Solution of Systems of Polynomial Equations

bl . . .
By Elimination

Check for

Joel Moses
{BM Corparation, Cambridge, Massachysetts™®

The elimination procedure as described by Witliams has
been coded in LISP and FORMAC and used in solving systems
of polynomial equations. It is found that the method is very
effective in the case of small systems, where it yields all solu-
tions without the need for initial estimates. The method, by
itself, appears inapprapriate, however, in the solution of large
systems of equations due to the explosive growth in the inter-
mediote equations ond the hazards which arise when the
coefficients are truncated. A comparisonis made with difficulties
found in other problems in non-numerical mathematics such as
symbglic integration and simplification.

Let us cansider the following prohlem:
Given a system of polynomial equations with real
coeflicients,

Py, 20, -+ ,2,) =0, 1=1,2, -+ ,n,

find the solutions (common zeros) of the system (assuming
the consistency of the system).

The standard attack of numerical analysis on this
problem is by an iterative method based on Newton's
method or the method of steepest descent. These methods
assume a good ecstimate for the solutions and they may,
in fact, fail to converge otherwise. Such an estimate will,
in general, be required for each desired solution. Obtaining
the estimates can be a very time-consuming process and
obtaining sufliciently good eslimates may be a prohib-
itively costly operation.

The approach considered here is the one taken by the
algebraists of the last century which led to the elimination
method. The elimination method reduces the problem to
that of finding the zeros of a polynomial in a single variable.
It is very similar to the Gaussian eliminalion method used
in solving linear equations.

In the Gaussian elimination procedurc (I'igure 1) the
variable z; is eliminated in the step labelled A. The
corresponding step B for the polynomial case (Figure 2) is
a call to a subroutine (Figure 3) which produces two

Presented at an ACM Symposium on Symbolic and Algebraice
Manipulation, Washington, D. C., March 2831, 1066,

* Present address: Rescarch Laboratory of Electronics, MIT,
Cambridge, Mass.
This work was supported in part by the Joint Services Elec-
tronies Program (Contract DA 36-036-03200(E)), the National
Science Foundation (Grant GP-2495), and the National Aero-
naubies and Space Administration (Grant NsG-496).

634 Communications of the ACM

polynomials which we shall call the divisor and the elin-
inant. The eliminant is independent of z; and the divisor
is usually of lower degree in z, than the original cquations.
Note the similarity of the form of the transformation
involved in step C of the subroutine and that in step A.

for 7 := 1 step 1 until n—1 do

forj := i + 1 step 1 until » do
A Pj = (lsiP,' -—_ ﬂj;P.;
Fi1g. 1. (Gaussian elimination for linear equations

7 -
P; = Z Cxr + Gina = 0, Pj = Z aintn + Ginp = 000505 7 0
k=1 &=1

1 step 1 until n—1 do
z+1 step 1 until # do

for ¢
forj:

0o

= divisor of P; and P; with respect to z;
= climinant of P: and P; with respect to z;

w
i

Fig. 2. Elimination for polynomial equations

c @ = Sk — RSz’
’_)q = degree of @ in x;
G228
4 no

—
=yq
¢

i

=

L

|

na

= 8

=8

=i

s =g
S’ = Q
divisor =

)

S¢

climinant = @

Fia. 3. Subroutine for climinating z; from polynomial
equations R and 8

,
R = ZuRk(IHJ P Tiga , 00, Tz = 0

" RS #0, 0< gLy
8 = 3 Splair, Tiga, o, Ta)TF = 0[

=

Volume 9 / Number 8 / August, 1966

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365758.365802&domain=pdf&date_stamp=1966-08-01

While step A compleiely eliminaies the vuariable, step C
can only eliminate the highest power of the variable
appearing in the two equations. In the linear case the
transformation in A is best done by an algebraic processor
such as Forrtraw., However, in the nonlinear case a
processor with polynomial manipulation capabilities is
essential in order to efficiently perform the transformation
indicated in step C. We shall call the resulting system of
equations, P;, % = 1, 2, - -+, n, the reduced systen.

The following theorem [1] provides the justification [or
the elimination procedure used in the nonlinear case.

THEOREM. A common zero of P, and P;1s o eommon zero
of the eliminant and divisor of P; and P; with respect o x, .

Hence, in order to find the solutions to the original
system of equations we need find only the solutions to the
reduced system. In the reduced system each cquation P,
is independent of 2; if j < <. Typieally the reduced system
also has the following character: The reduced equations
Pi,7i=1,2 --- ,n—1 are linear in variable z;, and
equation P, is of high degree in x, , where the degree
reflects the number of solulions of the system. Thus P,
can be solved (in principle) by a reot-finding program and
the complete solutions can be oblained by successively
solving Po—y, «++ , Pa, Py for o, -+, 2a, 21 28 eqUa-
tions in one unknown in a backward substitution process
similar to that used in the Gaussian elimination procedure.

Although the above is the usual case there are some
exceptions. For one, the first n— 1 equations of the reduced
system need not be linear. This complicates the backward
substitution somewhat, but normally poses no real prob-
lem. Another possibility i1s that solulions of the reduced
system may be exlraneous. This is usually noted in the
backward substitution phase, when an equation of the
reduced system becomes identically zero. Such solutions
are then ignored. Finally, we may find that onc of the
eliminants generated during the elimination proeess will
vanish identically. This occurs when equation P; and P;
have a factor in common mvolving x; . This difliculty may
sometimes be overcome by rearranging the equations and
starting the process over again. Otherwise, the equations
can be divided by the common factor, thercby generating
subsystems of equations each of which must, be solved. This
difficulty is troublesome, but fortunately it does not oeeur
oftlen in practice.

Williams |1} deseribed how the complete procedure could
be programmed for a digital computer using a polynomial
manipulation system, but he lacked access Lo a sufficiently
large machine on which to carry out his ideas. The pro-
cedure has been programmed both in Lisp [2] and Formac
[3] for the IBM 7094. An example of the solution of a
small system is given in Figure 4. The solution of another
system is deseribed in Figure 5. The program uses single
precision arithmetic throughoul except when finding the
roots of equations. The latter process is performed in
double precision with a program using Muller’s method
[4]. It is interesting to note that Bareiss’ root-finding

Volume 9 / Number 8 / AugusL, 1966

program [5] makes use of elimination in a limited context
in extending the Graeffe root-squaring technique.

If a system has more variables than equations, we call
the variables which are not eliminated porameters of the
system. J. Israel has written a program in Formac which
obtains solulions in closed form (o systems containing
parameters in which the equations in the reduced system
arc of degree 4 or less in their respective variables. The
solutions (in terms of the parameters) arc obtained from
the formulas which are available in such cases.

The expericnce gained with the programs leads o the
following coneclusions.

(1) The method yields fast and aecurate results for
small systems of eguations (e.g., three quadratics). No
starting values are needed and all the solutions (complex,
in general) are obtained except in degeneraie cases.

(2) When the reduced system is of degree 4 or less in
each of its variables, standard formulas can be used to
obtain solutions in closed [orm for the original system in
terms of its parameters.

(3) TFor slightly larger systems {e.g., three guartics)
the degree of the final equation in the reduced system may
be so large that one cannot obtain sufficiently accurate
solutions for it with cxisting root-finding processes. With
an estimate for a zero of the reduced equation P, such a
program can find any single desired solution. Backward
substitution yields the complete solution. In such a case
the elimination method is superior to existing numerical
procedures in that it requires an estimate for only one
variable instead of all,

Original system
A 2 — y? =0
B 2 —z+ 2 —y—1=20

Intermediete equalions

¢C=1A-1-B z -3+ uy+1=20

D=1-B-1-C= (Byt—y—2c+2t—y—1=0

E=0@2—-y—2C-1-D 9y —62—6y2+2y+1=0
Reduced system

C z—38+y+1=0

L 9t — 6 — 6y + 2y +1=0
Solutions of LL: y =1, =% /L =3

Substitution in C: z =1, =%, =5, V%

Time for solution with Formac program: approx. 8 sec.

Fic. 4
Original system
A iy + 3yz —4 =10
B —3z2 + 24+ 1=20
C 2zt — 22— 1=10
Reduced system
D zly + By — 4 = 0
E e — 2t —-1=90
F 362 — 9627} 4228 4- 102 + 622+ 2= 0

Fic. 5. The above system has 16 solutions. These solutions
were obtained with the Formac program in 73 sec with a 7-digit
ACCUTACY.

Communieations of the ACM 635

(4) For large systems of equations, the final poly-
nomial in the reduced system can be of such high degree
that it will be virtually impossible fo solve for all the roots,
and the solution for a single root will face a roundoff error
problem. In many situations, however, the large final
polynomial can be avoided by overdetermining the system,
ie., by adding more equalions without any additional
uniknowns. A nontrivially overdetermined system usually
has far fewer solutions than the original system. The price
for abtaining a final equation of small degree is the added
size of the intermediate polynomials and the possible
increased crror due to roundoff.

We find that there are two types of limitations to the
computer implementation of solutions to problems in
non-numerical mathematics. Gne is due to recursive un-
salvability, the other is due to the explosive growth in the
intermediate variables in recursive problems. It is a
familiar fact thal deciding the theorems in the lower
predicate caleulus is a recursively unsolvable process and
henece necessitates the use of heuristics in the general
case. Richardson [6] has shown that the problem of
matching elementary funetions {7] is also recursively un-
solvable. The eclementary functions contain the usual
arithmetical, trigonometrie, exponential and logarithmic
functions of real variables, and the matching problem asks
whether an slementary function is equivalent to zero.

It is interesting to note that the difficultics found in
matching programs such as Martin’s (8], and Tobey’s [3]
occeur with the introduction of the same funetions (log and
square root) that are critical in Richardson’s proof.

Simplification has properties which make it, in general,
an even more insidious problem {han maiching. The
criteria for simplicity are not fixed but may vary with the
situation. TFor instance, it may be easier to integrate
4o¥at/((2**+1)] than the equivaleny and apparently
simpler 4x7/(z*-1). Suppose that the eriteria could be
fixed (e.g., zero is the simplest form of a funetion equiv-
alent to it), then simplification behaves like a minimiza-
tion problemn in a none-too-well structured space. It is
difficult to tell whether one has the minimum (i.e., sim-
plest) expression, or what transformation to apply to get
down to the minimum. In fact, the minimum cannot always
be recognized in a finite number of steps because by
finding it we could solve the maiching problen.

Richardson’s unsolvabilily result for malching also
carries over to the integration problem for the elementary
funetions. Tt is hard to say how much Slagle’s integration
program [7] suffers from this difficulty, but the result
certainly explaing the difficulties mathematicians have
had in solving problems in integration and differential
equations.

The limitations of procedures designed to perform
manipulations (e.g., inversion) on matrices with non-
constant entries are ccrtainly not duc to recursive un-
solvability. The difficulties in these problems are due (o the
highly nonlinear growth of the intermediate and final

636 Communications of the ACM

results, in general. Similarly, the difficulties we are faced
with in the solution of systems of polynomial equations
are duc to the explosive growth in the degree of inter-
mediate equations and their coefficients in large systems.

Further remarks about the difficulties due to the
coefficients are in order. If the coefficients of the original
system of equations are not rational (hence introducing a
starting error in the computer realization of the solution),
then the instability of the problem will lead o gross errors
in the solution of large systems. Suppose we truncated the
coellicients in some stage of the solution in order to gain
space and time, then the sclution for sufficiently large
systems will be in great error due to the roundoff error
introduced coupled with the instability of the problem.
Hence in order to obtain meaningful solutions in the
climination of large systems, the cocfficients should be
cxact at all stages. In Williams® paper these difficulties
seem to have been underestimated.

Recently Collins [8] obtained some major results in this
area. He derived a small bound on the growth of the length
of the coefficients in the problem of finding the greatest
common divisor (GCD) of two polynomials, Usually GCD
algorithms are essentially extensions of the Euclidean
algorithm to the polynomial case, and are similar to the
subroutine in Figure 3. Collins shows that the growth of
the coefficients is linear in the degree of the original equa-
tions and the length of their coefficients, and is pot nearly
ag large as was previously estimated. He furthermore has
programmed a method for obtaining a reduced system to
a system of polynomial equations which damps the growth
of the degree of the intermediate cquations and their co-
efficients. We belicve these rvosults constitute a break-
through in the solution of this problem by the techniques
of algebraic manipulation. However, we doubt that any
single procedure can change the exponential character of
the problem. One should keep in mind that the number of
solutions and their ahsolute values are, in general, cxponen-
tial functions of the coefficients, degrees and number of
equations of the original system. While ideally one would
like the degrees of each of the polynomials of the reduced
system to be as small as possible (the danger then being
the accumulation of errors during the backward substitu-
tion, foreing the solution of polynomial equations with
inexact cocfficients), it seems unlikely that one can avoid,
in general, simulating a large part of the search process
neeessary to locate the solutions in an n-dimensional
complex space. In numerical analysis this search is
explicit; the implicit methods in algebralic manipulation
tend to lead to increasingly large inlermediate variables?
We venlure a guess thal Kutta’s system [10] of 16 equa-
tions in 15 unknowns (used in constructing a fifth-order

I These are systems of equations whose reduced system must
contain cxponentially large polynomials. Consider the system

,n—1, 2z, = x2 The reduccd system must
n
contain a polynomial divisible by one of the polynomials :cz -t

2 E=1,2...,n

2 .
Ty =21 ,2=1,2, -+

Volume 9 / Number 8 / August, 1966

Runge-Kutta method), which has, to the best of our
knowledge, withstood solution by the techniques of
numerical analysis, is going to remain unsolved by the
techniques of algebraic manipulation.

Although there exists for the abave two types of prob-
lems in algebraic manipulation no single program which
will handle all possible inputs efficiently or at all, there
are many special categories where such programs can and
do exist. Even though simplification in general is not
possible, the simplification of rational functions reduces to
the GCD problem which is recursive. The integration of
rational functions in closed form is performed by a program
written by Manove {11]. Surprisingly, the integration
problem for the algebraic functions (these include rational
functions and voots of rational functions) appears to be
recursive also. Hardy [12] conjectured that this problem
could not be solved in a finite number of steps.

For the recursive problems which experience growth of
the intermediate variables there exist similar categories.
One category is composed of those lnstances which are so
simple that reasonable algorithms do not manage to blow
them up. The simplicity of the algorithm to be used in
solving more difficult cases need not be a virtue. Tor
example, in elimination one profits from factoring the
equations because this inhibits their growth. This is the
manner in which a high school stundent would proceed on
the system in Tigure 4. The Arpax algorithm for the
CCD problem [13] makes use of special cases of factoring.
A more gencral factoring algorithm is implemented in
Engleman’s system [11]. Modifications can also be made
to the basie elimination algorithm to prevent the introdue-
tion of any extraneous roots. In this connection it should
be noted thal Williams did not account for all the extra-
neous roots introduced by the elimination procedure.

Finally, each particular instance of a problem can be
considered as a special category sinee the user may have
gsome ingight into it. Symbolic manipulation systems
should have sufficient Hexibility for the user to translate
his insight into an algorithm simply. Since a user fre-

quently cannot foresee the possible consequences of a
praposed transformation, a system with capabilities for
man/machine interaction has many advantages. Martin’s
display program for mathematical cxpressions [14] is a
large step in this direction. We believe that difficult
problems can be most efficiently solved, if they can be
solved at all, on systems possessing such capabilities.

REFERENCES

1. Wirriams, L. H. Algebra of polynomials in several variables
for a digital computer. J. ACM 9 (Jan. 1962), 23-40.

2. LIBP 1.5 programmer’s manual. Res. Lab. of Electronics,
MIT, Cambridge, Mass., 1962,

3. Bonp, E. R. 5T AL. FORMAC—An experimental formula
manipulation compiler, Proec. ACM 19th Nat. Conf., Phila-
delphia, 1964, Paper K2.1-1.

4, Murter, D. A method for solving algebraic equations using
a digital computer. Math. Tables Other Aids Compui. 10
(1956), 208-215.

5. Banmiss, E. II. Resultant procedure and the mechanization
of the Graeffe process. J. ACM 7 (Oct. 1960), 34G-386.

6. Ricaarpson, D. Doe. Thesis, U. of Bristol, Bristol, Eng-
land.

7. SvagLe, J. B. A heuristic program that solves symbolic
integration problems. Doe. Thesis, MIT, Cambridge, Mass.,
1961,

8. MARTIN, W. A. Hash-coding functions of a complex variable.
Artificial Intelligence Project Memo 70, MIT, Cambridge,
Mass., 1964.

¢. CornNs, G. PM, a system for polynomial manipulation.
J. ACHM 8§ (Aug. 1966), 578-539.

10. Kurra, W. Beitrag zum niherungsweisen Tntegration totaler
Differentialgleichungen. Z. Math. Phys. 46 (1901), 435-453.

11. EngrEman, C. Mathlab: a program for on-line machine
assistance in symbolic computation. Rept. MTP-18, MITRE
Corp., Bedford, Mass., 1965,

12. Hawroy, G. H. The Integration of Funciions of ¢ Single Var:-
able. 2nd, ed., Cambridge U. Press, Cambridge, England,
1916.

13. Brown, W. 3., Hypg, J. P., anp Tacve, B. A. The ALPAK
system for nonnumerical algebra on a digital ecomputer-IT.
Bell Sys. Tech. J. 48 (March 1964), 785-80+4.

14. MarTtIN, W. A. Syntax and display for mathematical ex-
pressions. Artificial Inteliigence Project Memo 85, MIT,
Cambridge, Mass., 1965.

Informal Evening Sessions

One of the features of the Symposium was a procedure copied from SHa®kE, in which in-
formal evening discussions were suggested and led by attendees themselves. Sessions were

held on the following topies:
Implementation Techniques

Approximations to Solutions of Differential Equations
Mathematics and Metamathematies of Algebraic Manipulation Languages

LISP 1!
Natural Languages Processing

Symbol Manipulation Techniques As Applied to Graphical Languages and Topological

Models
FORMAC 360 External Specifications

L6 — A Computer-Made Movie Showing a Programming Bxample in L?

It is worth noting that the LISP II mecting was attended by over 50 people, and the
session on Metamathematies by a vigorous group of about 65 people, even though the time

was -8 pm.—J. E. 8.

Volume 9 / Number 8 / August, 1966

Communications of the ACM 637

