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(2) and its derivative B’ are polynomials which arose
naturally in a recent application of PM, where it was de-
sired to find whether E has any multiple factors. Both pairs
of polynomials turn out to be relatively prime. Using the
old algorithm, the computation (1) required 0.64 seconds;
using the new algorithm, it required 0.22 seconds. The
advantage of the new algorithm increases rapidly with the
complexity of the polynomials to which it is applied. Tt
did the computation (2} in 0.30 minutes, while the old
algorithm required 21.11 minutes!
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Experience with FORMAC Algorithm Design
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International Business Mechines Corporation,* Cambridge, Mossachusetts

Various facets of the design and implementation of mathe-
matical expression manipulation calgorithms are discussed.
Concrete examples are provided by the FORMAC EXPAND
and differentiation algorithms, a basic FORMAC utility routine,
and an experiment in the extraction of the skeletal structure
of an expression. One recurrent theme is the need to avoid
excessive intermediate expression swell in order to minimize
core storage requirements. Although many details from the
FORMAC implementation cre presented, cn attempt is made
to stress principles and ideas of general relevance in the de-
sign of algorithms for manipulating mathematical expressions.

Introduction

Shortly after the IFormacC experimental programming
syslem first became operational in April, 1964, a small
group of programmers and mathematicians began to
experiment with the Formac object-time routines. One
explicit goal was to seek improvements to particular
Formac expression manipulation algorithms; another
less provincial goal was to isolate and study general or
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theoretical problems—problems independent of a particu-
lar infernal representation or implementation—which
arise in the design of mathematical expression manipula-
tion algorithms. Several highlights of this experimenta-
tion, which led to the improvement of Formac algorithms,
and which have implication for algorithm design of & more
general nature, are presented in this paper.

The Formac capability is deseribed in increasing
amounts of detail in {1, 2, 3]. Some details of Formac
implementation are presented in [4]. The role of automatic
simplification in Formac is sketehed in detail in [5], and
applications that have been made of the Formac system
are described in [6]. Some familiarily with these papers is
agsumed in the discussion which follows.

This paper is divided into four sections. In the first
scetion, problems encountered in design of expansion
algorithms (the Formac EXPAND command) are dis-
cussed. The sceond section is devoted to alternative or-
ganigations of the differentiation algorithm. Examples con-
trast the output produced by the two differeni routines.
The third section discusses a simple-minded idea concern-
ing expression seanning and error checking; it leads to an
order of magnitude increase in the efficiency of the Forvac
system. The last section deals with the problem of incom-
prehensible mathematical expressions; an experiment in
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the extraction of the skeletal structure of an expression is
described. One implication is that certain techniques can
be readily implemented for reducing enormous expres-
gions (o a comprehensible form.

Expansion Algorithms and Intermediate Swell

Expansion, the algebraic operation of multiplying out a
product of sums, is & transformation of central importance
in the manipulation of mathematical expressions. In Figure
1 three forms for p;, the third Legendre polynomial, are
displayed. The first form indicates how the polynomial
looks when generated from the basic iterative relation
(also displayed in Figure 1) without henefit of cxpansion.

=2
»—-14d
Pn = 0Pa1 + ——— — [pa-l
n  dx

pr= 2@+ 3zt — 1) + 2@ — 1)
=zttt —dx+2P—x

2! — Bz

|
i

Fia.1. Expansion and collapsing of the Legendre polynomial, pa .

The second form for the polynomial is that obtained by
expansion without collection of like terms. The third form
has been obtained from the second by collection of like
terms, This example indicates that the unexpanded form
of a polynomial may require more space for its representa-
tion than the expanded form and much more space than
the simplified form.

In some symbolic computations the expanded form—
prior to the collection of like terms—requires a great deal
more space than either the unexpanded form or the com-
pletely simplified form for the expression. Such is the case
with the symbolic caleulation of f and g series as reported
in [7]. Figure 2 displays the space requirements for the
4th through the 11th cocfficients, the f;, of the f series.
Four sets of data arc displayed. The first {+) is the size of
the expression at input to the EXPAND command. The
next two (¢ + ) represent the maximum space required
by the expression as a result of the EXPAND algorithm,
The fourth data curve (X} gives the size of the expres-
sion after expansion and simplification. It is obvious from
this display thal expansion requires more space for ex-
pression representation before it requires less space. We
call this phenomena, #ntermediate expression swell. In the
design of algorithms for symbolic expression manipulation,
it is important to minimize intermediate expression swell,
The need for minimization is apparent [rom Figure 2; if
only 1000 units of memory space are available for expres-
sion manipulation, then execution of the program utilizing
the original BXPAND algorithm would cease during the
generation of the 10th iterate. Iy requires more than 1000
units of core storage for its generation due to intermediate
expression swell. In this section the partial redesign of the
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FORMAC EXPAND algorithm to minimize intermediate
expression swell is discussed.

ExpanstoN oF Propuers oF SuMs

The original FORMAC EXPAND algorithm (opera-
tional in April, 1964) generated all the terms in the ex-
panded sum before attempting lo collect like terms. Thig
brute force approach to the organization of expansion led
to the enormous intermediate swell indicated in Figure 2.
The frequent exhaustion of work space while expanding
expressions made it obvious that it was neccssary to re-
organize the comamunication between the EXPAND
algorithm and AUTSIM—the Formac AUTomatic SIM-
plification routine [5]. The EXPAND routine was reor-
ganized so that the EXPAND transformation was driven
by the AUTSIM ftransfer table. This reorganization cut
down intermediate swell as is indicated by the + data
points in Figure 2. As is to be expected in the organiza-
tion of computer algorithms, this decrease in space re-
quirement was bought with execution time. In Figure 3,
expression size is plotted against execution time in seconds
for fui . The solid line indicates expression size under the
original EXPAND algorithm. Note that the time at

Space required in hundreds of 7090/94 words
T ™
T
LY
&

Fic. 3. Expansion of
11th iterate (execu-
tion time in seconds)
for both algorithms

intermediate swell produeed by first EXPAND algorithm.

intermediatc swell produeed by improved EXPAND (type
I1T release).

size of expression at input to EXPAND.

X size of expression after expansion and simplification.

Fia. 2. Space required for 4th through
11th iterates

+&
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which the maximum space is required is known exactly.
The portion of this curve in which the space requirement
for expansion is inereasing (1) corresponds to the time
in the EXPAND algorithm. The portion of the curve in
which the space requirement is deereasing (2) corresponds
to the time in the AUTSIM algorithm. The (wo slashed
lines (3 and 8') indicate a maximum and minimum ex-
pansion AUTSIM interaction. Since EXPANT) and AUT-
SIM are inlerconnected, there is no meaningful scpa-
ration of the two algorithms on these curves.

Figure 4 displays the conceptual differcnce between the
two expansion algorithms. Figure 4A indicates how ex-
pansion and simplification are performed by the original
EXPAND algorithm. Figure 4B indiecates the approach
taken in the improved expansion algorithm. The meshing
of the EXPAND algorithm with the AUTSIM algorithm
gives the EXPAND algorithm immediate access to
LEXICO—short for LEXICOgraphical reordering (see
[5])—the routine that collects like terms in a sum. As each
term of the expanded product is gencrated, it is added to
the intermediate results and an attempt is made, via
LEXICO, to colleet like terms in that sum. The algorithm
bounces back and forth between term generation and
colleetion of like terms in the sum. In this manner, inter-
mediate expression swell is minimized.

a+bd—c)o~—-b+e)

EXPAND | @+b—ca-+la+b—c)=b+@+b—ce

—E-}SHJ3>aﬁ—l—ab—ac—ab—l)2—i—l)c:-+-c¢::+lic—-cz

AUT
—_— _ el e
SIM » a2 b2 14 2be

(A) No intermediate collection of like terms
(9 terins maximum swell)

Term L
2 L, 2
Generator. % =+ ab eb + o
Term L
Cenerator ab + g — ac —— ab — ac + a?
Term I
— 3 — [ 2
Cionerator > 02 —ac + @ ab 4 ac + a
Term L
CGonomior” — G+ at — ¥ —— —ac+at — ¥
Term L
Gemomator” — 0¢ T a* — b2+ be —— —ac + o' + bc — b*
Term s "
Gonemio? — ac + a* + be ~ b 4 ac
L Term L
—"o gt e — b a2 4 e — b7 ok be — a?+be2 — B?
Term L
2 — hr — g2 2 — b — g2
Generater” 8%+ bcZ — b 2 — at + be2 — b ¢

(B) Intermediate coliection of like terms while terms
are generated (5 terms maximum swell). The
LEXICO sorting order for expressions is deseribed
in [3].

Fiag. 4. Contrast hetween the two expansion algorithms
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There is an additional contrast between the fwo EX-
PAND algorithms. As is obvious from Figure 4A, the
original EXPAND routine depended upon sucecssive
applications of the right, distributive law; the intermediate
expressions displayed in Figure 4A arc actually generated
ag part of the expansgion. The improved EXPAND al-
gorithm generates terms directly by a nested iteration. It
is possible to contrast the two IEXDPAND algorithms by
saying that the original EXPAND algorithm only knew
the right distributive law and applied it successively,
whereas the improved algorithim is aware of the general
theoren implied by the distributive law and applies that
theorem directly.

MuorrivoMmiar ExpansioN

If the algorithm deseribed above were applied to a sum
raised to an intcgral power in order to accomplish the ex-
pansion, then growth inefficiencies with respect to inter-
mediate swell would oceur. Consider the expression (4,
+ A +---+ A" where n and % are positive integers.
The EXPAND algorithm described above would gener-
ate (n + 1}* distinet terms if applied to this expression.
However, direct application of the generalized multi-

nomial theorem will produce (n : k) distinet terms. This

is, in general, much smaller than (n + 1)*. The algorithm
implied by the multinomial theorem has one further ad-
vantage: if each of the variables which appear as terms in
the above sum are distinet, then there can be no collapsing
{or collecting) of like terms in the sum generated by the
multinomial theorem. Hence, the multinomial theorem is
a valuable tool in avoiding the problem of intermediate
swell ag encountered in the ordinary expansion algorithm,
Suppose, however, that A; = a2° with the e¢; numeric.
Then like terms will not have been collceted in the sum
produced by multinomial expansion. In fact, this case of a
polynomial in a single variable is the worst possible case
with respect to the contrast between the size of the expres-
sion after multinomial expansion and the size of the ex-
pression after the collection of like terms. In this particu-
lar case, the simplified polynomial will consist of n-k 4+ 1

terms. This is considerably smaller than (n : A) terms,

If the sum of the A; is a polynomial in several variables,
the contrast will not be so great.

In order to make concrete the contrast in the number
of terms required, and hence the space required, in these
various cases, consider the 5th degree polynomial g(z)
= 2+ 3z + 19 + 72° + 52° + 2° in a single variable.
Raise it to the 6th power, k(z) = [g{2)]". If the original
EXPAND algorithm were applied, h{z} would require
6° = 44656 terms for the intermediate result. With the
improved EXPANTD algorithm, this would require much
less space but would greatly increase the execution time.

Straightforward multinomial expansion will generate (151 )

= 462 terms. But the simplified polynomial requires only
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56 -4 1 = 31 terms, With respect to minimization of
intermediate expression swell, multinomial expansion og-
cupics middle ground; in one extreme case it provides the
optimal result; in the other extreme it is highly inefficient.

The EXPAND algorithm currently operational within
the Formac system performs multinomial expansion;
however, this section of the algorithm has no contact with
LEXICO until all the terms have been generated. Users
of the experimental Formac system can expect (o en-
counter great inefficiency in space utilization when raising
polynomials to a power.

If one takes the basic unit of core storage to be that
storage required to represent a term of a gum (this is
admittedly variable and depends upon the nature of the
term), it becomes obvious that the above remarks apply
to the organization of EXPAND algorithms for any ex-
pression manipulation system. The concept of infermediate
expression swell is independent of efficiencies in repre-
sentation which may accrue due to a limited or well-
structured data base; e.g., it applies equally well to poly-
nomial manipulation systems which can make ellicient
use of storage space since the polynonual data slructure
is asswned. It is clear that disastrous infermediate swell
while expanding expressions can be avoided by designing
an expansion algorithm that ufilizes the multinomial
theorem and collects like terms simultaneously with the
generation of those terms. How one organizes the com-
munication between the term-generation funetion and the
collection of like terms, so as to minimize execution time,
is an intriguing problem which will, no doubt, be the sub-
ject of further study.

DifTerentiation in FORMAC

The two expressions displayed in Figure 5 are the third
iterates generated by the Formac program cited in [7].

Original Differentiation Algorithm:

Jo= ((0 — (({ — (Oue + 3(—3po)e + 3ule — 2°)))0
+ (=83ue)0) + ((—8pe)0 + u0))) — ((—3pe) (0 -+ 1)
+ w0+ 0})) — ul0 4+ 0) + (0 — 40))

Revized Algorithm:
fa = {({(= (({—(3(—B8ad)e + Bale — 207)))0)))

= (=3} @+ 1))) — w0+ (0 — x0))
The sxpression simplifies to 3po.

Fia. 5. Contrast between differentiation algorithms

They have been generated withous the benefit of AUTSIM,
the Formac automatic simplification routine [3]. The first
expression is the form generated by the original Formac
differentiation program. The second expression was gen-
erated by a redesigned differentiation algorithm that does
not generate as many redundant elements—the majority
of the redundancies in this expression arise from sourcecs
other than the differentiation algorithm. The redundancies
that were eliminated by the redesign are apparent from a
careful comparison of the two expressions in Figure 5.
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Hanson, Caviness and Joseph, in their work at the Uni-
versity of North Carclina (8], recognized that their method
of generating derivalives introduced a large number of
redundancies that required elimination. They observed
that there were two ways to aceomplish this: (1) Perform
a gecond scan over the differentiated expression to clean
up the redundancics, or {2) climinate the redundancies as
they are generated. They chose the second alternative,
The original Formac differentiation algorithm imple-
mented the first alternative with AUTSIM performing
the second sean. The new I'MCDIT subroutine implements
& third alternative: (3) Perform a preliminary sean over
the input expression so that dependency relations are
known during the main scan; few redundant expression

TABLE I. TransrForMATIONS IN OHRIGINAL
DIFFERENTIATION ALGORITHM

D— 2= —D2X

Dexph—xexpADi]

Dlogh—+«TA—1DA]

Dsinhx—+cosx D]

Deosh— —#=sinADN]

Datanx >« T+1Ta2]—-1D2x]

Dtanhx—+4 T4 exprexp—A]—2Dn]

Dfacx—0

(The gamma function representation for the factorial is not
employed. The factorial funclion is assumed discrete.)
9. Ddfex—0

10 D TAN—=++ TA+N—=1]1DAN]xJogA DN TAXN]]

11. Deombax—0

]2‘ D+)\1}\2"'}\3]—}+D?\1Dh2"'D)\a]

13. Derdgr-ng ] — F 5% DA a Vs NDhee- o0 ] -

Dl
14, LEAE A, DANSLforn = 2,

e

* AAge -

for A dependent upon z (declared so in

the FormMage DEPEND statement).
D x50 forxindependent of .

prn®
F @
dz

TABLE II. TRANSFORMATIONS IN REVISED ALGORITHM

0’ Given D), M€ B. If lead element of A is independent of
variable of differentiation, then D\ — 0.
Otherwise, apply the application transformation from the
remainder of table.
See transformations 1-7 of Table I.
Dependency scan eliminatcs need for transformations 8,
9. {md 11.
10/ DTA7.\—>same as 10 '
DTAx—=*TA —E—}_\~1]DA?\I
DTaN— +logAD X Tax ]
12' D+, N ] >+ Driy- - D i, | where only those Aij oceur
which are dependent upon the variable of differentiation.
13 Dar, o Ae]— A - %X Dag- N ] -+ | where products
are generated only for A: which are dependent upon the
variable of differentiation.

. . A
14" IfNGC A, DANE 1fora=xz; DA E; ((—l—x (the symbolic name

of the derivative) for A ## 2.
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elements arc generated. The design of the first Formac
algorithm was simplified by the assumption that AUTSIM
would clean up expressions—remove redundant elements
—after the differentiation transformations had been per-
formed. As js clear from a study of Tables I and TI, this
assuraption eliminated the necessity to design transfor-
mations for specific subcases of the differentiation trans-
formations of Table I. Several such subcases are handled
by specific transformations in the redesigned algorithm
(Table TT}. In this section we discuss the organization of
both differentiation routines and indiecate how sources of
redundaney In expressions have been eliminated.

The elimination of redundant expression elements de-
creases intermediate expression swell. This is very signifi-
cant for differentiation algorithms since symbolic differ-
entiation generates deceptively complicated expressions
quite rapidly. Reference [9] provides interesting docu-
mentation of this phenomena.

TuE FORMAC ALGORITHM

The structure of the Formac differentiation routincs is
most easily presented by considering mathematical ex-
pressions in the ForMac internal representation, delimiter
Polish {see [5]). For our purposes, it is suflicient to define
delimiter Polish as a formal mathematical system. The
two differentiation algorithms are then defined in terms
of formal operations upon elements of this formal system.

Let A be the set of primitive elements (constants and
variables) in this system, An elemeniary function will be
defined as a function that can be represented by an ex-
pression in the set B of expressions generated from the
primitive elements by the rules listed below.

Buasic operators:

Unary operators: —, exp, log, sin, cos, atan, tanh, fae, dfe
Binary operators: T (x+), comb
Variary operators: 4, «
In addition, there is a delimiter, | .
Rules for generation of expressions in B:
1. fxed,neB;

2. Letn € B. Then —9, exp», log v, sin g, cos 7, atan », tanh 5,
faec n, dfc » are in B,

3. Lety, » € B. Then ToA and comb gA are in B.

4. Let g, -+, 7 € B. Then 4y -
in B.

5. These arc the only expressions in B.

- sl and * ame -+« 94] are

Sample expressions in B:

Infix Nolation Deliminter Pokish
A-B+ 0 + 4 — BC);
(cos (y))*sintz—) T cos y * sin -+ « — y]2].
A/B «ATE~1]

First Algorithm

Let D be the differential operator; it is unary. We define
C as the set of expressions generated by the rules for B
with the addition of the following rule:

6. If x€ B,DNE C.
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The transformations of Table I define an algorithm for
differentiating any X in the set B. Each lransformation of
Table I suppresses the operator D to a point further to the
right in the delimiter Polish expression. Successive applica-
tion of these transformations suppresses the occurrences
of D so0 that it opcrates only on primitive elements; and
finally, application of Rule 14 climinates all cceurrences
of D from the expression. Such iterative application of
these transformations is itself & transformation from the
set, C to the set B. The transform is a symbolic form for
the derivative of the original operand of the operator D.

The transformations presented in Table I are sullicient
to provide a differentiation algorithm. The organization of
the expression sean to implement such an algorithm is
clear. A simple left-to-right scan, which applies the trans-
formations of Table I to suppress and hence remove all
oceurrences of the operator D, is all that is required. The
resulls, however, contain redundant subexpressions—
automatic simplification of the expression is required.
Several illustrative examples are displayed below. In these
examples, the variable appearing over the arrow is the
variable of differentiation.

(8) DT X255 £+t X+2-1)DX2~logXD271 X2

S+« T X+2-11121+logX0 7 X2
ATUT

sor * Xz

(b) Dtanh1l 5 %4 T +explexp —1] — 2D 1]
Liwd T 4 explexp — 1] =20
AUT
—
S5IM
(6) DxXY V3% +«DXYV3+«XDY V3
«XYDV3+XY VD3l
L 4«0V V3«X0Va«XY13+«X Y V0
AUT

T X Y 3l

The above examples are extreme in that the action of
AUTSIM produces a dramatic reduction in the size of the
expression. They illustrate, however, the extent to which
the original differentiation routine depended upon auto-
matic simplification to clean up its tracks. It is obvious
that expressions were generated with unnecessarily large
intermediate swell.

Second Algorithm:

The redesign of the differentiation algorithm includes a
preliminary scan, performed to determine which subex-
pressions are dependent upon the variable of differentia-
tion. As a resuif, one can determine immediately whether
a given operator heads an expression that is dependent or
independent of the variable of differentiation. This in-
formation eliminates the need to generate such horrendous
cxpressions as displayed in example (b) above; it is known
immedintely that the tanh operator heads an expression
that is independent of the variable of differentiation.

The new set of transformations is displayed in Table
II. The first transformation indieates an alternative to
any of the first thirteen transformations in Table 1. The
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alternative is invoked only in the case of nondependency.
The changes to the other {ransformations are self-explana-
tory. The initial dependency scan utilizes a pushdown in
order to scan inte the expression, recognize dependency
relationships, and back out of the expression marking the
operators that have dependent subexpressions.

The effect of these changes to the differentiation al-
gorithm can be seen by looking at the results of the follow-
ing three examples. The input expressions are displayed
after the dependency scan, on the lefl. The dot ahove the
various symhols indicates that the dependency bit on these
operators or variables has been set.

(@ DifX254+1 X4+2-1]12
AUT
stn’ * X 2
{(b) Dtanh1l-—0
c) DiXY V3 L2+=X¥Y13]
AUT
I i X ¥ 3.

Although some expression redundancies still remain to
be cleaned up by the AUTSIM routine, intermediate ex-
pression swell has been greatly reduced by this revised
algorithm. Moreover, the new algorithm represents about
a 4 percent decreasge in execution time requirements; it is

slightly morc efficient than the old algorithm.
Subexpression Scan-Off Algorithm in FORMAC

Several ForMaC object-time algorithms require a basie
operation that is performed by the routine FMCSEX. It
is frecquently nccessary to scan over compiete subexpres-
sion clements embedded in the expression currently being
manipulated. This task may be performed to obtain the
beginning and end of an expression so that it may be de-
leted or repositioned, or simply to scan over the expres-
sion so that the next argument of the governing operator
{(see [5]) may be scanned. For example, consider the de-
limiter Polish expression + * A B3} 7 «BC]12 D]
It may be necessary to scan over the first underlined prod-
uct in order to look at the second argument under a sum.
Or, it may be nceessary to determine the form of the ex-
ponent under a power operator, T . This necessitates scan-
ning over the second underlined product expression,

The cfficiency with which this operation is perlormed
is surprisingly crucial to the total efliciency of the Formac
object-time system. Figure 6 graphically displays the time
requirements for various Formac subroutines during the
execution of a particular program. The length of the bars
indicate the time spent in cach routine. The higher rou-
tines call the lower routines directly if ihe routines are
adjacent,; indirectly, if not. The top display indicates the
time spent in the original FMCBEX routine, It is apparent
that over half the time is spent in this routine. It was a
surprise to the implementers of the Formac object-time
system that the FMCSEX routine represented this large a
proportion of the work required to manipulate symbolic
expressions.
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A new and different, approach to the scan-off algorithm
was coded in order to avoid this excessive waste of time.
The original algorithm did complete testing for well-
formedness. It used a pushdown store and was quite slow.
The new algorithm, coded using the compare instructions
of the 7090 family of computers, required the same space
(due to compare tables} but does no checking for ill-
formedness in expressions. The bottom display in Tigure 6
indicates the dramatic reduction in execution time due to
this algorithm.

The contrast pictured in Figure 6 provides still another
example of a hasic principle related to the design and
implementation of large systems. When debugging a com-
plex system, routines that perform complete error check-
ing are a necessity. Without thom, it is impossible to lo-
cate system bugs. Once the system has been debugged and
it is put into actual production use, error-checking sub-
routines may be replaced with much more rapid routines
that enhance total performance but do no error checking.

Skeletal Structure Extraction

The development of formal mathematical expression
manipulation systems such as ArLpax, Formula Avrcor,
and ForMmAc, presents the seientist with a new data editing
problem. The problem is analogous to that faced by physi-
cists ten yvears ago when computers were first used to
generate large volumes of numerical data. The physicist
soon learned that data editing prior to output was es-
sential if he was to comprehend the implications of his
data.

It is not abnormal for expressions generated by Tormac
to require 2 to 300 lines (120 characters each) of listing
when cutput. Such expressions are incomprehensible to the
human reader. The cxpression is composed of several
thousand characters and the main mathematical operators,
which determine the essential nature of the expression,
arc buried somewhere within the massive listing of sym-
bols. This situation will be aggravated as the various space

MAIN PROGRAM 1
LET COMMAND

MURSTMA NN NY
AN | :

FMCSEX | [ FMCSEX |

MAIN PROG.

0 5 10 15 26 25 30 5%
EXECUTICN TIME IN SECONDS

Fia. 6. Contrast in time required by the two FMCSEX routines
during execution of a specilic program.
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and tine limitations on compuier systems for formal
mathematics are reduced or eliminated. In the future it
will be possible and perhaps common to generate and to
manipulate expressions with hundreds of thousands or
more clements. In such a situation the scientist or engineer
will be swamped with overwhelming mathematical detail
unless algorithms are developed for extracting and present-
ing the essential or skeletal structure of symbolic expres-
sions. This problem is ever more acute in o time-shared,
conversalional envirenment,

In this section an experiment in skeletal structure ex-
traction utilizing FormAc is discussed. Skeletal structure
cxtraction simplifies expressions by replacing subexpres-
sions with single wvariables. This operation suppresses
detail in an cxpression, therchy revealing the skcletal
structure of the expression. This work was conceived and
executed by James Baker, at the IBM Boston Program-
ming Center.

The experiment was inspired by an attempt to establish
that output from the North Carolina differentiation rou-
tine [8] was equivalent to the output of the Formac differ-
entiation routine. Figure 7 displays the input expression

INPUT = (gsin®*é -+ hoos®i + 4 ((/2 -+ 2f(gsin? ¢ + h cos? i)
+ ¢ sin? £ + A? cos? ) (1 + 2i(g sin? ¢ + R cos? ©)
+ (gt sin® ¢ + A2 cos?£)))¥ -+ i(f(g sin? ¢ + b cos??)
+ g2 sin ¢ 4+ A? eos? £))/((1 — fi){g sin® £ 4 h cos® 4
4 F 4 (2 + 2f{g sin® 7 + h cos? 1)
- g?sin® £ - k% cos? £)1)))

Fi1c. 7. The inpnt expression as published in [8]

as published in [8]. Tfigurc 8 displays the output from the
Formac differentiation routine and the North Carolina
result in Formac notation. Both expressions have been
transformed by AUTSIM. The initial attermapt to check
the equivalence of these expressions was made utilizing
the Formac match-for-equivalence capability (MATCH
FQ Command). This effort failed due to lack of adequate
space in the computer. (The MATCH EQ algorithm em-
ploys several calls to the EXPAND algorithm. This work
was carried out when the original EXPAND algorithm
was the only one available; hence, simple matches for
equivalence ran out of space duc to excessive intermediate
expression swell.) The equivalence of the two results was
verified by hand. However, it was hoped that the equiva-
lence could be shown using Forvac by “shrinking” both
outputs and then performing a match for equivalence on
the shrunken forms,

Mathematical expressions are shrunk by the routine
SHRINK. It is called with the name of a Formac ex-
pression and the name of two parallel lists. Upon each eall
to SITRINK, the bottom-level subexpressions of the ex-
pression are replaced by atomic variables, the elements of
the first list. The corresponding elements of the second
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list are defined as the subexpressions that the atomic
variables replace. The parallel lists (or dictionary), which
were generated in the successive shrinking of the expres-
gions in TFigure 8 are displayed in Table TTT; the A-list
containg the atomie variables (variables which name them-
selves) and the L-list contains the corresponding expres-
sions. A glance at the L-array indicates what is meant by

North Carolina Differentiation Result in FORMAC
Notation (Rearrangement is due to AUTSIM):

(F+(FoIGAFMCSINI T a2  O+HuFMCCOS{1)»22,0)22,0+Fse2,04Cme2, 0+
FMCSINCT ) #22 0sHawZ ,O#FMCCOSIL) 222, 0)0a5, 0E~14GoaFMUSINII)un
2.C+H*FMCCOSII)u42.0)5ai-2,0)n(-FeT¢]l.Cluwi-1.0In{=[F+FulCn
FMCSINCT ) #02 ,Q+H*FMCCOS (1) au2 0} o T4 {F4(GRFMCSINIT)mu2 04
FMCCOS{IIna2. CinZ CHFu#2 . CHGan2 CnFMCSIN(T)ea2 Copang Cn
FMCOCSITYe#2, ChrueS,QE-1n{{CafFPCSIN{TI)®a2,C+hafNCLCS{I)n=2,0)
ATe2.04(Goe2 GoFFCSIMI T naZ Cobuud CaFMCOLSIEIne2 . CinTna2, (4
1.C) 85 CE~L+GaFNMCSINC 1 eaZ C+{CanZ CoFNCSIN{])ra2 Cobue? [+
FMCCOSII)ne?,ClulerofFMOCOSIIIne2 Clo{(Fe{GsFFCSINITINFFCLOST
[}#2 . CHHRFMCSINCIYFNCCES(T)#{(~2,0)}22.CoCanz, CuFNFCSINIT )
FNCCCSITI2,Corna2 CoFPCSIN{ I aFNCCCS{Ia(-2.C))olFe(Cn
FPCSIN{I)aw2 C+-aFNCCCS(I)aaZ.Ched,CoFnen2 CeCoai . CoFFCSINIT)
*a2. CHrund COFFCCCS(I)0a2 Chem (-5, GE-1) w5 CE-LACAFMCSTIMLL )
ENOCCSUT a2, 0+-8FRCSIN(I)aFMCOOSIT) o {=2,0)} )+ (Fe(FelGaFMCSIN
11262, CoHoFNCCCSITIme2,C)u2,CrFued C4Can CoFNLSIN{)en2.04+H
2a2 ,0#FMCCOSIT)w82. .0 ueS . CE-1+GHFMCSINITIw a2 CHH4FNLCCSTT)aw
2.C e (FO(G#FMCSTINIII #FPCCOSIT)#2 Q4o FMCSIM(I)#FFCCAS( )L
—2.CH )T+ [Fal(CoFMCSIN{T 22 Co-arMCCCS{TIwe2, 0102, CoFra2, 045
#42 O#FNMCSINUD}#82,C+hus2 , CoFPCCCS( T nwZ Clon(-5,CE-1}o{([Fe{
GRaFMCSIN(TYSFMECCS{ )22, CoraFFCSIN(IIaFMCCCSITIn(-2,.C1)2.C+
Can2 CnFNCSINITIRENCCCS (T ) @Z Colhoa2 CoFMCSIN(I)aFMCCLSIT NI
~2CIIR{{CRENCSINII bea2.CoreFFCLCSI I aag Clataz ColGani (o
FMESINI T 1482, 0¢RBa2 CoFMCCCSIT)ms2 C)uTasl Cel CIe(Fa{Cn
FMCSIN(L)#w2 CoHOFMCCCSTIT)ma2.C)n2,CeFua2 C+Cue CaFNCSIN{])
242, 04-2w2 0nFPCCCSIT)ma2. C)m{{GaFMCSINC(I )#FFCCLS{1}22,.Ctke
FMCSIN{I)«FMCCOSII)#(-2.C))aT#2,04(Cu22,0nFMCSINIT}eFNMLCLSIT
Y22, 04202 OfFMCSIN(T Yo FMCCCSITIIN{=2.C3)8Tanz C))m({GuFNFCSIN
(1182 Q+FoFFCCCSII a2, C)uTu2,Cr(GruZ,CoFNMCSIM{I)na2, CrHus
2JCHFNCCCS( ) en2.0)eTam2 ,Col.Clan(~5.CE-1]105.0F-L4CaFFCSINII
YRFMCCCS (1102 0#(Cun2 OsFFCSIN{L) o FMCCOUS(E)®2.C4Fun2 (¥
FFCSIN{ DY eFPCCOS{T ) (~2,C))2#T4beFMCSIN(]}«FRCCCSIT}u(~2.C) 1))

FORMACQC Differentiation Result:

—(F+Fa(GUFMCSINIT )22, 0+HaFMCCOSIIIna2.01 0T+ Fa (GeFMCSINGT)
#a2 O+FAFMCCOSITI 482,02, 04Fnu2, 0elen2 0uFMCSINITIna2. DbHusn
2L CHFMCCCSIT)mu2,Clue5, CE~Lai(GRFRCSIN(L)as2, GoHeFMCCAS (1huw
2.0)eTe2, 0t (Gua2 CoaFNCSIN(TJaw2,0+Fus2 CoFRCCCS (T} a2 ChaTun
20C+1.Cl w5 CE~14CoFFCSIN(] )02, 04(G¥®2 COFNCSINI[)ea?, Chbur
2.CuFNCCCSII @eg . CInT+FaFMCCCSUI] %2, CIulF+{FulGsF}CSIN(I)nn
2oC+RuFNCCOS(TI) a2, C a2 CHFanz CHien2, 00FbCSINITINR2,Coron
2.GeFNCCCSIIIma2,Clan5.CE-1+GOFFCSINIL ) a2 04 FNCCCSI T an
2.C)w{=2,0)%(~FaT4L.CIna(-L.0bu{(Fa{CoFNCSIN{I1FNCCCSIT]e
2.C+HWFFCSINIT)#FMCCCSIIINI-5.C) ) #2.C+Gwa2-GaFNCSINI}n
FMCCCS{I)RZ.CHlan2 CoFNCSIR{ 1) aFMCCCS (T4 =2.C) bn(Fa[C
FMCSINII ) w2 CHHAFNFCOOS(T)an2.C)22.0+Fau2 CrEan2.CHFFCSIN(T)
A2, Ot ra2 CaFNCCLS(IIneZaClanl-5,06-1)05,CE-1+GaFFCSINIL)®
FNCCESUN ) 2. CoreFNCSIRCTbOFNCCOSITINt~2.C1 b4 LF+ (Fo(GREFCSINI
[} am2, CHFaFMCCLS{I)en2,C)uz CHRna2.CIGam2 CHFNCSINIT a2 CoF
#22, 08FMCCLS 11w 2.0) wa5 CE—14GeFNCSIA(T)an2. 04RaFNCCCSI T 0w
2.0)me{=1,0)a(Fe(CaFFCSINIIIHFNCCOSI 1) @2, CHRaENCSIALL)m
FMOCCSUT)@t=2,C0 buTo(Fa{CoFNCSINET)wF¥CCOSEI 2. CoFeRFMCSINGI
VEFNCCLSITI®{=2,C))e2,CoCua2 CAFNCSIAN(IISFPCCCS(I)a2.Ctban
Z.CRFPCSIACEI#FNCCESITDIu{=Z.CI) o {Fa(CuFNCSINII)na2 Corn
FMCOOSIT)me2,0lu2, CHFRe2 CoCoa2 CoFFCSIN(T)nnz, Cobanzoge
FMCCOSUIIae2.C)mw{~5.CE~1 0o ({GRFPCSINCI)au2 CHRafNCCCSITIne
2.C) T2, Ct(Gra2 CoFFCSIN{T)4n2.C4bard CoFFCCESLT)an2,C)aTan
22041 I wa5.CE-1o5.CE~1+(Fa{GoFMCSINI ) ma2.CHraFNCCCSiT}an
2.C182,04Fa02.0+GRIZCaFNCSINI[)nn2, Crlanz  CoFNCCCS(Ta%32,C)
* @5 CE=1a{ICaFMCSTR (1) FFCCCST )42, CHRwFNESIN(II#FFCCCS (T }ag
=2 C )T 4G CaFMCSIALIIHFFCCCS{TIn2 Crrun? CuFbCSINI
VEFNCCCS (1) #(=2.0) )1 ua2.Chal{CoFHCSIN(T) 822 CHraFMCECSITIne
2 01V a2, 0+ (Con2 CaFNCSINITInw2.Cobrn2, CaFMCILS(I)nez, ConTusn
2.C+E.C)an (-5, CE-1) 5, CE-14G*FNCSIAII)@FNCLCSII]#2.0¢(Len2.C
REVCSINIIIOFMCCCSII) 2. C4Fan2 CoFNMCSIN(I)RFMECES(Ide(=2.C) 0
THhaFFCSIN( D) #FPCCCS{T)#(=2.0) ) #(~FsT+1,0)nn({-1.C}

Fia. 8. The differentiation results as they appear in FORMAC
notation after simplification.
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the phrase ‘‘bottom-level subexpression.” It is a subex-
pression with a single mathematical operator (as viewed
in delimiter Polish) and only constants or atomic variables
occurring at the level below that operator, Before creating
a new item on the Z-list and introducing the corresponding
item from the A-list into the expression, SHRINK checks
the previous items on the L-list to make sure that the
expression it is about {o substitute for has not already
been assigned an atomic variable; hence, new atomic
variables are introduced only for new subexpressions. If
SHRINK is called with another expression as argument
but with the same parallel lists, subexpressions in the new
expression, that have already been assigned alomic vari-
ables, will be replaced by those atomic variables. This use
of a common dictionary is a necessity if a match for equiv-
alence is to be attempted on the shrunken forms,

Since subexpressions are replaced by atomic variables,
the resultant expression requires less storage space. More-
over, the new expression can be shrunk again; the process
can be iterated several times in order to achieve a workably
small result. The parallel lists of Table III are the result of
such ileration.

The results obtained by successively shrinking the out-
put expressions of Figure 8 and attempting to match for
cquivalence at each level of the SHRINK are quite inter-
esting. Table IV shows the result of attempting a MATCH
EQ at each level. (Level 0 is the original expression, level
1 the cxpression after one call to SHRINK, and level n
the expression after » ecalls to SHRINK.) At the 7th
SHRINK, the expressions diverge: they no longer contain
the same atomic variables. A simple example indicates
how this can happen. Consider the two expressions (2 + y)
(x — y) anda® — 4°; these have the same atomic variables
initially, but one call to SHRINK will produce the ex-
pressions ayae and az — a4 .

The possibility of matching two structurally different
expressions via the shrinking method depends upon the
level at which the two expressions still contain the same
atomic variables. If the last common atomic level results
in an expression that will match within the confines of
available core slorage, then the match for equivalence will
take place. Otherwise, there is no further hope with this
technique. As is indicated in Table IV, the match belween
the North Carolina differentiation resulls and the Formac
differentiation results took place at the last level prior to
divergence. The Formac MATCH EQ command just
barely made it.

Tt should be noted that trigonometrie identities will
generally eause a structural divergence at a fairly low level.
For example, adding sin (2«) to the North Carolina result
and 2 sin o cos o 1o the Forvac result would cause a di-
vergence al level one; adding sin’e 4 cos®w to the North
Carolina result and 1 to the Formac result would cause a
divergence at level zera (ie., the original expressions
wotld no longer have the same atomie variahles), Thug,
a primitive technigue such ag SHRINK is of limited use
n & complicated context where functional identities apply.
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The results of this experiment indicate the promise of
very simple techniques for developing more powerful
expression manipulating algorithms internal to expression

TABLE TI1. DictioNaRY ENTRIES OF PararinL LisTs
GENBRATED BY SHRINK

A-Lisg L-List A-List L-Lisi
15t Level Sith Level
Al FMCSIN (D A35 A8« FaT
A10 FMCCOS (1) A3 A28+ F =20
Al100 F w2 A37 A28+ T+ 2.0
All G =2 A38  A13 = A20
Al2 Hssx2 A39  A20 T
A13 T =x2 Ad A2 4- A20 - A30
A4 Fe T A40  A32 4+ A33
4nd Level 6th Level
Als Al % +20 A4l A100 + A23 + A24 + A36
Al6 Al10=%2.0 A42  A37 4 A38 + 140
Al7 —Al4d

A8 A1+ A10+ G » 20 7th Level
Al19 Al + A10 = H = (—2.0) A43 A4l =+ 5.0E — 1
A2 Al=A10x A1l «2.0 444 Ad22x50F —1

A2 AL AL0xA12+ (—20) 443 Adl e+ (=508 - 1)
AS6  A42 x % (—50E — 1)

8rd Level Ad7  Adw A4
A2l A15=Q A48 A40 » A4l
A22 A6« H
A23 ALl + A15 8tk Level
A28 412 + ALS 419 A43 « Agd

AB A2l 4 A22 | A43 4 F
AB0 A4+ A45+ 50F — 1

ﬁg if:le]g AB51L  Ad s Add s 445 + 508 — 1
A52  A40 « 443 x 446 = 508 — 1

4th Level AB3  A47 + A48

A28 A21 & A2

A2 A3 4+ AM

A3 A5+ (—1.0)

A30 A2 % F =20

431 AW« FxT

432 A2+ T+ 2.0

A3 Al3+ A%

A3 AT« T

A2 A17 + 1.0

TABLE IV. REesuLTs oF MaTcH FOR LQUIVALENCE AND
STORAGE REQUIREMENTS Or THE EXPRESSIONS AT EAcH
LEVEL OF SHRINKING

Storage Storage
el of o o e Result af MATCH FQ
SHRINE mf;ﬁzr;_)ﬂma jwfmm 1L es il af ]
FORMAC FORMAC

0 898 915 Blew up

1 695 709 Not tried

2 436 449 Not tried

3 278 285 Not tried

4 206 212 Not tried

5 134 140 Blew up

6 it 95 Match

7 62 68 No mateh

(strueture no longer same)
8 41 38 No makch

(strueture no longer same)
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manipulation systems. Possible drawbacks to such ap-
proaches are also implied. The value of SHRINK for
producing comprehensible mathematicul expressions is
indicated in Tigurcs 9 and 10. Here are displayed the two
expressions, the results from the North Carolina differ-
entiation algorithm, and the results from the Foruac
differentiation algorithm, as they appear afier 6 and 7
calls to SHRINK. The essential expression structure is
obvious from this display; indeed, the human being can
now see at a glance that these two expressions are equiva-
lent (Figure 9). (These two expressions were purposely
translated from the linear Forrrax notation. The need
for two-dimensional output of mathematical expressions
in order to make them legible to the mathematician or
scientist is widely aceepted, and work is being done in this
ared {10, 11]. The issue under discussion is independent of

Shrunken North Carplina Result:

- 1A4: A+ Aw 4
[(A18+A19+A:1+Au+‘ Lo e

DAL TR BN 1 Al
2 Vdn v An )(z1+ o2

. 1 4
—]— \/Aa; +_F) - (AIB + Ais + ; ‘\/.:1 )(-4.21 1122 —l— 4‘135 + Aag
= 41

Az
" (A + Am + Ay L FP

+ '\/Azu \/’Aﬂ + F):|

Shrunken FORMAC Result:

1A vVAe | 1 4ev/4a
2 VAa 2 VAe

A N T +}_ Aa
(Au + A=+ VAy + F) o ®Ty /Ay

(dn + An + A + A + VAg VAp + F)

Az
(Aa -+ An + /Ay + FP

(.413 + A+ An + An

Fi1c. 9

Shrunken North Carolina Result:
A+ A+ An+ du 4+ 345 As (Ap -+ A} A + An + A4 5)
— (A4 A+ % A Au)(An + A+ An -+ Ay + dg Au + F))

A
(Ao + Am 4 Ap + F2

Shrunken FORMAC Result:

(A4 A+ A + Ass+ 3 As A Ais + 240 Az Aus)

Aa
An + Ao + A+ I

— (A Ap + 344 Ag)

Az
(An + An 4 da -+ 72

(dn + Ap 4+ A + A + As Au + F) -

F1a. 10
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this problem.) As the expressions which man gencrates
and manipulates by compuler grow in size, the necessity
for techniques far more sophisticated than SHRINK will
become increasingly obvious.

Summary

The importance of avoiding intermediate cxpression
swell in the design of algorithims for symbolic manipula-
tion of formulas has been indicated by remarks coneerning
the design of cxpand algorithms and differentiation al-
gorithms. As in all computer processing, this may boil
down to the problem of designing algorithms that are
slower but require less space. In the case of differentiation,
however, the improved algorithm eliminated redundant
processing as well as redundant data, resulting in slightly
faster execution than the original algorithm. The old
truism that speed can be bought by eliminating error-
checking is again borne out by the discussion of the
FMCSEX subroutine.

The basic problem addressed by the SHRINK routline
promises to be a challenge to future investigators, Mathe-
malticians, engineers and seientists will be using the com-
puter to generate symbolic expressions much larger and
more complicated than any they have seen before. Suitable
techniques must be developed to make the essential mean-
ing of these expressions cownprehensible.
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