
(2) and its derivative R ' are polynomials which arose
naturally in a recent application of PM, where it was de-
sired to find whether R has any multiple factors. Both pairs
of polynomials turn out to be relatively prime. Using the
old algorithm, the computation (1) required 0.64 seconds;
using the new algorithm, it required 0.22 seconds. The
advantage of the new algorithm increases rapidly with the
complexity of the polynomials to which it is applied. I t
did the computation (2) in 0.30 minutes, while the old
algorithm required 21.11 minutes!

REFERENCES

1. COLLINS, G. E. A method for overlapping and erasure of lists.
Comm. ACM 8 (Dec. 1960), 655--657.

2. - - . REFCO III , a reference count list processing system
for the IBM 7094. IBM Res. Rept. RC-1436, May, 1965.

3. MCCARTHY, 3'., ET AL. LISP I programmer ' s manual . Com-
pu ta t ion Center and Res. Lab. of Electronics, MIT, Cam-
bridge, Mass., 1960.

4. WmZENBAUM, J. Symmetric list processor. Comm. ACM 6
(Sept. 1963), 524-543.

5. GLASNER, JUDITH, ET AL. The NU-SPEAK system. NYO-
1480-9, Courant Inst. of Mathematical Sciences, New York
University, New York, N.Y., Nov. 1964.

6. POPE, DAVID A., AND STEIN, MARVIN L. Multiple precision
arithmetic. Comm. ACM 3 (Dee. 1960), 652-654.

7. Cox, ALBERT G., AND LUTHER, H. A. A note on multiple
precision arithmetic. Comm. ACM 4 (Aug. 1961), 353.

8. BROWN, W.S. The ALPAK system for non-numerical algebra
on a digital computer--I: Polynomials in several variables
and truncated power series with polynomial coefficients.
Bell Sys. Tech. J. 42 (Sept. 1963), 2081-2119.

9. - - , HYDE, J. P., AND TAGUE, B. A. The ALPAK system
for non-numerical algebra on a digital computer--II: Ra-
tional functions of several variables and truncated power
series with rational function coefficients. Bell Sys. Tech.
J. ~8 (March 1964), 785-804.

10. HYDE, 3". P. The ALPAK system for non-numerical algebra
on a digital computer--III: systems of linear equations
and a class of side relations. Bell Sys. Tech. J., 43, (July,
1964), 1547-1562.

11. TARSKI, A. A Decision Method for Elementary Algebra and
Geometry. U. of California Press, Berkeley, Calif., 2nd ed.

12. COLLINS, G. E. Polynomial remainder sequences and determi-
nants. IBM Res. Rept. RC-1209, June, 1964. Also Am.
Math. Month. to be published.

13. - - . Subresultants and reduced polynomial remainder se-
quences. Notices of the Am. Math. Soc., to appear.

14. USPENSKY, J. V., AND HEASLET, M. A. Elementary Number
Theory. McGraw Hill Co., New York, N. Y., 1939, pp. 43-45.

Experience with FORMAC Algorithm Design
R. G. T o b e y

International Business Machines Corporation,* Cambridge, Massachusetts

Various facets of the design and implementation of mathe-
matical expression manipulation algorithms are discussed.
Concrete examples are provided by the FORMAC EXPAND
and differentiation algorithms, a basic FORMAC utility routine,
and an experiment in the extraction of the skeletal structure
of an expression. One recurrent theme is the need to avoid
excessive intermediate expression swell in order to minimize
core storage requirements. Although many details from the
FORMAC implementation are presented, an attempt is made
to stress principles and ideas of general relevance in the de-
sign of algorithms for manipulating mathematical expressions.

I n t r o d u c t i o n

Shortly after the FORMAC experimental programming
system first became operational in April, 1964, a small
group of programmers and mathematicians began to
experiment with the FORMAC object-time routines. One
explicit goal was to seek improvements to particular
FORMAC expression manipulation algorithms; another
less provincial goal was to isolate and s tudy general or

Presented at an ACM Symposium on Symbolic and Algebraic
Manipulation, Washington, D.C., March 29-31, 1966.

* Systems Development Division.

theoretical problems--problems independent of a particu-
lar internal representation or implementa t ion--which
arise in the design of mathematical expression manipula-
tion algorithms. Several highlights of this experimenta-
tion, which led to the improvement of FOR~rAC algorithms,
and which have implication for algorithm design of a more
general nature, are presented in this paper.

The FORMAC capabili ty is described in increasing
amounts of detail in [1, 2, 3]. Some details of FORMAC
implementation are presented in [4]. The role of automatic
simplification in FORMAC is sketched in detail in [5], and
applications tha t have been made of the FOaMAC system
are described in [6]. Some familiarity with these papers is
assumed in the discussion which follows.

This paper is divided into four sections. In the first
section, problems encountered in design of expansion
algorithms (the FORMic E X P A N D command) are dis-
cussed. The second section is devoted to alternative or-
ganizations of the differentiation algorithm. Examples con-
t rast the output produced by the two different routines.
The third section discusses a simple-minded idea concern-
ing expression scanning and error checking; it leads to an
order of magnitude increase in the efficiency of the FORMAt
system. The last section deals with the problem of incom-
prehensible mathematical expressions; an experiment in

V o l u m e 9 / Number 8 / August, 1966 Communications of t h e ACM 589

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365758.365773&domain=pdf&date_stamp=1966-08-01

the extraction of the skeletal structure of an expression is
described. One implication is that certain techniques can
be readily implemented for reducing enormous expres-
sions to a comprehensible form.

E x p a n s i o n A l g o r i t h m s a n d I n t e r m e d i a t e S w e l l

Expansion, the algebraic operation of multiplying out a
product of sums, is a transformation of central importance
in the manipulation of mathematical expressions. In Figure
1 three forms for p3, the third Legendre polynomial, are
displayed. The first form indicates how the polynomial
looks when generated from the basic iterative relation
(also displayed in Figure 1) without benefit of expansion.

p l o w

x 2 - - 1 d
p ~ = n p ~ l + - - - - [p~-l]

n d x

p a = x (x ~ + ½ (x ~ - - 1)) q- x (x 2 - - 1)

= x ~ + ½x 3 - ½x + x ~ - x

Fro. 1. Expansion and collapsing of the Legendre polynomial, pa .

FORMAC E X P A N D algorithm to minimize intermediate
expression swell is discussed.

EXPANSION OF PRODUCTS OF SUMS

The original FORMAC E X P A N D algorithm (opera-
tional in April, 1964) generated all the terms in the ex-
panded sum before attempting to collect like terms. This
brute force approach to the organization of expansion led
to the enormous intermediate swell indicated in Figure 2.
The frequent exhaustion of work space while expanding
expressions made it obvious that it was necessary to re-
organize the communication between the E X P A N D
algorithm and A U TS IM-- th e FORMAC AUTomatic SIM-
plification routine [5]. The E X P A N D routine was reor-
ganized so that the E X P A N D transformation was driven
by the AUTSIM transfer table. This reorganization cut
down intermediate swell as is indicated by the q- data
points in Figure 2. As is to be expected in the organiza-
tion of computer algorithms, this decrease in space re-
quirement was bought with execution time. In Figure 3,
expression size is plotted against execution time in seconds
for f11. The solid line indicates expression size under the
original E X P A N D algorithm. Note that the time at

The second form for the polynomial is that obtained by ,3
expansion without collection of like terms. The third form
has been obtained from the second by collection of like ,2
terms. This example indicates that the unexpanded form
of a polynomial may require more space for its representa- ,,
tion than the expanded form and much more space than
the simplified form. ,o

In some symbolic computations the expanded fo rm- - ~ 9
prior to the collection of like terms--requires a great deal

8 more space than either the unexpanded form or the corn- $.
pletely simplified form for the expression. Such is the case
with the symbolic calculation of f and g series as reported ~. 7
in [7]. Figure 2 displays the space requirements for the
4th through the l l t h coefficients, the f~, of the f series. ~ 6
Four sets of data are displayed. The first (.) is the size of 5

the expression at input to the E X P A N D command. The .2
next two (~ q-) represent the maximum space required ~ 4
by the expression as a result of the E X P A N D algorithm. ~ 3
The fourth data curve (X) gives the size of the expres-
sion after expansion and simplification. I t is obvious from ~ 2
this display that expansion requires more space for ex-
pression representation before it requires less space. We
call this phenomena intermediate expression swell. In the
design of algorithms for symbolic expression manipulation,
it is important to minimize intermediate expression swell.
The need for minimization is apparent from Figure 2; if
only 1000 units of memory space are available for expres-
sion manipulation, then execution of the program utilizing
the original E X P A N D algorithm would cease during the ¢
generation of the 10th iterate. F~0 requires more than 1000 +
units of core storage for its generation due to intermediate
expression swell. In this section the partial redesign of the X

¢

/
¢

' ' ' ' ' ' ' ' ' [| 0 ' ' 5

FiG. 2. Space required for 4th through
l l t h iterates

1

I
I

\

x x

I 2 3

FIG. 3. Expansion of
l l t h iterate (execu-
tion time in seconds)
for both algorithms

intermediate swell produced by first EXPAND algorithm.
intermediate swell produced by improved EXPAND (type

I I I release).
s i z e of expression at input to EXPAND.
size of expression after expansion and simplification.

590 Communica t ions of the ACM Volume 9 / Number 8 / August , 1966

which the maximum space is required is known exactly.
The portion of this curve in which the space requirement
for expansion is increasing (1) corresponds to the time
in the E X P A N D algorithm. The portion of the curve in
which the space requirement is decreasing (2) corresponds
to the time in the AUTSIM algorithm. The two slashed
lines (3 and 3') indicate a maximum and minimum ex-
pansion AUTSIM interaction. Since E X P A N D and AUT-
SIM are interconnected, there is no meaningful sepa-
ration of the two algorithms on these curves.

Figure 4 displays the conceptual difference between the
two expansion algorithms. Figure 4A indicates how ex-
pansion and simplification are performed by the original
E X P A N D algorithm. Figure 4B indicates the approach
taken in the improved expansion algorithm. The meshing
of the E X P A N D algorithm with the AUTSIh~[algorithm
gives the E X P A N D algorithm immediate access to
LEXICO-- sho r t for LEXICOgraphical reordering (see
[5])--the routine that collects like terms in a sum. As each
term of the expanded product is generated, it is added to
the intermediate results and an a t tempt is made, via
LEXICO, to collect like terms in that sum. The algorithm
bounces back and forth between term generation and
collection of like terms in the sum. In this manner, inter-
mediate expression swell is minimized.

(a + b -- c) (a -- b + c)

E X P A N D
) (a + b - - c) a + (a-4- b - c) (- b) - 4 - (a T b - c)c

E X P A N D) a2 -4- a b - - a c - - a b - b 2 - t- b c - t - ac - t - b e - c 2

A U T
SIM) a2 - - b2 - - c2 "4- 2 b c

(A) No intermediate collection of like terms
(9 terms maximum swell)

T e r m) a ~ -t- ab L
G e n e r a t o r > ab + a ~

Term L
Generator > a b + a ~ - - a c ~ a b - a c + a 2

Term L
Generator " a b - - a c --f- a ~ - - a b) - - a c -4- a 2

Term L
Generator) - - ac -t- a ~ - - b 2) - a c - t - a ~ - b 2

T e r m) - - > - -ac + a ~ + b c - - b 2 Generator a c .+- a ~ - - b 2 -I-" b c L

Term
Generator > - - a c -4- a ~ "t- b c - b 2 - t- ac

L Term L
- - , a ~ + b c - b 2 G e n e r a t o r) a~ - t - b c - b ~ + b c) a 2 + b c 2 - b 2

Term L
G e n e r a t o r) a 2 -Jr b c 2 - - b 2 - c 2) a 2 "-I- b c 2 - b 2 - c ~

(B) Intermediate collection of like terms while terms
are generated (5 terms maximum swell). The
LEXICO sorting order for expressions is described
in [5].

Fro. 4. Contrast between the two expansion algorithms

There is an additional contrast between the two EX-
P A N D algorithms. As is obvious from Figure 4A, the
original E X P A N D routine depended upon successive
applications of the right distributive law; the intermediate
expressions displayed in Figure 4A are actually generated
as part of the expansion. The improved E X P A N D al-
gorithm generates terms directly by a nested iteration. I t
is possible to contrast the two E X P A N D algorithms by
saying that the original E X P A N D algorithm only knew
the right distributive law and applied it successively,
whereas the improved algorithm is aware of the general
theorem implied by the distributive law and applies that
theorem directly.

~ [U L T I N O M I A L E X P A N S I O N

If the algorithm described above were applied to a sum
raised to an integral power in order to accomplish the ex-
pansion, then growth inefficiencies with respect to inter-
mediate swell would occur. Consider the expression (A0
+ A1 + - . . + A~) k where n and k are positive integers.
The E X P A N D algorithm described above would gener-
ate (n + 1)k distinct terms if applied to this expression.
However, direct application of the generalized multi-

n°mial the°remwil lpr°duce (n + k) distinct terms" T h i s n

is, in general, much smaller than (n + 1)k. The algorithm
implied by the multinomial theorem has one further ad-
vantage: if each of the variables which appear as terms in
the above sum are distinct, then there can be no collapsing
(or collecting) of like terms in the sum generated by the
multinomial theorem. Hence, the multinomial theorem is
a valuable tool in avoiding the problem of intermediate
swell as encountered in the ordinary expansion algorithm.
Suppose, however, that As = a ~ z ~ with the as numeric.
Then like terms will not have been collected in the sum
produced by multinomial expansion. In fact, this case of a
polynomial in a single variable is the worst possible case
with respect to the contrast between the size of the expres-
sion after multinomial expansion and the size of the ex-
pression after the collection of like terms. In this particu-
lar case, the simplified polynomial will consist of n. k + 1

terms" This is c°nsiderably smaller than (n + k) t e r m s ' n

If the sum of the A i is a polynomial in several variables,
the contrast will not be so great.

In order to make concrete the contrast in the number
of terms required, and hence the space required, in these
various cases, consider the 5th degree polynomial g (x)

= 2 + 3z -4- 19x ~ +4- 7x 3 + 5x ~ -4- x 5 in a single variable.
Raise it to the 6th power, h (x) = [g(x)] 6. If the original
E X P A N D algorithm were applied, h (x) would require
66 = 46656 terms for the intermediate result. With the
improved E X P A N D algorithm, this would require much
less space but would greatly increase the execution time.

x ~

= 462 terms. But the simplified polynomial requires only

Volume 9 / Number 8 / August, 1966 Communications of the ACM 591

5.6 + 1 = 31 terms. Wi th respect to minimizat ion of
intermediate expression swell, nmlt inomial expansion oc-
cupies middle ground; in one extreme case it provides the
opt imal result; in the other extreme it is h ighly inefficient.

The E X P A N D algori thm current ly operational within
the FORMAt sys tem performs lnultinomial expansion;
however, this section of the algori thm has no contact with
L E X I C O until all the terms have been generated. Users
of the experimental F o ~ t ~ c sys tem can expect to en-
counter great inefficiency in space util ization when raising
polynomials to a power.

I f one takes the basic uni t of core storage to be tha t
storage required to represent a te rm of a sum (this is
admi t ted ly variable and depends upon the nature of the
te rm) , it becomes obvious tha t the above remarks apply
to the organizat ion of E X P A N D algori thms for any ex-
pression manipula t ion system. The concept of intermediate
expression swell is independent of effficiencies in repre-
sentat ion which m a y accrue due to a limited or well-
s t ructured da ta base; e.g., it applies equally well to poly-
nomial manipula t ion systems which can make efficient
use of storage space since the polynomial da ta s t ructure
is assumed. I t is clear tha t disastrous intermediate swell
while expanding expressions can be avoided by designing
an expansion algori thm tha t utilizes the mul t inomial
theorem and collects like terms s imultaneously with the
generat ion of those terms. How one organizes the com-
municat ion between the term-generat ion funct ion and the
collection of like terms, so as to minimize execution time,
is an intriguing problem which will, no doubt , be the sub-
ject of fur ther s tudy.

D i f f e r e n t i a t i o n i n F O R M A C

The two expressions displayed in Figure 5 are the th i rd
iterates generated by the FORa~AC program cited in [7].

Original Differentiation Algorithm:
f8 = ((0 -- (((-- (O,~a + 3(-3u~r)a + 3u(e - 2a2)))0

+ (-3us)o) + ((- 3 ~) 0 + ,0))) - ((-3~) (0 + 1)
+ u(o + o))) - u((o + o) + (o - uo))

Hanson, Caviness and Joseph, in their work at the Uni-
versi ty of N o r t h Carolina [8], recognized tha t their me thod
of generat ing derivatives introduced a large number of
redundancies t ha t required elimination. T h e y observed
tha t there were two ways to accomplish this: (1) Per form
a second scan over the differentiated expression to clean
up the redundancies, or (2) eliminate the redundancies as
they are generated. T h e y chose the second alternative.
The original FORMAt differentiation algori thm imple-
mented the first al ternative with A U T S I M performing
the second scan. The new F M C D I F subroutine implements
a thi rd al ternat ive: (3) Per form a prel iminary scan over
the input expression so tha t dependency relations are
known during the main scan; few redundan t expression

T A B L E I. TRANSFORMATIONS IN ORIGINAL
DIFFERENTIATION ALGORITHM

1. D - - X . - - - ~ - - D X
2. D expX-** expXDX]
3. D l o g X - * * i"X-- 1 D X]
4. D sinX--* * cos X D X]
5. D cos X---~ -- * sin X D X]
6. D a t a n X - - ~ * T + l T X 2] - i D X]
7. D t a n h X - - ~ * 4 T + e x p X e x p - X] - 2 D X]
8. D fac X ~-~ 0

(The gamma function representation for the factorial is not
employed. The factorial function is assumed discrete.)

9. D dfc X--~ 0
10. D ~ A X - - ~ + , T A W X - - 1] D A X] , I o g A D X T A x]]
11. D comb A X --~ 0
12. D + M X 2 . . - ~ ,] ~ + D M D X 2 . . . D X ~]
13. D * MXv..Xt] --~ + * D XiX~-..Xt] * XiDX2...Xt]. . . * MXv..

D X t]]

14. I f X E A , D X -L, l f o r X = x .
dX

D X --~ dx for X dependent upon x (declared so in

the FORMAC DEPEND statement).
D X ~ 0 for X independent of x.

T A B L E I I . TRANSFORMATIONS IN REVISED ALGORITHM

Revised Algorithm:
f8 = ((--(((--(3(--3uo)o + 3,.(e -- 2o~)))0)))

- ((- 3 u ~) (o + i))) - u(o + (0 - ~0))
The expression simplifies to 3t~o-.

Fro. 5. Contrast between differentiation algorithms

T h e y have been generated wi thout the benefit of A U T S I M ,
the FORMAC automat ic simplification routine [5]. The first
expression is the form generated by the original FORMXC
differentiation program. The second expression was gen-
erated by a redesigned differentiation algori thm tha t does
not generate as m a n y redundant e l ements - - the major i ty
of the redundancies in this expression arise f rom sources
other t han the differentiation algorithm. The redundancies
tha t were eliminated by the redesign are apparen t f rom a
careful comparison of the two expressions in Figure 5.

0' Given D~, k E B. If lead element of X is independent of
variable of differentiation, then DX --~ 0.

Otherwise, apply the application transformation from the
remainder of table.

See transformations 1-7 of Table I.
Dependency scan eliminates need for transformations 8,

9 and 11.
10' D .T~ x--~ same as 10

DTAX--~* T A + X - 1]DzXX]
DT~ X--, • logAD X T AX].

12' D + X, ...Xt] --~ + DXi1...D X i~] where only those Xlj occur
which are dependent upon the variable of differentiation.

13' D*X,.-.Xt]--~ + ..- *X .." DM...X~] ..-] where products
are generated only for Xl which are dependent upon the
variable of differentiation.

dX
14' If X E A, DX-~ 1 for X = x; DX ~ dx (the symbolic name

of the derivative) for X # x.

592 Communica t ions of tile ACM Volume 9 / Number 8 / August , 1966

elements are generated. The design of the first FORMhC
algorithm was simplified by the assumption that AUTSIh~
would clean up expressions--remove redundant elements
- - a f t e r the differentiation transformations had been per-
formed. As is clear from a s tudy of Tables I and I I , this
assumption eliminated the necessity to design transfor-
mations for specific subcases of the differentiation trans-
formations of Table I. Several such subcases are handled
by specific transformations in the redesigned algorithm
(Table I I) . In this section we discuss the organization of
both differentiation routines and indicate how sources of
redundancy in expressions have been eliminated.

The elimination of redundant expression elements de-
creases intermediate expression swell. This is very signifi-
cant for differentiation algorithms since symbolic differ-
entiation generates deceptively complicated expressions
quite rapidly. Reference [9] provides interesting docu-
mentat ion of this phenomena.

THE FORMAC ALGORITHM

The structure of the FORMAC differentiation routines is
most easily presented by considering mathematical ex-
pressions in the FOnhtAC internal representation, delimiter
Polish (see [5]). For our purposes, it is sufficient to define
delimiter Polish as a formal mathematical system. The
two differentiation algorithms are then defined in terms
of formal operations upon elements of this formal system.

Let A be the set of primitive elements (constants and
variables) in this system. An elementary function will be
defined as a function tha t can be represented by an ex-
pression in the set B of expressions generated from the
primitive elements by the rules listed below.

Basic operators:

Unary operators: --, exp, log, sin, cos, atan, tanh, fac, dfc
Binary operators: T (**), comb
Variary operators: -f-, *
In addition, there is a delimiter,] .

Rules for generation of expressions in B:

1. I f k 6 A , k 6 B ;

2. Let s C B. Then -~, exp v, log ~, sin v, cos ~, atan ~, tanh ~,
fac s, dfc s are in B.

3. Let s, X 6 B. Then Tax and comb uX are in B.

4. Let ~ , .. . , s, 6 B. Then +m~ "'" ~/,] and * ~ 2 ... ~,] are
in B.

5. These are the only expressions in B.

Sample expressions in B:
Infix Notation Deliminter Polish

A - B + C + A - BC];
(cos (y))2sin(x-y) T cos y • sin + x -- y]2].
A/B * A T B - 1]

First Algorithm

Let D be the differential operator; it is unary. We define
C as the set of expressions generated by the rules for B
with the addition of the following rule:

6. I f ~ 6 B , D h 6 C .

The transformations of Table I define an algorithm for
differentiating any k in the set B. Each transformation of
Table I suppresses the operator D to a point further to the
right in the delimiter Polish expression. Successive applica-
tion of these transformations suppresses the occurrences
of D so that it operates only on primitive elements; and
finally, application of Rule 14 eliminates all occurrences
of D from the expression. Such iterative application of
these transformations is itself a transformation from the
set C to the set B. The transform is a symbolic form for
the derivative of the original operand of the operator D.

The transformations presented in Table I are sufficient
to provide a differentiation algorithm. The organization of
the expression scan to implement such an algorithm is
dear. A simple left-to-right scan, which applies the trans-
formations of Table I to suppress and hence remove all
occurrences of the operator D, is all that is required. The
results, however, contain redundant subexpressions--
automatic simplification of the expression is required.
Several illustrative examples are displayed below. In these
examples, the variable appearing over the arrow is the
variable of differentiation.

(a) D T X 2 - ~ + , 1" X + 2 - 1] D X 2] * l o g X D 2 1" X2]]
z

4 + , ? X + 2 - 1] 1 2] , l o g X O 1" X2]]
A U T

> * X 2]
SIM

(b) D t a n h l ~ . 4 ~" + e x p l e x p - - 1] -- 2 D 1]

• 4 T + e x p l e x p - 1] - 2 0]
A U T

) 0
SIM

(c) D . X Y V 3] - - ~ + . D X Y V 3] . X D Y V 3]
• X Y D V 3] . X Y V D 3]]

- ~ + . O Y V 3] . X O V 3] , X Y 1 3] . X Y V O]]
AUT

• X Y3].
SIYI

The above examples are extreme in that the action of
A U T S I M produces a dramatic reduction in the size of the
expression. They illustrate, however, the extent to which
the original differentiation routine depended upon auto-
matic simplification to clean up its tracks. I t is obvious
that expressions were generated with unnecessarily large
intermediate swell.

Second Algorithm:

The redesign of the differentiation algorithm includes a
preliminary scan, performed to determine which subex-
pressions are dependent upon the variable of differentia-
tion. As a result, one can determine immediately whether
a given operator heads an expression that is dependent or
independent of the variable of differentiation. This in-
formation eliminates the need to generate such horrendous
expressions as displayed in example (b) above; it is known
immediately that the tanh operator heads an expression
that is independent of the variable of differentiation.

The new set of transformations is displayed in Table
I I . The first transformation indicates an alternative to
any of the first thirteen transformations in Table I. The

V o l u m e 9 / N u m b e r 8 / A u g u s t , 1966 C o m m u n i c a t i o n s o f t h e ACM 593

alternative is invoked only in the case of nondependency.
The changes to the other transformations are self-explana-
tory. The initial dependency scan utilizes a pushdown in
order to scan into the expression, recognize dependency
relationships, and back out of the expression marking the
operators that have dependent subexpressions.

The effect of these changes to the differentiation al-
gorithm can be seen by looking at the results of the follow-
ing three examples. The input expressions are displayed
after the dependency scan, on the left. The dot above the
various symbols indicates that the dependency bit on these
operators or variables has been set.

(a) D ~ 2 2 - 5 * * T X + 2 - 1 1 1 2 1
AUT

, , X 2] SIM
(b) D t a n h 1 --~ 0

(c) D ; X Y I7 3] ~ -I- * X Y 1 3]]
AUT
- - * *X Y3]. SIM

A new and different approach to the scan-off algorithm
was coded in order to avoid this excessive waste of time.
The original algorithm did complete testing for well-
formedness. I t used a pushdown store and was quite slow.
The new algorithm, coded using the compare instructions
of the 7090 family of computers, required the same space
(due to compare tables) but does no checking for ill-
formedness in expressions. The bottom display in Figure 6
indicates the dramatic reduction in execution time due to
this algorithm.

The contrast pictured in Figure 6 provides still another
example of a basic principle related to the design and
implementation of large systems. When debugging a com-
plex system, routines that perform complete error check-
ing are a necessity. Without them, it is impossible to lo-
cate system bugs. Once the system has been debugged and
it is put into actual production use, error-checking sub-
routines may be replaced with much more rapid routines
that enhance total performance but do no error checking.

Although some expression redundancies still remain to
be cleaned up by the AUTSIM routine, intermediate ex-
pression swell has been greatly reduced by this revised
algorithm. Moreover, the new algorithm represents about
a 4 percent decrease in execution time requirements; it is
slightly more efficient than the old algorithm.

Subexpres s ion Scan-Off A l g o r i t h m in FORMAC

Several FOR~AC object-time algorithms require a basic
operation that is performed by the routine FMCSEX. It
is frequently necessary to scan over complete subexpres-
sion elements embedded in the expression currently being
manipulated. This task may be performed to obtain the
beginning and end of an expression so that it may be de-
leted or repositioned, or simply to scan over the expres-
sion so that the next argument of the governing operator
(see [5]) may be scanned. For example, consider the de-
limiter Polish expression + * A B 3] T * B C] 1.2 D].
I t may be necessary to scan over the first underlined prod-
uct in order to look at the second argument under a sum.
Or, it may be necessary to determine the form of the ex-
ponent under a power operator, T • This necessitates scan-
ning over the second underlined product expression.

The efficiency with which this operation is performed
is surprisingly crucial to the total efficiency of the FORMAC
object-time system. Figure 6 graphically displays the time
requirements for various FORMXC subroutines during the
execution of a particular program. The length of the bars
indicate the time spent in each routine. The higher rou-
tines call the lower routines directly if the routines are
adjacent; indirectly, if not. The top display indicates the
time spent in the original FMCSEX routine. It is apparent
that over half the time is spent in this routine. It was a
surprise to the implementers of the FOR~rAC object-time
system that the FMCSEX routine represented this large a
proportion of the work required to manipulate symbolic
expressions.

Skele ta l S t r u c t u r e Extrac t ion

The development of formal mathematical expression
manipulation systems such as ALPAK, Formula ALGOL,
and FOaMAC, presents the scientist with a new data editing
problem. The problem is analogous to that faced by physi-
cists ten years ago when computers were first used to
generate large volumes of numerical data. The physicist
soon learned that data editing prior to output was es-
sential if he was to comprehend the implications of his
data.

It is not abnormal for expressions generated by FOr~MAC
to require 2 to 300 lines (120 characters each) of listing
when output. Such expressions are incomprehensible to the
human reader. The expression is composed of several
thousand characters and the main mathematical operators,
which determine the essential nature of the expression,
are buried somewhere within the massive listing of sym-
bols. This situation will be aggravated as the various space

MAIN PROGRAM

LE T COMMAND
\

,

I
I

MAIN PROG. I
.ET I

6 ~ ,b ~ ~o ~5 io s's
EXECUTION TIME IN SECONDS

Fio. 6. Con t ras t in t ime required by the two F M C S E X rout ines
dur ing execution of a specific program.

594 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m b e r 8 / A u g u s t , 1966

and time limitations on computer systems for formal
mathematics are reduced or eliminated. In the future it
will be possible and perhaps common to generate and to
manipulate expressions with hundreds of thousands or
more elements. In such a situation the scientist or engineer
will be swamped with overwhelming mathematical detail
unless algorithms are developed for extracting and present-
ing the essential or skeletal structure of symbolic expres-
sions. This problem is ever more acute in a time-shared,
conversational environment.

In this section an experiment in skeletal structure ex-
traction utilizing FORMAt i~ discussed. Skeletal structure
extraction simplifies expressions by replacing subexpres-
sions with single variables. This operation suppresses
detail in an expression, thereby revealing the skeletal
structure of the expression. This work was conceived and
executed by James Baker, at the IBM Boston Program-
ming Center.

The experiment was inspired by an attempt to establish
that output from the North Carolina differentiation rou-
tine [8] was equivalent to the output of the FORMAC differ-
entiation routine. Figure 7 displays the input expression

I N P U T = (g s i n ~ i + h e o s ~ i + f + ((p + 2 f (g s i n ~ i + h c o s ~ i)
+ g2 s in ~ i + h ~ cos ~ i) (1 + 2t(g s in 2 i + h cos ~ i)
+ t~(g 2 sins i + h ~ cos ~ i)))~ + t(f(g s in 2 i + h cos ~ i)
+ g~ s in s i + h~ cos ~ i)) / ((1 -- ft)(g s in ~ i + h cos ~ i
+ f + ((f~ + 2f(g sing i + h cos ~ i)
+ g~ sine i + h~ cos ~ i)~)))

Fro . 7. T h e input expres s ion as publ i shed in [8]

list are defined as the subexpressions that the atomic
variables replace. The parallel lists (or dictionary), which
were generated in the successive shrinking of the expres-
sions in Figure 8 are displayed hi Table III; the A-list
contains the atomic variables (variables which name them-
selves) and the L-list contains the corresponding expres-
sions. A glance at the L-array indicates what is meant by

North Carolina Differentiation Result in FORMAC
Notation (Rearrangement is due to AUTSIM):

(F÷(F,(G,FNCSINII),.2.0+H.FMCCOS(1),.2.0),2.0+F..2.0*G..2.0*
FMCSIN(1).*2.0+H,.2.0*FMCCOS(1)*,2.0)~*5.0E-I+G.FMCSIN(1),,
2.C+H-FMCCOS(I)..2.01..(-2.0).I-F.I+I.O).'(-I.O)'(-(F+F'{G*
FMCSIN{I),,2.0+H*FMCCOS(1)..2.0)*I+(F,iG*FMCSINil)..2.0+H.

*I,2.0+(G..2.0.FMCSIhII)..2.C+F~.2.C'FMCCC$(1)..2.C}.]''2.C+
I.G)..5.CE-I+G~F~CSIN(1),,2.C+{G..2.C'FMCSIK(1).'2.C+F''2.C"
FMCCCS(I}..2.C}*I+F,FMCCCS(1),.2.C)-{(F-{C'FMCSIK{I),FMCCCS(
[).2.C+H,FMCSIM(1),FMCCCS(1),(-2.0)}*2.C+C'*2.C'FMCSIh(1)"
FMCCCS|I)*2.C+F.-2.C,FMCSIhI|),FMCCCS{I)*(-2.C))'{F'(G"
FMCSIh(I)*,2.C+F-FYCCCS(1)..2.C),2.C+F**2.C+G*,2.C.FMCSI~(1)
.*2.C+F*,2.C-FMCCC~(1),,2.C).-(-5.Cfi-I).5.CE-I*~'FMCSI~(1)"
FMCCCS(1)-2.0+F,F~CSIN(1)-F~COOS(1)'(-2.0))+{F+(F'IG'FMCSIN{
|).*2.C+M*F~CCCS{I)..2.C),2.C+F.,2.C+G-,2.C'FMCSI~(I)'*2.0+H
,.2.0*FMCCOS|I)-,2.0|,*9.CE-I÷G-FMCSIN{I),-2.C÷F'F~CCCS(1).-
2.C}*{F,(G*FMCSI~(1),FMCCCS|I)'2oO+~'FMCSI~{I)'FMCC~S(1)'{
-2.C))*T+{F-(G*FMCSIh(1).-2.C+F,FMCCCS(1),,2.0),2.C+F,,2.C+G
-,2.0*FMCSI~(1),.2.C*F,,2.C.FMCCES(I|'*2.C)''(-5.CE-I)'((F'(
G,FMCS|N{I),FMCCCS|I),2.C+F-FMCSIN(1),FMCCCS(I),(-2.C))'2.C+
G*,2.C.FMCSIhIII,FMCCZ~II).2.C+F,,2.C'FPCSI~(II,FMfCCS(I}'(
-2.C)).{{G*FMCSIN(1),,2.C+F,FMCCCS(1)''2.G)'I'2.C+{G''2.C"
FMCSI~(1),,2.O+~,,2.E,FMCCCS{I),,2oE)'T..2.C+I.C)+(F'(G"
FMCSIN(I)--2.C+M-FMCCCS(1),-2.CI-2oC+F''2.C+G''2.O'F~CSI~{I)
- - 2 . 0 + F - . 2 . 0 - F M C C C S I I I . ' 2 . C) . ((G - F M C S I N (I) ' F N C C C S (I } ' 2 . C ÷ ~ "
FYCSINilI,FMCCCSiII-(-2.C))-T-2.0+IG.-2.0-FMCSIN{I)-FYCCCS(I
),2.O+b,,2.0,FMCSIN(1),F~CCCS{I),(-2.C))-I''2.C))'I(G'F~C$1~
(1),-2.0+F,FMCCCS(1),,2.C),I,2.C+{G,.2.C,FMCSIN(1)''2.C+M'"
2.C,FMCCCS(1),,2.CI,I,e2.C+L.CI.,(-5.CE-II'S.OE-I+6mFMCSIN{I
).FMCCCS(1)-2.0+(G,.2.0.FMCSIN(1).FMCCGS(1)'2.O~b''2.C"
F~CSIk(1).FMCCOS(1)-(-~.C)),I+F-FMCSIN(II,FNCCCS(I}'(-2.C)})

as published in [8]. Figure 8 displays the output from the
FOaM~C differentiation routine and the North Carolina
result in FORMAt notation. Both expressions have been
transformed by AUTSIM. The initial attempt to cheek
the equivalence of these expressions was made utilizing
the FORM2~c match-for-equivalence capability (MATCH
EQ Command). This effort failed due to lack of adequate
space hi the computer. (The MATCH EQ algorithm era-
ploys several calls to the EXPAND algorithm. This work
was carried out when the original EXPAND algorithm
was the only one available; hence, simple matches for
equivalence ran out of space due to excessive intermediate
expression swell.) The equivalence of the two results was
verified by hand. However, it was hoped that the equiva-
lence could be shown using FoRmiC by "shrinldng" both
outputs and then performing a match for equivalence on
the shrunken forms.

k~[athematical expressions are shrunk by the routine
SHRINK. It is called with the name of a FORe,At ex-
pression and the name of two parallel lists. Upon each call
to SHRINK, the bottom-level subexpressions of the ex-
pression are replaced by atomic variables, the elements of
the first list. The corresponding elements of the second

F O R M A C Di f f erent ia t ion R e s u l t :

-(F+Fm(GIFNCSIN(I)aJ2.0+HmFMCCOS(I).,2oOIeTelFm(GJFNCSIN(1)
"'2.0+F'FMCCOS(I)''2.0)'2.0~F..2.0+G.t2.0nFMCSIN(II*.2oO+H,t
2.C~FMCCCS(1)Wm2oO)amS.CE-I,((G.FMCSIN(1)t.2.0+H*FMCCOS{I).,
2.C)*I'2.C÷(G''2.C'FMCSI~(I).'2.0+~J~2.C*FMCCCS(1),,2.C)IIm~
2.C+I.C)..5.¢E-I+G,F~CSI~(1),.2.0+(Gi,2.0wFMCSI~(1).W2oC+~i.
2-CQFMCCCS(1)''2.C)'I+FIFMCCCS{I}.~2.C)*(F+(F,{G.FMCSI~(1),m
2.C+FmFMCCCS(1)''2.C),Z.C÷F.t2.C+G.,2.0mFMCS|h(I),,2.C+F,,
2.C*FMCCCS(1)''2oC)'*5.CE-I+G,FMCSI~(1).~2.0÷MmFMCCCS(1),~
2.C)'*(-2.0)m(-F,I+I.C)gQ{-I.O),{(F,{G,FMCSI~{I),FMCCCS(1),
2.C+emFMCSIN(1)*FMCCCS{I),{-2.0)),2.C+G,,2.0.FMCSI~(1),
F~CCCS(I)*2.C+~,,2.CmFMCSI~{I}~FMCCCS(1),(-2.C|)*(F,(G,
FMCSIh(|)'*2.C+H'FMCCCS(1)Im2.C),2.0+F,,2.C+Gm,2.C,FMCSI~('I)
~*2-O÷I'*~2-C'FMCCCS(I)~2.C).*(-5.0~-I)~5.CE-I+G*F~CSI~(1)m
FYCCCS{I)'2.C+H'FMCSI~(1),FMCCCS(I}~{-2.G~)+{F*{F,(G.FMCSI~(
I)''2.C+F*FMCCCS(1)''2.C).2.C+F..2.G+G,.2.C,FMCSI~(1).,2.C÷b
**2.0"FMCCES(1)',2.0),.5.CE-I+G.FMCSIh(1).,2.0+~,FMCCCS(1),,
2-O)''(-I.O)'(F'(G'FMCSI~{I),FMCCCS(1).2.C+~.FMCSI~{I),
FYCCZS(1)~(-2.C))'I+(F.IG.FMCSIN(1),FMCCCS(1).2.C÷F*FMCSIk(I
).FMCCES(1)m(-2.C)),2.C~,,2.C,FYCSI~(1).FMCCCS{I).2oC÷F~.
2-C'F~CSI~(1)*FMCCCS(1).{-2.C)),|F,(~,FMCSIN{I).,2.C~F,

FMCCCS{I)'*2.C)'~(-5.CE-I),{(G,FMCSIN(1),,2.C÷FeFMCCZS(1),e

2-C+I.C)''5-CE-I'5.CE-I+(F.(~-FMCSIh{I).,2.0~F,F~CCES(1).,
2-C)~2.O+F*'2-O+G''2.C.FMCSI~(1)..2.C+F,.2.C.FMCCCS{I),.2.C)
"~5.CE-I~({G~F*CSIh{I),F~CCCS(1),2.C+F~FMC$1~(1),FMCCC¢(1)e(
-2.C))*I~2.C+{G**2.C,FMCSI~{I}~FMCCCS(1),2.C+F,,2.C,FPCSI~(I
)~FYCCES(|)'(-2.~))'$'-2.C)~(~G,FMCSIN{I),~2.C+F,F~CCCS{I}..
2.C)'T'2.0÷(G''2.C'F~CSI~(1),~2oO+P*,2.C,FMCCES(1).*2.C).I..
2-C+I-C)''(-5.CE-I)-5.CE-I+G,FMCSI~{I).FMCCCS|I)~2.0+(G,.2.C
*FVCSI~(1)~FMCCCS(1),2.C÷b,.2.C.FMCSIh(1).FM(CCS(1).(-2.C)).
T+F'FMCSI~(1)'~CC[S{I),(-2.C|),{-F.T÷[.O),.(-I.C)

Fio. 8. The differentiation results as they appear in FORMAC
notation after simplification.

V o l u m e 9 / N u m b e r 8 / A u g u s t , 1966 C o m m u n i c a t i o n s o f t h e A C M 595

the phrase " b o t t o m d e v e l subexpress ion." I t is a subex-
press ion wi th a single m a t h e m a t i c a l ope ra to r (as v iewed
in de l imi te r Pol ish) and on ly cons tan ts or a tomic var iab les
occurr ing a t the level below t h a t opera to r . Before creat ing
a new i t em on the L- l is t and in t roducing the corresponding
i t em from the A- l i s t into the expression, S H R I N K checks
the previous i tems on the L- l is t to make sure t h a t the
expression i t is abou t to subs t i t u t e for has not a l r eady
been assigned an a tomic va r iab le ; hence, new a tomic
var iables a re in t roduced on ly for new subexpressions. I f
S H R I N K is cal led wi th ano the r expression as a r g u m e n t
bu t wi th the same para l le l lists, subexpress ions in the new
expression, t h a t have a l r eady been ass igned a tomic var i -
ables, wil l be rep laced b y those a tomic var iables . Th is use
of a common d ic t iona ry is a necess i ty if a m a t c h for equiv-
alence is to be a t t e m p t e d on the sh runken forms.

Since subexpress ions are replaced b y a tomic var iables ,
the r e su l t an t expression requires less s torage space. More -
over, the new expression can be sh runk again ; the process
can be i t e r a t ed several t imes in order to achieve a w o r k a b l y
smal l result . The para l le l l ists of T a b l e I I I are the resul t of
such i te ra t ion .

T h e resul ts ob t a ined b y successively shr ink ing the ou t -
pu t expressions of F igure 8 and a t t e m p t i n g to m a t c h for
equiva lence a t each level of the S H R I N K are qu i te in ter -
esting. Tab le I V shows the resul t of a t t e m p t i n g a M A T C H
EQ a t each level. (Leve l 0 is the or iginal expression, level
1 the expression af te r one call to S H R I N K , and level n
the expression af ter n calls to S H R I N K .) A t the 7 th
S H R I N K , the expressions d iverge: t h e y no longer con ta in
t he same a tomic var iables . A s imple example indica tes
how this can happen . Consider the two expressions (x + y)
• (x - y) and x 2 - y2; these have the same a tomic var iab les
in i t ia l ly , b u t one call to S H R I N K will p roduce the ex-
pressions ata2 and a3 -- a4.

T h e poss ib i l i ty of ma tch ing two s t r uc tu r a l l y different
expressions v i a the shr inking m e t h o d depends upon the
level a t which the two expressions st i l l con ta in the same
a tomic variables• I f the las t common a tomic level resul ts
in an expression t h a t wil l m a t c h wi th in the confines of
ava i l ab le core storage, t hen the m a t c h for equivalence will
t ake place. Otherwise, there is no fu r the r hope wi th th is
technique. As is ind ica ted in Tab le IV, the m a t c h be tween
the N o r t h Carol ina d i f ferent ia t ion results and the FORMAC
dif ferent ia t ion resul ts took place a t the las t level pr ior to
divergence. T h e FORMate M A T C H E Q c o m m a n d jus t
ba r e ly m a d e it.

I t should be no ted t h a t t r igonomet r i c ident i t ies will
genera l ly cause a s t ruc tu ra l d ivergence a t a fa i r ly low level.
F o r example , add ing sin (20o) to the N o r t h Caro l ina resul t
and 2 sin 0o cos 0o to the FORMAt resul t wou ld cause a di-
vergence a t level one; add ing sin20o + cos~0o to t he N o r t h
Caro l ina resul t and 1 to the FORMAt resul t would cause a
d ivergence a t level zero (i.e., the or iginal expressions
would no longer have the same a tomic va r i ab les) . Thus ,
a p r imi t ive t echn ique such as S H R I N K is of l imi ted use
in a compl ica ted context where funct ional ident i t ies app ly .

T h e resul ts of this exper iment indica te the promise of
ve ry s imple techniques for deve loping more powerful
expression m a n i p u l a t i n g a lgor i thms in te rna l to expression

TABLE I I I . DICTIONARY ENTRIES OF PARALLEL LISTS
GENERATED BY SHRINK

A -List L-List A -List L-List

1st Level gth Level

A1 FMCSIN (I) A35 A28 * F * T
A10 FMCCOS (I) A36 A28 * F * 2.0
A100 F * * 2 A37 A 2 8 , T , 2 . 0
A l l G * * 2 A38 A13 * A29
A12 H * * 2 A39 A29 * T
A13 T * * 2 A4 A2 + A20 + A30
AI4 F * T A40 A32 + A33

2nd Level 6th Level

A15 A1 • • 2.0 A41 A100 --5 A23 + A24 + A36
A16 A10 • • 2.0 A42 A37 + A38 + 1.0
A17 - A 1 4 7th Level
A18 A1 * A10 * G * 2.0
A19 A1 * A10 * H • (-2.0) A43 A41 • • 5.0E -- 1
A2 A1 * A10 * A l l • 2.0 A44 A42 • • 5.0E -- 1
A20 A i * A 1 0 , A 1 2 , (-2.0) A45 A41 • • (-5 .0E - 1)

A46 A42 • * (--5.0E - 1)
8rd Level A47 A4 • A42

A21 A15 * G A48 A40 • A41
A22 A16 * H

8lh Level
A23 A l l * A15
A24 A12 * A16 A49 A43 • A44
A25 A17 --b 1.0 A5 A21 + A22 --b A43 + F
A26 A18 + A19 A50 A4 • A45 • 5.0E - 1
A27 A2 + A20 A51 A4 • A44 • A45 * 5.0E - 1

A52 A40 • A43 • A46 * 5.0E - 1
4th Level A53 A47 + A48

A28 A21 + A22
A29 A23 + A24
A3 A25 * • (-1.0)
A30 A26 * F * 2.0
A31 A26 • F * T
A32 A26 * T * 2.0
A33 A13 • A27
A34 A27 * T

TABLE IV . RESULTS OF MATCH FOR EQUIVALENCE AND
STORAGE I:~EQUIREMENTS OF THE EXPRESSIONS AT EACH

LEVEL OF SHRINKING

Storage Storage
requirement for requirement

Level of North Carolina for FORMAC Result of MATCH EQ SHRINK]form in form in
FORMAC FORMAC

0 898 915 Blew up
1 695 709 Not tried
2 436 449 Not tried
3 276 285 Not tried
4 206 212 Not tried
5 134 140 Blew up
6 89 95 Match
7 62 68 No match

(structure no longer same)
8 41 38 No match

(structure no longer same)

596 Communica t i ons of t he ACM Volume 9 / Number 8 / August , 1966

manipulation systems. Possible drawbacks to such ap-
proaches are also implied. The value of S H R I N K for
producing comprehensible mathematical expressions is
indicated in Figures 9 and 10. Here are displayed the two
expressions, the results from the Nor th Carolina differ-
entiation algorithm, and the results from the FORM_~C
differentiation algorithm, as they appear after 6 and 7
calls to S H R I N K . The essential expression structure is
obvious from this display; indeed, the human being can
now see at a glance that these two expressions are equiva-
lent (Figure 9). (These two expressions were purposely
translated from the linear FORTRAN notation. The need
for two-dimensional output of mathematical expressions
in order to make them legible to the mathematician or
scientist is widely accepted, and work is being done in this
area [10, ill. The issue under discussion is independent of

Shrunken North Carolina Result:

[(i A4-442 _+ A~ A41~
AlS -~ A19:"~ A,1 "~ Aa4 "~- ~ "v"A4~ "v/A42] (A2, + A22

1 A4 \ A~ + ~,/A4, + : ~) - Ai~ + A,~ + ~ ~--Z~)(.1 A.~.~ + A,~ + A~o

+ ~¢/A4~ v/A42 + F) • (A2~ + A~ + ~¢/A4~ + F) 2

Shrunken FORMAC Result:

1A4x/A4~ 1A,o~v/A,i~
Als + A19 + A31 + An4 + 2 ~¢/A41 + 2 "~¢/A42]

(A~ + A~ + ~/A~ + F) -- Xl~ + A,o + ~ 7 X ~]

• (A~ + A= + a , , + a~ + ~/a,~ ~/A~ + F)

A~
(A~ + A~ + ~/A~ + F) ~

Fro. 9

Shrunken North Carolina Result:

[(Als -4- A19 + A31-4- A34 + ½A45 A46 (A47 + A4s))(A2t + A= -4- AM + 5)

-- (Als + A19 + ½ A4 A~)(Aa + A= + A35 + A39 + AaA44-4- F)]

A3
(A n + A n + A n + F) 2

Shrunken FO1RMAC Result:

1A Aa A46) (Als + A19 + A31 + Aa4 + ½ 21.4 A44 2t.45 + ~ 40

Aa
1A A4~) -- (AIsA19 + ~ 4

Aa + A n + A n + F

Aa
• (A~ "4- A~ -4- A~5 + A~9 + Aa A44 + F) •

(A21 + A22 + Aa + F) 2

FiG. 10

this problem.) As the expressions which man generates
and manipulates by computer grow in size, the necessity
for techniques far more sophisticated than S H R I N K will
become increasingly obvious•

S u m m a r y

The importance of avoiding intermediate expression
swell in the design of algorithms for symbolic manipula-
tion of formulas has been indicated by remarks concerning
the design of expand algorithms and differentiation al-
gorithms. As in all computer processing, this m a y boil
down to the problem of designing algorithms tha t are
slower but require less space. In the case of differentiation,
however, the improved algorithm eliminated redundant
processing as well as redundant data, resulting in slightly
faster execution than the original algorithm. The old
truism that speed can be bought by eliminating error-
checking is again borne out by the discussion of the
F M C S E X subroutine.

The basic problem addressed by the S H R I N K routine
promises to be a challenge to future investigators. Mathe-
maticians, engineers and scientists will be using the com-
puter to generate symbolic expressions much larger and
more complicated than any they have seen before• Suitable
techniques must be developed to make the essential mean-
ing of these expressions comprehensible.

Acknowledgments. The experimentation and s tudy of
FORMAC was pursued by Marc Auslander, J im Baker,
Mathew Myszewski, and the author•

The code changes of FORMAC Programs were made by
Marc Auslander and Patricia Cundall, under the direction
of Robert Kenney.

REFERENCES

1• SAMMET, J• E., AND BOND, E . n . Introduction to FORMAC.
IEEE Trans• EC-13 (Aug. 1964), 386.

2. BOND, E• R•, ET AL. FORMAC--an experimental FORmula
MAnipulation Compiler. Proe. 19th ACM Nat. Conf., Aug.
1964, Paper K2.1.

3. FORMAC. SHARE General Program Library, 7090 R2 IBM
0016, IBM Program Inf. Dept., White Plains, N. Y.

4. BOND, E. R•, ET AL. Implementation of FORMAC. IBM
Tech. Rept. 00•1260, March, 1965•

5. TOBE¥, R. G., BoBRow, R. J., AND ZILLES, S• N• Auto-
matic simplification in FORMAC. Proc. AFIPS 1965 Fall
Joint Comput. Conf•, Pt. 1, Nov. 1965, p. 37.

6. Eliminating monotonous mathematics with FORMAC.
IBM Tech. Rept. 00•1365, Nov., 1965.

7• SCONZO, P•, LEScHACK, A• R., AND TOBEY, R. Symbolic
computation of f and g series by computer. Astron. J. 70
(May 1965), 269•

8. HANSON, J. W., CAVINESS, J. S., AND JOSEPH• C. Analytic
differentiation by computer• Comm. ACM 5, 6 (June 1962),
349.

9. GRILLIOT, W. J. Derivatives of composite functions. Am.
Math. Month. 69, (Nov. 1962), 914•

10. KLERER, M., AND MAY, J. Two-dimensional programming.
Proc. AFIPS Fall Joint Comput. Conf•, Pt. 1, Nov. 1965, p.
63.

11. MARTIN, W. A. Syntax and display of mathematical expres-
sions. Project MAC Memo MAC-M-257, M.I .T., Cambridge,
Mass., July, 1965. (Unpublished)

Volume 9 / Number 8 / August, 1966 Communications of the ACM 597

