
(2) and its derivative R '  are polynomials which arose 
naturally in a recent application of PM,  where it was de- 
sired to find whether R has any multiple factors. Both pairs 
of polynomials turn out to be relatively prime. Using the 
old algorithm, the computation (1) required 0.64 seconds; 
using the new algorithm, it required 0.22 seconds. The 
advantage of the new algorithm increases rapidly with the 
complexity of the polynomials to which it is applied. I t  
did the computation (2) in 0.30 minutes, while the old 
algorithm required 21.11 minutes! 

REFERENCES 

1. COLLINS, G. E. A method for overlapping and erasure of lists. 
Comm. ACM 8 (Dec. 1960), 655--657. 

2. - - .  REFCO III ,  a reference count list processing system 
for the IBM 7094. IBM Res. Rept. RC-1436, May, 1965. 

3. MCCARTHY, 3'., ET AL. LISP  I programmer ' s  manual .  Com- 
pu ta t ion  Center and Res. Lab. of Electronics, MIT, Cam- 
bridge, Mass., 1960. 

4. WmZENBAUM, J. Symmetric list processor. Comm. ACM 6 
(Sept. 1963), 524-543. 

5. GLASNER, JUDITH, ET AL. The NU-SPEAK system. NYO- 
1480-9, Courant Inst. of Mathematical Sciences, New York 
University, New York, N.Y., Nov. 1964. 

6. POPE, DAVID A., AND STEIN, MARVIN L. Multiple precision 
arithmetic. Comm. ACM 3 (Dee. 1960), 652-654. 

7. Cox, ALBERT G., AND LUTHER, H. A. A note on multiple 
precision arithmetic. Comm. ACM 4 (Aug. 1961), 353. 

8. BROWN, W.S. The ALPAK system for non-numerical algebra 
on a digital computer--I: Polynomials in several variables 
and truncated power series with polynomial coefficients. 
Bell Sys. Tech. J. 42 (Sept. 1963), 2081-2119. 

9. - - ,  HYDE, J. P., AND TAGUE, B. A. The ALPAK system 
for non-numerical algebra on a digital computer--II: Ra- 
tional functions of several variables and truncated power 
series with rational function coefficients. Bell Sys. Tech. 
J.  ~8 (March 1964), 785-804. 

10. HYDE, 3". P. The ALPAK system for non-numerical algebra 
on a digital computer--III: systems of linear equations 
and a class of side relations. Bell Sys. Tech. J., 43, (July, 
1964), 1547-1562. 

11. TARSKI, A. A Decision Method for Elementary Algebra and 
Geometry. U. of California Press, Berkeley, Calif., 2nd ed. 

12. COLLINS, G. E. Polynomial remainder sequences and determi- 
nants. IBM Res. Rept. RC-1209, June, 1964. Also Am. 
Math. Month. to be published. 

13. - - .  Subresultants and reduced polynomial remainder se- 
quences. Notices of the Am. Math. Soc., to appear. 

14. USPENSKY, J. V., AND HEASLET, M. A. Elementary Number 
Theory. McGraw Hill Co., New York, N. Y., 1939, pp. 43-45. 

Experience with FORMAC Algorithm Design 
R. G. T o b e y  

International Business Machines Corporation,* Cambridge, Massachusetts 

Various facets of the design and implementation of mathe- 
matical expression manipulation algorithms are discussed. 
Concrete examples are provided by the FORMAC EXPAND 
and differentiation algorithms, a basic FORMAC utility routine, 
and an experiment in the extraction of the skeletal structure 
of an expression. One recurrent theme is the need to avoid 
excessive intermediate expression swell in order to minimize 
core storage requirements. Although many details from the 
FORMAC implementation are presented, an attempt is made 
to stress principles and ideas of general relevance in the de- 
sign of algorithms for manipulating mathematical expressions. 

I n t r o d u c t i o n  

Shortly after the FORMAC experimental programming 
system first became operational in April, 1964, a small 
group of programmers and mathematicians began to 
experiment with the FORMAC object-time routines. One 
explicit goal was to seek improvements to particular 
FORMAC expression manipulation algorithms; another 
less provincial goal was to isolate and s tudy general or 

Presented at an ACM Symposium on Symbolic and Algebraic 
Manipulation, Washington, D.C., March 29-31, 1966. 

* Systems Development Division. 

theoretical problems--problems independent of a particu- 
lar internal representation or implementa t ion--which  
arise in the design of mathematical  expression manipula- 
tion algorithms. Several highlights of this experimenta- 
tion, which led to the improvement  of FOR~rAC algorithms, 
and which have implication for algorithm design of a more 
general nature, are presented in this paper. 

The FORMAC capabili ty is described in increasing 
amounts of detail in [1, 2, 3]. Some details of FORMAC 
implementation are presented in [4]. The role of automatic  
simplification in FORMAC is sketched in detail in [5], and 
applications tha t  have been made of the FOaMAC system 
are described in [6]. Some familiarity with these papers is 
assumed in the discussion which follows. 

This paper  is divided into four sections. In  the first 
section, problems encountered in design of expansion 
algorithms (the FORMic E X P A N D  command)  are dis- 
cussed. The second section is devoted to alternative or- 
ganizations of the differentiation algorithm. Examples con- 
t rast  the output  produced by the two different routines. 
The third section discusses a simple-minded idea concern- 
ing expression scanning and error checking; it leads to an 
order of magnitude increase in the efficiency of the FORMAt 
system. The last section deals with the problem of incom- 
prehensible mathematical  expressions; an experiment in 
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the extraction of the skeletal structure of an expression is 
described. One implication is that  certain techniques can 
be readily implemented for reducing enormous expres- 
sions to a comprehensible form. 

E x p a n s i o n  A l g o r i t h m s  a n d  I n t e r m e d i a t e  S w e l l  

Expansion, the algebraic operation of multiplying out a 
product of sums, is a transformation of central importance 
in the manipulation of mathematical expressions. In  Figure 
1 three forms for p3, the third Legendre polynomial, are 
displayed. The first form indicates how the polynomial 
looks when generated from the basic iterative relation 
(also displayed in Figure 1) without benefit of expansion. 

p l o w  

x 2 - - 1  d 
p ~  = n p ~ l  + - -  - -  [p~-l] 

n d x  

p a  = x ( x  ~ + ½ ( x  ~ - -  1)) q- x ( x  2 - -  1) 

= x ~ + ½x 3 - ½x + x ~ - x 

Fro. 1. Expansion and collapsing of the Legendre polynomial, pa . 

FORMAC E X P A N D  algorithm to minimize intermediate 
expression swell is discussed. 

EXPANSION OF PRODUCTS OF SUMS 

The original FORMAC E X P A N D  algorithm (opera- 
tional in April, 1964) generated all the terms in the ex- 
panded sum before attempting to collect like terms. This 
brute force approach to the organization of expansion led 
to the enormous intermediate swell indicated in Figure 2. 
The frequent exhaustion of work space while expanding 
expressions made it obvious that  it was necessary to re- 
organize the communication between the E X P A N D  
algorithm and A U TS IM-- th e  FORMAC AUTomatic SIM- 
plification routine [5]. The E X P A N D  routine was reor- 
ganized so that  the E X P A N D  transformation was driven 
by  the AUTSIM transfer table. This reorganization cut 
down intermediate swell as is indicated by the q- data 
points in Figure 2. As is to be expected in the organiza- 
tion of computer algorithms, this decrease in space re- 
quirement was bought with execution time. In  Figure 3, 
expression size is plotted against execution time in seconds 
for f11. The solid line indicates expression size under the 
original E X P A N D  algorithm. Note that  the time at 

The second form for the polynomial is that  obtained by ,3 
expansion without collection of like terms. The third form 
has been obtained from the second by collection of like ,2 
terms. This example indicates that  the unexpanded form 
of a polynomial may require more space for its representa- ,, 
tion than the expanded form and much more space than 
the simplified form. ,o 

In some symbolic computations the expanded fo rm- -  ~ 9 
prior to the collection of like terms--requires a great deal 

8 more space than either the unexpanded form or the corn- $. 
pletely simplified form for the expression. Such is the case 
with the symbolic calculation of f and g series as reported ~. 7 
in [7]. Figure 2 displays the space requirements for the 
4th through the l l t h  coefficients, the f~, of the f series. ~ 6 
Four sets of data are displayed. The first ( . )  is the size of 5 

the expression at input to the E X P A N D  command. The .2 
next two (~ q-) represent the maximum space required ~ 4 
by the expression as a result of the E X P A N D  algorithm. ~ 3 
The fourth data curve ( X )  gives the size of the expres- 
sion after expansion and simplification. I t  is obvious from ~ 2 
this display that  expansion requires more space for ex- 
pression representation before it requires less space. We 
call this phenomena intermediate expression swell. In the 
design of algorithms for symbolic expression manipulation, 
it is important to minimize intermediate expression swell. 
The need for minimization is apparent from Figure 2; if 
only 1000 units of memory space are available for expres- 
sion manipulation, then execution of the program utilizing 
the original E X P A N D  algorithm would cease during the ¢ 
generation of the 10th iterate. F~0 requires more than 1000 + 
units of core storage for its generation due to intermediate 
expression swell. In this section the partial redesign of the X 

¢ 

/ 
¢ 

' ' ' ' ' ' ' ' ' [ |  0 ' ' 5 

FiG. 2. Space required for 4th through 
l l t h  iterates 

1 

I 
I 

\ 

x x 

I 2 3 

FIG. 3. Expansion of 
l l t h  iterate (execu- 
tion time in seconds) 
for both algorithms 

intermediate swell produced by first EXPAND algorithm. 
intermediate swell produced by improved EXPAND (type 

I I I  release). 
s i z e  of expression at input to EXPAND. 
size of expression after expansion and simplification. 
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which the maximum space is required is known exactly. 
The portion of this curve in which the space requirement 
for expansion is increasing (1) corresponds to the time 
in the E X P A N D  algorithm. The portion of the curve in 
which the space requirement is decreasing (2) corresponds 
to the time in the AUTSIM algorithm. The two slashed 
lines (3 and 3') indicate a maximum and minimum ex- 
pansion AUTSIM interaction. Since E X P A N D  and AUT- 
SIM are interconnected, there is no meaningful sepa- 
ration of the two algorithms on these curves. 

Figure 4 displays the conceptual difference between the 
two expansion algorithms. Figure 4A indicates how ex- 
pansion and simplification are performed by the original 
E X P A N D  algorithm. Figure 4B indicates the approach 
taken in the improved expansion algorithm. The meshing 
of the E X P A N D  algorithm with the AUTSIh~[ algorithm 
gives the E X P A N D  algorithm immediate access to 
LEXICO-- sho r t  for LEXICOgraphical  reordering (see 
[5])--the routine that  collects like terms in a sum. As each 
term of the expanded product is generated, it is added to 
the intermediate results and an a t tempt  is made, via 
LEXICO,  to collect like terms in that  sum. The algorithm 
bounces back and forth between term generation and 
collection of like terms in the sum. In this manner, inter- 
mediate expression swell is minimized. 

(a  + b --  c ) ( a  --  b + c)  

E X P A N D  
) ( a + b - -  c ) a +  (a-4- b -  c ) ( - b ) - 4 -  ( a T b -  c)c 

E X P A N D  ) a2 -4- a b  - -  a c  - -  a b  - b 2 - t-  b c  - t -  ac - t -  b e -  c 2 

A U T  
SIM ) a2  - -  b2 - -  c2 "4- 2 b c  

(A) No intermediate collection of like terms 
(9 terms maximum swell) 

T e r m  ) a ~ -t- ab  L 
G e n e r a t o r  > ab + a ~ 

Term L 
Generator > a b  + a ~ - -  a c  ~ a b  - a c  + a 2 

Term L 
Generator " a b  - -  a c  --f- a ~ - -  a b  ) - -  a c  -4- a 2 

Term L 
Generator ) - -  ac  -t- a ~ - -  b 2 ) - a c  - t -  a ~ - b 2 

T e r m  ) - -  > - -ac + a ~ + b c  - -  b 2 Generator a c  .+- a ~ - -  b 2 -I-" b c  L 

Term 
Generator > - -  a c  -4- a ~ "t- b c  - b 2 - t-  ac 

L Term L 
- - ,  a ~ + b c  - b 2 G e n e r a t o r  ) a~ - t -  b c  - b ~ + b c  ) a 2 + b c 2  - b 2 

Term L 
G e n e r a t o r  ) a 2 -Jr b c 2  - -  b 2 - c 2 ) a 2 "-I- b c 2  - b 2 - c ~ 

(B) Intermediate collection of like terms while terms 
are generated (5 terms maximum swell). The 
LEXICO sorting order for expressions is described 
in [5]. 

Fro. 4. Contrast between the two expansion algorithms 

There is an additional contrast between the two EX- 
P A N D  algorithms. As is obvious from Figure 4A, the 
original E X P A N D  routine depended upon successive 
applications of the right distributive law; the intermediate 
expressions displayed in Figure 4A are actually generated 
as part  of the expansion. The improved E X P A N D  al- 
gorithm generates terms directly by a nested iteration. I t  
is possible to contrast the two E X P A N D  algorithms by 
saying that the original E X P A N D  algorithm only knew 
the right distributive law and applied it successively, 
whereas the improved algorithm is aware of the general 
theorem implied by the distributive law and applies that  
theorem directly. 

~ [ U L T I N O M I A L  E X P A N S I O N  

If the algorithm described above were applied to a sum 
raised to an integral power in order to accomplish the ex- 
pansion, then growth inefficiencies with respect to inter- 
mediate swell would occur. Consider the expression (A0 
+ A1 + - . .  + A~) k where n and k are positive integers. 
The E X P A N D  algorithm described above would gener- 
ate (n + 1)k distinct terms if applied to this expression. 
However, direct application of the generalized multi- 

n°mial the°remwil lpr°duce  ( n + k )  distinct terms" T h i s n  

is, in general, much smaller than (n + 1)k. The algorithm 
implied by the multinomial theorem has one further ad- 
vantage: if each of the variables which appear as terms in 
the above sum are distinct, then there can be no collapsing 
(or collecting) of like terms in the sum generated by the 
multinomial theorem. Hence, the multinomial theorem is 
a valuable tool in avoiding the problem of intermediate 
swell as encountered in the ordinary expansion algorithm. 
Suppose, however, that As = a ~ z  ~ with the as numeric. 
Then like terms will not have been collected in the sum 
produced by multinomial expansion. In fact, this case of a 
polynomial in a single variable is the worst possible case 
with respect to the contrast between the size of the expres- 
sion after multinomial expansion and the size of the ex- 
pression after the collection of like terms. In this particu- 
lar case, the simplified polynomial will consist of n. k + 1 

terms" This is c°nsiderably smaller than ( n + k )  t e r m s ' n  

If  the sum of the A i is a polynomial in several variables, 
the contrast will not be so great. 

In  order to make concrete the contrast in the number 
of terms required, and hence the space required, in these 
various cases, consider the 5th degree polynomial g ( x )  

= 2 + 3z -4- 19x ~ +4- 7x 3 + 5x ~ -4- x 5 in a single variable. 
Raise it to the 6th power, h ( x )  = [g(x)] 6. If  the original 
E X P A N D  algorithm were applied, h ( x )  would require 
66 = 46656 terms for the intermediate result. With the 
improved E X P A N D  algorithm, this would require much 
less space but  would greatly increase the execution time. 

x ~ 

= 462 terms. But  the simplified polynomial requires only 
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5.6  + 1 = 31 terms. Wi th  respect to minimizat ion of 
intermediate  expression swell, nmlt inomial  expansion oc- 
cupies middle ground;  in one extreme case it provides the 
opt imal  result; in the other  extreme it is h ighly inefficient. 

The  E X P A N D  algori thm current ly  operational  within 
the FORMAt sys tem performs lnultinomial expansion; 
however, this section of the algori thm has no contact  with 
L E X I C O  until  all the terms have been generated.  Users 
of the experimental  F o ~ t ~ c  sys tem can expect to en- 
counter  great  inefficiency in space util ization when raising 
polynomials  to a power. 

I f  one takes the basic uni t  of core storage to be tha t  
storage required to represent a te rm of a sum (this is 
admi t ted ly  variable and depends upon  the nature  of the 
te rm) ,  it becomes obvious tha t  the above remarks apply  
to the organizat ion of E X P A N D  algori thms for any  ex- 
pression manipula t ion  system. The  concept  of intermediate  
expression swell is independent  of effficiencies in repre- 
sentat ion which m a y  accrue due to a limited or well- 
s t ructured da ta  base; e.g., it applies equally well to poly-  
nomial  manipula t ion  systems which can make  efficient 
use of storage space since the polynomial  da ta  s t ructure  
is assumed. I t  is clear tha t  disastrous intermediate  swell 
while expanding expressions can be avoided by  designing 
an expansion algori thm tha t  utilizes the mul t inomial  
theorem and collects like terms s imultaneously with the 
generat ion of those terms. How one organizes the com- 
municat ion between the term-generat ion funct ion and the 
collection of like terms, so as to minimize execution time, 
is an intriguing problem which will, no doubt ,  be the sub- 
ject  of fur ther  s tudy.  

D i f f e r e n t i a t i o n  i n  F O R M A C  

The  two expressions displayed in Figure 5 are the th i rd  
iterates generated by  the FORa~AC program cited in [7]. 

Original Differentiation Algorithm: 
f8 = ((0 -- ((( -- (O,~a + 3(-3u~r)a + 3u(e - 2a2)))0 

+ (-3us)o) + ( ( - 3 ~ ) 0  + ,0))) - ( ( -3~ ) (0  + 1) 
+ u(o + o))) - u((o + o) + (o - uo)) 

Hanson,  Caviness and Joseph, in their work at  the Uni- 
versi ty  of N o r t h  Carolina [8], recognized tha t  their me thod  
of generat ing derivatives introduced a large number  of 
redundancies  t ha t  required elimination. T h e y  observed 
tha t  there were two ways  to accomplish this:  (1) Per form 
a second scan over the differentiated expression to clean 
up the redundancies,  or (2) eliminate the redundancies  as 
they  are generated. T h e y  chose the second alternative.  
The  original FORMAt differentiation algori thm imple- 
mented  the first al ternative with A U T S I M  performing 
the second scan. The  new F M C D I F  subroutine implements  
a thi rd  al ternat ive:  (3) Per form a prel iminary scan over 
the input  expression so tha t  dependency relations are 
known during the main  scan; few redundan t  expression 

T A B L E  I. TRANSFORMATIONS IN ORIGINAL 
DIFFERENTIATION ALGORITHM 

1. D - - X . - - - ~ - - D X  
2. D expX-**  expXDX ] 
3. D l o g X - * *  i"X-- 1 D X ]  
4. D sinX--* * cos X D X ] 
5. D cos X---~ -- * sin X D X ] 
6. D a t a n X - - ~ * T + l  T X 2 ] - i D X ]  
7. D t a n h X - - ~ * 4  T + e x p X e x p - X ] - 2 D X ]  
8. D fac X ~-~ 0 

(The gamma function representation for the factorial is not 
employed. The factorial function is assumed discrete.) 

9. D dfc X--~ 0 
10. D ~ A X - - ~ + ,  T A W X - - 1 ] D A X ] , I o g A D X  T A x ] ]  
11. D comb A X --~ 0 
12. D + M X 2 . . - ~ , ] ~  + D M D X 2 . . . D X ~ ]  
13. D * MXv..Xt ] --~ + * D XiX~-..Xt ] * XiDX2...Xt ]. . .  * MXv.. 

D X t ]  ] 

14. I f  X E A ,  D X -L, l f o r  X = x .  
dX 

D X --~ dx for X dependent upon x (declared so in 

the FORMAC DEPEND statement). 
D X ~ 0  for X independent of x. 

T A B L E  I I .  TRANSFORMATIONS IN REVISED ALGORITHM 

Revised Algorithm: 
f8 = ((--(((--(3(--3uo)o + 3,.(e -- 2o~)))0))) 

- ( ( - 3 u ~ ) ( o  + i ) ) )  - u(o + (0 - ~0))  
The expression simplifies to 3t~o-. 

Fro. 5. Contrast between differentiation algorithms 

T h e y  have been generated wi thout  the benefit of A U T S I M ,  
the FORMAC automat ic  simplification routine [5]. The  first 
expression is the form generated by  the original FORMXC 
differentiation program. The  second expression was gen- 
erated by  a redesigned differentiation algori thm tha t  does 
not  generate as m a n y  redundant  e l ements - - the  major i ty  
of the  redundancies in this expression arise f rom sources 
other  t han  the differentiation algorithm. The  redundancies  
tha t  were eliminated by  the redesign are apparen t  f rom a 
careful comparison of the two expressions in Figure 5. 

0' Given D~, k E B. If lead element of X is independent of 
variable of differentiation, then DX --~ 0. 

Otherwise, apply the application transformation from the 
remainder of table. 

See transformations 1-7 of Table I. 
Dependency scan eliminates need for transformations 8, 

9 and 11. 
10' D .T~ x--~ same as 10 

DTAX--~* T A + X -  1 ]DzXX] 
DT~ X--, • logAD X T AX ]. 

12' D + X, ...Xt ] --~ + DXi1...D X i~ ] where only those Xlj occur 
which are dependent upon the variable of differentiation. 

13' D*X,.-.Xt]--~ + ..- *X .." DM...X~] ..- ] where products 
are generated only for Xl which are dependent upon the 
variable of differentiation. 

dX 
14' If X E A, DX-~ 1 for X = x; DX ~ dx (the symbolic name 

of the derivative) for X # x. 
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elements are generated. The design of the first FORMhC 
algorithm was simplified by the assumption that  AUTSIh~ 
would clean up expressions--remove redundant elements 
- - a f t e r  the differentiation transformations had been per- 
formed. As is clear from a s tudy of Tables I and I I ,  this 
assumption eliminated the necessity to design transfor- 
mations for specific subcases of the differentiation trans- 
formations of Table I. Several such subcases are handled 
by specific transformations in the redesigned algorithm 
(Table I I ) .  In  this section we discuss the organization of 
both differentiation routines and indicate how sources of 
redundancy in expressions have been eliminated. 

The elimination of redundant  expression elements de- 
creases intermediate expression swell. This is very signifi- 
cant for differentiation algorithms since symbolic differ- 
entiation generates deceptively complicated expressions 
quite rapidly. Reference [9] provides interesting docu- 
mentat ion of this phenomena. 

THE FORMAC ALGORITHM 

The structure of the FORMAC differentiation routines is 
most easily presented by considering mathematical  ex- 
pressions in the FOnhtAC internal representation, delimiter 
Polish (see [5]). For our purposes, it is sufficient to define 
delimiter Polish as a formal mathematical  system. The 
two differentiation algorithms are then defined in terms 
of formal operations upon elements of this formal system. 

Let A be the set of primitive elements (constants and 
variables) in this system. An elementary function will be 
defined as a function tha t  can be represented by an ex- 
pression in the set B of expressions generated from the 
primitive elements by the rules listed below. 

Basic operators: 

Unary operators: --,  exp, log, sin, cos, atan, tanh, fac, dfc 
Binary operators: T (**), comb 
Variary operators: -f-, * 
In addition, there is a delimiter, ] . 

Rules for generation of expressions in B: 

1. I f k 6 A , k 6 B ;  

2. Let s C B. Then -~,  exp v, log ~, sin v, cos ~, atan ~, tanh ~, 
fac s, dfc s are in B. 

3. Let s, X 6 B. Then Tax and comb uX are in B. 

4. Let ~ ,  .. .  , s, 6 B. Then +m~ "'" ~/,] and * ~ 2  ... ~,] are 
in B. 

5. These are the only expressions in B. 

Sample expressions in B: 
Infix Notation Deliminter Polish 

A - B +  C + A  - BC]; 
(cos (y))2sin(x-y) T cos y • sin + x -- y]2]. 
A/B * A T B - 1] 

First Algorithm 

Let D be the differential operator; it is unary. We define 
C as the set of expressions generated by  the rules for B 
with the addition of the following rule: 

6. I f ~ 6 B ,  D h 6 C .  

The transformations of Table I define an algorithm for 
differentiating any  k in the set B. Each transformation of 
Table I suppresses the operator D to a point further to the 
right in the delimiter Polish expression. Successive applica- 
tion of these transformations suppresses the occurrences 
of D so that  it operates only on primitive elements; and 
finally, application of Rule 14 eliminates all occurrences 
of D from the expression. Such iterative application of 
these transformations is itself a transformation from the 
set C to the set B. The transform is a symbolic form for 
the derivative of the original operand of the operator D. 

The transformations presented in Table I are sufficient 
to provide a differentiation algorithm. The organization of 
the expression scan to implement such an algorithm is 
dear.  A simple left-to-right scan, which applies the trans- 
formations of Table I to suppress and hence remove all 
occurrences of the operator D, is all that  is required. The 
results, however, contain redundant subexpressions-- 
automatic simplification of the expression is required. 
Several illustrative examples are displayed below. In  these 
examples, the variable appearing over the arrow is the 
variable of differentiation. 

(a) D T X 2 - ~ + ,  1" X + 2 - 1 ] D X 2 ] * l o g X D 2  1" X2]] 
z 

4 + ,  ? X + 2 - 1 ] 1 2 ] , l o g X O  1" X2]] 
A U T  

> * X 2 ]  
SIM 

(b) D t a n h l  ~ . 4  ~" + e x p l e x p - -  1] -- 2 D 1 ]  

• 4 T + e x p l e x p  - 1] - 2 0 ]  
A U T  

) 0  
SIM 

(c) D . X Y V 3 ] - - ~ + . D X Y V 3 ] . X D  Y V 3 ]  
• X Y D  V 3 ] . X Y V D 3 ] ]  

- ~ + . O  Y V 3 ] . X O V 3 ] , X Y 1 3 ] . X Y  V O]] 
AUT 

• X Y3].  
SIYI 

The above examples are extreme in that  the action of 
A U T S I M  produces a dramatic reduction in the size of the 
expression. They  illustrate, however, the extent to which 
the original differentiation routine depended upon auto- 
matic simplification to clean up its tracks. I t  is obvious 
that  expressions were generated with unnecessarily large 
intermediate swell. 

Second Algorithm: 

The redesign of the differentiation algorithm includes a 
preliminary scan, performed to determine which subex- 
pressions are dependent upon the variable of differentia- 
tion. As a result, one can determine immediately whether 
a given operator heads an expression that  is dependent or 
independent of the variable of differentiation. This in- 
formation eliminates the need to generate such horrendous 
expressions as displayed in example (b) above; it is known 
immediately that  the tanh operator heads an expression 
that  is independent of the variable of differentiation. 

The new set of transformations is displayed in Table 
I I .  The first transformation indicates an alternative to 
any of the first thirteen transformations in Table I. The 
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alternative is invoked only in the case of nondependency. 
The changes to the other transformations are self-explana- 
tory. The initial dependency scan utilizes a pushdown in 
order to scan into the expression, recognize dependency 
relationships, and back out of the expression marking the 
operators that have dependent subexpressions. 

The effect of these changes to the differentiation al- 
gorithm can be seen by looking at the results of the follow- 
ing three examples. The input expressions are displayed 
after the dependency scan, on the left. The dot above the 
various symbols indicates that the dependency bit on these 
operators or variables has been set. 

(a) D ~ 2 2 - 5 * *  T X + 2 - 1 1 1 2 1  
AUT 

, , X 2 ]  SIM 
(b) D t a n h  1 --~ 0 

(c) D ; X Y I7 3] ~ -I- * X Y 1 3 ] ]  
AUT 
- - *  *X Y3]. SIM 

A new and different approach to the scan-off algorithm 
was coded in order to avoid this excessive waste of time. 
The original algorithm did complete testing for well- 
formedness. I t  used a pushdown store and was quite slow. 
The new algorithm, coded using the compare instructions 
of the 7090 family of computers, required the same space 
(due to compare tables) but does no checking for ill- 
formedness in expressions. The bottom display in Figure 6 
indicates the dramatic reduction in execution time due to 
this algorithm. 

The contrast pictured in Figure 6 provides still another 
example of a basic principle related to the design and 
implementation of large systems. When debugging a com- 
plex system, routines that perform complete error check- 
ing are a necessity. Without them, it is impossible to lo- 
cate system bugs. Once the system has been debugged and 
it is put into actual production use, error-checking sub- 
routines may be replaced with much more rapid routines 
that enhance total performance but do no error checking. 

Although some expression redundancies still remain to 
be cleaned up by the AUTSIM routine, intermediate ex- 
pression swell has been greatly reduced by this revised 
algorithm. Moreover, the new algorithm represents about 
a 4 percent decrease in execution time requirements; it is 
slightly more efficient than the old algorithm. 

Subexpres s ion  Scan-Off  A l g o r i t h m  in  FORMAC 

Several FOR~AC object-time algorithms require a basic 
operation that is performed by the routine FMCSEX. It  
is frequently necessary to scan over complete subexpres- 
sion elements embedded in the expression currently being 
manipulated. This task may be performed to obtain the 
beginning and end of an expression so that it may be de- 
leted or repositioned, or simply to scan over the expres- 
sion so that the next argument of the governing operator 
(see [5]) may be scanned. For example, consider the de- 
limiter Polish expression + * A B 3 ] T * B C ] 1.2 D ]. 
I t  may be necessary to scan over the first underlined prod- 
uct in order to look at the second argument under a sum. 
Or, it may be necessary to determine the form of the ex- 
ponent under a power operator, T • This necessitates scan- 
ning over the second underlined product expression. 

The efficiency with which this operation is performed 
is surprisingly crucial to the total efficiency of the FORMAC 
object-time system. Figure 6 graphically displays the time 
requirements for various FORMXC subroutines during the 
execution of a particular program. The length of the bars 
indicate the time spent in each routine. The higher rou- 
tines call the lower routines directly if the routines are 
adjacent; indirectly, if not. The top display indicates the 
time spent in the original FMCSEX routine. It is apparent 
that over half the time is spent in this routine. It was a 
surprise to the implementers of the FOR~rAC object-time 
system that the FMCSEX routine represented this large a 
proportion of the work required to manipulate symbolic 
expressions. 

Skele ta l  S t r u c t u r e  Extrac t ion  

The development of formal mathematical expression 
manipulation systems such as ALPAK, Formula ALGOL, 
and FOaMAC, presents the scientist with a new data editing 
problem. The problem is analogous to that faced by physi- 
cists ten years ago when computers were first used to 
generate large volumes of numerical data. The physicist 
soon learned that data editing prior to output was es- 
sential if he was to comprehend the implications of his 
data. 

It is not abnormal for expressions generated by FOr~MAC 
to require 2 to 300 lines (120 characters each) of listing 
when output. Such expressions are incomprehensible to the 
human reader. The expression is composed of several 
thousand characters and the main mathematical operators, 
which determine the essential nature of the expression, 
are buried somewhere within the massive listing of sym- 
bols. This situation will be aggravated as the various space 

MAIN PROGRAM 

LE T COMMAND 
\ 

, 

I 
I 

MAIN PROG. I 
.ET I 

6 ~ ,b ~ ~o ~5 io s's 
EXECUTION TIME IN SECONDS 

Fio.  6. Con t ras t  in t ime required by the  two F M C S E X  rout ines  
dur ing  execution of a specific program.  
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and time limitations on computer systems for formal 
mathematics  are reduced or eliminated. In  the future it 
will be possible and perhaps common to generate and to 
manipulate expressions with hundreds of thousands or 
more elements. In  such a situation the scientist or engineer 
will be swamped with overwhelming mathematical  detail 
unless algorithms are developed for extracting and present- 
ing the essential or skeletal structure of symbolic expres- 
sions. This problem is ever more acute in a time-shared, 
conversational environment. 

In  this section an experiment in skeletal structure ex- 
traction utilizing FORMAt i~ discussed. Skeletal structure 
extraction simplifies expressions by replacing subexpres- 
sions with single variables. This operation suppresses 
detail in an expression, thereby revealing the skeletal 
structure of the expression. This work was conceived and 
executed by James Baker, at the IBM Boston Program- 
ming Center. 

The experiment was inspired by an attempt to establish 
that output from the North Carolina differentiation rou- 
tine [8] was equivalent to the output of the FORMAC differ- 
entiation routine. Figure 7 displays the input expression 

I N P U T  = ( g s i n  ~ i + h e o s  ~ i + f +  ( ( p + 2 f ( g s i n  ~ i + h c o s  ~ i )  
+ g2 s in  ~ i + h ~ cos  ~ i ) (1  + 2t(g s in 2 i + h cos  ~ i)  
+ t~(g 2 sins i + h ~ cos ~ i)))~ + t(f(g s in 2 i + h cos ~ i)  
+ g~ s in s i + h~ cos ~ i ) ) / ( ( 1  --  ft)(g s in ~ i + h cos ~ i 
+ f + ((f~ + 2f(g sing i + h cos ~ i)  
+ g~ sine i + h~ cos  ~ i)~))) 

Fro .  7. T h e  input  expres s ion  as publ i shed  in [8] 

list are defined as the subexpressions that the atomic 
variables replace. The parallel lists (or dictionary), which 
were generated in the successive shrinking of the expres- 
sions in Figure 8 are displayed hi Table III; the A-list 
contains the atomic variables (variables which name them- 
selves) and the L-list contains the corresponding expres- 
sions. A glance at the L-array indicates what is meant by 

North Carolina Differentiation Result in FORMAC 
Notation (Rearrangement is due to AUTSIM): 

(F÷(F,(G,FNCSINII),.2.0+H.FMCCOS(1),.2.0),2.0+F..2.0*G..2.0* 
FMCSIN(1).*2.0+H,.2.0*FMCCOS(1)*,2.0)~*5.0E-I+G.FMCSIN(1),, 
2.C+H-FMCCOS(I)..2.01..(-2.0).I-F.I+I.O).'(-I.O)'(-(F+F'{G* 
FMCSIN{I),,2.0+H*FMCCOS(1)..2.0)*I+(F,iG*FMCSINil)..2.0+H. 

*I,2.0+(G..2.0.FMCSIhII)..2.C+F~.2.C'FMCCC$(1)..2.C}.]''2.C+ 
I.G)..5.CE-I+G~F~CSIN(1),,2.C+{G..2.C'FMCSIK(1).'2.C+F''2.C" 
FMCCCS(I}..2.C}*I+F,FMCCCS(1),.2.C)-{(F-{C'FMCSIK{I),FMCCCS( 
[).2.C+H,FMCSIM(1),FMCCCS(1),(-2.0)}*2.C+C'*2.C'FMCSIh(1)" 
FMCCCS|I)*2.C+F.-2.C,FMCSIhI|),FMCCCS{I)*(-2.C))'{F'(G" 
FMCSIh(I)*,2.C+F-FYCCCS(1)..2.C),2.C+F**2.C+G*,2.C.FMCSI~(1) 
.*2.C+F*,2.C-FMCCC~(1),,2.C).-(-5.Cfi-I).5.CE-I*~'FMCSI~(1)" 
FMCCCS(1)-2.0+F,F~CSIN(1)-F~COOS(1)'(-2.0))+{F+(F'IG'FMCSIN{ 
|).*2.C+M*F~CCCS{I)..2.C),2.C+F.,2.C+G-,2.C'FMCSI~(I)'*2.0+H 
,.2.0*FMCCOS|I)-,2.0|,*9.CE-I÷G-FMCSIN{I),-2.C÷F'F~CCCS(1).- 
2.C}*{F,(G*FMCSI~(1),FMCCCS|I)'2oO+~'FMCSI~{I)'FMCC~S(1)'{ 
-2.C))*T+{F-(G*FMCSIh(1).-2.C+F,FMCCCS(1),,2.0),2.C+F,,2.C+G 
-,2.0*FMCSI~(1),.2.C*F,,2.C.FMCCES(I|'*2.C)''(-5.CE-I)'((F'( 
G,FMCS|N{I),FMCCCS|I),2.C+F-FMCSIN(1),FMCCCS(I),(-2.C))'2.C+ 
G*,2.C.FMCSIhIII,FMCCZ~II).2.C+F,,2.C'FPCSI~(II,FMfCCS(I}'( 
-2.C)).{{G*FMCSIN(1),,2.C+F,FMCCCS(1)''2.G)'I'2.C+{G''2.C" 
FMCSI~(1),,2.O+~,,2.E,FMCCCS{I),,2oE)'T..2.C+I.C)+(F'(G" 
FMCSIN(I)--2.C+M-FMCCCS(1),-2.CI-2oC+F''2.C+G''2.O'F~CSI~{I) 
- - 2 . 0 + F - . 2 . 0 - F M C C C S I I I . ' 2 . C ) . ( ( G - F M C S I N ( I ) ' F N C C C S ( I } ' 2 . C ÷ ~ "  
FYCSINilI,FMCCCSiII-(-2.C))-T-2.0+IG.-2.0-FMCSIN{I)-FYCCCS(I 
),2.O+b,,2.0,FMCSIN(1),F~CCCS{I),(-2.C))-I''2.C))'I(G'F~C$1~ 
(1),-2.0+F,FMCCCS(1),,2.C),I,2.C+{G,.2.C,FMCSIN(1)''2.C+M'" 
2.C,FMCCCS(1),,2.CI,I,e2.C+L.CI.,(-5.CE-II'S.OE-I+6mFMCSIN{I 
).FMCCCS(1)-2.0+(G,.2.0.FMCSIN(1).FMCCGS(1)'2.O~b''2.C" 
F~CSIk(1).FMCCOS(1)-(-~.C)),I+F-FMCSIN(II,FNCCCS(I}'(-2.C)}) 

as published in [8]. Figure 8 displays the output from the 
FOaM~C differentiation routine and the North Carolina 
result in FORMAt notation. Both expressions have been 
transformed by AUTSIM. The initial attempt to cheek 
the equivalence of these expressions was made utilizing 
the FORM2~c match-for-equivalence capability (MATCH 
EQ Command). This effort failed due to lack of adequate 
space hi the computer. (The MATCH EQ algorithm era- 
ploys several calls to the EXPAND algorithm. This work 
was carried out when the original EXPAND algorithm 
was the only one available; hence, simple matches for 
equivalence ran out of space due to excessive intermediate 
expression swell.) The equivalence of the two results was 
verified by hand. However, it was hoped that the equiva- 
lence could be shown using FoRmiC by "shrinldng" both 
outputs and then performing a match for equivalence on 
the shrunken forms. 

k~[athematical expressions are shrunk by the routine 
SHRINK. It  is called with the name of a FORe,At ex- 
pression and the name of two parallel lists. Upon each call 
to SHRINK, the bottom-level subexpressions of the ex- 
pression are replaced by atomic variables, the elements of 
the first list. The corresponding elements of the second 

F O R M A C  Di f f erent ia t ion  R e s u l t :  

-(F+Fm(GIFNCSIN(I)aJ2.0+HmFMCCOS(I).,2oOIeTelFm(GJFNCSIN(1) 
"'2.0+F'FMCCOS(I)''2.0)'2.0~F..2.0+G.t2.0nFMCSIN(II*.2oO+H,t 
2.C~FMCCCS(1)Wm2oO)amS.CE-I,((G.FMCSIN(1)t.2.0+H*FMCCOS{I)., 
2.C)*I'2.C÷(G''2.C'FMCSI~(I).'2.0+~J~2.C*FMCCCS(1),,2.C)IIm~ 
2.C+I.C)..5.¢E-I+G,F~CSI~(1),.2.0+(Gi,2.0wFMCSI~(1).W2oC+~i. 
2-CQFMCCCS(1)''2.C)'I+FIFMCCCS{I}.~2.C)*(F+(F,{G.FMCSI~(1),m 
2.C+FmFMCCCS(1)''2.C),Z.C÷F.t2.C+G.,2.0mFMCS|h(I),,2.C+F,, 
2.C*FMCCCS(1)''2oC)'*5.CE-I+G,FMCSI~(1).~2.0÷MmFMCCCS(1),~ 
2.C)'*(-2.0)m(-F,I+I.C)gQ{-I.O),{(F,{G,FMCSI~{I),FMCCCS(1), 
2.C+emFMCSIN(1)*FMCCCS{I),{-2.0)),2.C+G,,2.0.FMCSI~(1), 
F~CCCS(I)*2.C+~,,2.CmFMCSI~{I}~FMCCCS(1),(-2.C|)*(F,(G, 
FMCSIh(|)'*2.C+H'FMCCCS(1)Im2.C),2.0+F,,2.C+Gm,2.C,FMCSI~('I) 
~*2-O÷I'*~2-C'FMCCCS(I)~2.C).*(-5.0~-I)~5.CE-I+G*F~CSI~(1)m 
FYCCCS{I)'2.C+H'FMCSI~(1),FMCCCS(I}~{-2.G~)+{F*{F,(G.FMCSI~( 
I)''2.C+F*FMCCCS(1)''2.C).2.C+F..2.G+G,.2.C,FMCSI~(1).,2.C÷b 
**2.0"FMCCES(1)',2.0),.5.CE-I+G.FMCSIh(1).,2.0+~,FMCCCS(1),, 
2-O)''(-I.O)'(F'(G'FMCSI~{I),FMCCCS(1).2.C+~.FMCSI~{I), 
FYCCZS(1)~(-2.C))'I+(F.IG.FMCSIN(1),FMCCCS(1).2.C÷F*FMCSIk(I 
).FMCCES(1)m(-2.C)),2.C~,,2.C,FYCSI~(1).FMCCCS{I).2oC÷F~. 
2-C'F~CSI~(1)*FMCCCS(1).{-2.C)),|F,(~,FMCSIN{I).,2.C~F, 

FMCCCS{I)'*2.C)'~(-5.CE-I),{(G,FMCSIN(1),,2.C÷FeFMCCZS(1),e 

2-C+I.C)''5-CE-I'5.CE-I+(F.(~-FMCSIh{I).,2.0~F,F~CCES(1)., 
2-C)~2.O+F*'2-O+G''2.C.FMCSI~(1)..2.C+F,.2.C.FMCCCS{I),.2.C) 
"~5.CE-I~({G~F*CSIh{I),F~CCCS(1),2.C+F~FMC$1~(1),FMCCC¢(1)e( 
-2.C))*I~2.C+{G**2.C,FMCSI~{I}~FMCCCS(1),2.C+F,,2.C,FPCSI~(I 
)~FYCCES(|)'(-2.~))'$'-2.C)~(~G,FMCSIN{I),~2.C+F,F~CCCS{I}.. 
2.C)'T'2.0÷(G''2.C'F~CSI~(1),~2oO+P*,2.C,FMCCES(1).*2.C).I.. 
2-C+I-C)''(-5.CE-I)-5.CE-I+G,FMCSI~{I).FMCCCS|I)~2.0+(G,.2.C 
*FVCSI~(1)~FMCCCS(1),2.C÷b,.2.C.FMCSIh(1).FM(CCS(1).(-2.C)). 
T+F'FMCSI~(1)'~CC[S{I),(-2.C|),{-F.T÷[.O),.(-I.C) 

Fio. 8. The differentiation results as they appear in FORMAC 
notation after simplification. 
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the  phrase  " b o t t o m d e v e l  subexpress ion."  I t  is a subex- 
press ion wi th  a single m a t h e m a t i c a l  ope ra to r  (as v iewed 
in de l imi te r  Pol ish)  and  on ly  cons tan ts  or a tomic  var iab les  
occurr ing a t  the  level  below t h a t  opera to r .  Before creat ing 
a new i t em on the  L- l is t  and  in t roducing  the  corresponding 
i t em from the  A- l i s t  into the  expression, S H R I N K  checks 
the  previous  i tems on the  L- l is t  to make  sure t h a t  the  
expression i t  is abou t  to subs t i t u t e  for has  not  a l r eady  
been assigned an a tomic  va r iab le ;  hence, new a tomic  
var iables  a re  in t roduced  on ly  for new subexpressions.  I f  
S H R I N K  is cal led wi th  ano the r  expression as a r g u m e n t  
bu t  wi th  the  same para l le l  lists, subexpress ions  in the  new 
expression,  t h a t  have  a l r eady  been ass igned a tomic  var i -  
ables,  wil l  be rep laced  b y  those  a tomic  var iables .  Th is  use 
of a common  d ic t iona ry  is a necess i ty  if a m a t c h  for equiv-  
alence is to  be a t t e m p t e d  on the  sh runken  forms. 

Since subexpress ions  are  replaced  b y  a tomic  var iables ,  
the  r e su l t an t  expression requires  less s torage  space. More -  
over,  the  new expression can  be sh runk  again ;  the  process  
can be i t e r a t ed  several  t imes  in order  to  achieve a w o r k a b l y  
smal l  result .  The  para l le l  l ists  of T a b l e  I I I  are  the  resul t  of 
such i te ra t ion .  

T h e  resul ts  ob t a ined  b y  successively shr ink ing  the  ou t -  
pu t  expressions of F igure  8 and  a t t e m p t i n g  to  m a t c h  for 
equiva lence  a t  each level of the  S H R I N K  are  qu i te  in ter -  
esting. Tab le  I V  shows the  resul t  of a t t e m p t i n g  a M A T C H  
EQ a t  each level. (Leve l  0 is the  or iginal  expression,  level  
1 the  expression af te r  one call  to S H R I N K ,  and  level n 
the  expression af ter  n calls to  S H R I N K . )  A t  the  7 th  
S H R I N K ,  the  expressions d iverge:  t h e y  no longer  con ta in  
t he  same a tomic  var iables .  A s imple example  indica tes  
how this  can happen .  Consider  the  two expressions (x + y)  
• (x - y)  and  x 2 - y2; these have  the  same a tomic  var iab les  
in i t ia l ly ,  b u t  one call  to S H R I N K  will  p roduce  the  ex- 
pressions ata2 and  a3 --  a4.  

T h e  poss ib i l i ty  of ma tch ing  two s t r uc tu r a l l y  different  
expressions v i a  the  shr inking  m e t h o d  depends  upon  the  
level  a t  which the  two expressions st i l l  con ta in  the  same 
a tomic  variables•  I f  the  las t  common a tomic  level resul ts  
in an  expression t h a t  wil l  m a t c h  wi th in  the  confines of 
ava i l ab le  core storage,  t hen  the  m a t c h  for equivalence will  
t ake  place.  Otherwise,  there  is no fu r the r  hope wi th  th is  
technique.  As is ind ica ted  in Tab le  IV,  the  m a t c h  be tween  
the  N o r t h  Carol ina  d i f ferent ia t ion  results  and  the  FORMAC 
dif ferent ia t ion  resul ts  took  place  a t  the  las t  level pr ior  to  
divergence.  T h e  FORMate M A T C H  E Q  c o m m a n d  jus t  
ba r e ly  m a d e  it. 

I t  should  be no ted  t h a t  t r igonomet r i c  ident i t ies  will  
genera l ly  cause a s t ruc tu ra l  d ivergence  a t  a fa i r ly  low level. 
F o r  example ,  add ing  sin (20o) to the  N o r t h  Caro l ina  resul t  
and  2 sin 0o cos 0o to the  FORMAt resul t  wou ld  cause a di- 
vergence  a t  level one;  add ing  sin20o + cos~0o to t he  N o r t h  
Caro l ina  resul t  and  1 to the  FORMAt resul t  would  cause a 
d ivergence  a t  level zero (i.e., the  or iginal  expressions 
would  no longer have  the  same a tomic  va r i ab les ) .  Thus ,  
a p r imi t ive  t echn ique  such as S H R I N K  is of l imi ted  use 
in a compl ica ted  context  where  funct ional  ident i t ies  app ly .  

T h e  resul ts  of this  exper iment  indica te  the  promise  of 
ve ry  s imple techniques  for deve loping  more  powerful  
expression m a n i p u l a t i n g  a lgor i thms  in te rna l  to  expression 

TABLE I I I .  DICTIONARY ENTRIES OF PARALLEL LISTS 
GENERATED BY SHRINK 

A -List L-List A -List L-List 

1st Level gth Level 

A1 FMCSIN (I) A35 A28 * F * T 
A10 FMCCOS (I) A36 A28 * F * 2.0 
A100 F * * 2  A37 A 2 8 ,  T , 2 . 0  
A l l  G * * 2 A38 A13 * A29 
A12 H * * 2 A39 A29 * T 
A13 T * * 2 A4 A2 + A20 + A30 
AI4 F * T A40 A32 + A33 

2nd Level 6th Level 

A15 A1 • • 2.0 A41 A100 --5 A23 + A24 + A36 
A16 A10 • • 2.0 A42 A37 + A38 + 1.0 
A17 - A 1 4  7th Level 
A18 A1 * A10 * G * 2.0 
A19 A1 * A10 * H • (-2.0)  A43 A41 • • 5.0E -- 1 
A2 A1 * A10 * A l l  • 2.0 A44 A42 • • 5.0E -- 1 
A20 A i * A 1 0 , A 1 2 ,  (-2.0) A45 A41 • • ( -5 .0E - 1) 

A46 A42 • * (--5.0E - 1) 
8rd Level A47 A4  • A42 

A21 A15 * G A48 A40 • A41 
A22 A16 * H 

8lh Level 
A23 A l l  * A15 
A24 A12 * A16 A49 A43 • A44 
A25 A17 --b 1.0 A5 A21 + A22 --b A43 + F 
A26 A18 + A19 A50 A4 • A45 • 5.0E - 1 
A27 A2 + A20 A51 A4 • A44 • A45 * 5.0E - 1 

A52 A40 • A43 • A46 * 5.0E - 1 
4th Level A53 A47 + A48 

A28 A21 + A22 
A29 A23 + A24 
A3 A25 * • (-1.0) 
A30 A26 * F * 2.0 
A31 A26 • F * T 
A32 A26 * T * 2.0 
A33 A13 • A27 
A34 A27 * T 

TABLE IV .  RESULTS OF MATCH FOR EQUIVALENCE AND 
STORAGE I:~EQUIREMENTS OF THE EXPRESSIONS AT EACH 

LEVEL OF SHRINKING 

Storage Storage 
requirement for requirement 

Level of North Carolina for FORMAC Result of MATCH EQ SHRINK ]form in form in 
FORMAC FORMAC 

0 898 915 Blew up 
1 695 709 Not tried 
2 436 449 Not tried 
3 276 285 Not tried 
4 206 212 Not tried 
5 134 140 Blew up 
6 89 95 Match 
7 62 68 No match 

(structure no longer same) 
8 41 38 No match 

(structure no longer same) 
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manipulation systems. Possible drawbacks to such ap- 
proaches are also implied. The value of S H R I N K  for 
producing comprehensible mathematical  expressions is 
indicated in Figures 9 and 10. Here are displayed the two 
expressions, the results from the Nor th  Carolina differ- 
entiation algorithm, and the results from the FORM_~C 
differentiation algorithm, as they appear after 6 and 7 
calls to S H R I N K .  The essential expression structure is 
obvious from this display; indeed, the human being can 
now see at a glance that  these two expressions are equiva- 
lent (Figure 9). (These two expressions were purposely 
translated from the linear FORTRAN notation. The need 
for two-dimensional output of mathematical expressions 
in order to make them legible to the mathematician or 
scientist is widely accepted, and work is being done in this 
area [10, ill. The issue under discussion is independent of 

Shrunken North Carolina Result: 

[( i A4-442 _+ A~ A41~ 
AlS -~ A19:"~ A,1 "~ Aa4 "~- ~ "v"A4~ "v/A42 ] (A2, + A22 

1 A4 \ A~ + ~,/A4, + : ~ )  - Ai~ + A,~ + ~ ~--Z~)( .1 A.~.~ + A,~ + A~o 

+ ~¢/A4~ v/A42 + F) • (A2~ + A~ + ~¢/A4~ + F) 2 

Shrunken FORMAC Result:  

1A4x/A4~ 1A,o~v/A,i~ 
Als + A19 + A31 + An4 + 2 ~¢/A41 + 2 "~¢/A42 ] 

(A~ + A~ + ~/A~ + F) -- Xl~ + A,o + ~ 7 X ~ ]  

• (A~ + A= + a , ,  + a~  + ~/a,~ ~/A~ + F) 

A~ 
(A~ + A~ + ~/A~ + F) ~ 

Fro. 9 

Shrunken North Carolina Result: 

[(Als -4- A19 + A31-4- A34 + ½A45 A46 (A47 + A4s))(A2t + A= -4- AM + 5) 

-- (Als + A19 + ½ A4 A~)(Aa + A= + A35 + A39 + AaA44-4- F)] 

A3 
( A n + A n + A n +  F) 2 

Shrunken FO1RMAC Result: 

1A Aa A46) (Als + A19 + A31 + Aa4 + ½ 21.4 A44 2t.45 + ~ 40 

Aa 
1A A4~) -- (AIsA19 + ~ 4 

Aa + A n + A n  + F  

Aa 
• (A~ "4- A~ -4- A~5 + A~9 + Aa A44 + F) • 

(A21 + A22 + Aa + F) 2 

FiG. 10 

this problem.) As the expressions which man generates 
and manipulates by  computer grow in size, the necessity 
for techniques far more sophisticated than S H R I N K  will 
become increasingly obvious• 

S u m m a r y  

The importance of avoiding intermediate expression 
swell in the design of algorithms for symbolic manipula- 
tion of formulas has been indicated by remarks concerning 
the design of expand algorithms and differentiation al- 
gorithms. As in all computer processing, this m a y  boil 
down to the problem of designing algorithms tha t  are 
slower but require less space. In  the case of differentiation, 
however, the improved algorithm eliminated redundant 
processing as well as redundant  data, resulting in slightly 
faster execution than  the original algorithm. The old 
truism that  speed can be bought by eliminating error- 
checking is again borne out by the discussion of the 
F M C S E X  subroutine. 

The basic problem addressed by the S H R I N K  routine 
promises to be a challenge to future investigators. Mathe-  
maticians, engineers and scientists will be using the com- 
puter to generate symbolic expressions much larger and 
more complicated than any they have seen before• Suitable 
techniques must  be developed to make the essential mean- 
ing of these expressions comprehensible. 
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