
A Final Solution to the Dangling
else of ALGOL 60 and
Related Languages

PAUL W. ABRAHAMS
Information International, Inc., New York, N. Y.

Abstract

The dangling e lse problem consists of a class of potential am-
biguities in ALGOL-like conditional s ta tements whose basic
form is " i f B1 t h e n i f B2 t h e n $1 e lse 32" where B1 and B2 are
Boolean expressions and S1 and $2 are basic s ta tements . The
difficulty lies in whether to a t tach the e l se to the first i f or to the
second one. Existing solutions to the problem are either ambiguous
or unnecessarily restrictive. Let S and $1 be s ta tements . We define
S to be closed if "S e lse $1" is not a s ta tement , and to be open
if "S else $1" is a s ta tement . Thus an unconditional s ta tement is
a closed s ta tement . Open and closed conditional s ta tements are
defined by syntax equations in such a way as to preserve openness
and closure. In each case, an e lse must always be preceded by a
closed s ta tement . I t is shown tha t the syntax equations are un-
ambiguous, and tha t any change in the s ta tement types required
within the syntax equations would lead to either ambiguity or
mmecessary restrict ion.

1. I n t r o d u c t i o n

The problem of the dangling else arises in any pro-
gramming language that uses ALGoL-like conditional
statements. The problem may be illustrated as follows:
Let B1 and B2 be Boolean expressions and let $1 and 82
be statements that are sufficiently elementary so that
their internal structure is not involved in the problem.
Then the sequence

i f B1 t h e n i f B2 t h e n $1 else $2 (1)

can be interpreted in two ways, viz.,

i f B1 t h e n b e g i n i f B2 t h e n 81 e lse $2 e n d (2)

and

i f B1 t h e n b e g i n i f B2 t h e n 81 e n d else $2 (3)

In other words, there is an ambiguity as to whether the
else belongs with the first i f or with the second one. This
report is intended to lay the dangling else to rest once
and for all by presenting a necessary and sufficient resolu-
tion of the else ambiguities, and explaining the concepts
involved in sufficient detail so that the reader understands
not only what the resolution is but also why it works, and
why other solutions do not work. This resolution is both
simpler and less restrictive than the ones presently used;
removing the unnecessary restrictions simplifies matters
both for the programmer and for the compiler writer.

The dangling else problem first came to prominence in
the computing community when ambiguities were noticed
in the conditional statement described in the original
ALGOL 60 report [8]. These ambiguities were both syntactic
and semantic. The principle involved is illustrated in (1)
although this particular construction was excluded and
the only cases in which ambiguity arose were more compli-
cated. Revised ALGOL 60 [7] excluded the ambiguous
cases, but threw out certain unambiguous cases also. The
paper by Kaupe [6] should be consulted for illustrations
of the problem.

In existing programming languages, several approaches
have been taken to resolve the ambiguity:

1. Construct a complicated set of syntax equations
that excludes (1). This approach is taken in Revised
ALGOL 60 [7].

2. Require that every i f be accompanied by an else.
This approach is taken in EULER [9]. A modification to
ALGOL 60 in a similar spirit was suggested by Burkhardt
[2], who proposed that unpaired if 's be replaced by the
distinctive symbol t e s t .

3. State verbally that each else is to be paired with
the innermost unpaired if, but leave the ambiguity in the
syntax equations. This approach is taken in P L / I [5].
The same effect is achieved in COBOL [3] by first requiring
all if 's to be paired with else's, and then permitting
vacuous else's (i.e., those followed by " N E X T SEN-
TENCE") to be dropped when they appear at the end of
a sentence.

The approach taken here will be to construct a set of
syntax equations that provides an unambiguous analysis
of every well-formed conditional expression. The ideas
here are based on the article by Kaupe [6]. Unfortunately
the solution presented there is incorrect, as will be shown
later; furthermore, it does not clarify the concepts under-
lying the problem. The solution given here, though inde-
pendently discovered, is the same as one mentioned by
Floyd [4, p. 332]. However, Floyd's solution is not gen-
erally known, and his article does not provide any com-
mentary on the matter.

2. P r o p o s e d S o l u t i o n

The solution here is based on the concept of a closed
statement vs. an open statement. Let S be a statement.
Then S is closed if "S else $1" is not a statement for any
statement $1, and S is open if "S else $1" is a statement
for some $1. Thus, for example,

i f X < Y t h e n go to A

is an open statement and

i f X< Y then go to A else go to B

is a closed statement.
The syntax equations for statements are:

<unconditional statement> ::= <basic statement)]
<compound statement>] <block>]
<for clause> <unconditional statement>]
<label> :<unconditional statement>

Volume 9 / Number 9 / September, 1966 C o m m u n i c a t i o n s o f t h e ACM 679

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365813.365821&domain=pdf&date_stamp=1966-09-01

(if clause) ::= if (Boolean expression) then
<closed conditional statement) ::=

(if clause) <closed statement) else <closed statement) I
(for clause) <closed conditional statement) I
<label) :<closed conditional statement)

(open conditional statement) ::= (if clause) <statement)]
(if clause) <closed statement) else <open statement)]
(for clause) <open conditional statement) I
<label) :<open conditional statement)

<closed statement) ::= <unconditional statement) I
<closed conditional statement)

<open statement) ::= <open conditional statement)
<conditional statement) ::= <open conditional statement) I

<closed conditional statement)
<statement) ::= <unconditional statement) I

<conditional statement)

The undefined terms in these syntax equations have
the meanings assigned to them in ALGOL 60.

I t is easily shown that closed and open statements as
defined by this syntax have the properties of closure and
openness as defined earlier. First, observe that a closed
statement has exactly the same number of if 's and e l s e ' s
(excluding any that are enclosed between brackets of one
sort or another). This property can be verified by noting
that it is true of unconditional statements and that the
definition of a closed conditional statement preserves the
property. Since a statement cannot have more e l s e ' s
than if's, it follows from the preceding observation that
the introduction of an additional e l s e at the end of a
closed statement would produce a nonstatement. Hence
closed statements have the closure property. In a similar
way it can be shown that open statements have the open-
ness property.

3. U n a m b i g u o u s n e s s o f t h e S y n t a x

In order to show that the syntax equations are unam-
biguous, we must show, first of all, tha t for each equation

I . - . I

the sets of strings described by a l , a2, . . ' , ~ are dis-
joint. We must also show that each alternative a~ of the
equation

(where each ~i is a basic symbol or a syntactic category)
has a unique decomposition; i.e., if any string A is of the
form a~, then there is only one way of partitioning A
into substrings a l , a2, • • • , ak such that each aj is of the
form/~j . These conditions are easily seen to be necessary
and sufficient for unambiguity.

To show the disjointness of the alternatives in the
different syntax equations, we note tha t two alternatives
are disjoint if they begin with syntactic entities tha t have
no initial characters in common (e.g., a for clause or a
label). We also note that two alternatives are disioint
if one of them is open and the other is closed. These two
observations are sufficient to handle all cases except the
first two alternatives in the definition of an open condi-

tional statement. These two alternatives can be separated
out by noticing that the sequence

<closed statement) else <open statement)

is, by the definition of closure, not a statement.
The uniqueness of decomposition is also easily shown.

First observe that an i f clause is unambiguously delimited
by i f and t h e n , since occurrences of i f and t h e n are
always matched. Most of the remaining cases are straight-
forward. The sequences of the form

<closed statement) else <statement>

which appear in the definitions of closed conditional state-
ments and open conditional statements, are handled by
noting that the closed statement must have the same
number of if 's and e lse ' s , so that the e l s e tha t separates
the two statements in the decomposition can be found by
counting from left to right until the number of e l s e ' s
exceeds the number of if's.

If in the definition of an open conditional s tatement we
had permitted an open statement to precede e l s e in the
second alternative, then the first and second alternatives
would no longer be disioint, by the definition of openness.
If in the definition of a closed conditional s tatement we
had permitted an open statement to precede e l s e in the
first alternative, then closure would no longer be preserved
and the disjointness property would again be lost. In-
tuitively, the difficulty arises because an open statement
can under certain circumstances absorb an e l s e tha t fol-
lows it. We therefore see that it is not only sufficient but
also necessary that the statement preceding e l s e be closed
if ambiguity is to be avoided. I t is precisely the failure to
distinguish between closed and open statements tha t
accounts for the ambiguities of the original ALGOL 60 con-
ditional s tatement and for the unnecessary restrictions in
later versions of the conditional statement.

4. I l l u s t r a t i o n a n d C o m m e n t a r y

To illustrate these definitions, we first note that the
statement (1) has the unambiguous parse

i f B1 then i f B2 then S1 else $2

1 I I l l I

CS

CCS

S

OCS

S

CS
I

J
J
J

using obvious abbreviations, and this corresponds to the
interpretation (2). For a more complicated example, we
let B1, B2 and B3 be Boolean expressions and let S1, $2,
$3, $4 and $5 be basic statements. Then the s tatement

if B1 then if B2 then $2 else if B3 then $3 else $4 ; $5

680 Communications of the ACM Volume 9 / Number 9 / September, 1966

can be parsed as follows:

i f B1 t h e n i f B2 then $2 else i f B3 then $3 else $4 ; $5

__11 I U 53
IC IC US IC US US

[CCS

c c s

L OCS]

With the definitions given in [6], this statement has the
additional parse:

i f B1 then i f B2 t h e n $2 else i f B 3 t h e n $3 else $4 ;$5

IC IC US I OCS I US

I I s
CCS

CCS

A glance at the results when B1 is false shows that the
ambiguity is semantic as well as syntactic. The trouble
arises because the definition of a closed conditional state-
ment in [6] permits an open conditional statement to
follow an e l s e . The result is that the definition of a closed
conditional statement does not preserve closure.

In the syntax of conditional expressions, if 's and e l se ' s
play the role of left parentheses and right parentheses
respectively. A glance at the syntax equations shows that
each e l s e is paired with the innermost possible i f even in
an open conditional statement. Furthermore, an open
conditional statement can be converted to a closed condi-
tional statement by adding one e l s e with a dummy state-
ment at the end of the open conditional statement for
each unpaired if. This closed conditional statement is
semantically equivalent to the open conditional statement
from which it was obtained, as one can see by induction
on the number of unpaired if's. The inserted e l se ' s are
just like implicit right parentheses. The syntax equations
imply a particular resolution of the ambiguities that would
exist if we did not distinguish between open and closed
statements; any resolution other than the standard one
can be obtained through the inclusion of explicit eIse's
with dummy statements at positions other than the end
of the entire statement.

A conditional statement is well-formed if and only if
the number of e l se ' s never exceeds the number of if 's as
we scan from the left, provided the statement is not mal-
formed because of extraneous considerations (e.g., a non-
statement between t h e n and e l se) . Every well-formed
conditional s tatement has an unambiguous syntactic

analysis, and hence is semantically unambiguous. Further-
more, if we leave considerations of ambiguity aside, there
is no obvious way to assign a meaning to statements tha t
do not satisfy this well-formedness condition; thus the
well-formedness condition is not overly restrictive.

5. G e n e r a l i z a t i o n s

Although the syntax of conditional expressions that we
have given here is unambiguous, it is also slightly re-
dundant. There are several possible variants which are
not syntactically correct according to our equations, but
which are quite convenient to use and can be defined
unambiguously by syntax equations. For instance, the
form

i f B1 then $1 i f B2 then $2

is permitted in JoviAL [10], and is equivalent to:

i f B1 then $1 else i f B2 then $2 (4)

In other words, an e l s e can be omitted when it immedi-
ately precedes an i f (as is often the case). Another possible
modification is to allow

i f B1 then S1; $2 else $3

when $1 and $2 are closed, which is equivalent to

i f B1 then begin $1; $2 end else $3 .

In other words, beg in and e n d can be omitted when sur-
rounded by t h e n and e l s e provided that they enclose a
list of closed statements. The CoBoL treatment of condi-
tional expressions is along these lines. This idea would
avoid the common error of putting a semicolon before
the delimiter e l s e in ALGOL programs.

The MAD language [1] has an interesting t reatment of
this question, which essentially allows the omission of
b e g i n and e n d . The MAD statement

WHENEVER B1; $1; $2; OR WHENEVER B2; $3; $4;
OTHERWISE; $5; $6; END OF CONDITIONAL;

is equivalent to the ALGOL statement

i f B1 then begin $1; $2 end else i f B2 then begin $3; $4 end
else begin $5; $6 end

Here we have used the semicolon in place of a card bound-
ary. E N D OF CO N D ITIO N A L matches the implicit
b e g i n created by O TH ERW IS E. The restricted form

WHENEVER B1, 81;

requires tha t S1 be an unconditional statement. This
restriction could be avoided through the approach that
we have described here.

Generally speaking, these modifications trade gains in
ease of programming for losses in language complexity.
For instance, the form (4) may have arbitrarily many
statements preceding the e l s e . To tell whether control
should or should not pass to 82 in the case where B1 is
false, the translator must scan through the statements

Volume 9 / Number 9 / September, 1966 C o m m u n i c a t i o n s o f the ACM 681

following $1 until either the end of the block or an un-
matched else is found. In more deeply nested conditionals,
the task of the translator is correspondingly more difficult.

6. Conclusion

The equations presented here embody a straightforward
conception of the notion of a conditional statement. They
can easily be applied to conditional expressions, as is
done (correctly) in [6]. They permit unpaired if's without
ambiguity, and do not rely on informal remarks in order
to avoid ambiguity. For that reason they can be used as
input to a syntax-directed compiler. If the equations are
to be used in ALGOL 60 then they can be inserted as they
stand; else they can be adapted to the language at hand.

Acknowledgment. I wish to thank the editor of this
Communications department for his excellent suggestions
regarding the revisions of this paper, particularly in con-
nection with the treatment of conditional statements in
COBOL and with the formalization of the necessary and
sufficient conditions for unambiguity in a context-free
language.

RECEIVED APRIL, 1966; REWSE~ MAY, 1966

R E F E R E N C E S

1. ARDEN, B . , GALLER, B . , AND GRAHAM, R . The M A D Manual .
U . of M i c h i g a n P r e s s , A n n A r b o r , M i c h . , 1965.

2 . BURKHARDT, W . S y n t a x a n d g e n e r a l i z a t i o n o f A L G O L 60 .

(L e t t e r t o t h e e d i t o r) Comm. A C M 8 (M a y 1965) , 261 .

3 . C O B O L - - 1 9 6 1 : r e v i s e d s p e c i f i c a t i o n s f o r a c o m m o n b u s i n e s s

o r i e n t e d l a n g u a g e . P u b l . 0 -598941 , U . S . G o v e r n m e n t P r i n t -

i n g Of f i c e , W a s h i n g t o n , D . C . , 1961.

4 . FLOYD, 1~. S y n t a c t i c a n a l y s i s a n d o p e r a t o r p r e c e d e n c e . J A C M
10, 3 (J u l y 1963) , 3 1 6 - 3 3 3 .

5 . P L / I : L a n g u a g e s p e c i f i c a t i o n s . F o r m C 2 6 - 6 5 7 1 - 2 , I B M P r o -

g r a m m i n g S y s t e m s P u b l i c a t i o n s , P o u g h k e e p s i e , N . Y . , J a n .

1966.
6 . IKAuP~ , A . A n o t e o n t h e d a n g l i n g e l s e i n A L G O L 60. Comm.

A C M 6 (A u g . 1963) , 4 6 0 - 4 6 2 .

7 . N A U R , P . , AND WOODGER, M . (Eds.) Revised report o n t h e a l -

g o r i t h m i c l a n g u a g e A L G O L 60. Comm. A C M 6 (J a n . 1963) ,

1 -17 .

8 . N A U R , P . (E d .) R e p o r t o n t h e a l g o r i t h m i c l a n g u a g e A L G O L

60 . Comm. A C M 8 (M a y 1960) , 2 9 9 - 3 1 4 .

9. WIRTH, N . , AND W E B E R , i . E U L E R : A generalization of

A L G O L , a n d i t s f o r m a l d e f i n i t i o n : P t . I I . Comm. A C M 9
(F e b . 1966) , 8 9 - 9 9 .

10. S ~ A w , C . A s p e c i f i c a t i o n of J O V I A L . Comm. A C M 6, 12 (D e e .

1963) , 7 2 1 - 7 3 6 .

Contributions to the
Communications of the ACM

The Communications of the ACM serves as a newsletter to members
about the activities of the Association for Computing Machinery, and
as a publication medium for original papers and other materlal of
interest. Material intended for publication may be sent to the Editor-
in-Chlef, or dlrectly to the Editor of the appropriate department. It
will also be considered for the Journal of the Association for Comput-
•ng Machinery.
Contents--Submissions should be relevant to the interests of the Association

and may ts.ke the form of short contributions or original papers. Short con-
tributions may be published as letters to the editor, or in the news and
notices department. Papers should be reports on the results of research, or
expositional or survey articles. Research papers are judged primarily on
originality_; expositional and survey articles are judged on their topicality,
clarity a n d comprehensiveness. Contributions should conform to generally
accepted practices for scientific papers with respect to style and organiza-
tion.

Fermat--Manuseripts should be submitted in duplicate (the original on bond
paper) and the text should be double spaced on one side of the paper. Typed
manuscripts are preferred, bu t good reproductions of internal reports are
acceptable. Authors ' names should be given without titles or degrees. The
name and address of the organization for which the work was carried out
should be given. If the paper has previously been presented at a technical
meeting, the date and sponsoring society should appear in a footnote off
the title.

Synopses--Manuscrlpts should be accompanied by an author 's synopsis of
not more than 175 words, setting out the essential feature of the work.
This synopsis should be intelligible in itself without reference to the paper
and should not include reference numbers. The opening sentence should
avoid repetition of the title and indicate the subjects covered.

FFigures--Diagrams should be on white bond or drafting linen. Lettering
should be done professionally with a Lemy ruler (or, if necessary, in e/ear
black typing, with carbon reproducible ribbon). Photographs should be
glossy prints. The author 's name and the figure number should appear on
the back of each figure. On publication, figures will be reduced to 3 ~
inches in width.

Citstions--(1) References to items in periodicals: These should take the form:
author, title, journal, volume number, date, pages. For authors, last names
are given first, even for multiple authors; if an editor, the author 's name is
followed by: (Ed.). The author 's name always ends with a period, either
the period which is the abbreviation for his initial, or a period for the pur-
pose. The title has only the first word and proper names (or their deriva-
tives) starting with capital letters, and it ends with a period. The date is
given in parentheses. The preferred method for abbreviations is that
recommended by the International Standards Organization. Example:

JONDS, R. W., MARKS, F. M., aND ANTHOZ~Y, T. Programming routines
for Boolean functions. J. ACM 5 (May lg60), 5-19.

(2) References to reports or proceedings: Author(s) name(s) and title--same
style as for references inperiodicais. Source, report number, city, date.
(3) References to books: Author(s) (same style as to periodicals). Tit le--
all principal words start with a capital letter, and the title is underlined so
that it will be set in italics. Page or chapter references follow the title, then a
period. Publiaher, city, year.
(4) In lengthy bibliographies, entries must be arranged alphabetically ac-
cording to authors or editors names, except for those items to which no names
can be attached.

Copyright--If material submit ted for publication has previously been copy-
righted, appropriate releases should accompany the submission. Copy-
right notices will be inserted when reprinting such materisJ. If the author
wishes to reserve the copyright of a computerprogram, upon his request a
copyright notice in his name will be includedwhen the program is pub-
lished

Page Charge--Author 's institutions or corporations are requested to honor
a page charge of $40 per printed page. prorated according to quarter pages
or par t thereof, to help defray the cost of publication. Charges are levied
only on voluntarily contributed research papers and technically oriented
items, including pracniques, algorithms, and le t t e r s of technical content.
Fifty reprints of each such item are furnished free of charge. Payment of
the page charge is not a condition of publication, editorial acceptance of a
paper being unaffected by the payment or nonpayment.

A d d e n d u m To

" A N o n r e e u r s i v e M e t h o d of S y n t a x S p e c i f i c a t i o n " b y J o h n W .

C a r r I I I a n d J e r o m e W e i l a n d , Comm. A C M 9, 4 (A p r i l , 1966) ,
2 6 7 - 2 6 9 :

T h e r e s e a r c h b e h i n d t h i s p a p e r w a s m a d e p o s s i b l e b y t h e j o i n t

s u p p o r t o f t h e N a t i o n a l S c i e n c e F o u n d a t i o n (N S F - G P - 1 4 7 6) a n d

t h e A r m y R e s e a r c h Off ice (D u r h a m) (D A - 3 1 - 1 2 4 - A R O (D) - 9 8) ;

a n d b y t h e A t l a n t i c R e f i n i n g C o m p a n y .

682 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 9 / N u m b e r 9 / S e p t e m b e r , 1966

