 3.4.3. 

4.6. Paocg~)vm~: ]~AI~AMETEI~S 

I t  has been realized that, in most implementations an 
actual parameter being an expression constitutes a func- 
tion procedure declaration, and that one being a state- 
ment constitutes a proper procedure deelaratio:n. These 
quasi-procedure declarations, however, are confined to 
being parameterless. Samelson has suggested a notation 
for functionals which essentially does nothing more than 
remove this restriction: an actual parameter ratty include 
in its heading formal parameter specifications (el. ALGOL 
Bulletin 20.3.8.). In a paper by Wirth and Weber, the 
notational distinction between procedure declarations 
and actual parameters has been entirely removed [cf. 
Comm. ACM 9, 2 (Feb. 1966), 89 ff.]. This was done along 
with the introduction of a new kind of actual parameters 
similar in nature to the references introduced here in con- 
neat[on with records. 

Itowever, neither ad hoe solutions nor a radical change 
from the parameter mechanism and notation of ALGOL 60 
seemed desirable. 

P A R T  II .  D E F I N I T I O N  O F  T H E  L A N G U A G E  

C O N T E N T S  

1. Terminology, notation, and basic 
definitions 

1.1 Notation 
1.2 Definitions 

2. Sets of basic symbols and syntac- 
tic entities 

2.1 Basic symbols 
2.2 Syntactic entities 

3. Identifiers 
4. Values and types 

4.1. Numbers 
4.2. Logical values 
4.3. Bit sequences 
4.4, Strings 
4.5. References 

5. Declarations 
5,1. Simple variable declarations 
5.2. Array declarations 
5.3. Procedure declarations 
5.4. Record class declarations 

6. Expressions 
6,1. Variables 
62, Function designators 
6.3. Arithmc'tie expressions 
6.4. Logical expressions 
6.5. Bit expressions 
6,6, String expressions 
6.7, Refcrenr.~ expressions 

7, Statements 
7.1, Blocks 
7.2. Assignment statements 
7,3. Pro(~tdure statements 
7.4, Goto statement, s 
7.5. If statements 
7.6. Case statements 
7.7, Iterative statements 

1. Terminology,  Notat ion and Basic Definitions 

The Reference Language is a phrase structure language, 
defined by a formal system. This formal system makes 
use of the notation and the definitions explained below. 
The structure of the language ALGOL is determined by the 
three quantities: 

(1) ~, the set of basic constituents of the language, 
(2) % the set of syntactic entities, and 
(3) 5 ~, the set of syntactic rules, or productions. 

1.1 NOTATION 
A syntactic entity is denoted by its name (a sequence 

of letters) enclosed in the [)rackets ( and }. A syntactic 
rule has the form 

(A) ::= z 

where (A} is a member of %, x is any possible sequence of 
basic constituents and syntactic entities, simply to be 
called a "sequence". The form 

<A} ::= x l y l  . - .  I~ 

is used as an abbreviation for the set of syntactic rules 

(A) ::= z 
(A} ::= y 

(A} ::= z 
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s explai~ } 
deterr~:!~ 

r prod:~ii:: : 

namei.~ ~:: 
m d  ~i ~ ~: i 

. =: : (;> 
: :  :): : 

,0ssibie ~:* : 

l .~ o DEFI:XFr~ONS 
J. A sequence :c is said to di,'eciI!/ p~'(),h,:c a sequence 

y if and only if there exist (possibly empty)  se(iue~ ces u 
z t u d  ~'. so tha t  either (i) for some (A) in ~tt, x = ~(.4) w. 
.y = .~ww, and (A)  :: = t' is a rule in (P; or (ill x = ~vw, 
-. = -uvw and ~, is a " commen t "  (see below). t j  

2. A sequence x is said to prod.ace a :aequence y if attd 
o n l y  if there exists an ordered set of sequences s[0], s[1], 
• • -, sin l, so tha t  x = s[0], s[n] y, and @ : - 1 ]  directly 
p r o d u c e s  .s[i] for all i = 1, - - .  , n.. 

3. A sequence x is said to be an ALGOL prograln if and 
ot~ly if its const i tuents  are members  of the set "C, and :r 
(~ t t I t  be produced from the syntact ic  ent i ty  (program).  

Tim sets "C and ~ are defined through enumerat ion of 
t h e i r  members in Section 2 of this Repor t  (el. also 4.4). 
T h e  members of the set of syntact ic  rules are given 
t h r o u g h o u t  the sequel of the Report .  To provide explana- 
t i o n s  for the meaning of AIX;OL programs, the letter 
s equences  denot ing syntactic entities have been chosen 
t o  be English words describing approximately  the  nature  
o f  that  syntact ic  ent i ty  or  construct .  Where  words which 
h a v e  appeared in this nmnner  are used elsewhere in the 
t e x t ,  they refer to the corresponding syntact ic  definition. 
A l o n g  with these letter sequences the symbol 5 m a y  occur. 
I t :  is understood that  this symbol  mus t  be replaced by 
a n y  one of a finite set of English words (or word pairs). 
I~Tnless otherwise specified in the part icular  section, all 
occu r r ences  of the symbol 5 within ene syntact ic  rule 
n m s t  be replaced consistently, and the replacing words 
LI I ' ( ?  

integer logical 
real bit 
long real string 
complex reference 
long complex 

I t  is recognized that  typographical  entities of lower 
o r d e r  than basic symbols (of. 2.1), called characters,  exist. 
S o m e  basic symbols may  be identical with characters;  
o the r s ,  so-called word-delimiters, are generally repre- 
s e n t e d  as a sequence of two or more characters.  Neither  
t h e  set of av:dlable characters nor the decomposi t ion of 
b a s i c  symbols into them is defined here. I t  is unders tood 
r h a t  basic symbols  are not  the same as characters and 
t h a t  there nlay exist characters which are neither basic 
s y m b o l s  nor const i tuents  of them;  these characters inay, 
h o w e v e r ,  enter the  program as const i tutents  of strings, i.e. 
c h a r a c t e r  sequences delimited by  so<ai led str ing quotes. 

• ~ ::=: ~,i=:: The symbol c o m m e n t  followed by  any  sequence of 
lieu, s~,~.: = cha rac t e r s  not containing semicolons, followed b y  a semi- 

" c o l o n  (;), is called a comment .  A comment  has no effect / :  

: : ?  

i ::? ) 

: : :  :::::: =:::: 2 

:; :=:; :::=::: 

o n  the meaning of  a program, and is ignored during execu- 
t.ion of the program. An identifier immediately following 
t h e  basic symbol  e n d  is also regarded as a comment .  

The basic const i tuents  of the language are the basic 
s y m b o l s  (of. 2.1), strings (of. 4.4), and comments .  

All quanti t ies referred to in a program must  be defined. 
'~ 'heir  definition is achieved either within the ALGOL pro- 
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gram by  so-called declarations and label definitions, or is 
thought to be done in a text, possibly writ ten in attother 
language, in which the ALC~OL program is embedded.  A 
program conlairting references to quantities defined in the 
i auer  way  can only be executed in an environment  where 
these quanti t ies are known, and this environment  is con- 
sidered to be a block containing that  program. 

The execution of a program can be considered as a 
sequence of units of action. Tim sequence of these units of 
action is defined as the evaluat ion of expressions and the 
execution of s ta tements  as denoted by the program. In  
the definition of the language the evaluation or  execution 
of certain constructions is (1) either not precisely defined 
e.g. real arithmetic,  or (2) is left undefined, e.g. the order 
of evahmtion of primaries in expressions, or (3) is even 
said to be undefined or not  valid. This is to be interpreted 
in the sense tha t  a program which uses constructions of 
the first two categories fully defines a computa t ional  proc- 
ess only if accompanying  infornmtion specifies what  is 
not  given in the definition of the language. If  in ease (2) 
this information is not supplied, then a unique result 
of such a process is defined only if all possible altenm- 
t i res  lead to the same result. No  meaning can be attrib- 
uted to a program using constructions of the third cate- 
gory. 

2 .  S e t s  o f  B a s i c  S y m b o l s  a n d  S y n t a c t i c  E n t i t i e s  

2 . 1 .  B_~stc S~~IBOLS 

a ] b i c  d i e  f l g l b i i  j 
u [ v i w ! x ]y  ] z i 

A ] B ] C D i E  I " ! G  H 
t e i S i T I U  V I W  X F i Z I  

0 1 1 1 2 1 3 ! 4 1 5 1 6  7 i 8 ! 9 1  
i i b i t r u e ]  fa l se  i " i n u l l  i 
i n t e g e r  i real  i e o m p l e x  l o g i c a l  

l o n g  i arra? I p r o c e d u r e  i record  
, i : -] ( I )  i [ ] i begin end 
+ -- X I / [  d i v  i rein ~ abs  

< _ < l > _ l > t  
:= i go to  i for I s t e p  unti l  

r e s u l t  

k I i m i ~ , ' o i p  q i r  s t 

[ ] J i K i L i M I - V  P'Qj 

bi t s  s t r i n g  r e f e r e n c e  

i f  t h e n  i e l se  l e a s e i o f l  
V /'\ i -n ] b l e a t ! =  ] # i  

do i while '~ comment  value [ 

2.2, g ENTrrIES ~.YNTACTiC 
(with corresponding section nunlbers) 

(actual parameter list) 7.3 
(actual parameter) 7.3 
(array declaration) 5.2 
(bit factm:) 6.5 
(bit primary) 6.5 
(bit secondary} 6.5 
(bit sequence) 4.3 
(bit term) 6.5 
(bit) 4.3 
(block body) 7.1 
(block head) 7.1 
(block) 7.1 
(bound pair list) 5.2 
(bound pair) 5.2 
(case clause) 6 
(case statement) 7.6 
(control identifier) 3.1 

(declaration) 
(digit) 
(equality operator) 
(expression list) 
(field list> 
(for clause> 
(formal parameter list,) 
(formal parameter 

segment) 
(formal type) 
(go to statement) 
(identifier list) 
(identifier) 
(if clause) 
(if statement) 
(imaginary part) 
(increment) 

5 
3.1 
6.4 
6.7 
5.4 
7.7 
5.3 

5.3 
5.3 
7.4 
3.1 
3.1 
6 
i .O  

-1.1 
7.7 
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(i!lii ial v a l u c }  
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,."hit e d(:f ini i i ()n- 
~lal)el ider, t i f lcr)  
dei.i er) 
(liinit? 
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(h)~i("d see< dary), (i.4 
<logical I t! ri-n- B..i 
(logical value', .1.2 
,£h,wer t}ou d) 5.2 
/ i t ! i l l  /'e f e rl.m ce} t .5  
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(I}ro{~edu re  si ; t i :einen t) 7 .3 
q)r, iKrani) 7 
(pr(il)er procedure  t ) .dy)  5.3 
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~ i l l | | ) J { !  I'(~ f #) i ' ( !H ( ' ( !  

(,x|)rcssion) {;.7 
• "~i!ul)h~ s ia le i  leui)  7 
! !n i l )h ,  si !'il lg expression) (;.(i  

7.7 i~iml}!(~ 2-i exp "~:ss{ ,~ : 
7.7 (Mmph, %'pc? 

7. I & impl { .  vat'ia}}]e 
3. I d{,x-]'~rat }<m- 
~.1 /;<1 D. ,'m.+:nt= list;, 
7.7 . si ai (!ha,oil! {'> 
! ; . ' |  S I  l'iIi~ iJi'i!fi:l.!"~'[ 

/.!I i- in V 
- s i l ~ ) s c r i p i  - 

;3 ~'irr;).2." f tes ig l !a l . f ) r_  
".~ "ll'!';t.')" J d - n ! i f i e r  
(.~i ; l b ? S i ~ l l f ! l l " ! } 1  ~ ! , < i l C I i i i : l l  ' ,  

,..5 ~,xl)rexsion li:~i/ 
i3 exl)resMo!i~ 
<3 r u e ( o f  
-3 field desigii,'d<)r; 
(5 field ide~i~ifier) 
,~  f i l i i e i i o l i  (l(!sig!,::d,)r- 
/3 fu,)Pi ion i<len~ lib:r/ 
i,-j f l l t } ( ' i  ion  t ) l 'O{:{ 'dl l  I~  

t .My .  
¢~ l t l hO{  iO!l  I ' )rol ' : f ;(hl l ' { '  

d e , ' l a  l - i l l {O i l )  
~5 lef t  !mr(/  
~'~ n i l i i i i i l ~ r -  
i ~  [ )  r i I l ' i ; t l ' V -  

<,'J. s t ~ e o n ( l a r y }  
/7] i t~!'l f i -  
"5 vuriabh~ ide!aifier.: 
(3 wir iahle> 
(15,1}(,- 
&i l~c:ded rcalli 
(ul(sil4Ued ~ nnrnber) 
{Ulq. , r  I}(.u nd;, 
-whi le  ('l;lllS(6 

0.3 
5. I 

5.! 
7.(i 
7 

-l.'t 
(;. ! 
6.1 
3.1 
7.2 
6 
(i 
&:i 

(;.l 
3, l 
(1.2 
3.1 

:3.:I 

5.:5 
7.2 
• 1. / 
&3 
(1.3 
(;.3 
3. l 
(LI 
5.:; 
4.1 
I. ! 
5.2 
7.7 

3. h l e n t i f i c r s  

%1. SYNTAX 

/ i den l i l i e r )  ::,= ( h l i t r )  i { i d e n i i l i e r )  cloth,r- (ideili l ier}(( | i~it '> 
<5 v:u'i:d)l(~ i(h l i f ic r )  ; :=  & l e l i l i t i e r .  
(~ l l l 'Hiy ide l i f ter)  : : =  l i l le i l i f ier"  
{i)l.O(:(,dur(: i(h!nl i t  er) : :=  i i(h,niif ior.. ' 
<,3 funv l ion  d(q i i i f ier )  : :=  / i ( l cn l i f ie r  
<'rocord class dcn i i th ! r ;  : : -  7i( lenl i l i ( ' l ' -  
<5 fMd  de!di fh ' r )  : : =  .':hhm(ifi('r> 
'htl)(d de l l i fh,r)  : :=  (dei i i f i ( ' i '~  
{ ' (Ji l l  r{)I  i { |eni i t ier)  :: = {i{h,nl i t i( 'r- 
< l o i l o r "  : : =  it . b i ( '  , l . (: . f ,q i t i  i j jig i i m ,,i o p i 

,17 r * i t "  } v , u ' , : r } q  z 
A I I { C i l } i f ' ; i I " i G { H / . I / (  I" i f [  N O l '  Q 
~¢ S i T  U i i " { I F i . V  i Z 

(digit> : :=  0 } 1  [ "2 i a  14 i (~ 7 s (.) 
. ; idenl i f ier I isi) : :=  (Mcni i f ie r )  ( i den l i l i e r  l is i )  <i<.hmlitier> 

3.2.  S E ~ x ' l ' ~ c s  
Var ia l} les ,  a r r i l y s ,  pl'O{.{.Rhll't's, I'O{!(.)l'{i (:l:lsses ;tll(.I rc('or(.l 

fields are said to be q-uanUtie,,'. Ideniifier~ serve (o ident i fy  
qt t ' t i i t i t iOS,  o r  i:|i(~y st, : lnd ;.is hd)e ls ,  f o r l i l a l  paral i lC- i {q 's  o r  
c o n i r o [  i d e n i H i e r s .  I d e n t i f i e r s  h a v e  l io  i nhe rcn i ,  n i c : l nh i g ,  

~i.lld cttn bP (th(}:4011 f ree ly .  
E v e r y  identifier used h t a t)rograIn niust  t)e defin('d. 

This  is achieved th rough  
(a) a dee lara l ion  (el. Seei ion 5), if the identifier identi/ies 

a ( luan t i~Y.  I t  is t h e n  s a i d  to d e n o t c  i h a t  q u a n t i t y  

a n d  to  b e  a 5 v a r i a b l e - - ,  5 a r r ay - - ,  l , ) r o c e d u r e ,  ;5 

4 2 0  ~ m i n l u n i c a t i o n s  o f  t h e  A C M  

, 1 . . ~  i } ::>~ u.. lal/el ,.,iefinitioi: b.) , .11 ,  ~) ih,,-, j, ,q ~ f<,,- . . . . .  , "-i  tit I- ~ g ~  

a label. I~ i~ lhe.~i ~Md i o be ._ ] . b - i  i~iui~ifi<':; 
(i.,=} {l~ t)C('lllTOl]f'f:~ ill ;I i((}!'|il~i.i D::i ' ; t l l lO[bF !i>i {~'}'. ,~.:¢,. ]7 =... . . . . . .  , 

{< t i{ 11 Ri-i{d tO })(" ~t ~OI',~ll,'~i [i~il 'filllfq('Y: 

(d} iiis <)omurer,P~' ]I~. a for <'la.:lso folJowi~)~ ih{, s.vmD~,} 
t~Jr (<'f. 7.7). l i  is ' h u .  >;rid m i)o a <:(:lii: '(}i i{:h,,.~t;- 
fie,.  

"l 'hc idcmif i< 'a i}0 : t  o[  i i ie  del : ] : , i i i (m of  a ~}v(,H i<i '_ ~.=-~- 

ia de t<}rnf ined  })y (he  f o l l o w i n g  tub"s :  

S l e p  1. I f  i h e  i d - i i t  f!or is dutill(,<t wii}:il i  .h<. ~m~ii~>~ 

t ) lOek ( : l l i l l ruu"i t l~  ,h ( ,  Riv{!li (i{:('illT{qlcq, ,fJi t+l!Izi +i ]<L~,!il ;,rio f } ) \  

a (I{~ls 'at <)n of  a q!_ia)ltii3' ()r |}v i t s  slat ill i ~ ns  :~ i:~};~.{. 

| ;hc i i  ii d{,noh: 's  ~:hat: ( t t l : t l l ! i iy  o r  i}lal  hd}(-l. A s t s t e m { . ~  

fo l lowi l ig  a p r o e e d u r P  } ieadi : l~  o r  a for  UDlllS(! }5 ~.(}ii<{/Du=s 

io t)e a h k c k .  
S le l .  2. O t h e r w i - , e .  if t h t t l  b l o c k  is ..), p r o c e ( i u r ,  D,d ' ,  

a n d  if ( l ie  g i v e n  d~nt i f i ( . r  i< h l e n l i c a l  w;) i ,  a fo rmt : l  i ~  

raziii?t(q' ill i lm  asso(:iaie,c] p r ( )cod!a ' e  }itq~{l]ltK, {}K'li i~ 

s'i:alidS as i h  ~( iOr l i la ]  lmral i i ( ! t t !P,  
Sl( '  t 3, Ot tmrwise,  i f  iha l ,  bloci< is t r(,.'..o(ied l>v ~ f,)s- 

( ' i i t I IS(J  ; t l l ( ' l  t i m  de., t t i e r  is i d c n i i ( ' a i  lo  i h c  cC)I I I  l ' ( i i  { ! i , ; 'F{  i t }+ :  

o [  ih.'-ii (or  t:l~.).tls(}, lh(2n i t  ! l a n d s  as i t ! a t  .-otl.l to!  hh-.~if{, + 

( ) ih ( ' rwis ( , ,  ' , ! w < s ! ~  . tn( 's( '  i 'u les :il'(~ gq:)l:)lh'd ( ' ons idc r } ! i g  " 

I( 'si hl(i(:k ( ,mhr i,"in g t i m  hh:iek w h M /  ires . r< 'v i , ,u:- iv  i,,,,=. 

consi( l ( ' rc( l .  
I f  e i t h e r  s t e p  1 o r  si{, l) 2 c o u l d  lead  {o jiifii(, *l , , i ,  o~p, 

( I ( , ih i i i  ion,  t hen  the  i ( l ( ' ) , l i f i ( 'a l  i on  is t u ,de f in ( 'd .  
T h u  s(.'til)e o [  a q l i a l i i i i y ,  a Hi)el ,  -t f o r l n a i  I):.,_r:tlii<qiq. {}<" 
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s t r i ng :  ihe vMue is a linear sequence o'i-,charztctcrs. 
refere,l(:e:  the wdue is a refererme to a > ,grd.  ..._~ 

The following types of s t ructured values are distin- 

guished: 
a r r a y  : the wdue  is an ordered set of values, all of identi- 

cal type  and sut)seript bounds, 
r eco rd :  the value is a set of simple values. 
A procedure m a y  yield a value, in which case it is said 

to be a function procedure, or it m ay  not yield a wflue, in 
which case it is called ~t proper procedure. The value of a 
function procedure is defined as the value which results 
from the execution of the procedure body (of. 6.2.2"~. 

Sui)sequently, the reference denotat ion of constants is 
defined. The reference denotat ion of any constant  consists 
of a sequence of characters.  This, however, does not imply 
,hat the value of the denoted constant  is a sequence of 
characters, nor tha t  it has the properties of a sequence of 
(:haraeters, except, of course, in the ease of slrings. 

1.l .  NUXIBERS 
4.1.1 Syntax 

ht  the first: rule below, every occurrence of the symbol 5 
must be systematical ly  replaced by one of the following 
words (or word pairs): 

integer 
real 
long real 
complex 
long complex 

=5 mmd)er) : := (unsigned 3 number) i (sign)(unsigned 3 n unber} 
tmsigned long complex number) ::= 

long (unsigned complex nuinber) 
u,signed complex nurnber} ::= (real part)i(imaginary part} 
{real part} :: = {unsigned real number) ] (unsigned integer number) 
(imaginary part) ::= (real number) ] (integer number) 
.unsigned long real number) ::= long (unsigned reid number) I 

long (unsigned integer numi)er} 
(tmsigned real numl)er) ::= (unsealed real) [ (unsealed real) 

(scale faetor:, i (unsigned integer number)(seale f~tc|or} 
unsealed real) ::= (unsigned integer mmlber). 

(unsigned integer number) i .(unsigned integer number) 
(scale factor) ::= ~)(integer number) 
:)resigned integer tmmber} ::= (digit) i 

(unsigned integer rmmber) (digit) 
(sigu}:: = + ] -- 

4.1.2. Semantics 
Numbers  are interpreted according to the conventional 

decimal notation.  A scale factor  denotes an integral power 
of 10 which is multiplied by the unsealed real or integer 
nurnber preceding it. Each number  has a uniquely defined 

type. 

4.1.3 Examples 

1 .5 l i -  1 
--0100 ~ h03 --0,33i0.67 
3.1416 ~ ~:7 6.02486~0+23 long 0il 
+ Ion g~2.718281828459045235360287 

Note that  --0.33i0.67 denotes - (0 .33i0.67) .  
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4.2 I,o¢;ICAL VALUES 

4.2.1 Syntax 

~logical value):: = true fal,~c 

4.3. Bye SEQUENCES 
I..3.1. Syntax 

(.tilt sequence) ::= b(l)it) (t)il sequen(.e)(bit) 
,,bit) ::= 0 1 

L 3 2 .  Semantics 
The  number  of bits in a bit se(luenee is said to bo tit(> 

length of the bit sequence. 

4.3.3. Examples 

bl(R}ll 
b(101 

4.4. STR[ N'GS 
4,.-t.l. Syntax 

(st ring) :: = U(scquence of characi('rs}" 

t.4.2. Senmnties 
Strings eollsist of any seqtttqtee of (:hara('ters enclosed 

by but not containing the (:haraeter",  ealh,d string quote. 
They  are considered to t>e basic constituents of tit(, hm- 
guage (el. Section 1). The nund)er of characters in a si ring 
excluding the quotes is said I() be the length of the siring. 

4 . 5 .  [{  E F E R E N C E S  

4.5.1. Syntax 

(null reference} ::= null 

4..5.2. Semantics 
The  reference value nu l l  fails lo designate a record; if a 

reference expression occurri | |g in a field designator has this 
vahie, then the field designator is undefined. 

5.  I ) e e l a r a t i o n s  

Declarations serve to associate identifiers with the 
qua, nl, ities use(l in the program, to at lr ibute certain per- 
ntanenl, properties to these (lua||tities (e.g. type, structure), 
and to determine their scope. The quantities declared by 
declarations are simple variables, arrays, procedures and 
record classes. 

Upon exit from a block, all quantit ies declared within 
tha t  block lose their value and significance (el. 7.1.2 and 
7.4.2). 

Syntax:  

(declaration) ::= (simple variable declaration} i 
(array declaration> i (procedure declaration) i 
(re.cord class declaration) 

5.1. SIMPLE I!,~RIABLE DECLARATIONS 
5.1.1. Syntax 

(simple variable declaration) ::= (simple type) (identifier list) 
(simple type) ::= integer  i real  long  real i complex  [ 

long  complex  i log ica l  i b i t s  ((unsigned integer numl)er)) 
bits i s tr ing  I reference  ((record class identifierD 

5.1.2. Semantics 
Each  identifier of  the identifier list, is associated with a 
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variable which is declared t:o be of the indicated type. A 
variable is called a simple variaI)ie, if its value is simple 
(ef. Section 4). If  a wtriable ia declared to he of a certain 
type, then this implies that only values which are assign- 
ment compatible with this type (of. 7.2.22) can be assigned 
to it. 

I t  is understood that  the value of a variable of type 
i n t e g e r  is only equal to the vahm of the expression most 
recently assigned to it, if this value lies within certain 
unspecified limits. I t  is also understood that  the value of a 
variable of type rea l  is available only with a possible, 
unspecified deviation from the value of the expression 
most recently assigned to it. If in a declaration the symbol 
rea l  is preceded by the symbol long,  then this deviation 
is expected to be not greater than when the symbol long  
is missing. In the case of a variable of type l ong  c o m p l e x  

this holds separately for the real and imaginary parts of 
the complex number. 

In the case of a variable of type b i t s  the integer en- 
closed in parentheses indicates the actual length of the 
sequence which constitutes the value of this variable. If 
this specification is missing, then the length is assumed 
to be equal to the value of the environment enquiry flmc- 
tion bits in  word (cf. III.2).  

In the case of a variable of type re fe rence ,  the record 
class identifier enclosed within parentheses indicates the 
record class to whose records tha t  reference variable may 
refer. 

5.1.3. Examples 

i n t e g e r  i ,  j ,  k, m, n 
real  x, y, z 
l o n g  con~plex c 
log ica l  p, q 
b i t s  g, h 
s tr ing  r, s, l 
r e ference  (Person) Jack, Ji l l  

5.2. ARm~Y DECLAR:tTIONS 

5.2.1. Syntax 
(array declaration) ::= (simple type) array (bound pair list) 

(identifier list) 
(bound pair list) ::= (bound pair) i (bound pair}(bound pair list) 
(bound pair) ::= [(lower bound}:(upper bound}] 
(lower bound) ::= (integer expression), 
(upper bound} ::= (integer expression} 

5.2.2. Semantics 
Each identifier of the identifier list of an array declara- 

tion is associated with a variable which is declared to be 
of type a r ray .  A variable of type  a r r a y  is an ordered set 
of variables. Their  number is determined by the leftmost 
elcment of the bound pair list. If  the bound pair list con- 
sists of one element only, then their type is the simple 
type preceding the symbol a r ray .  Otherwise their type is 
a r ray ,  and the number of elements and the type  of these 
arrays are in turn  defined by the given rules when applied 
to the remaining bound pair list. 
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JEvetT eien)v~i of an array is identified by an index. 
The indices are the integers between and including the 
values of the lower bound and ~he upper bound. Every 
expression in the bound pair list is evaluated exactly once 
upon entry to the block in which Ihe declaration occurs. 
In order to be valid, for every bound pair, the value of the 
upper bound must not be less than the value of the lower 
bound. 

" 9  0.- .3.  Examples 
in teger  array [1:100] H 
real array [l :ml [1 :n] A,B 
string array [j:k+l] street, town. cil!f 

5.3. PROCEI)URE DECLARATIONS 

5.3.1. Syntax 

(procedure declaration) ::= (proper procedure declaration} i 
(3 function procedure declaration; 

(proper procedure declaration) ::= procedure 
(procedure heading); (proper procedure body} 

(3 function procedure declaration} ::= ,:silnple type) procedure 
(procedure heading}; <3 function procedure body> 

(proper procedure body) ::= (statement? 
(3 function procedure body) ::= (5 expression} j 

(block body)(3 expression) end 
(procedure heading) ::= (identifier) i 

(identifier) ((formM parameter list.)) 
(formal parameter list} ::= (formal parameter segment} J 

(formal parameter list); (formal parameter segment) 
(fornlal parameter segment) ::= (formal type) (identifier list} 
(formal type) ::= (type) I (simple type} value ] 

(simple type) result ] (simple type) value result i 
(simple type} procedure I procedure ] r e f e r e n c e  

(type} ::= (simple type} i (type) array 

5.3.2. Semantics 
A procedure declaration associates the procedure body 

with the identifier immediately following the symbol 
p rocedu re .  The  principal par t  of the procedure declara- 
tion is the procedure, body. Other parts of the block in 
whose heading the procedure is declared can then cause 
this procedure body to be executed or evaluated. A proper 
procedure is activated by a procedure statenlent  (ef. 7.3), 

function procedure by a function designator (ef. 6.2). 
Associated with the procedure body is a heading, contain- 
ing the procedure identifier and possibly a list of formal 
parameters. 
5.3.2.1. Specifications of formal parameters. All forlnal 
parameters of a formal parameter  segment are of the same 
indicated type. I t  must be such that  the substitution of 
the formal by an actual parameter  of this specified type 
leads to correct ALOOL expressions and statements (ef. 
7.3.2). The word a r r a y  should be repeated as many times 
as appropriate. 
5.3.2.2. The effect of the symbols va lue  and r e s u l t  ap- 
pearing in a formal type is explained by the following 
rewriting rule which is applied to the procedure body 
before the procedure is invoked: 

(1) The procedure body is enclosed 'by  the symbols 
b e g i n  and e n d  if it, is nor already enclosed by  these sym- 
bols; 
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(2) iF-or ev(wy formal parameter whose formal type con- 
tains ihe symbo! vMue or r e su l t  (or both'i, 

(a) a declaration followed bv  a semicolon is inseried 
ill the heading of the procedure body, witil a simple tyl)e 
:is i~di0ated in the formal lype, aim with an ideniifier 
different from any identifier valid at the place of the 
declaration. 

(b) throughout the procedure body, evmT occur- 
fence of the formal paranleter identifier is replaced by the 
identifier defined in step 2a; 

(e) if the formal type contains the symbol value,  aa  
assignment statement followed by a senfieolon is inserted 
af ter  the declarations of the procedure body. I ts  left parr 
contains the identifier defined in st ep 2a, and its expression 
consists of the formal parameter  identifier. The symbol 
va lue  is then deleted; 

(d) if the formal type contains the symbol resul t ,  
an assignment statement preeeeded by a selnieolon is in- 
serted beh)re the symbol end which terminates a proper 
procedure body. In  the ease of a function procedure, an 
assignment s ta tement  followed by a semicolon is inserted 
before the final expression of the function procedure body. 
I t s  left part  cent:tins the formal parameter  identifier, and 
its expression consists of the identifier defined in step 2a. 
The  symbol r e su l t  is then deleted. 

5.3.3. gxaniples 

p r o c e d u r e  Incremen£; x := x + l  

r e a l  p r o c e d u r e  max ( rea l  v a l u e  x, !/) ; i f  x < y t h e n  y e l se  x 

p r o c e d u r e  Copy ( r ea l  a r r a y  a r r a y  U,  V; i n t e g e r  v a l u e  a ,  b); 
f o r  i := 1 s t e p  1 u n t i l a  do  
f o r  j :=  l s t e p  1 u n t i l  b do  U[i]ij] :=  V[i][j] 

r e a l  p r o c e d u r e  Homer (real  a r r a y  a; i n t e g e r  v a l u e  n; 
r e a l  x a l u e  x); 

b e g i n  r e a l s ;  s :=  0; 
f o r  i :=  0 s t e p  1 u n t i l  n do  s :=  .~ X x + a[i]; s 

e n d  

l o n g  r e a l  p r o c e d u r e  sum ( i n t e g e r  k, n;  l o n g  rea l  x) ; 
b e g i n  l o n g  rea l  y; y := O; k := n; 

w h i l e  k > 1 do  b e g i n  !/ :=  !~ + x ; k  := k - 1 
e n d ;  y 

e n d  

r e f e r e n c e  (Per.sots) p r o c e d u r e  !]o~nflest uncle 
( r e f e r e n c e  (Person) [~); 

b c g i n  r e f e r e n c e  (Person) p, m; 
p :=  youngest offspring (father(falher(R))); 
w h i l e  (p # n u l l )  / \  (-~male(p)) V (p = father(R)) d o  

I9 := elder sibling (/9); 
m := youngest ojr, p,inq (mother(mother(R))); 
w h i l e  (m ¢ n u l l )  / \  (-7 male(m)) d o  m :=  elder aibUng (m); 
i f  p = n u l l  t h e n  m e l s e  
i f  m = n u l l  t h e n  p e l s e  
i f  age (p) < age (m) t h e n  p e l se  m 

e n d  

SAc.  I~ECORD CLASS DECLARATIONS 

5.4.1 .  Syntax 
(record c lass  declarat ion}  : :=  r e c o r d  (record class identifier) 

((field l ist}) 
( f ie ld l ist)  : :=  (s imple var iable  declarat ion)  ] 

(field l ist);  (s imple var iable  declarat ion)  
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5.t .2.  Semantics 
A record class (leelaration serves to define the structural 

properties of records belonging to the class. Tim principal 
constituent of a record class deehu'ation is a sequence of 
simple variable declarations which define the fields and 
iheir lypes of the records of this class and associate identi- 
tiers wil:h the individual fields. A record class identifier 
can be used in a record designator to construct a new 
record of the given class. 

5.4.3. Examples 

r e c o r d  Node ( r e f e r e n c e  i.Vod(') h:ft, right) 

r e c o r d  Person ( s t r i n g  name; i n t e g e r  ag~; l og i ca l  male; 
r e f e r e n c e  (Person) fit!her, mother, youngest offspring 

elder sibling) 

6. Express ions  

Ii;xpressions are rules which specify how new vahws are 
eomt)uted from existing elms. These new vahIes are ob- 
tained by perfornfing the operations indicated by the 
operators on the wdues of the operands. According to the 
type of their vahte, several types of expressions are dis- 
tinguished. Their structure is defined by the foUowing 
rules, in which the symbol 3 has to be replaced consistently 
as described in Section 1, and where the triplets 30, at ,  3.2 
have to be either eonsist¢ntly replaced by the words 

Iogieal 
lilt 
s t r ing 
reference 

or by any eolnMnation of words as indicated by the fol- 
lowing iable, which yields 30 given :'it and 3.a : 
"" a 
_ i L i a  in teger  real complex 
o~ ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

in teger  :: in teger  real complex 
real  real real complex 
complex complex complex complex 

5o has the quality "long" if either both 5, and 5e have 
that  quality, or if one has the quality and Ihe other is 
"integer". 

Syntax: 

C5 expression) : := (simple a expression) 
Cease clause) ((5 expression list})) 

(.30 expression) : := (if elause)(simple 5t expression) e l s e  
(52 expression) 

(5 express ion list} : :=  (3 express ion)  
(5o expression list) : :=  (3~ expression list), (,3~ expression) 
(if clause) : :=  i f  (logical expression) t h e n  
(case clause) :: = c a s e  ( integer  expression) o f  

The operands are either constants, variables or function 
designators or other expressions between parentheses. The 
evaluation of the latter three may involve smaller units of 
action such as the evahtation of other expressions or the 
execution of statements. The value of an expression 
between parentheses is obtained by evaluating that ex- 
pression If an operator operates on two operands, then 
these operands may be evaluated in any order, or even in 
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parallel, with the excel)ti(m <>film (:a~-e mentioned m 
6.4.2.2. The construction 

(if elause)(simple 3~ expressio@ eisc 73:~ ,'~xlprcssion) 

causes the selection attd evahlation of an expression on the 
basis of the current wdue of the logical expression (ton- 
tained in the if clause. If this value is t rue ,  the sinqfle 
expression following the if obtuse is selected, if the value is 
false, the expression following else is selected. The con- 
struction 

(ease. clause) (<3 expressi(,n list)) 

causes the selection of the expression whose ordinal num- 
ber in lhc expression list is equal to the current value of 
the integer exl)ression contained in lhe case clause. In 
order that the case cxpression is defined, the current value 
of this expression nmst be the ordinal number of some 
expression in the expression list;. 

6.1. VAIIIABLES 

6.1.11. Syntax 

(5 wtriable) : := (5 v~riable idcnt tiler)!(5 field designm or): 
(3 array designator) (subscript} 

{5 field designator) : := {5 tield identifier) ((r(ference expression)) 
(3 array designator} : := (5 array identifier) I 

(5 array (tesigmm)r)(subscript) 
(subscript) ::= [(integer expression) l 

6.1.2. Semantics 
A sul)scripted array dcsignator denotes the variaMe 

whose index, in the ordered set of variables denoted by 
the array designator, is thc current vahm of the express ion  
in the subscript. This value must lie within the. declared 
bounds. 

The value of a variable may be used in expressions for 
forming other wdues, and may be changed by assignmcn|s 
to that wu'iable. 

A field designator designates a field in the record re- 
ferred to by its reference expression. The type of the field 
designator is defined by the (lechmttion of that fiekl 
identifier in the record class designated by the reference 
expression of the field designator (cf. 5.4). 

6.1.3. Exanapk~s 

x 

A [i] 
M[i+j][i- j]  
Jhther (Jack) 
mother (father (Jill)) 

6.2. i;UNCTIOX DESIGNATORS 

6.2.1. Syntax 

{3 ftmction designator) ::= (5 function identifier}] 
(5 function identifier) ((actual parameter listS) 

6.2.2 .  Semantics 
A function designator defines a va lue  which can be ob- 

tained by ~ process performed in the following steps: 
Step 1. A copy is taken of the body of the function 
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~ ) P o ( . ( ~ ( h u o  v.}  ,o~.(~ :,root. i .r,, idci~lifi,,:r is ,aSvo!i by tilv tlmc- '!=~ 
l ion  dc~ ,SUit to t  att(j of I}~c ac iua l  paran~c, icr~ of tho '-~i • 

Si(~ps _,9 3,. 4. As spe{fifh::,d in 7.2L2, 

Step 5. The ,opy of tim function procedure body: 
modified :is indica,<ed in steps 2 4, is executed. The value 
of the function d('sigmtJor is the vahie of the ext)rossion 
which c(mstitutes or is pari of the modified funcdon pro- 
cedure body. The type of ihe function designator is (he 
type preceding p rocedu re  preceding the heading of the 
corresl)onding function procedure declaration. 

6.2.3. Examl)les 

max (:c ~ 2, yX2) 

s u m  (i,  m., s u m ( j ,  ¢~,,-1.[i]ijif, 
!lOUngesl -uacle (dil& 
sum if, 10, X[i]X Y[i]) 
[lorner (X, t0, 2.7) 

6.3. AItITIIMETIC I ~ X P f t E S S I ( } N S  

6.3.1 .  Syntax 
In any of the following rules, every oecurren<~e of ~h(- 

symbol 5 nlust be systeinati('ally replaced by one of !}t~ ~ 
following words (or word pairs): 

integer 
real 
long real 
COIIIpI( !X 

l o n g  ( ~ o n t t ) l e x  

The rules governing Ihe I ' ep laeenlen t  of the symbols 5~ 
5l and 3, are given in 6.3.2. 
(simple 3 expression) ::= (5 term}] + (5 term) I -- (75 terrn~ 
(simple 50 expression} ::= ~sirnple 3, expression) + (Se |erm., 

(simple 5t expression} -- (5:.. term) 
(3 term) : := (3 factor) 
(50 term} ::= (3, term) X (3~ factor) 
(30 term) : := (3t ternl)/(3~ factor? 
(integer term) : := (integer term) div (integer factor)] 

(inleger term) rein (integer factor) 
(3t factor) ::= (50 seeondary)i(St factor)~" (integer secondary 
(3,) secondary) : := 45 primary)i(unsigned 5 nulnl,er) 
(30 secondary) ::= abs  (5~ primary)iabs (unsigned 5t numl~er 
(hmg 30 primary) : := long (5t primary) 
(3 primary) ::= 45 variable~i(5 function designator}i 

(C3 expression)) 

6.3 .2 .  Semantics 
An arithmetic expression is a rule for computing a 

number. 
According to its type it is either called an integer . 

real--, long real-, complex-, or long complex expression. 
6.3.2.1. The operators + ,  - ,  X a n d /  have the conven 
tional meaning of addition, subtraction, multiplication 
and division. In the relevant syntactic rules of 6.3.1 l:il(~ 
symbols 50,3~ and 3~ have to be replaced by any combina- 
tion of words according to the following table which indi 
cates 30 for any combination of given 5~ and 32. 

Operat ors 3 " ~ .  
+:. _ integer real complex 

integer integer real complex 
real real real complex 
complex complex complex complex 
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5~, has the (tuaiity "long" it' both 5, and 75.2 have the 
,iuality : long".  or if one has tit,,> qual i ty  " long"  a n d  the 
other is 'qwteger". 

Operator ~ 5e h ' e  cr red em~plex 
X 5t " ~ .  " g " ' " 

integer imeger 1 mg real long eomplcx 
real long real long real l(mg conlplex 
complex long corn- long corn- long complex 

plex plcx 

5, or 3.2 having tile (luatity " long"  does not  affect the 
type of the result. 

ilperai<w i imegcr real eoml)lex 
Ot " ~  . . . . . . . . . . . . .  

imeger real l-eat comt)lex 
real real real eoillplex 
complex complex c,)mplex complex 

Th(' spet:ifieations for the qualiiy "'long" are ihose given 
~or + and -- .  
:}.,)._._.)') The operator - stan(ling as the first swnbol~ of a 
Ample expression denotes the monadie opera t ion  of sign 
reversion. The type of the result is the type of the operaad.  
Th(, operai:or + standing as the first syInbol of a simple 
expression denotes the monadic operat ion of identi ty.  
EL'2.3 The operator div is mathemat ical ly  defined as 

(t div b = xgt {aXb. X d ( a b s a ,  a b s b )  

w}l('l'e the i'tln(:lion pro(:e(ltn'es .~41flll g:tlld d are declared as 

integer procedure .~qn (trite_gee value a) ; 
i fa  < 0 t|len --[ else l; 

integer procedure (/(integer value, a, b); 
i f a  < 6 then 0 vine d ( a - - b ,  b) + 1 

!i.3.2.-I. The operator re in  (remainder) is nmthentat ieal ly 
,t,tined as 

a r e i n  6 = a - (a div b) X b 

6.3.2.5. The operator ~ denotes exponentiat ion of the 
ih'st operand to t h e  power of the second operand.  In the 
r('hwant syntactic rule of 6.3.l tile symbols 3. and  31 have 
it, be replaced by any of i h e  following eolnbinat ions of 
'.vo I'd s : 

5,, 5,. 

real integer 
rcal real 
complex complex 

5o has the quality " long" if and only if 31 does. 

6.3.2.6. The monadic operator a b s  yields the absolute 
vahte of the opermtd. In  tile relevant syntact ic  rule of 6.3.1 
the symbols 50 and 3~ have to be replaced by  a n y  of tile 
(olktwing combinations of words: 

50 5~ 

integer integer 
real real 
real c,mplex 

I f  5~ has the quali ty "long", then so does & .  
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6.1.2.7. Precedence of operators. The syn tax  of 6.3.1 
implies the following hierarchy of operator  precedences:  

long 
abs 
? 
X :" (ill rein 
_}_ _ 

Sequences of operations of equal precedence shall be exe- 
cuted in order from left to right. 
6.3.2.8. Precision of arithmetic. I f  the resuh, of  air a rkh -  
metic operation is of type rea l  or c o m p l e x ,  then it is the  
mathematical ly  understood resuh of the operat ion per- 
formed on operands whMt lnay deviate from the ac tual  
operands. In  case of the operands being of a t ype  with the  
quali ty "long", this deviation, as described in 5.1.2, is 
intended to be snmller, and is expected to be no t  greater  
fhan if that  quality is missing. 

In  the relevant syntactic rule of 6.3.1 ihe symbols  50 
and 5, must be replaced by any of the following combina- 
tions of words (or word pairs): 

Operator 3,, 3: 
long 

long real real 
long real i integer 
long e(mqflex complex i 

6 . 3 . 3 .  Examples 

x + c / H [ j - I ]  

c + Al i l  X B[i] 
cxp  ( - - x / ( g x s i g m a ) ) / s q r l  ( 2 X s i q m a )  

6.4. I.ocalcab EXPRESSIONS 

6.4.1. Syntax 
In  the following rules for (relation) the symbols  30 

aim at must  either be idenfieally rephteed by a n y  one of  
the folk)wing words: 

bit 
string 
reference 

or by any of the woMs from: 

e o n t p l e x  

long eornplex 
real 
long real 
integer 

and the symbols 3,., and 3a must  be replaced by an y  of tile 
last three: real, long real, integer. 

(simple logical expression) ::= (logical term)[(relation) 
(logical term) ::= (logical faetor)i(logieal term) \ / d o g i c a l  factor) 
(logical factor) : := {logieal secondary)[ 

dogical factor) /x (logical secondary; 
(logical secondary) ::= (logical primary]i ~ (logical primary) 
<logical primary) ::= (logical wdue)idogieat  variable)i  

(logical function designator}] fflogieal expression?) 
,:'relation) ::= 

(simple 50 expression>(equality operator)~simple 5r expression) 
(logical term}(equality oper-~tor)(logical term}i 
(simple 5~ expressionXrelational operator)(simple 3a expression) 

(relational operator) ::= < i -<- i -> :i > 
(equality operator) :: = = i # 

C o m m u n i c a t i o n s  o f  t h e  ACN! 4 2 5  



6.4.2. Semantics 
A logical expression is , rtth: for c,omput, ing gt logical 

wdue. 
6.4.2.1. The  relational operators t:::LX'(: t}mir <:ottvemi(mat 
meanings, and yield the lo~ic,,l yah!t+ t r u e  if the relation 
is satisfied f<>r the values <,f the two <)p(:rawts; false,  <>!her- 
wise. Two references are (:(ltttt] if at!<t only ii: i:h¢~y are [)el}! 
n u l l  or both refer to the sat+le reeoF(l. TWO strings are 
equal if and only if th%" have the same length and the 
same ordere<l s(,qttetl(:(~ of charac|iers. 

A comparison of two bit sequences of difl'erc.nt let~gths 
is preceded by insertion of an appropriate tmmber of 0's 
after the symbol b of the shorter operand. 
6.4.2.2. The  operators -n (not), A (and), and V (or), 
operat ing on logical vahtes, are (left!m([ by tit(', folhm'ing 
equivalences: 

--ira if ~: then false else lrue 
:c / \  g if a: then !!else false 
;c V y  if.c then true e lsey 

6.4.2.3. Precedence of operators. The syntax of 6A.1 im- 
plies the folh>wing hierarchy of operator  precedences: 

A 
V 

6.4.3. Exatnples 

p V -,q 
(z<!/) /'x (!/<z) 
( i = j )  = (m=.n) 
!lO+Utq/est ,!~ffSpt'i.~tg (,/(It 'L') ~ n u l l  

6.5. Brr  EXt'ltESStoxs 

6.5.1. Syntax 

( s i t i / p l e  bit e x p r e s s i o n }  : : =  Chit t+ernl}] 

(sin!i!le bit expression} V (bit term) 
(bit term) ::= (bit factor;'.i(bit iertw./\ (bit factor) 
(bil lacier) ::= (bit secm!d:try', i -,(bit secondary} 
(bit secondary} ::= (bit priinary)i 

(bit secondary} 1" (ititmger se('(m(lary) i 
<bit secondary} [ (ittteger secondary) 

(bit primary~ ::= (bit sequenee?i(I.dt wtriable}~i 
','bit funct ion des ignator) i t (b i t  express!o!!}) 

6 . 5 . 2 .  Semanties 
A bit expression is a rule for comput ing a bit, sequence. 
The  operators V,  A and -1 produce a result, of type 

lilts, every bit being dependent on the corresponding bit(s) 
in the operand(s) as follows: 

x !I -ha, x / \ ! !  x V ! ]  

0 0 1 0 0 
0 1 1 0 1 
1 0 0 0 1 
1 1 0 1 1 

The operators T and ,~ denote the shifting operation 
to the left and to the right respectively by tile number  of 
bit. positions indicated by the absolute vahte of the inte- 
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gt~r s~:r'ot/iar3. \~ica~,er[ }~Jt positions tr) the right; !a ieft 
re>po(:tiveiy ~:re .assigne!i the bit sequence vahte bO. If in 
{he eas!) of (1,. / '  a)~d , /  opor:.~tors the ~wo ope;'ands are 
not of eqtm[ ie,~gth, ihe)~ ~he short~2r Ol)erand is (:xtendc.d 
by insertion of aa appropriate  mm-~ber of 0'< after the 
symbol b. T h e  ie.<at!.: of the t'esttlt of a bit oper:~lor is 
equal to tim leugth of the operaud(s).  
6.5.3. E×ampies 

g /" h '¢' blllO00 
.q / -~ ( h V : / ) ,  .~ 

6.6. S'rPaxc; I!2XPRESslOX~, 

6.6.71. Syntax 

/simple siring expressiol~} ::= s;ril!g primaryl 
(simple stri~,g expressio. ~ eat -string primary- 

(stri!!g primary) ::= /striug--string va:'iatde- 
• "siring futmticm desigt;a~o!'--gstrit,K expressicm-) 

6 . 6 . 2 .  Semantics 
A string expression is a rule for comt!ulitt~.' a strina 

(sequenee of characters).  
6.6.2.1. The  operator  c a t  (catenate) yields the stri~Jg 
consisting of the sequence of ( ' ha ra t : l e r s  resttl,tin~ from 
evahtatioI~ of the ilrst operand, immediately followo<i by 
the seqttence of characters resulting front (?valua{:io~ !,t 
the second operand, nlathernatically (:let!trod as 

~ ( s e q t t e n e o - l / ~  e a t  ! l , ; S e ( l l l e l i c e - 2 )  tl = I I { s e q t l e n e e - l - / s e q u e n e c - 2 1  !~ 

The  lengl|t of the result is the stun of the lengths of th+" 
operands. 

6.6.3. Exantple 

s e a t  S ~ u - [ - u  ~t ( ' , a t  /, 

6.7. I{EFERENCE lY~X.PItESSIONS 

6.7.1. Syntax 

{simple l ' e f e l ' e l l e e  expressio!L, : : =  [IIi iH Fefe l ' e l l ( . e i  

(referenee variaMe) i-refereuee ft!lwtion designator) i 
(record designator) :g;,refe!'ence expression?) 

(record designator> ::= q'eeo!'d class ide!!lifier, 
{record class identifier) ffexpressioti list>) 

,:]expressiou list3 ::= (5 expressiotf~ l 
(express ion l ist- ,  (5 express ion)  

6 . 7 . 2 .  Semantics 
A reference expression is a rule for comput ing  a reference 

to a record. All simple reference expressions in a reference 
expression nntst  be of the same record class. 

The value of a record designator is the reference to a 
newly created record belonging to the designated record 
class. I f  the record designator contains at, expression list, 
then the values of t~he expressions are assigned to .the fields 
of the new record. The  entries in the expression list are 
taken in die same order as the fields in the record class 
declaration, and the .types of the ileitis must  be assignment 
compatible with the types of the expressions (ef .  7 . 2 . 2 ) .  

6.7.3. Example 

Person (!!Carol '!, 0, false, Jack, J i l l ,  null, 
you ngest offspring (&ck)) 
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7. S t a t e m e n t s  

A statement is said to denote a trail of a(.:io:i. By the 
cxecutio::: of a statement is nleant the performat:ee of this 
unit of action which nmy consist of smaller units of aetiol, 
such as !he evaluation of expressions or the executioa of 
oilier 5.t &{ (,1Befit s. 

A statement containing ilo symbols denotes >,o action. 

Syntax : 

program ::= -block 
s:aienmn(, ::= ,simple statement, :iterative statemem... 

:if statement':.,ease s ta tement . .  
simple statement? ::= ~bloek- (5 assigmnent statement?i 

• :procedure statement, (goto statement.) 

7.1. BLOCKS 

7.11.1. Syntax 

b l o c k  : := (block bod3? (statement> e n d  
block body) : := <block head) ~block body , ( s t a t emeu t ) ;  

,block body?(label definition- 
block head) ::= begin i(bloek bead'.',(deelaration); 
iabel definition) ::= (identifier}: 

7.1.2. Semantics 
Every block introduces a new level of nomenclature. 

This is realized by exeeution of the block in the following 
st eps: 

Step 1. If  ml identifier defined in the block head or in 
a label definition of the block body is already defined at 
the place from where the block is entered, then every 
occurrence of that identifier within the block is systemati- 
cally replaced by another idm/tifier, which is defined 
neither within the block nor at the place from where the 
block is entered. 

Step 2. If the declarations of the Mock contain array 
bound expressions, then these expressions are evaluated. 

Step 3. Execution of the statements contained in the 
block body begins with the exeeution of the first state- 
ment following the block head. 

After exeeution of the last statement of the block body 
(unless it is a gore statement) a block exit occurs, and the 
statemenl following the entire block is executed. 

7.1.3. Example 

b e g i n  r e a l  u;  
u :=  x; x :=  y; y :=  z; z := ~t 

el l( |  

7 .2 .  ASSIGNMENT STATEMENTS 

7.2.1. ,~ ~.yntax 

fn the following rules the wmbols % and 3, must be 
replaced by  words as indicated in Section 1, subject to 
the restriction that the type 50 is assignment compatible 
with the type  3~ as defined in 7.2.2. 

/5.-. assignment statemcnt) ::= (50 left parle<el expression): 
(Su left part)(5, assignment statement) 

(5 left part) ::= (5 variable} := 

7.2.2.  Semantics 
The  execution of assignment statements causes the 
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,qSSi~:I:P4"-I/( O[ I!W v a h l e  o f  t h e  expression ~o o n e  o r  several 
\uriables. "Fb.e assignment is t)erformed after the evalua- 
i ion of :he expression. The types of all left part variables 
musl be assigmnent compatible with the type of the ex- 
pression. 

A type 50 is said to be assigmneut compatible with a 
type 7it, if either 

(1) the two type,, are identical (except possibly for 
length specifications), or 

(2) 5a is real or long real, mid :it is integer,  real, or 
long real, or 

(3) 50 is complex  or long eomplex, and at is integer,  
real, long real, complex  or long complex. 

In tim case of the type lilts, the length specified for 50 
ntust be no~ less than the length specitied for at. 

If  the length of a bit sequence to be assigned is smaller 
than the length specified for .%, then a sui(able lllllnber of 
0's are inserted after the symbol b. 

In the case of a reh,mtwe, the reference to be assigned 
nmst refer to a record of the class specified by the record 
class identifier associated with the reference variable in 
its declaration. 

7.2.3.  Examples 

z := affe ( , lack)  := 2~ 

x := y + abs z 
c : = i + : r + c  
p : = x # y  

7.3. PROCEI)URE STATEMENTS 

7.3.1. Syntax 

(procedure  s t a t emen l )  : :=  q~rocedure identitier)i 
(procedure  Menlifier) ((actual p a r a m e t e r  lisl)) 

(actual  pa ramete r  list> : :=  (aclmtl parameter )  I 
(aeiual  p a r a m e t e r  lisl), (actual parameter )  

(actual  parameter )  : := (express iow!(s ta tement )  i 
(3 array des ignator) i (procedure  ideutifier}[(3 funct ion identifier) 

7.3.2.  Semantics 
The execution of a procedttre statement is equivalent 

to a process performed in the following steps: 
Step 1. A copy is taken of the body of tit(: proper 

procedure whose procedure identifier is giwm by the I)roc(> 
dure statement, and of the actual parameters of the latter. 

Step 2. If  the procedure body is a block, then a 
systematic change of identifiers in its copy is performed 
as specified by step 1 of 7.1.2. 

Step 3. The copies of the actual parameters are 
treated in an undefined order as Mlows: If the copy is 
an expression different from a variable, then it is enclosed 
by a pair of parerttheses, or if it is a statement it is en- 
closed by the symbols begin and end. 

Step 4. In the copy of the procedure body every 
occurrence of an identifier identifying a formal parameter 
is replaced by the copy of the eorresponding acttml pa- 
ranmter (el. 7.3.2.1). In order for the process to be defined, 
these replacements must lead to correct ALGOL expressions 
and statements. 

Step 5. The copy of the procedure body, modified 
as indicated in steps 2-4, is executed. 
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7.3.2.1. Actual formal ~:orrespo~det~_(:e 
The correspondence between the actual parameters 

and the formal parameters is established as i'ollows: The 
actual parameter list. of the procedure statement (or of 
the function designator) nmst  have the same number of 
entries as the formal parameter  list of the procedure 
declaration heading. The correspondence is obtained by 
taking the entries of these two lists in the same order. 
7.3.2.2. Formal specifications 

If a formal parameter is specified by value ,  then lhe 
formal type must be assignment compatible with the type 
of the actual parameter. If  it is specified as r e su l t ,  then 
the type  of the actual variable nmst be assignment com- 
patible with the formal type. In all other cases, the types 
must be identical. If an actual parameter  is a statement,  
then the specification of its corresponding formal param- 
eter nmst be p r o c e d u r e .  

7.3.3. Examples 

Increment 
Copy (A, B, m, n) 

7 . 4 .  GOTO STATEMENTS 

7.4.1. Syntax 

(goto st a t emen t )  :: = got()  (label identif ier)  

7.4.2. Semantics 
An identifier is called a label identifier if it stands as a 

label. 
A goto statement determines that  execution of the text 

be continued after the label definition of the label identi- 
fier. The  identification of that  label definition is accom- 
plished in the following steps: 

Step 1. If  some label definition within the most re- 
cently activated but not yet  ternfinated block contains 
the label identifier, then this is the designated label 
definition. Otherwise, 

Step 2. The execution of that  block is considered as 
terminated and Step 1 is taken as specified above. 

7.5. IF STATEMENTS 

7.5.1. Syntax 

(if s t a t ement}  : :=  (if c l auseys t a t emen t ) ]  
(if c lause)(s imple  s t a t e m e n t )  e l s e  ( s t a t emen t )  

(if clause} : :=  i f  (logical expression} t h e n  

7.5.2. Semantics 
The execution of if statements causes certain state- 

ments to be executed or skipped depending on the values 
of specified logical expressions. An if s ta tement  of the form 

(if clause)(statemenQ 

is executed in the following steps: 
Step 1. The logical expression in the if clause is 

evaluated. 
Step 2. I f  the result of Step 1 is t rue ,  then the state- 
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me~t tb!lowiag the if clause is executed. Otherwise step 2 
causes no action i.o be taken ~| all. 

An if s tatement  of the form 

,'if clause}<simple s ta te room} e l s e  ,s tzt[emet,  te 

is executed in the t~)llowing steps: 
Step 1. The logical expression in the if clause is evalu- 

ate& 
Step 2. If  the result of Step 1 is t rue ,  then the simple 

statement following the if clause is executed. Otherwise 
the statement following else is executed. 

7.5.3. Examples 

i f  x = y t h e n  g o t o  L 
i f  x < y t h e n  u :=  x e l s e  i f  g < z t h e n  i* :=  y e l s e  v :=  ; 

7.6. CASE STATEMENTS 

7.6.1. Syntax 

(case s t a t emen t}  :: = (case clause} b e g i n  ( s t a t e m e n t  list.} e n d  
( s t a t e m e n t  list)  : := ( s t a t emen t ) ' i ( s t a t emen t  list}; (s ta tenle t~!  
(case clause} : : =  c a s e  ( in teger  expression'~ o f  1 

7.6.2. Semantics 
The execution of a case s tatement  proceeds in the fo[ 

lm~dng steps: 
Step 1. The expression of the case clause is evaluated  
Step 2. The s tatement  whose ordinal number in the 

statement list is equal to the vahm obtained ill Step I i~ 
executed. In order that  the case statement is defined, the 
current value of the expression in the case clause must b( 
the ordinal number  of some statement of the s t a t eme~  
list. 

7.6.3. Examples 

c a s e  i o f  

b e g i n  x :=  x + y; 
y : = y + z ;  
Z : =  Z - ~ - X  

e n d  

c a s e  j o f  
b e g i n  Hill :=  - -H[ i ] ;  

b e g i n  H [ i - 1 ]  := H[ i - -1 ]  + H[i] ;  i :=  i -- 1 e n d ;  
b e g i n  H[ i - -1]  := H [ i - 1 ]  X H[i];  i :=  i --  1 e n d ;  
b e g i n  H[H[i--1]] :=  H[i];  i :=  i -- 2 e n d  

e n d  

7.7. ITERATIVE ST.akTEMENTS 

7.7.1. Syntax 

( i t e ra t ive  s t a t e m e n t )  : :=  (for c lause}(s ta tement) i  
{while c lause) (s ta tement}  

(for clause) : :=  f o r  (cont ro l  identifier} :=  
(initial  value)  s t e p  ( increment} u n t i l  (limit} d o  

( ini t ial  value) : :=  ( in teger  expression)  
( increment} : :=  ( in teger  express ion)  
(limit} : :=  ( in teger  expression} 
(while clause) : :=  w h i l e  (logical expression} d o  

7.7.2. Semantics 
The iterative statement serves to express that  a state 

ment be executed repeatedly depending on certain condi- 
tions specified by a for clause or a while clause. The stat(-  
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me~tt following the for clause or the while claus~e always 
acts as a block, whether it, has the [orm of a block or not. 

(a) .:\n iterative statement of the form 

f o r  (:,~hlr,)l idenbifier)  : =  el  s t e p  e2 H n t i l  e3 d o  ( s i ; a t emenp  

is exaeily equivalent to the Mock 

b e g i n  ~s in tement- ( ) ) ;  ( s t a t e m e n i - - l ' ;  . . . ;  islatement-i,; 
. . .  ; : .s tatement-re} e n d  

when in the/ t t l  s tatement every occurrence of the control 
identifier is replaced by the reference denotation of the 
value of the expression el -4- i X e2, enclosed in paren- 
theses. 

The index n of the last s tatement is determined by 
,~. <_ (e3--el)/e2 < n. 4- 1. If n < 0, then it is understood 
that  the sequence is empty. The expressions el, e2, and e3 

are evaluated exactly once, nanmty before execution of 
(statement-0). 

(b) An iterative statement of the form 

w h i l e  e do ( s t a t e m e n t  

is exactly equivalent to 

i f  e t h e n  

b e g i n  ( s t a t e m e n t ) ;  

w h i l e  e d o  ( s i a t e m e n O  

e n d  

7.7.3. Examples 

for v :=  I s t e p  1 u n t i l ? ~  -- 1 do  s :=  s -t- A[t~][v] 

t i ) r  £ :=  m s t e p  -- 1 u n t i l  1 do  

i f  H l k - 1 ]  > tt[k] t h e n  
b e g i n  m :=  H[k- -1 ] ;  H[k--1]  :=  H[k];  H[k] := m e n d  

w h i l e  ( j > 0 )  A (cily [j]¢s) d o j  :=  j -- 1 

? 

L 

P A R T  I I I .  P R O P O S E D  S E T  O F  

The principal language features described in previous 
sections should be supplemented by additional facilities 
supplied in the form of procedures, which are assumed to 
be declared in the environment in which an ALGOL pro- 
gram is executed. I t  is recommended that  some or all of 
the procedures listed in this section be so treated. They 
are classified into the following groups: 

(1) Inpu t /ou tpu t  procedures 
(2) Environnmnt enquiries 
(3) Functions of analysis 
(4) Transfer functions 

1. Standard Input /Output  Procedures 

1.1. IXTRODUCTION 
This proposal is based on suggestions of Jan V. Garwick 

[ALGOL Bull. 19, 39-60]. 

1.2. DEsmx CRITERIX 
1 .2.1. The input /output  proposal is essentially simple, 
:rod t, he various facilities provided are relatively inde- 
pendent of one another. No at tempt is made to provide 
dis(-rimination, looping and sequencing facilities within 
the input /output  proposal, since this merely duplicates 
features which are rdready provided in the general purpose 
language which the proposal supplements. 
1.2.2. I t  is plainly recognized that  different input /output  
media have radically different properties, and no a t tempt  
is made to introduce an artificial similari V into their use, 
nor to mislead a programmer by such an apparent simi- 
larity. 
t .2 .3.  Advantage is taken of the essential differences 
between input and output, in particular of the fact that  
input of numbers does not require the same variety of 
format specifications as output. 
1.2.4,. Facilities are provided such tha t  the specification 
of all matters associated with input and output can be 
written explicitly in a single sequence of instructions; 
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errors due to incorrect mating of a format string and the 
sequence of input /output  data which it is intended to 
control therefore cannot occur. 
1.2.5. The number of digits of a number to be output can 
be specified by means of an integer expression, which can 
readily be calculated by the program itself. 
1.2.6. The proposal is not intended to satisfy every re- 
quirement, but only to provide facilities adequate for 
most circumstances and capable of being used to build 
more complex input /output  algorithms for more unusual 
requirements, trurthermore, there is no embargo on the 
provision of yet  further standard procedures to perform 
additional, more complex functions. 

1.3. Su~nI:~RY 
Input  and output channels of a computer are classified 

into three essentially different categories: 
(1) Legible input channels, on which the information 

is presented in a form closely mapping its legible tran- 
scription. The main representatives of this class are card 
readers and paper tape readers. 

(2) Legible output channels, in which the form of the 
information output either is, or closely maps, its legible 
transcription. The main representatives of this class are 
line printers, card punches, paper tape punches, and CRT 
character displays. 

(3) Input/output channels, in which the information 
is stored in a form not  suitable for human inspection, and 
can be read only by a computer. Input /output  channels 
are divided into two classes, those with random access 
(e.g., drums, disks, or bulk core memories) and those 
with which access is essentially serial (e.g., magnetic 
tapes). 

Legible output is achieved in two stages; first an "out- 
put line" of characters is assembled, and then it is trans- 
mitted on a specified channel. Since these operations are 
clearly distinct, they are performed by distinct procedures. 
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Fac i l i t i e s  p r o v i d e d  %r  l eg ib le  i n p u t  a re  t h e  s implesL  

s ince  in  g e n e r a l  no  spec i f i ca t ions  of  f o r m a t  a r e  r equ i r ed .  

O p e r a t i o n s  on (non leg ib le )  i n p u t / o u t . p u g  c h a n n e l s  a re  

de f ined  o n l y  fo r  a r rays ,  w h i c h  a re  t r a n s f e r r e d  in the i r  

e n t i r e t y  to a n d  f r o m  t h e  i n p u t / o u t p u t  m e d i u m .  

Ott  ser ia l  i n p u t / o u t p u t  channe l s ,  t h e  p o s i t i o n i n g  of t h e  

i n f o r m a t i o n  is d e t e r m i n e d  b y  t h e  c u r r e n t  p o s i t i o n  of  t h e  

m e d i u m .  On r a n d o m  access  e h a n n d s ,  t h e  o u t p u t  i n s t ruc -  

t i on  p r o v i d e s  the  p r o g r a m m e r  w i t h  an  i~lteger pos i t i on  

i den t i f i ca t i on ,  w h i c h  he  m a y  use for  s p e c i f y i n g  r e i n p u t  of 

t h e  s a m e  i n f o r m a t i o n .  

1.4.  LEGIBLE OUTPUT CHANNELS 

p r o c e d u r e  scaled ( s t r ing  va lue  r e s u l t  line; i n t e g e r  va lue  
position, length; l o n g  rea l  va lue  expression); 

c o m m e n t  This procedure is used when the order of magnitude 
of a number is unknown. The vahm of expression is converted to 
decimal form, and placed in the length character positions of the 
string line star t ing at position position. The character position 
position is occupied by a minus sign if the number is negative or 
a space otherwise. The next position is occupied by a digit,  the 
following position by a decimal point. The fourth last character 
position is occupied by 10, the next position by a plus or minus 
sign, and the remaining two positions by digits. 

Examples: 1.234~0+01 
--  1.234,o--70 

1.234,o+00 

0.000,0+00; 

p r o e e d u r c  aligned ( s t r ing  va lue  r e s u l t  line; i n t e g e r  va lue  
position, length, decimals; l o n g  rea l  va lue  expression); 

c o m m e n t  This procedure is used when the order of mag2fitude 
of a number is known. The value of expression is converted to 
decimal form~ and placed in the length character positions of 
the string line, start ing at position position. 

The last decimals character positions of the field are occupied 
by digits and preceded by a decimal point,  which itself is pre- 
ceded by digits. Leading zeros are suppressed, up to but  not 
including the last position before the point,  and a minus sign 
(if any) precedes the leftmost digit.  

Examples : 1.234 
- 123.456 

--0.123 

0.000 

If the absolule value of the number is too great for it to be 
expressed in this way, the result is undefined; 

p r o c e d u r e  decimal ( s t r i ng  va lue  r e s u l t  line; i n t e g e r  va lue  
position, length, expression); 

c o m m e n t  The value of expression is converted to decimal form, 
and placed in the length character positions of the string line, 
beginning at posit ion position. 

Leading zeros are suppressed up to, but  not including the last 
digit. The first digit is preceded by either a space or a minus sign. 

Examples: - 12 
1234 

0 
123 

If the absolute value of the number is too great for it  to be 
expressed in this way, the result is undefined; 

p r o c e d u r e  insert ( s t r i ng  va lue  r e s u l t  line; i n t e g e r  v a l u e  
position; s t r i n g  va lue  message); 

c o m m e n t  The string message is inserted in the str ing line, be- 
ginning at position position; 
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s t r i n g  p r o c e d u r e  s~tbstria.g ( s t r i ng  vah te  line; i n t e g e r  value  
postion, length) ; 

c o m m e n t  q'tm substring consis(s of {he length cha.racters be- 
ginning tit position position of the string line; 

p r o c e d u r e  o~dput ( i n t e g e r  v a l u e  channel, n; s t r i n g  value  
line) ; 

c o m m e n t  The first n characters of the string line are ou~pu~ on 
the specified legible output  channel. If  the channel has a natural 
unit of information and is incapable of accommodating in this 
unit (e.g. pr int  line) the number of characters t ransmit ted,  the 
result, is undefined. [f it can accommodate more characters, then 
the remaining character positions are filled with  spaces; 

i n t e g e r  p r o c e d u r e  laslcol ( i n t ege r  va lue  channel); 
c o m m e n t  This is an environinei~r enquiry,  and cnal)ics ti~.-~ 

programmer to find the number of characters i~ the P, a t  m'a~ ~i!~it 

of information on the specified legible channel, if there is such a 
unit:. This procedure also applies to legible i~lput chammis; 

1.5.  LEGIBLE INPUT CHANNELS 

p r o c e d u r e  inreal ( in t ege r  v a l u e  channel; rea l  r e s u l t  x); 
c o m m e n t  The next  real or integer number (defined in accord 

ance with [[.  4.1.1) is read in from the specified channel, and its 
vahm is assigned to the variable x. 

It1 each case, the characters read consist of" an initial sc(p, te.,;ce 
of nonnumeric characters, followed by a sequence of numeric 
characters, terminated by, but  nor including, a nonnumeric 
character.  The  decimal digits and thede l imi te r s .  ~ + and -- are 
numeric characters, arid all other  characters (including space: 
tab, and change to a new line) are nonnumeric. If the sequeJicc 
of numeric characters does not  conform to the definition of a 
real or integer number,  the consequences are undefined; 

p r o c e d u r e  ininteger ( i n t e g e r  va lue  channel; i n t e g e r  r e s u l t  i); 
e o n n n e n t  This  procedure is identical to inreal, except that  the 

numeric sequence must  conform to the definition of an integer 
number, and the result  is assigned to the integer variable i ;  

p r o c e d u r e  input ( i n t e g e r  va lue  channel, n; s t r i n g  r e s u l t  line); 
c o m m e n t  n characters are read on tim specified legible input 

channel and assigned to the string variable line. If  the channel 
has a natural  unit  of information (e.g., card record) and *he 
number of characters in that  unit  is greater  than n, then the 
remaining characters are ignored, and if it is smaller than n 
then the result is undefined; 

1.6.  SERIAL INPUT/OuTPUT CHANNELS 

p r o c e d u r e  outserial ( i n t e g e r  va lue  channel; a r r a y  information); 
e o m l u c n t  The channel is a serial input /ou tpu t  channel. The en- 

tire array is output  to the next available position of the nmdium 
in such a way that  it can be read in by inserial. If there is insuffi-. 
cleat room o21 the medium to write the infornmtion, the result 
is undefined. This procedure may be used for arrays of any type, 
order, or size; 

p r o c e d u r e  rewind ( in teger  va lue  channel); 
c o m m e n t  On a serial channel, the medium is rewound to the 

position of the first information output ;  

p r o c e d u r e  iaserial ( i n t e g e r  va lue  channel; ar ray  information); 
e o m m e u t  On a serial channel, the next array stored oil the me- 

dium is input. This array must, be of tile same type and order, 
and have identical subscript boumts to the array output  in this 
position; otherwise the result is undefined. Furthermore,  output  
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instructions must be separated by a rewind from any input 
instruction. An attempt to read informa.tion which has not be;;n 
written leads to undefined results. The procedure may be used 
for arra.ys of any type, order or size; 

1.7. RANDO~I INPuT/OUTPUT CHANNELS 

procedure outrandom ( integer value channel; 
integer  resul t  identification; array information); 

comment The entire array is output on the specified random 
access channel, and the variable corresponding to the fornml 
paranmter identification is assigned a value which identifies the 
position of the informatiou on the channel. If there is insufficient 
room on the medium, the result is undefined; 

procedure inrandom (integer value channel, identification; 
array information) ; 

cormnent The array which was output with the identification 
specified is reinput. The type, order and dimensions of the 
array must be the same as that which was output; 

procedure overwrite (integer value channel, identification; 
array information) ; 

comment The array is output to the specified random access 
channel, overwriting the information which originally was given 
the identification specified by the second parameter. The type, 
order and dimensions of the array must be the same as those 
which were originally written; 

procedure resetrandom (integer value channel, identification); 
comment All information on the channel written at the position 

specified by the identification is deleted, and the space which it 
occupied becomes free for further use; 

1.8. OPERATING PROCEDURES 

procedure open input (integer resul t  channel; 
string value device); 

comment The variable channel is assigned the number of the 
legible input channel identified by the string parameter; 

procedure open output (integer result  channel; 
string value device) ; 

comment The variable channel is assigned the number of the 
legible output channel identified by the string parameter; 

procedure open serial input ( integer result  channel; 
string value file label) ; 

comment Similar to open input, for a serial input/output chan- 
nel; 

procedure open serial output ( integer resul t  channel; 
string value file label) ; 

comment The variable channel is assigned the number of some 
available serial input/output channel, and that channel is made 
unavailable. The implementation ensures that if the output 
medium is later removed, it has the identification specified by 
the string parameter; 

procedure open random input (integer result  channel; 
string value file label); 

comment Similar to open input, for a random input/output 
channel; 

procedure open random output (integer result  channel; 
string value file label) ; 

comment Similar to open output, for a random input/output 
channel; 

procedure open serial (integer result  channel); 
comment The variable channel is assigned the number of some 

available serial input/output channel, and that channel is 
made nonavailable. This procedure is recommended for claim- 
ing "scratch" tapes; 
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procedure  open "random (integer resul t  channel); 
comnient  The variable channel is assigned the munber of some 

available random input/output channel, and that channel is 
made unavailable. This procedure is recommended for claiming 
"scratch" files; 

procedure close (integer value channel); 
eonunent  The specified channel is made available for reuse; 

2. S t a n d a r d  E n v i r o n m e n t  E n q u i r i e s  

2.1 INTRODUCTION 

I t  is recognized tha t  different implementa t ions  of" the  

language must  adopt  different techniques for dealing with 

cer ta in  language features. The  p rogrammer  m a y  wish to 

ob ta in  information on these points, so tha t  he m a y  adapt  

his algori thmic methods  accordingly,  or even indicate t ha t  

the a lgor i thm is inappropriate.  

T h e  concept of an envi ronment  enquiry  was or iginated 

by Pe te r  Naur  [ALGOL Bull. 18.3.9.l]. 

2.2 FUNCTIONS PROVIDED 

real procedure epsilon; 
emnment  The smallest possible number such that both 

1 + epsilon # 1 and 1 - epsilon ~ 1; 

hmg real procedure epsilon squared; 

integer procedure intmax; 
c o m m e n t  The largest positive integer provided by the imple- 

mentation; 

real procedure realmax; 
eonnnent  The largest positive real number provided by the 

implementation; 

in teger  procedure bits in word; 
c o m m e n t  The number of elements of a bit sequence which is 

accommodated in a single word; 

integer procedure lowerbound (array A); 
comlnent  The value of the lower subscript bound of the array 

A, which may be of any type or order; 

integer procedure upperbound (array A); 
c o m m e n t  The value of the upper subscript bound of the array 

A, which may be of any type or order; 

integer  procedure string length (string s); 
comment  The number of characters in the string s; 

3. S t a n d a r d  F u n c t i o n s  o f  A n a l y s i s  

real procedure s in  (real value X) ; 

real procedure cos (real value x); 

real procedure aretan (real value x); 
comment  -- ~r/2 < arctan(x) < r/2;  

real procedure In (real value x); 

real procedure exp (real value x); 

real procedure sqrt (real value x); 

real procedure arcsin (real value x); 
comment  -- ~r/2 < arcsin(x) < ~r/2; 

real procedure arecos (real value x); 
comment  - 7r/2 < arceos(x) ~ rr/2; 

real procedure tan (real value X); 

real procedure pi; 
comment  r¢ with the accuracy available for real numbers; 

(Continued on page ~32) 
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A New Uniform Pseudorandom 
Number Generator 

i)AVID W.  HUTCHINSON 
University of Calij~mia,* Berkeley 

A new multiplicative congruential pseudorandom number 
generator is discussed, in which the modulus is the largest prime 
within accumulator capacity and the multiplier is a primitive 
root of that prime. This generator passes the usual statistical 
tests and in addition the least significant bits appear to be as 
random as the most significant bits--a property which gener- 
ators having modulus 2 k do not possess. 

1. I n t r o d u c t i o n  

In the past five or six years several papers have appeared 
on pseudorandom number generators for binary machines 
using the congruential method. These generators produce 
pseudorandom integers which then can be transformed to 
fixed-point fractions or floating-point numbers. The  
method which has come to be known as "multiplicative 
c.ongruential" generates the ith pseudorandoln integer by 
the recursion relation: 

X~+i = a x i  (mod M) 

where A is the multiplier and M, the modulus, is usually 
chosen to be 2 k for a machine with a ]c-bit accumulator. 
See [1] and [2] for a description of how to choose A, M and 

* Statistics Department. This work was supported by the 
United States Public Health Service Grant GM-10525. 

X0 to achieve a sufiiciently long period and for results of 
some tests of randomness. 

The "mixed congruential" method is: 

X,~+l = AXi  + C ( m o d M )  

where C is an odd integer [1, 2]. 
In the mixed eongruential method, A is usually chosen 

to be 2 q + l  so that  the multiplication can be effected by a 
shift and ~dd. This saves time but  leads to generators 
which cart have serious defects, depending on the choice 
of q (see [1, 3]). On an IBM 7094 the multiplicative con- 
gruential method is faster than the mixed congruential. 
However, even on computers where this is not t rue it is 
doubtful tha t  the gain in t ime is worth the risk of the 
poorer statistical behavior of the mixed congruentiai 

method. 

2. T h e  L e h m e r  M e t h o d  

I t  was the poor behavior of a mixed congruential gen- 
erator which caused us to have a talk with D. H. Lehmer 
who first proposed the congruential method for generating 
pseudorandom integers [4]. Lehmer said we were being too 
miserly with time in trying to do a shift and add rather 
than a full multiplication. He suggested the generator: 

Xi+l = AX~ rood(2 ~5 - 31) 

(for a 7094), which involves doing yet an additional divi- 
sion. Here 23~ - 31 is the largest prime less than 235 and A 
is a primitive root of 2 a~ - 31, say, A = 55 or 5 ~a. A = 5 
is also a primitive root, but  has only two bits and testing 
has proved it to be unsatisfactory. If A is a primitive root 

C(mtinued from page 431 

I t  is mlderstood that  also Long variants of these proce- 
dures exist, e.g., 

long real  p rocedure  longsin (long rea l  value x); 

4. S tandard  Transfer  F u n c t i o n s  

integer procedure round (real  va lue  x); 

integer procedure  truncate (real  value  x); 

integer procedure  entier (real value x); 

real  p rocedure  realpart (complex value x); 

real p rocedure  imagpart (complex value x); 

long real  p rocedure  longrealpart (long complex value x); 

long real  p rocedure  longimagpart (long complex value x); 
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complex procedure complex (real value x, y); 

long complex procedure longcomplex (long real  va lue  x, y); 

logical procedure odd (integer value x); 

bits procedure  bitstring (integer value i) ;  

integer procedure number (bits value b); 
comment tile number with binary representation b; 

integer procedure decode (s t r ing value char); 
comment  The numeric code of the character in the single-ele- 

ment string char; 
s t r ing  p rocedure  code (integer value n); 
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