begin for i := 1 step 1 until n do z[¢] := z[¢] + lambda X
slil; f = Jb
end else
begin gb = dot(g,s);
if gb < 0 A count > n A step <10-6 then go to exil;
fb = f; ita := ita — lambda;
go to tnterpolate
end;
skip: end of search along s;
for ¢ := 1 step 1 until n do

begin sigma [¢] := z [{] — sigma [i];
gammali] := g[i] — gammali]
end;

sg := dot(sigma,gamma);
if count > n then
begin if sqrt (dot(s,s)) < eps A sqri{dot(sigma,sigma)) <eps
then go to finish
end;
for 7 := 1 step 1 until » do s[] := up dot (h,gamma,i);
ghg := dol(s, gamma);
k:=1;
if sg = 0\/ ghg = 0 then go to lesi;
for ¢ := 1 step 1 until n do for j := 7 step 1 until n do
begin hlk] := Rlk] + sigmali] X sigmaljl/sg — s[i] X sljl/ghg;
k:i=k+1
end updating of h;
test: if count > limit then go to exit;
end of loop controlled by count; go to finish;
exit:conv := false;
Jfinish:
end of FLEPOMIN

With these changes the procedure was run successfully on a
KDF 9 computer on the first of the test functions used by Fletcher
and Powell, and the appropriate rate of convergence was achieved.
(The corresponding values in [1, Table 1, col. 4] being 24.200,
3.507, 2.466, 1.223, 0.043, 0.008, 4 X 107%). It could well be, however,
that these changes may still not prove satisfactory on some
functions. In such cases it will most likely be the search for the
linear minimum along s which will be at fault, and not the method
of generating s. It should not be necessary to evaluate the func-
tion and gradient more than 5 or 6 times per iteration in order to
estimate the minimum along s, except possibly at the first few
iterations.

I am indebted to William N. Nawatani of Dynalectron Corpora-
tion, Calif., for pointing out the discrepancies in the rates of con-
vergence, and to the referee for his calculations and comments
with regard to the Hilbert Matrix function.

REFERENCE

1. Fietoner, R., axp Powsern M. J. D. A rapidly convergent
descent method for minimization. Comput. J. 6 (July 1963),
163.

REMARK ON ALGORITHM 256 [C2]

MODIFIED GRAEFFE METHOD [A. A. Grau, Comm.
ACM 8 (June 1965), 379]

G. StERN (Recd. 8 Mar. 1965 and 24 Mar. 1965)
University of Bristol Computer Unit, Bristol 8, England

This procedure was tested on an Elliott 503 using the two
simplifications noted in the comments on page 380. When the 16th
line from the bottom of page 380, first column, was changed to read

hl :=aa T (1/(k—s+1));
(as suggested in a private communication from the author) correct
results were obtained.

Volume 9 / Number 9 / September, 1966

REMARK ON ALGORITHM 266 [G5]
PSEUDO-RANDOM NUMBERS [M. C. Pike and 1. D.
Hill, Comm. ACM 8 (Oct. 1965), 605]

L. Hansson (Reed. 25 Jan. 1966)

DAEC, Riso, Denmark

As stated in Algorithm 266, that algorithm assumes that integer
arithmetic up to 3125 X 67108863 = 209715196875 is available. Since
this is frequently not the case, the same algorithm with the con-
stants 125 and 2796203 may be useful. In this case the procedure
should read

real procedure random (a, b, y);
real a, b; integer y;

begin
y =125 X y;y := y — (y+2796203) X 2796203;
random = y/2796203 X (b—a) + a

end

The necessary available integer arithmetic is 125 X 2796203 =
348525375 < 2 1T 29. With this procedure body, any start value
within the limits 1 to 2796202 inclusive will do.

Seven typical runs of the poker-test gave the results:

start value all different 1 pair 2 pairs 3 34 pair 4 3
100001 129 199 39 31 2 0 0
1082857 115 206 45 31 2 1 0
724768 120 195 49 32 3 1 0
78363 130 198 36 31 5 0 0
1074985 127 189 44 34 4 2 0
2567517 124 193 50 28 3 2 0
2245723 119 202 49 24 4 1 1

Totals for 7 runs:
864 1382 312 211 23 7 1
Totals for 100 consecutive runs with first start value 100001 :

12023 20297 4301 2837 358 181 3

REMARK ON ALGORITHM 266 [G5]
PSEUDO-RANDOM NUMBERS [M. C. Pike and I. D.
Hill, Comm. ACM 8 (Oct. 1965), 605]

M. C. PixE anp I. D. Hion (Recd. 9 Sept. 1965)

Medical Research Council, London, England

Algorithm 266 assumes that integer arithmetic up to 3125 X
67108863 = 209715196875 is available, which is not so on many
computers. The difficulty arises in the statements

y 1= 3125 X y; y :=y — (y+67108864) X 67108864;

They may be replaced by

integer k;

for k ;= (for list) do

begin

y =k Xuy;
y 1=y — (y+67108864) X 67108864

end;
where the (for list) may be

125, 25 (requiring integer arithmetic up to less than 2)

25, 25, 5 (requiring integer arithmetic up to less than 2%)
or

5, 5,5, 5, 5 (requiring integer arithmetic up to less than 22)
according to the maximum integer allowable. The first is appro-
priate for the ICT Atlas. [And also for the IBM 7090, the second
for the IBM System/360 . . . Ref.]

Note. There are frequently machine-dependent instructions
available which will give the same values as the above statements
much more quickly, if speed is of much imaportance.

Communications of the ACM 687


http://crossmark.crossref.org/dialog/?doi=10.1145%2F365813.365839&domain=pdf&date_stamp=1966-09-01

