
Solution of Systems of Polynomial Equations
By Elimination

Joel Moses
IBM Corporation, Cambridge, Massachusetts*

The elimination procedure as described by Williams has
been coded in LISP and FORMAC and used in solving systems
of polynomial equations. It is found that the method is very
effective in the case of small systems, where it yields all solu-
tions without the need for initial estimates. The method, by
itself, appears inappropriate, however, in the solution of large
systems of equations due to the explosive growth in the inter-
mediate equations and the hazards which arise when the
coefficients are truncated. A comparison is made with difficulties
found in other problems in non-numerical mathematics such as
symbolic integration and simplification.

Let us consider the following problem:
Given a system of polynomial equations with real

coefficients,

P ~ (X l , X 2 , . . . , x , ,) = O, i = 1, 2, . . . , n ,

find the solutions (common zeros) of the system (assuming
the consistency of the system).

The standard attack of numerical analysis on this
problem is by an iterative method based on Newton's
method or the method of steepest descent. These methods
assume a good estimate for the solutions and they may,
in fact, fail to converge otherwise. Such an estimate will,
in general, be required for each desired solution. Obtaining
the estimates can be a very time-consuming process and
obtaining sufficiently good estimates may be a prohib-
itively costly operation.

The approach considered here is the one taken by the
algebraists of the last century which led to the elimination
method. The elimination method reduces the problem to
that of finding the zeros of a polynomial in a single variable.
I t is very similar to the Gaussian elimination method used
in solving linear equations.

In the Gaussian elimination procedure (Figure 1) the
variable x~ is eliminated in the step labelled A. The
corresponding step B for the polynomial case (Figure 2) is
a call to a subroutine (Figure 3) which produces two

Presen ted a t an ACM Symposium on Symbolic and Algebraic
Manipu la t ion , Washington , D. C., March 29-31, 1966.

* P resen t address: Research Labora to ry of Electronics , M I T ,
Cambridge, Mass.
This work was suppor ted in pa r t by the Jo in t Services Elec-

t ronics P rog ram (Cont rac t DA 36-039-03200(E)), the Na t iona l
Science F o u n d a t i o n (Gran t GP-2495), and the Nat iona l Aero-
naut ics and Space Admin i s t r a t ion (Grant NsG-496).

polynomials which we shall call the div i sor and the e l i m -

i n a n t . The eliminant is independent of x i and the divisor
is usually of lower degree in x~ than the original equations.
Note the similarity of the form of the transformation
involved in step C of the subroutine and that in step A.

for i := 1 s tep 1 unt i l n - 1 do
for j := i -b 1 s tep 1 unt i l n do

A Pj" := a ~ P j - aj~P~

FIG. 1. Gauss ian e l iminat ion for l inear equat ions

P~ = ~ aikx~ + a~,~+l = 0, P i = ~ a~kXk "4- aj,n+l = O,a.a~.~ ~ 0
k = l k = ~

for i := 1 step 1 unt i l n - 1 do
for j := i + l s tep 1 unt i l n do

B
P~ := divisor of P~ and PC wi th respect to x~
Pj := e l iminant of P~ and P~ wi th respect to x~

FIG. 2. E l imina t ion for polynomial equat ions

FiG. 3.

C) Q = S~R - RrSx~ -~
q = degree of Q in xl
q > s

R = ~ QiO
)

r = q

(q > 0
n0>

1 " ~ 8 r]
R = S
8 = q

t S = Q
divisor = S£ ---j

e l iminan t = Q

Subrout ine for e l iminat ing x~ from polynomial
equat ions R and S

k=0

S = ~ Sk(x~+l , x~+2 ,
k-=O

- ' ' , Xn)Xl '~ = 0 l

• " , X,~)X~ k = 01

, R r S ~ 0 , 0 < 8 ~ r

634 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m b e r 8 / A u g u s t , 1966

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365758.365802&domain=pdf&date_stamp=1966-08-01

While step A completely eliminates the variable, step C
can only eliminate the highest power of the variable
appearing in the two equations. In the linear case the
transformation in A is best done by an algebraic processor
such as FORTRAN. However, in the nonlinear case a
processor with polynomial manipulation capabilities is
essential in order to efficiently perform the transformation
indicated in step C. We shall call the resulting system of
equations, P~, i = 1, 2, • • • , n, the reduced sy s t em.

The following theorem [1] provides the justification for
the elimination procedure used in the nonlinear case.

THEOREM. A c o m m o n zero o f P i a n d P~ is a c o m m o n zero

o f the e l i m i n a n t a n d div isor o f P~ a n d P j w i t h respect to x i .

Hence, in order to find the solutions to the original
system of equations we need find only the solutions to the
reduced system. In the reduced system each equation P~
is independent of xj if j < i. Typically the reduced system
also has the following character: The reduced equations
P ~ , i = 1, 2, . . . , n - 1 are linear in variable x~, and
equation P~, is of high degree in x~, where the degree
reflects the number of solutions of the system. Thus P~
can be solved (in principle) by a root-finding program and
the complete solutions can be obtained by successively
solving P~- i , " ' " , P2, P1 for x , r , , " " , x2, x~ as equa-
tions in one unknown in a backward substitution process
similar to that used in the Gaussian elimination procedure.

Although the above is the usual case there are some
exceptions. For one, the first n - 1 equations of the reduced
system need not be linear. This complicates the backward
substitution somewhat, but normally poses no real prob-
lem. Another possibility is tha t solutions of the reduced
system may be extraneous. This is usually noted in the
backward substitution phase, when an equation of the
reduced system becomes identically zero. Such solutions
are then ignored. Finally, we may find tha t one of the
eliminants generated during the elimination process will
vanish identically. This occurs when equation P~ and Pj
have a factor in common involving x~. This difficulty may
sometimes be overcome by rearranging the equations and
starting the process over again. Otherwise, the equations
can be divided by the common factor, thereby generating
subsystems of equations each of which must be solved. This
difficulty is troublesome, but fortunately it does not occur
often in practice.

Williams [1] described how the complete procedure could
be programmed for a digital computer using a polynomial
manipulation system, but he lacked access to a sufficiently
large machine on which to carry out his ideas. The pro-
cedure has been programmed both in LISP [2] and FORMAC
[3] for the I B M 7094. An example of the solution of a
small system is given in Figure 4. The solution of another
system is described in Figure 5. The program uses single
precision arithmetic throughout except when finding the
roots of equations. The latter process is performed in
double precision with a program using Muller 's method
[4]. I t is interesting to note tha t Bareiss' root-finding

program [5] makes use of elimination in a limited context
in extending the Graeffe root-squaring technique.

I f a system has more variables than equations, we call
the variables which are not eliminated p a r a m e t e r s of the
system. J. Israel has writ ten a program in FORMAC which
obtains solutions in closed form to systems containing
parameters in which the equations in the reduced system
are of degree 4 or less in their respective variables. The
solutions (in terms of the parameters) are obtained from
the formulas which are available in such cases.

The experience gained with the programs leads to the
following conclusions.

(1) The method yields fast and accurate results for
small systems of equations (e.g., three quadratics). No
starting values are needed and all the solutions (complex,
in general) are obtained except in degenerate cases.

(2) When the reduced system is of degree 4 or less in
each of its variables, standard formulas can be used to
obtain solutions in closed form for the original system in
terms of its parameters.

(3) For slightly larger systems (e.g., three quartics)
the degree of the final equation in the reduced system may
be so large that one cannot obtain sufficiently accurate
solutions for it with existing root-finding processes. With
an estimate for a zero of the reduced equation P~ such a
program can find any single desired solution. Backward
substitution yields the complete solution. In such a case
the elimination method is superior to existing numerical
procedures in tha t it requires an estimate for only one
variable instead of all.

Original system
A
B

Intermediate equations
C = 1.A-1.B
D = 1 .B-1 .C.x
E = (3y 2 - y - 2) C - 1 - D

Reduced system
C
E

Solutions of E:

Substitution in C:

x 2 _ y2 = 0
x 2 - - x + 2y z -- y -- 1 = 0

x -- 3yZ q- y -t- l = O
(3y ~ - y - 2) x - ' b 2 y z - y - l = 0
9 y 4 - - 6 y 3 - - 6 y 2 + 2 y + 1 = 0

x -- 3y2.-b y + l = O
9 y 4 - - 6y 3 -- 6y 2 + 2y + 1 = 0

y = 1, - ~ , ~/~, - ~ ½

x = 1, --½, --~/½, ~/½

Time for solution with FORMAC program: approx. 8 see.

Fro. 4

Original system
A
B
C

Reduced system
D
E
F

x2y + 3yz -- 4 = 0
--3x2z ~- 2y 2 -4"- 1 = 0
2yz 2 -- z ~ -- 1 = 0

x2y -~ 3yz -- 4 = 0
2yz 2 -- z ~ -- 1 = 0
36z s - 96z 7+42z 6+10z 4 + 6z ~ + 2 = 0

FIG. 5. The above system has 16 solutions. These solutions
were obtained with the FORMAC program in 75 see with a 7-digit
a c c u r a c y .

Volume 9 / Number 8 / August, 1966 Communications of the ACM 635

(4) For large systems of equations, the final poly-
nomial in the reduced system can be of such high degree
that it will be virtually impossible to solve for all the roots,
and the solution for a single root will face a roundoff error
problem. In many situations, however, the large final
polynomial can be avoided by overdetermining the system,
i.e., by adding more equations without any additional
unknowns. A nontrivially overdetermined system usually
has far fewer solutions than the original system. The price
for obtaining a final equation of small degree is the added
size of the intermediate polynomials and the possible
increased error due to roundoff.

We find that there are two types of limitations to the
computer implementation of solutions to problems in
non-numerical mathematics. One is due to recursive un-
solvability, the other is due to the explosive growth in the
intermediate variables in recursive problems. It is a
familiar fact that deciding the theorems in the lower
predicate calculus is a recursively unsolvable process and
hence necessitates the use of heuristics in the general
case. Richardson [6] has shown that the problem of
matching elementary functions [7] is also recursively un-
solvable. The elementary functions contain the usual
arithmetical, trigonometric, exponential and logarithmic
functions of real variables, and the matching problem asks
whether an elementary function is equivalent to zero.

I t is interesting to note that the difficulties found in
matching programs such as Martin's [8], and Tobey's [3]
occur with the introduction of the same functions (log and
square root) that are critical in Richardson's proof.

Simplification has properties which make it, in general,
an even more insidious problem than matching. The
criteria for simplicity are not fixed but may vary with the
situation. For instance, it nmy be easier to integrate
4x3[x4/((x~)3-~-1)] than the equivalent and apparently
simpler 4xT/(x'~Zrl). Suppose that the criteria could be
fixed (e.g., zero is the simplest form of a function equiv-
alent to it), then simplification behaves like a minimiza-
tion problem in a none-too-well structured space. I t is
difficult to tell whether one has the minimum (i.e., sire-
plest) expression, or what transformation to apply to get
down to the minimum. In fact, the minimum cannot always
be recognized in a finite number of steps because by
finding it we could solve the matching problem.

Richardson's unsolvability result for matching also
carries over to the integration problem for the elementary
functions. I t is hard to say how much Slagle's integration
program [7] suffers from this difficulty, but the result
certainly explains the difficulties mathematicians have
had in solving problems in integration and differential
equations.

The limitations of procedures designed to perform
manipulations (e.g., inversion) on matrices with non-
constant entries are certainly not due to recursive un-
solvability. The difficulties in these problems are due to the
highly nonlinear growth of the intermediate and final

results, in general. Similarly, the difficulties we are faced
with in the solution of systems of polynomial equations
are due to the explosive growth in the degree of inter-
mediate equations and their coefficients in large systems.

Further remarks about the difficulties due to the
coefficients are in order. If the coefficients of the original
system of equations are not rationM (hence introducing a
starting error in the computer realization of the solution),
then the instability of the problem will lead to gross errors
in the solution of large systems. Suppose we truncated the
coefficients in some stage of the solution in order to gain
space and time, then the solution for sufficiently large
systems will be in great error due to the roundoff error
introduced coupled with the instability of the problem.
Hence in order to obtain meaningful solutions in the
elimination of large systems, the coefficients should be
exact at all stages. In Williams' paper these difficulties
seem to have been underestimated.

Recently Collins [8] obtained some major results in this
area. He derived a small bound on the growth of the length
of the coefficients in the problem of finding the greatest
common divisor (GCD) of two polynomials. Usually GCD
algorithms are essentially extensions of the Euclidean
algorithm to the polynomial case, and are similar to the
subroutine in Figure 3. Collins shows that the growth of

the coefficients is linear in the degree of the original equa-
tions and the length of their coefficients, and is not nearly
as large as was previously estimated. He furthermore has
programmed a method for obtaining a reduced system to
a system of polynomial equations which damps the growth
of the degree of the intermediate equations and their co-
efficients. We believe these results constitute a break-
through in the solution of this problem by the techniques
of algebraic manipulation. However, we doubt that any
single procedure can change the exponential character of
the problem. One should keep in mind that the number of

solutions and their absolute values are, in general, exponen-
tim functions of the coefficients, degrees and number of

equations of the original system. While ideally one would
like the degrees of each of the polynomials of the reduced
system to be as small as possible (the danger then being
the accumulation of errors during the backward substitu-
tion, forcing the solution of polynomial equations with
inexact coefficients), it seems unlikely that one can avoid,
in general, simulating a large part of the search process

necessary to locate the solutions in an n-dimensional
complex space. In numerical analysis this search is

explicit; the implicit methods in algebraic manipulation
tend to lead to increasingly large intermediate variables. 1
We venture a guess that Kutta's system [10] of 16 equa-
tions in 15 unknowns (used in constructing a fifth-order

1 These are systems of equations whose reduced system must
contain exponential ly large polynomials. Consider the system
x~ = x~+l , i = 1, 2, . - . , n - l , 2xn = xlL The reduced system must

contain a polynomial divisible by one of the polynomials x~ '~-1 --
22n-~. k, k = 7l, 2 , . . . , n

636 C o m m u n i c a t i o n s of t h e ACM V o l u m e 9 / N u m b e r 8 / A u g u s t , 1966

Runge-Kut ta method), which has, to the best of our
knowledge, withstood solution by the techniques of
numerical analysis, is going to remain unsolved by the
techniques of algebraic manipulation.

Although there exists for the above two types of prob-
lems in algebraic manipulation no single program which
will handle all possible inputs efficiently or at all, there
are many special categories where such programs can and
do exist. Even though simplification in general is not
possible, the simplification of rational functions reduces to
the GCD problem which is recursive. The integration of
rational functions in closed form is performed by a program
written by Manove [11]. Surprisingly, the integration
problem for the algebraic functions (these include rational
functions and roots of rational functions) appears to be
reeursive also. Hardy [12] conjectured tha t this problem
could not be solved in a finite number of steps.

For the reeursive problems which experience growth of
the intermediate variables there exist similar categories.
One category is composed of those instances which are so
simple that reasonable algorithms do not manage to blow
them up. The simplicity of the rdgorithm to be used in
solving more difficult eases need not be a virtue. For
example, in elimination one profits from factoring the
equations because this inhibits their growth. This is the
manner in which a high school student would proceed on
the system in Figure 4. The ALPAK algorithm for the
GCD problem [13] makes use of special cases of factoring.
A more general factoring algorithm is implemented in
Engleman's system [11]. Modifications can also be made
to the basic elimination algorithm to prevent the introduc-
tion of any extraneous roots. In this connection it should
be noted tha t Williams did not account for all the extra-
neous roots introduced by the elimination procedure.

Finally, each particular instance of a problem can be
considered as a special category since the user may have
some insight into it. Symbolic manipulation systems
should have sufficient flexibility for the user to translate
his insight into an algorithm simply. Since a user fre-

quently cannot foresee the possible consequences of a
proposed transformation, a system with capabilities for
man/machine interaction has many advantages. Mart in ' s
display program for mathematical expressions [14] is a
large step in this direction. We believe tha t difficult
problems can be most efficiently solved, if they can be
solved at all, on systems possessing such capabilities.

REFERENCES

1. WILLIAMS, L . i . Algebra of polynomials in several variables
for a digital computer. J. ACM 9 (Jan. 1962), 29-40.

2. LISP 1.5 programmer's manual. Res. Lab. of Electronics,
MIT, Cambridge, Mass., 1962.

3. BOND, E. R. ET AI.,. FORMAC--An experimental formula
manipulation compiler. Proe. ACM 19th Nat. Conf., Phila-
delphia, 1964, Paper K2.1-1.

4. MULLER, D. A method for solving algebraic equations using
a digital computer. Math. Tables Other Aids Comput. 10
(1956), $08-215.

5. BAREISS, E .H . Resultant procedure and the mechanization
of the Graeffe process. 3". ACM 7 (Oct. 1960), 346---386.

6. RICHARDSON, D. Doc. Thesis, U. of Bristol, Bristol, Eng-
land.

7. SLAGLE, J. R. A heuristic program that solves symbolic
integration problems. Doc. Thesis, MIT, Cambridge, Mass.,
1961.

8. MARTIN, W.A. Hash-coding functions of a complex variable.
Artificial Intelligence Project Memo 70, MIT, Cambridge,
Mass., 1964.

9. COLLINS, G. PM, a system for polynomial manipulation.
J. ACM 9 (Aug. 1966), 578-589.

10. I~UTTA., W. Beitrag zum nS~herungsweisen Integration totaler
Differentialgleichungen. Z. Math. Phys. 46 (1901), 435-453.

11. ENGLEMAN, C. Mathlab: a program for on-line machine
assistance in symbolic computation. Rept. MTP-18, MITRE
Corp., Bedford, Mass., 1965.

12. HARDY, G . i . The Integration of Funclions of a Single Vari-
able. 2nd. ed., Cambridge U. Press, Cambridge, England,
1916.

13. BROWN, W. S., HYDE, J. P., AND TAGUE, B.A. The ALPAK
system for nonnumerical algebra on a digital computer-II.
Bell Sys. Tech. J. ~3 (March 1964), 785-804.

14. MARTIN, W. A. Syntax and display for mathematical ex-
pressions. Artificial Intelligence Project Memo 85, MIT,
Cambridge, Mass., 1965.

Informal Evening Sessions
One of the features of the Symposium was a procedure copied from SHARE, in which in-

formal evening discussions were suggested and led by attendees themselves. Sessions wero
held on the following topics:

Implementation Techniques
Approximations to Solutions of Differential Equations
Mathematics and Metamathematics of Algebraic Manipulation Languages
LISP I I
Natural Languages Processing
Symbol Manipulation Techniques As Applied to Graphical Languages and Topological

Models
FORMAC 360 External Specifications
L 6 - - A Computer-Made Movie Showing a Programming Example in L 6

I t is worth noting that the LISP II meeting was attended by over 50 people, and the
session on Metamathematics by a vigorous group of about 65 people, even though the time
was 6--8 p.m.--& E. S.

Volume 9 / Number 8 / August, 1966 Communications of the ACM 637

