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: \LVi ' t{]  K T i d A N G U L A T I O X  W I T 1 [  
• - r | ~  s " " ) iN ~, ]A~]:..k A R I T H M E T I C  iF1] 

~\:. : \ .  ]]I,AXI<IN$t[IP 

d,e<~t. 19 , f a y  t.965 and  17 Sept .  1965") 

X a d o n a i  S e c u r i t y  Ageuey ,  In't,. Gee.  G. M e a d e ,  M d .  

i~tt,'ger p , ' oeedure  I_\-TRANK (mat, m, n, e); va lue  m, n, e; 
i n t e g e r  ???~ n ,  ~!] i n t e g e r  a r r a y  ? n a ~ ;  

comtnen t This procedure operates on an m. by n-l-e matrix whose 
name is real and whose elements are integers..If mat is eousidered 
as e,m~posed of two submat.riees U and V, where U comprises 
t.t:e first n colum>.s of war and V comprises the last e columns, 
the,~ the effect of :he procedure is as follows: 

(1) The rank of line submatrix U is returned as the value of 
I X T R A X K  (designated by r iu tile following discussion). 

;o._.. -m:tl is transformed by.. a sequence of elementary., row opera- 
dons it~ such a manner that U is reduced to triangular form. 
Triat:gtdar form means that the leading, or first, nonzero, ele- 
men: c)f each row appears to the right of the leading element 
o[ :he preceding row. 

(3] I t  is easy to deduce from the proof in [1, p. 72, Th. 12] 
tim t for a.ny set of k cob.rams of mat, the greatest, common divisor 
of all kd: order minors selected from those cohmms is preserved. 
It:~ pardc:dar ,  :he product of all leading elements in U (final) 
(which are preserved as l he first r elements of the local array a) 
will i)e equal io the ged of all n th  order minors of U. 

(4) ii[. is also easy to stkow, bv the methods of [2] that  if mat 
tour:alas an m X m ident i tymat r ix ,  [,  then I ends up as a record 
of ( he row operations actually performed, speciiieally: 

-mat (final) = / (final) X mat (initial) 

(5) Since (3) implies lima: the rank of,U is preserved, and the 
rank of U (fired} is obviously eqttal to the number of nonzero 
rows tha t  it_ contains, this number, r, is returned as the value of 

- e r )  7 .~ L\ 2hAA K. 
(6) Under the eonditions of (4), it follows tha t  the last 

m. - r rows of [ (final) eomprisea  eomplete, linearly independent 
se[ of left-armihilators (row-depmtdences) of the matrix U. 

The preceding properties are the basis of the claims for the 
procedure SOLVEINTEGER [Algorithm 288, Comm. A C M  9 
(July 1966), 514] which calls this procedure. 

[ N T R A N K  is designed to minimize the likelihood of overflow, 
the detection of which is left to the user. The best method is to 
include an identi ty matrix in mat and cheek the relation de- 
scribed in 4 (above). In many instances overflow doesn ' t  matter .  
Ill particular, if (a) the machine-compiler combination does 
integer addition, subtraetion and multiplieation modulo 2i-t-1 
where i is the maximum integer representable in the machine, 
(b) division is done by the usual long-division algorithm, and 
(c) the answers sought are either known to be less than i in 
absolute value, or only desired modulo 2i+1, then, short  of 
interference by art over-zealous monitor, the procedure will 
produce satisfactory results in spite of overflow. (Although the 
CDC 1604 does not satisfy (a), the same effect ean be achieved 
by using a suitable subroutine in place of the multiplication 
sign in the procedure REDUCE.)  
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Overtiow is generally dependent upon ttle magnitude of th( 
gre~ttest common divisor of all r X r minors contained in U, a., 
:his number, or a large divisor of it will appear in the r th  ro~ 
of ?~mt (final) and as air]. Thus if U is a square nmtrix whose 
determinant  is a prime greater than the eapacity of the machine: 
there is obviously no way to avoid overflow. Even if tile deter- 
mhmnt  is composite, it is most  likely that. only smM1 factors 
will be left. ou the diagonal and overflow will still oceur. Whet. 
d emen t s  of U are chosen from a flat-random population oi 
integers in the dosed interval [-13, +131 it has been found 
empirically that  overflow almost never occurs for m = n = l l  
when run on the CDC 1fOr where i = 2*'~-1. See also the dis- 
cussions on overflow in the procedure SOLVEINTEGER;  

t)egin i n t e g e r  i, j ,  k, Q, T, gopeI, *~extel, itop, inext; 
i n t e g e r  a r r a y  a [l:m]; 
p r o c e d u r e  F I N D N E X T ;  
b e g i n  nextel := 0; 

for 1: := i s t e p  1 u n t i l  m d o  
i f  a.[a:]>nexlel/\k ~ itop t h e n  
beg iu  nexlel := a[k] ; inext := k 
e n d  

e n d ;  
p r o c e d u r e  SWAPROWS;  
b e g i n  l~r £ := j s t ep  1 u n t i l  T d o  

beg in  Q := - mat[i,k]; 
mat [i,k] := mat [itop, k]; 
mat [itop, k] := Q 

end ;  
a[i] := a [itop]; 
c o m m e n t  The last s ta tement  is a luxury which ensures that ,  

at the end of the algorithm, a will contain the leading ele- 
ments of the first [ N T R A N K  rows of .mat; 

end ;  
p r o c e d u r e  l tEDUCE ; 
b e g i n  Q := mat [igop,j] + mat [inezt, j];  

for  lc := j s t e p  1 u n t i l  2' do 
mat [itop,k] := mat [itop,k] - Q  X mat [inext,k]; 

a [ilop] := i f  nzal [itop,j] < 0 t h e n  -- mat [itop,j] else  
mat [ilop,j] ; 

end ;  
i := j : =  itop := 0; T := n+e; 

N E X T R O W :  i f  itop ~ i t h e n  S W A P R O W S ;  
i := / + l ;  i f  i > m t h e n  go to  OUT; 

NEXTCOL:  j := j + l ;  i f j  > n t h e n  go to  OUT; 
for /z  := i s t e p  1 u n t i l  m d o  

a[k] : =  i f  mat [k,j] < 0 t h e n  - -  mat [k,j] e l s e  mat [k,jl; 
c o m m e n t  Find the value and locatiou of the largest elemet~t at 

or below posit ion (i,j) of mat.; 
itop := i - 1 ;  F I N D N E X T ;  
i f  nexlel = 0 t h e n  go to  NEXTCOL;  

CO=\-TINUE: itop := inext; topel := nextel; 
c o m m e n t  Find the value and location of the next largest 

element at or below position (i,j); 
F [ N D N E X T ;  
i f  nextel = 0 t h e n  go to  N E X T R O W ;  
c o J n m e n t  Subtract  row containing next highest element from 

tha t  containing highest element.  Repeat until highest element 
no longer ranks highest; 

REDUCE; 
go to  CONTINUE;  

OUT: I N T R A N K  := i - -1;  
e n d  

P~ E F E R E  N C E S  : 
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S O L U T I O N  O F  S I M U L T A N E O U S  L I N E A R  

D i O P H A N T i N E  E Q U A T I O N S  iF4]  

W ,  A .  B L : k N K I N S I I I P  

( R e e d .  19 M a y  1965  a n d  17 S e p t .  i 9 6 5 )  

N a t i o n a l  S e c u r i t y  A g e n c y ,  l: ' t .  G e e .  G.  M e a d e ,  M d .  

B o o l e a n  p r o c e d u r e  SOLVEINTEGER (A) t imes:  @) equals 
the vector :  (b) t imes a leas t  in teger :  (d) where A is a mat r ix  of 
d imension one to:  0n) by  one to: (n) Also find: (k) l inear ly  
independen t  auxi l iary  solut ions  and s tore  in the  mat r ix :  (Y); 
v a l u e  m, n; 
i n t e g e r  m, n, d, k; 
i n t e g e r  a r r a y  A, x, b, y; 

c o m m e n t  Seeks the  smal les t  posi t ive  integer ,  d, for which an 
in teger  so lu t ion  to the  equa t ion  Ax = bd exists. 

If no solut ion exists then  SOLVELVTEGER is r e tu rned  as 
f a l s e .  Otherwise SOLVEINTEGER is r e tu rned  as t r u e  and the  
values of d and  the  solut ion vec tor  x are re turned.  

If  nmre  t h a n  one solut ion exists t hen  auxi l iary solut ions are 
r e tu rned  in the  ma t r ix  Y. The  addi t iona l  solut ions are ob ta ined  
by  adding  any  l inear  combina t ion  of the  first k rows of Y to the  
so lu t ion  x. 

It. is assumed t h a t  
A is d imensioned [1 : re,l: n], 
x is d imensioned [ l :n] ,  
b is d imensioned [1: m], 
Y is d imensioned [ l :n , l :n . ] .  

No te  t h a t  a d iophan t ine  solut ion exists if and only if d is 
r e tu rned  as 1 and  SOLVEINTEGER is r e tu rned  as t r u e .  

The  procedure  relies en t i re ly  on the  act ion of the  procedure  
L V T R A N K  [Algori thm 287, Comm. A CM 9 (July 1966), 513]. 
In par t i cu la r ,  a matr ix ,  mat, is formed b y  adjoining - b  to the  
t ranspose  of A,  and then  adjoining an (n + 1) th  order  iden t i ty  
ma t r ix  as follows: 

,) 
I N T R A N K  is then  called upon to t r iangular ize  the  first m + l  

columns of mat (reaching into the  first column of I ) .  The  value  of 
I N T R A Y K  will be r e tu rned  as an in teger  r which  is 1 grea te r  
t h a n  the  r a n k  of A. Fu r t he r m or e ,  as a consequence of proper t ies  
(4) and  (6) claimed under  I N T R A N K ,  the  las t  n - - r + l  rows of I 
(final) will comprise a complete  set of lef t  ann ih i la to rs  of the  

ma t r ix  A z' " Since only the first of these rows (if any) will have  

a nonzero  e lement  in the  first column, i t  follows t h a t  th is  first 
row expresses the  va lue  d and  the  desired solut ion (if d ~ 0), 
and the succeeding n - r  rows cons t i t u t e  solut ions to the  homo- 
geneous equat ion.  I f  any  l inear  combina t ion  of these las t  n - r + 1  
rows were to yield a vector  whose e lements  have  a grea tes t  
common divisor  no t  equal  to 1, th i s  would imply  t h a t  
det ([ (final)) = det ([ ( ini t ial))  ¢ 1, which is false. This  en- 
sures t h a t  d is the  smal les t  value,  as claimed. 

Overflow canno t  occur  in th i s  procedure  except  as inher i ted  
f rom the  procedure [ N T R A N K .  Overflow seems to be no problem 
when solut ions (x,d) exist  which  are wi th in  the  mach ine ' s  
capaci ty  to verify.  I am unab le  to ful ly  explain th is  b u t  nu-  
merous cases have been run  on the  CDC-1604 (47-bit  in tegers  plus 
sign bi t )  w i th  elements  of A chosen randomly  betweer~ --13 and  
+13  inclusive and for m = n = 5  t h r o u g h  20 (10 or more  cases 
each) .  Only a single fai lure (in the  case m=n=20)  occurred.  
These  cases were devised by  preass igning in teger  values to x, 
ca lcula t ing  b and t hen  call ing SOLVE[NTEGER.  I t  is difficult 
to devise signif icant  tes t  cases where  det(A) ~ d >> 1 as th i s  
involves assigning values of x sa t i s fy ing  Ax=O (mod d). Th i s  
implies d mus t  be a divisor  of det (A) which mus t  therefore  be  

514  C o m m u n i c a t i o n s  o f  t h e  .AC~I 

prcc.alcuiated. Bu t  deg ( : t )  may overflow evea @ough t.here may  
be a d for which  solutiot~, is possib!e.  Who,,, m -:n i.lm values of 
x and d will usua l ly  be, according ~o C'.ranaer's rule, r!.th order 
de t e rminan t s ,  or h igh divisors  thereof,  which m~v ~xeeed 
machine capaci ty .  When  the e lements  of boi:h b astd A are chosen 
equ iprobab ly  between --~ and  +cz, iacl~tsive, it. can be s.howt~ 
t h a t  the  s t a n d a r d  dev ia t ion  of such a d e t e r m i n a n t  is 
f " I " r  / O ~  . ,,n;c~- ( a - r l )  ~/,,) . Since this  is a n  upper  bound  for the  expected 
absolute  va lue  of such a de t e rminan t ,  i t  may  be used as a r,tle of 
t h u m b  to p red ic t  overflow, i f  c~=13, then  for n = l l  ibis w~!uc 
is 10 ta.f' and for  n = 1 2  it is 10 ~s.°, 1604 capac i ty  is 101~.I. in  [es{. 
eases, the  procedure  i nva r i ab ly  succeeded for  n = l t  ~nd in- 
va r i ab ly  fai led for n = 1 2 .  (Remember ,  we are referr ing t~ eases 
where b is chosen randomly  so that. an in teger  soluvi.:~t~ will 
ha rd ly  ever  exist .)  

Note  t h a t  if m = l ,  this  a lgo r i thm solves the  ged problem % 
much  the same way as Algor i thm 237 [Jo E. L. Peek,  C , ,on .  
ACM 8 (Aug. 1964), 481]; 

b e g i n  i n t e g e r  i, j ,  rank, s; 
i n t e g e r  a r r a y  mat [1 : n + l ~  1 : m . + n + l ] ;  
fo r  j := 1 s t e p  1 u n t i l  m d o  
b e g i n  mat [1,j] :=  - b  [j]; 

for i := 1 s t e p  1 u n t i l  n do  mat [i~-l, j] :=  A [j,i] 
e n d ;  
for j :=  1 s t e p  1 u n t i l  n + l  d o  
for i :=  1 s t e p  1 u n t i l  n + l  d o  

mat [i, j+m]  := i f  i = j t h e n  i e l se  0; 
rank := L \ : T R A N K  (,mat, n + l ,  r e + l ,  n ) ;  
d :=  mat [rank, m + 1 ] ;  
i f d  = 0 t h e n  b e g i n  SOLVEI:X+Tt~EJg := f a l s e ;  go to OUT 

e n d ;  
for  i := rank s t e p  1 u n t i l  m. do  

i f  mat [rank, i] ~ 0 t h e n  
b e g i n  SOLVE[:VTEGER :=  f a l s e ;  go to  OUT 
e n d ;  

SOLVEINTEG.ER := t r u e ;  
s :=  i f d  < 0 t h e n  - - i  e l s c l ;  d : = s X d ;  
k := n -  rank + 1; 
for  i :=  1 s t e p  1 u n t i l  n d o  
b e g i n  x[i] : =  mat [rank, m--t-/+l]  X s; 

for  j :=  1 s t e p  1 u n t i l  k d o  
Y [j,i] :=  mat [rank+j, m + i + l ]  

e n d ;  
OUT: 
e n d  of p rocedure  SOLVEINTEGER 

ALGORITHM 289 
CONFIDENCE INTERVAL FOR A RATIO [GI] 
I. D. HiLL and M. C. PIKE (Recd. 8 Oct. 1965) 
Statistical Research Unit, ~ledieal Research Counei|, 
London, England 

p r o c e d u r e  Fieller (y, x, Kay, Vxy, Vxx, t, rl ,  r2, inclusive); 
v a l u e  y, x, Vyy, Vxy, Vxx, t; 
r e a l  y, x, Vyy, Vxy, Kxx, t, rl ,  r2; 
B o o l e a n  inclusive; 

c o m m e n t  T h i s  procedure  finds the  ( 1 - 2 X a )  confidence lba i t s  
for  014~ where  y and  x are es t imates  of 0 and  ~ respect ively,  
sub iec t  to r a n d o m  errors  ' no rma l ly '  d i s t r i bu t ed  wi th  zero means,  
va r iance  es t imates  Vyy and Vxx, and covar iance  es t imate  Vzy, 
each based on  f degrees of f reedom, and  t is the  upper  (100Xa) 
percen t  p o i n t  of the  t d i s t r i bu t ion  on f degrees of freedom. 

At  exit ,  if inclusive is t r u e  then  the  confidence in te rva l  in~ 
eludes all values  such t h a t  r l  ~ vahm ~ r2. Otherwise the 

Continued on page 518. 
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