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The purpose of this paper is to present a comparison of 
some computer simulation languages and of some of the 
packages by which each is implemented. Some considerations 
involved in comparing software packages for digital computers 
are discussed in Part I. The issue is obvious: users of digital 
computers must choose from available languages or write 
their own. Substantial costs can occur, particularly in training, 
implementation and computer time if an inappropriate lan- 
guage is chosen. More and more computer simulation lan- 
guages are being developed: comparisons and evaluations of 
existing languages are useful for designers and implementers 
as well as users. 

The second part is devoted to computer simulation and 
simulation languages. The computational characteristics of 
simulation are discussed with special attention being paid to a 
distinction between continuous and discrete change models. 
Part III presents a detailed comparison of six simulation lan- 
guages and packages: SIMSCRIPT, CLP, CSL, GASP, GPSS 
and SOL. The characteristics of each are summarized in a 
series of tables. The implications of this analysis for designers 
of languages, for users, and for implementers are developed. 

The conclusion of the paper is that the packages now avail- 
able for computer simulation offer features which none of the 
more general-purpose packages do and that analysis of 
strengths and weaknesses of each suggests ways in which both 
current and future simulation languages and packages can 
be improved. 

This study was supported, in part, by funds made available 
by the Ford Foundation to the Graduate School of Business, 
Stanford University. However, the conclusions, opinions and 
other statements in this publication are those of the authors and 
are not necessarily those of the Ford Foundation. 
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sity, March 6 and 7, 1964. The paper has benefitted from sugges- 
tions from participants at the Workshop, particularly Michael 
Montalbano, and from projects carried out by students in the 
Graduate School of Business: H. Barnett, H. Guichelaar, Lloyd 
Krause, John P. Seagle, Charles Turk, Victor Preisser. The paper 
has also benefitted from discussions held in connection with the 
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March 17-18, 1966. 

I.  C o m p a r i s o n  o f  L a n g u a g e s  a n d  S o f t w a r e  
P a c k a g e s  for  D ig i ta l  C o m p u t e r s  

Programming a problem for digital computers has been 
aided considerably by the development of special purpose 
programs, assemblers, interpreters and higher level lan- 
guages. The basic purpose of all these "languages," and the 
"software packages" that  are provided to implement them 
(compilers, documentation, diagnostic aids, etc.), is to pro- 
vide a definer of problems and his programmer with a 
means for communicating a problem to the machine with- 
out doing so in machine language. The packages take care 
of many of the mechanical details of programming: 
memory location assignments, input-output commands, 
and relationships among program segments. The languages 
also help the problem definer and the programmer com- 
municate with each other. 

The term "language" is used here to mean the specifica- 
tions of the language without regard to implementation; 
the term "package" or "software package" means the set 
of materials available to the user: programs, manuals, de- 
bugging aids, etc. In  a discussion of languages it is useful 
to distinguish three different activities: (i) the specification 
or design of a language, (ii) the implementation of the 
language in the form of a computer program and docu- 
mentation, and (iii) the use of the language and the pack- 
age. Sometimes the same individuals are involved in all 
three activities. I t  is convenient to speak of three groups: 
language designers, language implementers, and users. 

The usefulness of languages and software packages has 
been great, and the number of them has hmreased rapidly. 
Frequently, more than one can be used for a particular 
problem. The user must then choose from among several 
competing packages, each of which may offer some features 

The characteristics of the languages and software packages 
change rapidly. The statements in the paper were originally in- 
tended for the situation current in March, 1964. Where significant 
changes have occurred the text has been modified. 
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suitable for his particular problem or class of problems. A 
comparison of existing languages and packages for a par- 
ticular set of problems can be very helpful: language de- 
signers and implementers from such a comparison can de- 
termine features that should be incorporated into future 
versions; users can utilize the comparison to help in select- 
ing a particular language for particular applications. 

As a practical matter, the use of a language is determined 
not only by the properties of the language itself but also 
by the characteristics of the package and by features of the 
programming systems available for particular equipment. 
These characteristics include the range of machines for 
which the language is implemented; the relationship of the 
package to the monitor system used: the availability of 
manuals, training aids, primers and sample problems; the 
evolution and maintenance of the language and the pack- 
age; and the establishment and operation of a users organi- 
zation to exchange information about the language. 

The choice of a language and package is not an exact 
process and because of the variety and range of evaluation 
criteria that are possible, it is doubtful whether it ever will 
be. This paper concentrates on the comparison of features 
of languages and of packages designed and/or used for 
simulation; user experience is mentioned as appropriate. 

II. The Simulation Technique and Simulation 
Languages 

1. SIMULATION AS A TECHNIQUE FOR PROBLEM 
SOLVING AND RESEARCH 

Computer simulation has come into increasingly wide- 
spread use to study the behavior of systems whose state 
changes over time. [See, for example, IBM Corporation, 
Bibliography on Simulation (1966)]. Alternatives to the use 
of simulation are mathematical analysis, experimentation 
with either the actual system or a prototype of the actual 
system, or reliance upon experience and intuition. All, in- 
cluding simulation, have limitations. Mathematical analy- 
sis of complex systems is very often impossible; experi- 
mentation with actual or pilot systems is costly and time 
consuming, and the relevant variables are not always 

subject to control. Intuition and experience are often the 
only alternatives to computer simulation available but can 
be very inadequate. 

Simulation problems are characterized by being mathe- 
matically intractable and having resisted solution by ana- 
lytic methods. The problems usually involve many varia- 
bles, many parameters, functions which are not well- 
behaved mathematically, and random variables. Thus, 
simulation is a technique of last resort. Yet, much effort is 
now devoted to "computer simulation" because it is a 
technique that gives answers in spite of its difficulties, costs 
and time required. 

I t  is convenient to classify simulation models into two 
major types: continuous change models and discrete 
change models. Some problems are clearly best described 
by one type or the other; for some problems either type 
might be used. 

2.  C O N T I N U O U S - C H A N G E  MODELS 
Continuous-change models are appropriate when the 

analyst considers the system he is studying as consisting 
of a continuous flow of information or material counted in 
the aggregate rather than as individual items. These 
models are usually represented mathematically by differ- 
ential or difference equations that describe rates of change 
of the variables over time. Such models have long been 
used in the physical sciences and engineering. Continuous- 
change models have also been applied to economics and the 
social sciences [see, for example, Tustin (1953), Allen 
(1956), and Beach (1957)]. They have been applied in vari- 
ous operations research problems [see, for example, 
Morgenthaler, (1961)]. 

If possible, the analyst uses analytical or numerical tech- 
niques to solve the system of differential or difference equa- 
tions. If no available techniques are powerful enough or 
appropriate, the analyst might consider simulation. Such 
continuous-change models are naturally suited to elec- 
tronic or mechanical analog computation. Unfortunately, 
analog machines often cannot be used because the func- 
tions involved are discontinuous, the number of variables 
are large, some of the variables involved are random varia- 
bles, some of the variables must be non-negative or some 
of the operations required are not easily performed on 
analog machines. 

Continuous-change models can be simulated on digital 
computers by using finite-difference equations which, in 
the limit, approach the differential equations of continuous 
flow. The problem definer using finite differences first 
selects, as the state variables, the factors of interest. Let 
Xdt) denote the value of the ith factor at time t and X(t) 
the vector of all the Xi. X(t) then becomes the state vector 
which describes the state of the system at time t. The prob- 
lem definer next states the way in which the system 
changes over time. Symbolically, this may be represented 

by 

x ( t  + zxt) = g(x(t) ,  z(t) ,  w )  
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where X(t) represents the state vectors for all previous 
values of t, 

Z(t) represents the vector of values of exogenous 
variables for all relevant values of t, 

W represents the vector of parameter values, 
g specifies the behavior of the system. 

The formulation of a continuous-change model consists 
of (i) identifying the state variables X, the exogenous 
variables Z, and the parameters W, and (ii) developing the 
functional relationship, g. The computational problem is 
to compute X(t + At) when X(t) is given. The result of 
the computations, that  is, the output  of the simulation, is 
a table or graph of X(t) as a function of time or summaries 
of these data. 

The "continuous change" world view has been exten- 
sively developed by Forrester [see Industrial Dynamics 
(1961), Ch. 6]. He conceptualizes the world as made up of 
money, men, material, information and capital goods, each 
of which flows from "level" to "level" with rate of flow 
controlled by "valves." A language, a flowcharting con- 
vention and a compiler, DYNAMO, have been developed 
to provide a means of using these ideas. The simulation 
advances in discrete time intervals of length DT and each 
state variable is computed as 

X~(t 4- At) = Xi(t) + (AX~)DT 

where AXe is an arithmetic expression. The effect is to 
compute values of the function X~(t) by the method of first 
differences. Experience indicates tha t  the language is rela- 
tively easy to learn and that  simple problems can be pro- 
grammed and run in a relatively short time. Unfortunately 
the language has limitations for larger problems. Probably 
the most annoying limitation is that  the basic language 
does not allow the use of subscripts. Different categories of 
inventory, for example, must be identified by different 
names and statements must be repeated for each category. 
Further  restrictions are the use of fixed-time increments, 

computation of all statements at  each time interval, first- 
order difference approximations to continuous functions, 
the limited number and rigid form of statements per- 
mitted, the restricted manner in which past data can be 
used, and the inability to enter exogenous data. 

Continuous-change models can also be programmed in 
either general purpose languages or some of the discrete 
simulation languages. In certain cases, this is as easy and 
efficient as in DYNAMO, particularly if subscripts are 
required. 

An efficient, widely used method for the solution of 
"continuous flow" problems is the use of hybrid analog- 
digital computers [see Scramsted (1962)]. There are lan- 
guages developed for this application; see Table II.1. 
Brennan and Linebarger (1964) and (1965) and Clancy and 
Fineberg (1965) present comprehensive comparisons of 
these particular languages. 

3 .  D I S C R E T E - C H A N G E  M O D E L S  

In discrete-change models, the changes in the state of 
the system are conceptualized as discrete rather than con- 
tinuous. Systems are idealized as network flow systems and 
are characterized by the followhlg: 
- - t h e  system contains "components" (or "elements" or 

"subsystems") each of which performs definite and 
prescribed functions; 

- - i tems flow through the system, from one component to 
another, requiring the performance of a function at a 
component before the item can move on to the next 
component; 

- -components  have finite capacity to process the items 
and therefore, items may have to wait in "waiting 
lines" or "queues" before reaching a particular com- 
ponent. 

The main objective in studying such systems is to ex- 
amine their behavior and to determine the "capacity" of 
the system: e.g., how many items will pass through the 

TABLE II.1. GENERAL CHARACTERISTICS OF SELECTED CONTINUOUS-CI-IANGE SIMULATION LANGUAGES FOR DIGITAL COMPUTERS a 

Name 

D E P I  
DEPI  4 
DAS 
DYSAC 

MIDAS 

DIDAS9 
D Y NASA R 
P A R T N E R  

FACTOLUS 
HYPLOC 
FORBLOC 

COBLOC 
ASTRAL 
JANIS 
DES-1 
DYNAMO 

Meaning of Name 

Differential Equation Pseudo Interpreter 

Digital Analog Simulator 
Digitally Simulated Analog Computer  

Modified Integration DAS (alias: much improved 
DAS) 

Digital Differential Analyzer Simulator 
Dynamic Systems Analyzer 
Proof of Analog Results Through Numerically 

Equivalent Routines 
The river in which Midas got rid of the golden touch 
Hybr id  computer block-oriented compiler 
F O R T R A N  compiled block-oriented simulation 

language 
CODAP language block-oriented compiler 
Analog Schematic Translater to Algebraic language 

Differential Equat ion Solver 

Availability Originating Organization Machine Implemented Date 

1957 Jet Propulsion Lab. Burroughs 204 
1959 Allis Chalmers IBM 704 
1963 Martin Co., Orlando, Florida IBM 7090 
1961 U. of Wisconsin Interpreter, in 1604 assembler language, 

for Wisconsin monitor 
1968 Wright-Patterson Air Force Base, Dayton, Ohio In FORTRAN 1I for 7090 & 7094, in 

FORTRAN IV for 7094 & 7040, all in- 
terpreters 

1957 Lockheed, Georgia IBM 704 
1962 Jet Engine Die. of General Electric IBM 704/7090 
1962 Aeronautical Die. of Honeywell IBM 650, Honeywell H-80O/1800 

1964 IBM Research, San Jose, California IBM 1620 
1964 U. of Wisconsin Compiler, in 7090/94 assembler language 
1964 U. of Wisconsin In FORTRAN 

1964 U. of Wisconsin Compiler, in 1604 assembler language 
1958 Convair IBM 7094 
1963 Bell Telephone Laboratories IBM 7090 
1963 Scientific Data Systems SDS 9300 
1962 MIT, Industrial Dynamics Group IBM 709/7090 

a For a more complete list, see Clancy and  Fineberg (1965) 
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system in a given period of time as a function of the struc- 
ture of the system? The analytical techniques which may 
be used to solve such problems are queueing theory and 
stochastic processes. Examples of problems which have 
been formulated and studied as discrete change models are 
job shops, communication networks, logistics systems and 
traffic systems. 

The computation in this type of simulation consists to a 
large extent in keeping track of where individual items are 
at any particular time, moving them from waiting line to 
component, timing the necessary processing or functional 
transformations and removing and transporting the items 
to other components or waiting fines. The result of a simu- 
lation "rtm" is a set of statistics describing the behavior 
of the simulated system during the run. 

Special packages have been prepared for certain specific 
applications. To use these, the user supplies parameter 
values, data, and control values to adapt the program to 
his own model. Examples of such packages are the IBM- 
GE Job Shop Simulator and the Job Shop Simulator pro- 
duced by Ginsberg, Markowitz and Oldfather (1965). 

If such special simulators are not available or if the user 
decides not to use them, he can use general purpose lan- 
guages such as FORTRAN, ALGOL, and PL/I .  In the past, 
programs for the simulation of discrete-change systems on 
electronic digital computers were usually written directly 
in assembly languages or in general purpose language 
such as these. 

But because simulation of discrete-change models does 
involve computations which are common to many models, 
a number of language and packages have been designed for 

formulating and writing a program for any discrete-change 
model. Table II,2 presents characteristics of some of these 
discrete-change packages: the name of the package; the 
general purpose language involved, if any; the originating 
organization; the machines for which the package is avail- 
able and whether the package is currently available or 
planned. Six of these are discussed in more detail in 
Section III. 

References to manuals and specifications of these lan- 
guages and packages are given in Section V.3. A selected 
bibliography on the methodology of discrete-change simu- 
lation is given in Section V.2. 

4. EVALUATION OF LANGUAGES FOR SIMULATION 
The choices an analyst faces in attacking a problem are 

outlined in Table II.3. Obviously he must first choose the 

TABLE II.3. SOLUTION TECHNIQUES FOR THE TWO 

TYPES OF MODELS 

Solution Iechnique Type of Model 

Continuous change Discrete change 

D i f f e r e n c e  e q u a t i o n s  Q u e u e i n g  t h e o r y  

D i f f e r e n t i a l  e q u a t i o n s  S t o c h a s t i c  p r o c e s s e s  

C a l c u l u s  of  v a r i a t i o n s  
M a x i m u m  p r i n c i p l e  

A n a l y t i c a l  t e c h -  

n i q u e  

S i m u l a t i o n :  

(a)  G e n e r a l  p u r -  

p o s e  p a c k a g e s  P L / I  
(b) S p e c i a l  p u r -  

p o s e  p a c k -  

a g e s  
(c) S i m u l a t i o n  See  T a b l e  I I . 1  

A s s e m b l e r s ,  F O R T R A N ,  M A D ,  A L G O L ,  

I B M - G E  J o b  S h o p  
S i m u l a t o r ,  e t c .  

See  T a b l e  I I . 2  

TABLE I I . 2 .  GENERAL CHARACTERISTICS OF VARIOUS CONTEMPORARY DISCRETE-CHANGE SIMULATION P A C K A G E S  

Simulation Package Computer Language Originating Organization Machines Implemented Availability 

CLP CORC Cornell U. CDC 1604 Current 
CSL FORTRAN Esso, Ltd. & IBM U.K. IBM 7090 Current 
CSL 2 FORTRAN IBM U.K. IBM 7090/7094 In preparation 
ESP ALGOL Eiliott Elliott 503 & 803 
FORSIM IV FORTRAN MITRE IBM 7030 & others with FORTRAN compilers Current 
GASP FORTRAN U.S. Steel Corp. IBM 7040/7044, 7090/7090, 1620, 7070/7074, CDC G20 Current 
GPSS FAP IBM IBM 7090 Current 
GPSS II  FAP IBM IBM 7090/94, IBM 7040/44 Current 

FORTRAN UNIVAC UNIVAC 1107 Current 
GPSS I I I  MAP IBM IBM 7090/7094, IBM 7040/7044 Current 

- -  IBM S/360 In preparation 
GSP 2 --  U.S. Steel Co. Ltd. Ferranti Pegasus Current 

Elliott 503 In preparation 
Job Shop Simulator - -  IBM-GE IBM 7090 Current 
MILITRAN - -  Systems Research Group for Office of IBM 7090/7094 Current 

Naval Research 
OPS - -  MIT IBM 7090/7094 Current 
QUICKSCRIPT - -  Carnegie Inst. of Technology CDC G20 Current 
SILLY --  U.S. Steel Corp. ~ In preparation 
SIMON ALGOL Bristol College of Sci. & Teeh. Elliott 503 & 803 
SIMPAC SCAT Systems Development Corp. IBM 7090 Not available 
SIMSCRIPT FORTRAN RAND (SHARE) IBM 7090/7094, 7040/44 Current 

FORTRAN California Analysis Corp. IBM 7090, 7090/7094, 7040/7044 Current 
CDC3600, 3800, 6400, 6600, 6800 
Philco 210, 211,212; 
UNIVAC 490, 1107, I108 

- -  Digitek GE 625/635 Current 
SIMTRAN FORTRAN MITRE IBM 7030 Current 
SIMULA ALGOL Norwegian Computing Center UNIVAC 1107 In preparation 
SOL ALGOL Burroughs, Case Inst. of Teeh. Burroughs B5000/5500 - -  

UNIVAC 1107 Current 
UNISIM FAP Bell Labs. IBM 7090/7094 Current 
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type of model; in some cases, of course, the problem 
clearly indicates which one should be chosen. It  is true 
that there are many problems that are best considered in 
terms of discrete changes, and it makes little sense to try 
to force these into the continuous-change model. However, 
there are many other problems which can be investigated 
efficiently by continuous-change models. These include 
cases where levels of operation actually change continu- 
ously, such as in pipeline networks, as well as cases where 
items are discrete but may be considered in the aggregate 
and measured continuously. The limitations of the 
DYNAMO package should not necessarily be considered 
as limitations of the continuous-change approach to model 
formulation. 

Once this choice has been made, the analyst must pick 
a solution technique. If he selects simulation, he has two 
and perhaps three choices available. He may select a gen- 
eral purpose package (an assembly language, FORTRAN, 
ALGOL, etc.) or a simulation language or package, or he 
may find or write a program specially designed for his 
problem. It  is, of course, possible to write simulation pro- 
grams using general purpose assemblers and compilers. A 
survey conducted by Chen (1964) confirms the obvious 
conclusion that in the past most such programs have been 
so written. Indeed, some believe that general purpose lan- 
guages are almost ahvays preferable, providing efficiency 
without important disadvantages [see, for example, 
Fedderson and O'Grady (1965)]. Furthermore, available 
evidence supports another obvious conclusion: program- 
ming in lower language systems such as assemblers takes 
more programming time but results in object programs 
with less execution time than programming in higher level 
systems. Hence, one might do the simulation first in a 
higher level language; if execution time is excessive, the 
analyst or his programmer can reprogram in a lower level 
system the parts that are taking the most time. 

written in a widely used general-purpose language, 
FORTRAN; GPSS because it is probably the most used and 
is a package provided and maintained by the largest man- 
ufacturer of electronic computers; CORC (with CLP) be- 
cause it is part of a package designed specifically for teach- 
ing; CSL because it differs from the others in the way that 
it controls the simulation and because it was developed 
outside the United States; and SOL because it is based on 
ALGOL. 

References to detailed specifications of all the packages 
and languages listed in Table II.2 are given in Section V.3. 
A brief description of the objectives of the designers and 
implementers for the six selected languages is given below 
because it is reasonable to discuss the characteristics of a 
language (package) in terms of the objectives of the de- 
signer (implementer). 

GPSS [IBM, Reference Manual]: 

" T h e  program described herein is a general-purpose s imula tor  
designed to aid sys tem s tudy  work. The  sys tem to be s imula ted  
mus t  be described by  the  user in te rms of a special block diagram. 
The  program operates  on the IBM 7090 under  the  IBSYS/FoRTRAN 
System, and no knowledge of the computer operation is assumed. The  
user need only know the  rules by  which the  block diagrams are 
constructed.  

" T h e  s imula tor  allows the user to s tudy  the logical s t ruc tu re  
of the system. The  flow of traffic th rough  the  sys tem may  be fol- 
lowed, and the effects of compet i t ion  for equ ipment  in the  sys tem 
may  also be measured.  Computer  o u t p u t  may  be arranged to pro- 
vide informat ion on (1) the volume of traffic flowing th rough  sec- 
t ions of the system, (2) the  d is t r ibu t ion  of t r ans i t  t imes for the  
traffic flowing between selected points  in the system, (3) the aver-  
age ut i l iza t ion of elements  in the  system, and (4) the  max imum 
and average queue lengths  a t  selected points  in the  system. 

"Var ious  s ta t i s t ica l  and sampling techniques  may  be in t ro-  
duced into a GPSS I I  model. Levels of pr ior i ty  ma y  be assigned to 
selected uni t s  of traffic, and complex logical decisions may  be made  
dur ing the  s imulat ion.  I t  is also possible to s imulate  the  inter-  
dependence of var iables  in the  system, such as queue lengths ,  
inpu t  ra tes  and processing t ime ."  

III. Comparison of  Six Discrete Flow Simulation 
Packages 

1. DESCRIPTIONS OF SIX LANGUAGES 

New simulation packages continue to be developed, mo- 
tivated both by the introduction of new machines and by 
dissatisfaction with existing packages. It seems evident 
that simulation languages, for many applications, have 
sufficient advantages over more general purpose languages 
to justify their use. Indeed, the substantial number of 
simulation languages for discrete-change models now avail- 
able has introduced a new dimension to computer simula- 
tion. A potential user can choose from among several com- 
peting packages, each of which offers some features suita- 
ble for his particular problem or class of problems. 

The purpose of this section is to compare six discrete-flow 
simulation languages and packages in detail. The six and 
the reasons for selecting them are: SIMSCRIPT because of 
its unique features; GAsP because it is a set of subroutines 

CORC and CLP [Conway, Maxwell, and Walker]: 

"Programming  is the  process of describing a computa t iona l  
task  in a form and a language t h a t  will be intell igible to a com- 
puter .  Al though there are several  different types of languages t h a t  
can be employed, cer ta in ly  the easiest  to use from the  po in t  of 
view of the person doing the programming is one which is no t  un- 
like famil iar  ma themat i ca l  no t a t ion  and which uses Engl ish  w o r d s  
in  a reasonably  formal manner .  FORTRAN and ALGOL are the  two 
mos t  widely used languages of this  type.  Because they  are mean t  
for  professional use in a wide va r i e ty  of problems they  have  con- 
s iderable complexity and take a fair  amount  of t ime to master .  
For  quick learning for the  beginner  a less sophis t ica ted  language 
is desirable,  even a t  the  expense of some grammat ica l  clumsiness 
and some l imi ta t ion  in the  va r i e ty  of problems i t  can handle.  
CORC is such a language ."  

GASP [Kiviat]: 

"GASP is a FORTRAN-compiled, s imula t ion-or iented  program- 
ming language. Simulat ion models,  when expressed in GAsP-ori- 
en ted  flow-charts,  are easily t ranscr ibed  into machine-executable  
FORTRAN s t a t emen t s  . . . .  S imulat ion models are usual ly  designed 
b y  opera t ing or engineering personnel  who are unfamil iar  wi th  
computer  programming;  they are coded and  debugged by  com- 
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puter people equally unfamiliar with the processes being simu- 
lated. GASl" is intended to bridge the gap between these two 
groups. Engineers can formulate their problems in a machine- 
independent language; programmers, familiar with the language, 
can easily adapt their tbinking to the problem and code the model. 
GAsP also provides debugging features that  expedite the testing 
and validation of the model . . . .  

"GASP views simulation problems in a highly normalized man- 
ner. Precise definitions are established for isolating different parts 
of systems, for naming these parts and for specifying possible 
relations between them. This specificity of structure allows GAsP 
programmers to construct simulation models of systems rapidly 
and economically. I t  provides a programming compatability that  
allows programs of simulation models to be united into larger, 
more comprehensive programs with little or no change. I t  provides 
a standard of performance by which programming time and pro- 
gram execution may be evaluated. I t  provides a machine-inde- 
pendent and easily expandable programming language. And per- 
haps most important, it  is simple, straightforward, and easy to 
learn." 

S I M S C R I P T  [Markowi tz ,  Hausner ,  and  Ka r r ] :  

"The SIMSCRIPT system described in this manual was developed 
to meet the need to reduce programming time. I t  also provides 
increased flexibility in modifying such models in accordance with 
the findings of preliminary analysis and other circumstances . . . .  

"Fortunately,  experience now confirms that  much of the time 
spent in both logical formulation and actual programming is spent 
on operations that are often similar from one simulation problem 
to the next. Thus there is a clear opportunity and need for a pro- 
gramming system specially adapted to the problems of writing 
simulation programs. SIMSCRIPW was designed to answer this 
need . . . .  

"Any digital simulation consists of a numerical description of 
the "status" of the simulated system. This status is modified at 
various points in simulated time which may be called "events." 
SIMSCRIPT provides a standardized definition-form for specifying 
the status description. I t  also automatically provides a main 
timing routine to keep track of simulated time and the occurrence 
of events. An "event routine" is then written for each kind of 
event, describing how the status is to change. The SIMSCRIPT 
source language is specifically designed to facilitate the formula- 
tion and programming of these event routines. 

"Although SIMSCRIPT was developed for simulation problems, 
and the present exposition is presented in terms of simulation 
problems, SIMSCRIPT is actually a general programming system 
that  is also readily usable for non-simulation problems." 

CSL [ I B M  U n i t e d  K i n g d o m ,  L td ,  and  Esso P e t r o l e u m  Co. 
Ltd] :  

"Control and Simulation Language (CSL) is designed for the 
formulation, as computer programs, of the complex decision- 
making problems which arise in the control of industrial and com- 
mercial undertakings. 

" In  the field of simulation, CSL eases the construction and ex- 
pression of a logical model to represent the system under study 
and provides built-in facilities for running the model on the 
computer. 

"The language is based on the use of groups of entities which 
are the elements of the system, and in particular on subgroups 
(or sets) of entities which have some common property. The ma- 
jori ty of CSL statements make use of sets by examining their 
membership, or by operating in some way on a complete set, or 
on a selected member." 

2. PREVIOUS COMPARISONS 
Compar i sons  of d iscre te  change  s imula t ion  packages  

h a v e  been  m a d e  b y  K r a s n o w  and  Mer ika l l i o  (1964), F ree -  

m a n  (1964), M u r p h y  (1964), Y o u n g  (1963), Ginsberg  
(1965), and  T o c h e r  (1965). T h e  papers  b y  K r a s n o w  and  
Mer ika l l io ,  F r e e m a n  and  Toche r  a re  pub l i shed  in genera l ly  
ava i l ab le  journals .  

M u r p h y  repor t s  on a c o m p u t e r  s imu la t ion  mode l  pro-  
g r a m m e d  in b o t h  G P S S  I I  and  SIMSCRIPT. T h e  two pro-  
g rams  p roduced  iden t ica l  o u t p u t  f rom the  s ame  inpu t  a f te r  
a p p r o p r i a t e  a d j u s t m e n t s  were  m a d e  in r a n d o m  n u m b e r  
genera t ion ,  the  order  in which  events  are  caused,  t he  t r e a t -  
m e n t  of s imul t aneous  events ,  and  differences in n u m b e r  
rounding .  M u r p h y  r e c omme nds  SIMSCmPT in preference  to  
G P S S  I I  because  SIMSemPT resu l ted  in less execut ion  t i m e  
(3.6 minu te s  for SIMSCRIPT c o m p a r e d  to  26.8 minu t e s  for  
G P S S  in a pa r t i cu l a r  case on t h e  I B M  7090) and  requi res  
less m e m o r y  (10,000 vs.  20,000 words)  and  because  of t h e  
fol lowing fea tures :  

(i) SIMSemPT can  ope ra t e  w i th  v a r i a b l e - l e n g t h  t i m e  
inc remen t s  b u t  G P S S  I I  canno t ;  

(ii) T h e  SIMSCRIPT R e p o r t  G e n e r a t o r  is v e r y  conven ien t ;  
(iii) W o r k  pack ing  is ava i l ab le  in SIMSCRIPT b u t  no t  in 

G P S S ;  
(iv) I n  SIMSCl~IPT the  size of a r r a y s  need  no t  be  k n o w n  

a t  compi la t ion  t ime ;  and  
(V) I n  SIMSCRIPT b u t  no t  in G P S S  I I  v a r i a b l e  n a m e s  can 

be  ass igned to  p a r a m e t e r s  for ease of ident i f ica t ion .  

N o t e  t h a t  t he  compar i son  invo lved  G P S S  I I .  Some  of t h e  
l imi t a t i ons  of G P S S  I I  t h a t  M u r p h y  repor t s  would  n o t  
a p p l y  to  G P S S  I I I .  

Y o u n g  repor t s  on her  exper iences  w i th  SIMPAC, SIM- 
SCRIPT and  GPSS.  She l ists  condi t ions  unde r  which  each  of 
these  migh t  be  preferred,  preferences  t h a t  are  d e t e r m i n e d  
p r i m a r i l y  on the  basis  of sub jec t ive  eva lua t ions .  

Ginsberg  l imi ts  his c o m m e n t s  to  G P S S  and  SIMSCRIPT 
" . . .  because  t h e y  rece ived  the  mos t  in te res t  amongs t  t h e  
exis t ing l anguages . "  H e  s t a tes  his  conclusions as follows: 

" In  summary, we would answer the crucial question as to which 
language to use for a given simulation model by stating: if it  is 
possible to write the program in GPSS, if memory limitations will 
not be exceeded, and if the larger running time is not 'excessive' 
then GPSS should be used. Otherwise SIMSCi~IPT or one of the 
other languages should be used. Obviously, these judgments are 
highly subjective but must and can be made before undertaking 
all but  very smM1 simulation experiments. In order to make these 
judgments, there must exist one person who has a fairly complete 
understanding of the proposed model, of the experiments to be 
performed, and of both languages. This kind of person is by no 
means easy to come by, but is necessary to insure any kind of 
rational decision in the language selection problem." 

3. COMPARISON OF SIX SIMULATION PACKAGES 
S imu la t i on  languages  differ f rom genera l  pu rpose  pro-  

g r a m m i n g  packages  in t h a t  s imula t ion  languages  inc lude  
fea tures  which  improve  t h e  communica t i ons  be tween  
p r o b l e m  definer and  p r o g r a m m e r  and  s impl i fy  t he  pro-  
t r a m m i n g  of t he  c o m p u t a t i o n s  t h a t  are  charac te r i s t i c  of 

s imu la t ion  problems.  These  ends are  accompl i shed  pri-  

m a r i l y  t h r o u g h  the  fol lowing five capabi l i t i es :  

- - t h e  capab i l i t y  to  impose  a fixed " s t r u c t u r e "  on the  
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assigmnent of computer  memory  to variables and data.  
This assignment is more complete, detailed, and specific 
than that  used in most  general purpose languages. 

- - c o m m a n d s  to facilitate changing the state of the simu- 
lated world. In  most cases this is done by a "mas te r"  or 
" t iming"  routine tha t  controls the sequence in which sub- 
programs are executed 

- - c o m m a n d s  which facilitate the determination of 
whether or not a subprogram is to be executed at  a par- 
ticular time. 

- - c o m m a n d s  to facilitate computations tha t  are used 
frequently, in particular those dealing with random num- 
bers and probabili ty distributions. 

- - c o m m a n d s  which facilitate the recording of statistics 
during program execution and the reporting of results 
after the simulation run is ended. 

Simulation languages differ in the means used to provide 
these five capabilities. A comparison, in tabular  form, is 
given for six languages. Tables I I I . l - I I I . 5  also include a 
comparison of some characteristics, not necessarily unique 
to simulation languages, tha t  are important  and useful. 

(a) Structure of Memory Assignments--Data Structures. 
Most users are not concerned with the details of program 
compilation and execution. Nevertheless, the comparison 
of languages can be aided by examining details such as the 
structure of memory  assignments. In  simulation, as ill all 
computer  programs, some memory  cells are used to store 
data  and others to store instructions; the contents of some 
of these cells are changed as a result of the execution of the 
instruction. In  languages such as FORTRAN and ALGOL and 
in general purpose assemblers, the programmer is free, in 
the source program, to define variables as he wishes with 
minor restrictions such as distinguishing between integers 
and floating-point numbers. In  the resulting object pro- 
gram, the compiler or assembler assigns memory  locations 
to each variable as required. EssentiMly, therefore, most  
compilers, interpreters, and assemblers t reat  all variables 
ill the same way. In  simulation languages, on the other 
hand, several types of variables usually can be defined. 

Variables in languages such as FORTRAN and ALGOL m a y  
be subscripted (be defined as "arrays") .  For example, sup- 
pose a variable of interest in a problem is temperature,  
called T E M P .  The value of this variable may  depend on 
city, day and hour. The possible values of the variable, 
T E M P ,  might be stored in a three-dimensional array as 
follows: 

Any particular vMue could be denoted by  specifying the 
values of the arguments in an identifier such as " T E M P  
(CITY, DAY, H O U R ) . "  This particular way of storing the 
data  and identifying da tum is, of course, not unique. The  
three-dimensionM array, for example, could be broken up 
into a number  of two-dimensionM arrays or even one- 
dimension arrays. Obviously too, the order of the sub- 

scripts is arbitrary.  
Most  computer  simulation languages have the capabili ty 

of declaring and using subscripted variables just as in the 
general purpose languages. Several of the simulation lan- 

guages provide for additional capabili ty in storing data  and 
identifying them in the source language. The reason is tha t  
there are some variables in almost every simulation model 
which are t reated in special ways so tha t  it is worthwhile 
to provide specific mechanisms and specific names in the 
language and in the package for them. In  the discussion 
which follows, names such as record, field and list are used 
to distinguish these variables from "ordinary"  variables. 
I t  is emphasized tha t  logically these are "variables,"  no 

different than any other variables. 
The  name used in this paper  for an i tem of data  in a 

simulation language is " R E C O R D . "  A record is a one- 
dimensional variable consisting of one or more fields of 
data. A " F I E L D "  is a basic unit  of data  and may  consist 
of one or more binary digits, decimM digits, alphabetic, or 
Mphanumeric characters. A field may  be stored either in a 
cell, a par t  of a cell, or in several cells of the computer.  

The basic use of a record is to describe an object in the 
simulated world. The  data  in the fields of a record describe 
the "propert ies"  of the object. The record and its fields are 
usually given names or identifications; it is conventional 
to use names which are mnemonics for the object being 

represented. 
To illustrate these definitions, consider the simulation of 

a barber shop. "Barbers"  and "customers" might be ob- 
j ects being simulated. An individuM barber  might have  the 

following properties or characteristics: 

his name 
the t ime he begins his shift 
the t ime he completes his shift 
average t ime to complete a haircut 
whether idle or busy at  a particular instant of t ime 

The data  describing this barber  may  appear  as follows: 

HOUR 

CITY ,~ 

\, / DAY 

Average 
Name Time In Time Out Time Status 

Jones, R. 0800 1600 010 Busy 

There would probably be several barbers, and there 
would be a record to describe each one. I t  is convenient to 
have a name for a set or group of records describing similar 
objects, in this case, barbers. The group of records might 
be called BARBS and would appear  as follows: 
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Average 
Name Time In Time Out Time Status 

I 
Jones, R. 0800 1600 010 Busy 

N r ~  

lSmith, J. 0900 1700 009 Idle 

Actually, this "GROUP OF RECORDS" is nothing 
more than a two-dimensional array. The designers of many 
simulation languages found it useful to provide ways of 
locating a particular item of data by conventions different 
than those used in most general purpose languages. In our 
illustration, a property of a particular barber is often of 
interest. Instead of identifying these properties by BARBS 
(NAME, PROPERTY),  a simulation language might pro- 
vide the capability of identifying it by NAME (BARBS) 
or P R O P E R T Y (BARBS) on the justification that  such 
a procedure is more "natural"  and meaningful for simula- 
tion modeling. 

Another capability that  is often found in simulation can 
be illustrated by the property "status." During the course 
of the simulation, this property changes. When a barber 
finishes a haircut, the status in his record must be changed 
to "idle" if no customer is waiting. When a customer ar- 
rives, the program must examine the status of each barber 
to determine those who are idle. I t  may be better if a sepa- 
rate list were kept of all barbers who are idle. Then, when 

any change occurs, only the list need be updated. Some 
simulation languages provide special capabilities for main- 
raining such "s ta tus"  lists, that  is, lists of names or identi- 
fiers of records ("LIST OF RECORD NAMES")  that  
have certain properties. 

The advantages of such a capability are: the procedure 
saves memory space because the property need be stored 
only when appropriate; the procedure saves computer time 
because all possible records do not have to be searched 
each time there is a change in the state of the simulated 
world; problem definition and programming time are re- 
duced because such lists are a natural mode of expressing 
the state of the simulated world. 

Another capability of simulation packages is designed 
primarily to use memory space efficiently. This may be 
illustrated in our example by the records for customers. A 
group of records for customers might appear as follows: 

N a m e  

CUST 1 

CUSTOMER RECORDS 

Type of 
Time A Time B Time F Service 

617 648 723 CC 

N N r ~  

CUST 200 ] 

Text is continued on page 7S~ 

TABLE III. i. STRUCTURE OF MEMORY ASSIGNMENTS-DATA STRUCTURES 

GPSS I1 a S I M S C R I P T  CLP ] CSL GASP SOL 

1. Obiect being simulated: 
fundamental element 
(Record) 

L Properties of objects 
(Fields) 

3. Group of ob~ecte being 
simulated (Group of 
records) 

4. Data about the environ- 
ment (Variables) 

5. List of names of objects 
having certain properties 
(List of record names) 

~Tranasction 'b 
~Storage' 

'Facility' 
'queue '  
Transaction: 'Parameter'  

'Priority' 
'Mark Time'  

Storage: 'Storage Capacity' 
'Maximum Contents' 
'Current Contents' 
Utilization time integral 
Total entries 

Facility: 'Status' 
Utilization integral 
Total entries 

Queue: 'Maximum Contents' 
'Current Contents' 
Utilization time integral 
Total entries 

'Transactions' 
'Storage' 
'Facilities' 
'System Variable' 
'Savex' 
'Function' 
'Frequency Table' [GPSS I I I  'System 

Numerical Attributes (SNA)'] 
'Events Chain' 
'Assembly Set' 
'Service Chains' 
' Interrupt Chains' 
(Delayed Transactions) [GPSS I I I  

'User Chain'] 

Individual entity 

'Attribute' 

'Enti ty '  

'Permanent System 
Variable' ('Array 
Number')  

'Set' 

__ c s L  

'Enti ty '  'Enti ty '  'Element '  

'Attribute'  'Array' 'Attribute'  

'Glass' 'Class' 'Element List Ma- 
trix' 

System variables 'Array' System variables 

'List' 'Set' 'Element List' or 
'Queue' 

Variable, local 
global 

'Transaction' 
'Facility' 
~Store' 
Value 

Subscripted variabh 

Global variables 
tables 

6. Can records be temporary? Yes Yes Yes No Yes Yes 

a Names in quotes are actual names used in language indicated. 
b Entries under GPSS are for GPSS II ;  GPSS I I I  changes are listed separately if a change has been made. Unless specifically noted, GPSS I I  features are retained in 

GPSS III .  
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TABLE I l L  2 CHANGING THE STATE OF THE SIMULATED WORLD 

1. Subprogram: 
agent of 
change 

2. Who pro- 
rides sub- 
program? 

3. Time con- 
trol rou- 
tine 

4. Amount of 
time ad- 
vance 

5. Exit after 
time ad- 
vance 

6. Return of 
control to 
timing 
routine 

7. What flows 
in simu- 
lated 
world? 

8. What deter- 
mines 
when 
change 
occurs? 

9. Can changes 
be caused 

externally? 

GPSS II  

Block subroutines: specific 
blocks for 36 basic types 
of system action 

GPSS (except 'Help'  pro- 
vided by user) 

Main scanning routine 
IGPSS l I I  GPSS I I I  main 

scanning routine] 
To next scheduled 'Future 

Event '  after completion 
of all possible 'Current 
Events '  

To appropriate block sub- 
routine 

By block subroutine 

'Transaction' 

System status; change of 
status forces new events; 
scan before time advance 

'Jobtape' for exogenous 
events 

'He lp ' fo r  arbitrary modifi- 
cation 

SIMSCRIPT 

'Event '  subroutine 

User 

'Timing Routine' 

To next imminent event 

Control transferred to 
appropriate event 
subroutine 

By event subroutine 

'Temporary En t i ty '  

Tests in event sub- 
routines 

Yes: Exogenous event 
tape 

CLP 

Block; Sub- 
routine 

User 

Programmed 
by user 

Programmed 
by user 

Programmed 
by user 

Programmed 
by user 

Programmed 
by user 

Programmed 
by user 

CSL 

'Activity'  subroutine 

User 

Timing routine 

To next imminent event, 
by minimum value in 
T-Cell aasoclated with 
each entity 

All activity subprograms 
are activated cyclically 

Automatically, when no 
activity can be executed 

'Ent i ty '  

Tests in activity subrou- 
tine 

GASP 

'Event '  subprogram 
causing 'Activity '  

User 

'GASP Executive' 

To next scheduled event 

Control transferred to 
appropriate event 
subroutine 

By event subroutine 

Temporary 'Element' 

Tests in event subpro- 
gram 

Yes; load any number of 
exogenous events as 
data input 

SOL 

'Process' statement; pro. 
cedme 

User 

Programmed by user, us. 
ing 'Walt' statement 

To next point of program 
after a Wait Statement 
is completed 

To active program 

Programmed by user 

'Transaction ' 

Determined by user 
Parallelism by a 'dupli. 

cate' operation 

Yes 

TABLE I I I .  3. COMMANDS TO FACILITATE SUBPROGI~AM EXECUTION 

I. Create tempo- 
rary records 

2. Remove tem- 
porary 
records 

3. Place (or re- 
move) event 
on schedule 

4. Change list 
membership 

5. Sequencing in 
list 

6. Logical com- 
mands and 
phrases 

GPSS I I  

'Originate' 
'Generate'  

'Terminate'  

Main scanning routine is 
accessible by 'Priority, '  
'Buffer,' 'Advance, '  
'Help'  

'Seize' 'Release' 
' Interrupt '  'Hold'  
'Preempt '  'Leave' 'Return ~ 
'Enter '  'Store' 'Gate '  
'Link'  'Unlink'  
'Queue' 
[GPSS I l l  'Depart '  'Test '  

no 'Hold' no 'Store'] 
'Current '  events chain by 

priority by delay by 
FIFO; 'Future '  events 
chain by departure time 
by FIFO; 'Service' by 
priority by FIFO 

Selection modes: 
Both All Pick 
P FN SIM 
blank 
Gate conditions: 
NU SE SNF 1~ 
U SNE LS NM 
I SF LR 
Algebraic 'Compare' 

t [GPSS I I I  Selection Mode: 
SBR] 

SIMSCRIPT 

'Create' 

'Destroy' 

'Cause ' 
'Cancel' 
Exogenous event 

'File' 
'Remove'  specific i tem 
'Remove First '  

F IFO 
LIFO 
Ranked on attribute value 

'For Each' 'Loop' 
'Find Max' 'Repeat '  
'Find Min' 'Or'  
'Find First '  'And' 
'Where' ' I f '  
'With' qf  E m p t y '  
'Go To'  

CLP 

'Let' 

'Erase' 

Programmed by user 

'Insert '  
'Remove'  

'First '  
'Last '  
Ranked on attributes 
Removal by specifying 

entity identification 

' I f '  'Repeat '  
Simplified sequence con- 

trol available to allow 
automatic execution of 
next statement in pro- 
gram if tested condi- 
tion is false. 

Multi-way branching 
available with single 
' if '  statement. 

CSL 

No temporary en- 
tities 

T-Cell for each en- 
t i ty gives time 
available 

'Load' 'Gains'  
'Zero' 'Loses' 
'Converse' 

Add to 'Head'  or 
'Tail '  of Set; 
'Rank '  set mem- 
bers on specified 
criterion 

'Chain'  
'For' 
'In' 
'Not In' 
'Equals' 

GASP 

Temporary elements are 
created by naming, are 
stored in queues, may 
cease to exist upon de- 
parture from last queue 

'Schdl' 
'Remove'  

'Filem' 
'Fetehm'  

FIFO 
LIFO 
High or low ranking of 

attribute value 

F O R T R A N  

50L 

Declaration 
Schmoo Process 

(reproduction) 
'Start Statement'  
Input  statements 
'Cancel' 

Automatic 

'Seize' 'Release' 
'Enter '  'Leave'  
'Wait' 'Wait 

UntiF 

Priority 
'Control Strength 
First  request 

ALGOL 
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TABLE 111.4 PROGRAMMING FEATURES 

GPSS I f  SIMSCRIPT CLP CSL GA SP SOL 

I. Basic unit of pro- 
gram 

2. Programming re- 
quirements 

3. Does language pro- 
vide specific flow- 
chart symbolism 
for program ex- 
pression? 

4. Recursion: infinite 
nesting 

Ii. Arithmetic (data- 
changing) com- 
mands 

6. Commands to col- 
lect statistics 

7. Functions, distribu- 
tions, random 
numbers 

8. Input-output 

9. Report output 

O. Use for non-simula- 
tion 

'Block' 

None other than 

SIMSCRIPT statement 
Event routine 

Must know F O R T R A N  

CLP or CORC state- 
ment 

Block 
Subroutine 

Must know CORC 

CSL statement 
Activity routine 

F O R T R A N  knowl- 

F O R T R A N  state- 
ment 

Event  routine 

Must know FOR- 
GFSS (except 'Help '  
in FAP) 

[GPSS I I I  (MAP)] 

Yes No 

No i No 
I 

'Assign' 'Help'  
'Tabulate' 'Savex' 
('Variable State- 

ments') 
[GPSS I I I  'Savevalue' 

no 'Savex' ] 

'Tabulate ~ 'Queue' 
'Savex' ~Hold' 
'Help'  'Store' 
'Seize' 'Release' 
'Enter '  'Leave'  
[GPSS I I I  'Depart '  no 

'Store' no 'Hold'] 

'Functions':  argument Un! 
any standard sys- 
tem variable 

Uniformly distributed 
random numbers 

[GPS,~ l I I  Any SNA 
can be a dependent 
variable of a func- 
tion] 

Built-in fixed I /O:  
'Saves ~ transfers 
model to tape 

'Reads'  restores model 
from tape 

'Write' places trans- 
actions on tape 

'Jobtape' recovers 
transactions from 
tape 

'Print '  (Savexes) 
Normal output: 

Model listing 
Clock time 
Block counts 
Savcxes 
Facility statistics 
Storage statistics 
Queue statistics 
Frequency tables 
Summary statistics 

Error Conditions 
'Help'  (arbitrary re- 

ports) 
[GPSS I I I  can print 

any equipment sta- 
tistics] 

No A 

'Let '  'Store' 
'Compute'  'Do To'  
(FORTRAN statements) 

'Accumulate' 'Compute '  
Number Sum- 
Sum Squares 
Mean Mean- 

Square 
Variance 

Standard Deviation 

Uniformly distributed ran- 
dom numbers 

Non-unifom continuous or 
discrete probability dis- 
tributions 

Input-output commands: 
'Save' 'Endfile' 
'Read'  'Load' 
'Read From' 'Record 

Memory' 
'Write On'  'Restore 

Status'  
'Advance' 
'Backspace' 'Rewind'  

Report generator 

A gener~ purpose language 
User-supplied 'Main' con- 

t r~  routine replaces tim- 
ing routine 

No 

No 

CORC statements 

CORC statements 

Uniform random dis- 
tribution 

Exponential distribu- 
tion 

CORC functions 
(square root, arctan, 
max. rain etc.) 

CORC I /O 
CLP tape read and 

write 

Report writer 
CORC output state- 

ments 

CORC language is a 
proper subset of 
CLP 

edge useful 

No 

Yes, on logical test 
chains 

F O R T R A N  state- 
ments 

'His t '  
~SuIn' 

Multiple random 
number streams to 
facilitate introduc- 
tion of independent 
random variables: 

Normal distribu- 
tion 

Rectangular 
Negative expo- 

nential 
Arbitrary 

F O R T R A N  input- 
output statements 

'Output '  

F O R T R A N  output 
statements 

No 

T R A N  

Yes 

No 

F O R T R A N  state- 
ments 

'Collect' 
'Histog' 

Option-random oper- 
ation or random de- 
cision 

Erlang distribu- 
tion 

Normal 
Poisson 
Uniform 
Random numbers 

from probability 
list 

Regression equa- 
tion 

Subroutines 'Datain ~ 
and 'Output '  

GASP summary re- 
port 

'End Run '  (optional) 
Stacking of runs, data 

decks in sequence 

'GASP Summary ' :  
contents of all 
queues, max. and 
ave. queue length, 
scheduled but un- 
executed events 
'End of Run ' :  writ- 
ten by user for out- 
put beyond that  of 
'Summary '  

GASP is imbedded in 
F O R T R A N ;  sub- 
routines can be used 
for any purpose 

SOL statement 

ALGOL knowl- 
edge useful 

No 

Yes 

ALGOL state- 
men,s 

'Tabulate'  state- 
ment  

Rectangular dis- 
tribution 

Exponential 
Poisson 
Normal 
Geometric 
Arbitrary 

Cards & tape 
'Read'  'Write' 

Output  statements 
Many automatic 

summaries 
Debug capability 

Not intended, but  
possible 
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TABLE I I I . 5 ,  MECHANICS OF USE 

[. Implementation: 

Implementer 
computers 

Documenta- 
tion [ 

Training 

L Compilation and 
running pro- 
cedure 

3. Debugging and 
diagnostics 

4. Memory 
When dimen- 

sioned 

Packing 

Allocation 

External 
memory 
options 

5. Speed 
Compilation 
Execution 

~. Experimentation 

7. Other imple- 
mentations 

GPSS I I  

IBM Corp. 

IBM 7090/94, 7040/44 

IBM Corp. 
Introductory manual 
Users manual 
Systems manual 

IBM Corp. 

FAP 
Model deck is input to inter- 

pretive routines. 
Model deck may be altered 

by overlaying any model 
element. 

Models may be batch run. 
Block numbers can be sup- 

plied at input time. 
Run control cards: 'Jobtape' 

'Job' 'Clear' 'Reset' 'Saves: 
'Reads' ~Start' 

[GPSS I I I  MAP 
Block numbers assigned 

by assembler.] 

Dynamic error indications 
terminate run and cause 
printout of system status 
and accumulated statistics 
for source language de- 
bugging. 

'Trace' allows transaction 
moves to be followed. 

Limited syntactical error 
checking at input. 

At FAP assembly of GPSS 
[GPSS I I I  At  load time 

(MAP)] 
Set by PAP program I 
[GPSS I I I  MAP] I 
Fixed by FAP/MAP a s -  

sembly [ 
Dynamic for transactions 
Tape 

Models are self-initializing. 
'Jobtape' can introduce an 

initial transaction load. 
Separate 'Prerun' may also 

be used to introduce load. 

UNIVAC 1107 (written in 
FORTRAN) 

IBM S/360, GPSS I I I  only 

SIMSCRIPT 

RAND Corp. 

SHARE: IBM 7090/94, 
7040/44 

Prentice-Hall, Inc. 

California Analysis Center, 
Inc. 

Southern Simulation Service 

Compilation and execution 
by FORTRAN compiler 

SIMSCRIPT source pro- 
grams translated into 
FORTRAN which are 
then compiled (Recent 
implementations compile 
directly into machine lan- 
guage) 

Exogenous event tape 
Record memory, restore 

status commands 

FORTRAN diagnostics 
Report generator for snap- 

shots 

Load time 

Yes, up to 4 attributes per 
word 

Dynamic for temporary 
records 

Tape 

Initialization cards: values 
of all permanent entities 
and size of each entity (pro- 
viding flexibility for 
changes without recompil 
ing); previously compiled 
sections of programs need 
not be recompiled 

California Analysis Corp: 
IBM 709, 7090/94 
CDC 3600, 6800, 6400, 6000, 

6800 
Philco 210, 211, 212 
UNIVAC 490, 1107, 1108 

Digitek: 
GE 625/635 

CLP 

Cornell Univer- 
sity 

CDC 1604 

Cornell 

Compile, load, and 
go 

Extensive CORC 
diagnostics 

Syntax errors cor- 
rection 

Program always 
compiles 

In source program 

No 

Dynamic for tem- 
porary records 

Tape 

Initial values in 
dictionary 

CSL 

IBM-UK 

IBM 7090 (requires 
1401-4 tapes for 
FORTRAN 
source state- 
ment conver- 
sion) 

IBM-UK 

IBM 1401 prepares 
a FORTRAN 
II  program for 
compilation and 
execution on 
IBM 7090 

'Check' 
FORTRAN diag- 

nostics 

In source program 

No 

Fixed 

Tape 

Initializing 
tines 

IBM Data Center, 
London, CSL2 

GA SP 

P. Kiviat, RAND Corp 

IBM 7040/44, 7090/94 

P. Kiviat 

None 

GASP Executive and source 
program compiled as FOR- 
TRAN program using 
standard FORTRAN 
compiler 

Batch processing of sequence 
of jobs. 

GASP Executive and source 
programs must be recom- 
piled if max number of 
length of queues are 
changed: otherwise only 
'Datain'  and source pro- 
gram need be. 

FORTRAN diagnostics 
'Monitor' program (optional) 

with 'Error' routine; trace 
prints event times; COM- 
MON memory dump 
option 

In source program 

No 

As in[FORTRAN 

Tape (FORTRAN capa- 
bility) 

Programmed in 'Datain '  or 
initializing data cards for 
each run in batch; control 
words to initialize some 
storage areas. 

IBl~ 1620 
IBM 7070/74 
CDC G-20 

50L 

Case Institute c 
Tech. 

UNIVAC 1107 

Case 

First pass by SO] 
compiler to in 
terpretive pseu 
do-code, then 
through inter- 
preter for execu 
tion. 

Debugging incor 
porated in model 
selective tracin~ 

ALGOL run tim~ 
diagnostics 

As in ALGOL 

Dynamic 

Tape 

Initialized to zero, 
not busy, empty 
at creation, sim- 
ulator in 'choice 
state' 

Burroughs B 5000/ 
5500 (not re- 
leased) 
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When a customer arrives, his name, t ime of arrival (Time 
A), and type  of service required are recorded. The  t ime of 
beginning of his haircut, T ime B, and the t ime of finishing, 
Time F, are recorded when they occur. 

During a simulation a large number  of customers m a y  
be processed. The  detailed da ta  concerning each one, which 
must  be available when each is in the system, is not of 
interest after a customer leaves. Only summary  informa- 
tion about  customers is needed for analysis. Therefore, it 
could be very  useful to provide a capabili ty of assigning 
memory  space to a customer when he arrives and to erase 
the record when he leaves. This capabil i ty is provided in 
some languages by  permitt ing the specification of " tempo-  
ra ry"  records. 

The  names at tached by  the analyst  to "fields," 
"records," "groups,"  "var iables"  and "lists" in a source 
program are usually those of physical objects in the system 
being simulated. The  following is an example of names tha t  
might  be used in a barbershop simulation. 

Physical object in simulation Represented in memory by 

All barbers A group of records (called, 
say, BARBS) 

All customers A group of records (called, 
say, CUSTS) 

A particular barber One record (in the group 
called BARBS) 

A particular customer One record (in the group 
called CUSTS) 

The properties of a barber, e.g., Fields (of the records called 
average time for a haircut BARBS) 

The properties of a customer, Fields (of the records called 
e.g., type of service required CUSTS) 

The idle barbers List of names of those BARBS 
records which represent bar- 
bers who are idle 

The customers waiting List of names of those CUSTS 
records which represent 
customers who are waiting 

The hours the barber shop is Variables TOPEN and 
open TCLOSE 

The six simulation languages analyzed here differ from 
general purpose languages in tha t  they permit  the analyst  
to specify more than  one type  of memory  assignment by  
specifying more than one type  of variable. The  correspond- 
ence between the da ta  about  the simulated world, the way 
it is t reated by  the computer,  and the names used in the 
various languages is as follows: 

Data about the simulated world Computer assignment Table 
III.1 

Objects being simulated records line 1 
Properties of objects fields line 2 

being simulated 
Groups of objects being groups of records line 3 

simulated 
Other data about the one-, two-, three-, . . ,  line 4 

simulated world dimensional variables 
Lists of objects having lists of record names line 5 

certain properties 

Table  I I I .1 ,  in lines 1, 2, 3, 4 and 5, gives the actual 
names used in a language using quotation marks. For ex- 

ample, a group of objects being simulated is called a 'Class'  
in CLP and CSL, an 'Element  List Matr ix '  in GASP; 
'Transact ions, '  'Storages'  and 'Facilities' in GPSS; and 
'En t i ty '  in SIMSCaIPT. In  SOL, any subscripted variable 
may  be used for this purpose. Line 6 in Table  I I I .1  shows 
tha t  all languages except CSL permit  the definition of 
t emporary  records. 

There  appears to be general agreement tha t  the distinc- 
tion between objects being simulated, properties of these 
objects, groups of these objects, da ta  describing the en- 
vironment ,  and lists of objects having a particular prop- 
erty is useful in formulating a simulation model and should 
be retained in future discrete-change simulation lan- 
guages. However,  the mechanics of this definition can be- 
come burdensome. There  is also general agreement tha t  
provision must  be made for t emporary  objects in order to 
make efficient use of memory  space. 

(b) Changing the State of the Simulated World. Com- 
puter  programs are usually divided into parts,  each of 
which is relatively small and each of which is logically 
distinct. The  program is not only easier to write in this 
way, but  changes or corrections can be made in one par t  
without affecting others. The  computer  program is exe- 
cuted by  providing means for determining the sequence in 
which the parts  or subprograms are to be executed. 

In  computer  simulation, a division of the program into 
subprograms representing "events"  or "act ivi t ies" in the 
simulated world has been adopted by  most  language de- 
signers as both  natural  and useful. 

EVENT--Represents a change in the simulated world. The event 
is usually thought of as occurring instantaneously and taking 
no time, e.g., a barber finishes a haircut. 

ACTIVITY--Represents an occurrence in the simulated world 
which takes time, e.g., a haircut. 

In  general any activi ty can be represented by  two events, 
the event which is the beginning of the act ivi ty and the 
event which is the end of the activity.  One can look at  the 
simulated world as one involving either "events"  or 
"activit ies."  One can think of activities causing changes in 
the s tate  of the simulated world which then creates events, 
or one can think of events as recording or marking instan- 
taneous changes in the s tate  of the simulated world and 
thus providing the means by  which the duration of an ac- 
t ivi ty  is computed. I t  is possible to have  circumstances in 
which an event can occur without  a corresponding act ivi ty;  
for example, a barber  may  finish a haircut  but  cannot  
begin another one because there is no customer waiting. 
(However, he does then begin the act ivi ty of being idle.) 

An activity or an event can only occur in the simulated 
world if certainconditions are satisfied. For  example, a hair- 
cut can occur only if a barber is available and if a customer 
is waiting. The logical relationships of conditions in most  
simulations tends to be quite complex. In  practice, one of 
the major  difficulties is to s tate  conditions within the simu- 
lation program so tha t  the correct sequence of events and 
activities will occur during execution of the program. 
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Three different methods for the determination of the 
proper sequencing are used in the languages under con- 
sideration here: 

- -use  of an Executive Routine that  keeps track of 
"time" by a Schedule of Events  and executes subprograms 
at the appropriate times (SIMsCRIPT, GASP, GPSS), 

- -use  of an Executive Routine that  keeps track of 
" t ime" without a Schedule of Events  and executes sub- 
programs in the order in which they appear in the particu- 
lar program (CSL), 

- -use  of no preprogrammed routine, leaving to the user 
the programming of sequence control (CLP). 

In  simulation packages which have an Executive Rou- 
tine, a master or timing routine is employed to keep track 
of "t ime." Some simulation languages explicitly recognize 
a "schedule" or calender of events or activities. This is 
done by having the master routine transfer control to the 
subprograms at the appropriate times during execution of 
the program. The subprogram is then executed, and con- 
trol is transferred either to another subprogram or back to 
the master routine. Simulation languages differ in the 
method by which the subprogram to be executed is selec- 
ted and whether or not the exit from the subprogram must 
return to the master routine or passes directly to another 
subprogram. Such languages must have commands to 
place events on, or delete events from, the schedule at ap- 
propriate times. The particular subprogram being executed 
contains instructions representing the activity tha t  follows. 
I t  also contains instructions that  will determine what 
other events will occur in the future and when they will 
occur. 

A language that  does not explicitly recognize a schedule 
of events (or activities) obviously does not require com- 
mands to schedule or delete events. In such systems, each 
subprogram must be preceded by a sequence of tests which 
determine whether the particular subprogram can and 
should be executed (whether the activity can be per- 
formed) at a particular time. 

A comparison of the six selected languages with respect 
to changing the state of the simulated world is shown in 
Table III.2. Each uses a subprogram as the basic building 
block of the program (line 1): In SIMSCRIPT; GASP and 
GPSS, the subprograms describe events, while in CSL 
they describe activities. In CLP and SOL, the user can 
choose either orientation. These are programmed by the 
user, except in GPSS in which 36 specific, standard sub- 
programs are provided and in SOL and GASP in which 
some preprogrammed routines are also available, (line 2). 

All packages, except CLP, provide an Executive Rou- 
tine which, in addition to other functions, keeps track of 
time and determines the order in which subprograms are 
executed (line 3). In all, t ime is advanced to the next 
imminent event instead of moving forward through time 
in fixed increments (line 4). In CSL, the Executive Rou- 
tine cycles through all subprograms, in order, until no 
more activities can occur; control is then returned to the 
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Executive. In  SIMSCRIPT, GASP and GPSS, control is trans- 
ferred to the particular subprogram needed at the time and 
then back to the Executive (SIMSCl~IPT and GPSS) or, at 
the option of the user, either to the Executive or another 
subprogram (GASP) (lines 5 and 6). I t  is not evident which 
of the two methods of control, the "schedule of events" or 
the testing for possible execution of all activities, is 
preferable [Laski (1965) and Tocher (1965)]. 

The names assigned to objects tha t  "flow through" the 
simulated world in the several languages are listed in line 7 
of Table III.2. Line 8 gives the conditions that  determine 
when change occurs. SOL is the only one that  provides 
explicitly for parallel (simultaneous) activities. 

I t  is necessary to provide for events and activities 
created by factors outside the simulated world itself tha t  
could not be caused by events internal to the simulation. 
In simulating such situations, it is useful to have means to 
incorporate such "exogenous events" with ease into the 
subprogram-sequencing process. The availability of this 
feature is shown in Table III.2, line 9. 

(c) Commands to Facililate Subprogram Execution. 
Simulation languages have been designed with commands 
to make easy the order in which subprograms are executed. 
Table III .3 lists the names of these commands in the six 
language packages considered here. The first two lines give 
the commands that  can be used to create " temporary"  
records (objects being simulated)--operations which are 
particularly important  in discrete-system simulations. 
Line 3 gives the names of the commands used to place or 
remove events from the schedule of events for those lan- 
guages which use a list of names of events as a timing 
control. 

Simulation languages have commands to place (or de- 
lete) names of records on lists other than the schedule of 
events list. Because test conditions for the execution of a 
particular subprogram involve membership in lists, simu- 
lation languages usually have logical commands to deter- 
mine whether a particular record belongs to a list, to select 
the first, last, or other record in a list and to perform a 
sequence of instructions for all members of a list if particu- 
lar conditions are satisfied. Normally, the members of a 
list are ordered according to a specified criterion when a 
new number is added. (CLP permits more complicated 
"list" structures.) The commands used for these opera- 
tions are given in lines 4, 5 and 6. 

(d) Programming Features. Other features of the lan- 
guages are outlined in Table III.4. GPSS differs in a major 
way from the other languages in its basic conceptual unit 
for programming. In GPSS, the structure and action of a 
system is described using block diagrams in which each 
block represents a step in the action of the system. Thir ty-  
six specific block types are included in the language, and 
the system must be described by combinations of these. 
The  other languages employ the more common and more 
general construction used in general purpose languages in 
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which the basic unit is the statement;  statements may be 
combined to form subprograms (line 1). 

All of the six languages except GPSS require some 
knowledge of a particular general purpose language (line 
2). A SIMSCmPT or GASP (SOL) user should know FORTRAN 
(ALGOL) and he can incorporate FORTRAN (ALGOL) state- 
ments in his source program. A CLP user must know 
CoRc since it is an extension of CoRc. A CSL user will 
find a knowledge of FORTRAN very useful. A GPSS user 
can make use of F A P / M A P  if he needs "help." 

Some language designers believe that  problem formula- 
tion is easier if the language were designed to use standard 
flowchart symbols and decision tables. GASP and GPSS 
provide a flowchart convention; none of the languages 
considered here incorporate decision table conventions 
(line 3). 

Because of the complexity of simulation programs, the 
capability of recursion can be very useful. SOL possesses 
the same recursion power that  ALGOL does. CSL can use 
recursion on logical test chains. The others do not  have 
this capability (line 4). 

The arithmetic commands of the simulation language are 
those of the general purpose language in which it is 
embedded (CoRc for CLP; FORTRAN for SIMSCmPT, CSL, 
and GASP; ALGOL for SOL). SIMSCRIPT provides several 
additional commands. In GPSS several of the blocks are 
used to do arithmetic operations (line 5). 

A simulation program must compile and summarize 
various statistics during a " run"  or must store records of 
the history of a run so that  the results can be analyzed in 
a separate operation. All six languages provide commands 
to collect statistics during the simulation run (line 6). 

Most simulation programs involve the generation of 
random numbers and random variates having specified 
probability distributions. The  capability of the various 
languages to do this is shown in line 7. The table look-up 
feature of SIMSCmPT and GPSS for nonreetangular dis- 
tributions and the cMling convention of SOL are particu- 
larly powerful. 

The  input and output  facilities are shown in line 8. 
In line 9 are shown the facilities to generate output  reports. 
GASP, GPSS and SOL provide standard summaries which 
do not have to be programmed. SIMSCRIPT and CLP have 
flexible and powerful report generators but  not standard 
summaries. 

A final feature of a language is the extent to which it 
can be used for problems other than simulation (line 10). 
SIMSCmPT is designed as a general programming package, 
especially suited for but  not limited to simulation problems. 
GPSS is not usuMly appropriate for nonsimulation pro- 
grams. The CoRc general-purpose compiler is a subset of 
CLP and can be used for problems other than simulation. 
CLP is itself a list processing language and can be so used. 
GASP subroutines can be used in FORTRAN programs in 
the same way as any other FORTRAN subroutines. 

(e) Mechanics of Use. In the previous four sub- 
sections we have dealt with characteristics of six simula- 

tion languages. In  this subsection, the characteristics 
describing the packages are covered. These characteristics 
are more the result of decisions made by the implementer 
of the language than those made by the language designer 
and hence they may vary  from one implementation to 
another. 

A particular implementation of each language hasl been 
selected for detailed comparison. The implementer, the 
computers for which the package is available, the docu- 
mentation, and training aids are shown ill Table III.5, 
line 1. If  there are other implementations, they are listed 
in line 7. I t  should be noted that,  even if a package is 
available for a particular machine, the incorporation of it 
at a particular installation may be difficult and frustrating, 
especially if the implementation was designed for a 
different operating system. 

The compilation and rmming procedure is described in 
line 2. The implementer may choose to generate an object 
program from the source program or to have the source 
program interpreted at object time. The  latter is the 
method used by GPSS and SOL. GPSS is a FAP (MAP) 
assembled program. The GPSS model is executed inter- 
pretively in the same sense that  control passes to the 
appropriate block subprograms in a sequence determined 
by the block diagram. In the Case Insti tute of Technology 
implementation of SOL, the first pass through the SOL 
compiler produces pseudocode which then is executed by 
an interpreter. One disadvantage of all interpretative 
systems compared with compilers is that  more computer 
time for execution is usually used. 

The implementer has a choice of translating the source 
language to a general purpose language for which a com- 
piler already exists or to build a compiler tha t  generates 
object code directly. The early implementations of 
SIMSCRIPT and CSL required translation to FORTRAN II;  
recent implementations go directly to object code. GASP 
is written in FORTRAN and is compiled as any other 
FORTRAN program. CLP is compiled directly by a "load 
and go" compiler. One advantage of a method based on 
compiling is tha t  the object program that  results from 
translation and compilation of a source program may be 
re-used to avoid retranslation and compilation on subse- 
quent runs. 

Debugging and diagnostic aids (line 3) are largely those 
available with the associated compiler languages. GPSS 
has a variety of self-contained diagnostic aids. The CoRc 
diagnostics associated with CLP are unusually extensive 
and include correction of spelling and punctuation errors 
by the compiler and error detection during run time. This 
is possible because the compiler program remains in 
memory during program execution. SIMSCRIPT is found by 
many to be difficult to debug and suffers from limited 
diagnostic capabilities in the package itself. A trace 
capability, available relatively easily using the report  
generator, can be used to overcome some of SIMSCRIPT 
debugging limitations. 

In simulation programs, as in other computer programs, 
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it is desirable to have syntax error detection and correction 
if possible, during compilation and error detection during 
run time. Interpretat ive systems have no particular 
difficulty in providing these features. CLP demonstrates 
tha t  it is possible to have comprehensive error detection 
and correction during both compile and run time. 

One characteristic that  is usually important  is the size 
of the problem that  can be programmed and run. To a 
large extent problem size is determined when memory 
space is allocated and by whether data can be packed 
(line 4). Memory is dimensioned at "load t ime" in SIM- 
SCRIPT and GPSS, in the source program for the others. 
Also, SIMSCRIPT permits word packing of up to 4 attributes 
per word for more efficient use of core memory. Packing in 
GPSS is not under programmer control unless FAP (MAP) 
"Help"  routines are used. The other packages do not 
provide packing; in SOL, packing would depend on the 
ALGOL implementation in which it is imbedded. Memory 
allocation is not dynamic except for tempora~T record 
allocation and reallocation in SIMSCRIPT, CLP and GPSS. 
External tape memory can be used in all with, however, 
significant increase in running time. 

One of the features of concern to users is the computer 
time required to debug, compile and execute programs. 
Timing comparisons have been part of computer evaluation 
ever since customers had to choose between two or more 
machines and two or more language packages. Many 
timing comparisons of general purpose languages against 
each other and against simulation languages have been 
reported. We believe that  these results are almost always 
not meaningful and thus are not useful for language 
selection. In  general, these comparisons do not provide a 
complete description of the problem and of the programs 
written and run to make the comparison. Rarely is a 
detailed description of the background and experience of 
the programmers given. Too often, the experimental 
design is not described at all; rarely is the statistical 
analysis of the results described nor is there detailed 
presentation of the raw data from which conclusions were 
drawn. 

I t  may be that  detailed timing comparisons are not 
justified anyway because shortest possible execution time 
is only one criterion. Fast execution at the expense of pro- 
gramming time, inconvenience and program complexity 
may be a poor bargain. 

Obviously, a user is interested ultimately in knowing 
how long it will take to compile and to execute a simulation 
program in one language compared with others. At present, 
unfortunately, it is almost impossible to present a valid, 
quantitative evaluation of such comparisons. For  the six 
subject languages, general purpose languages (and assem- 
bly languages) usually appear to have less compilation and 
execution time. Considering the state of the art, these 
results are not surprising. Nevertheless, there should be 
no essential reason why a language specifically designed 
for simulation must  be less "efficient" than a general pur- 
pose language used for simulation. 

Of the two most frequently used simulation languages, 
GPSS and SIMSCRIPT, SIMSCRIPT is generally considered 
to be faster in execution than GPSS II  (if the SIMSCmPT 
program is written properly). GPSS I I I  is faster than 
GPSS II,  and the differential has been reduced. 

A simulation package can be particularly useful if the 
implementation provides features to make experimentation 
and model manipulation easy. In line 6, the availability of 
such features as initialization, parameter change and 
program rerunning is detailed for the six packages here 
discussed. Obviously, the ease or difficulty of simulation 
experimentation will also depend on the operating system 
and the operating procedure of a particular installation. 

Implementations on other computers of each of the 
simulation languages are given in line 10. 

IV.  I m p l i c a t i o n s  for  Users ,  L a n g u a g e  
I m p l e m e n t e r s ,  a n d  L a n g u a g e  D e s i g n e r s  

I t  is apparent tha t  none of the languages and packages 
discussed here is the "best"  for all purposes. However, 
from this comparison, we can identify some implications 
that  are relevant for users, language implementers and 
language designers. 

1. USERS 
The user would like a language that  is best for formu- 

lating his model. He would like a package that  is best for 
transforming the model into a computer program and for 
running the model. 

An analyst may formulate his problem as a continuous- 
change model, a discrete change model, or a combination 
of the two. The selection of a language for simulating 
continuous-change models can be aided by study of the 
comparisons given by Brennan and Linebarger (1964) 
(1965) and by Clancy and Fineberg (1965). If  the model is 
a discrete-change model or a combination of the two types, 
the analyst can choose a general purpose language or one 
of the special purpose simulation languages. For  model 
formulation, the simulation languages have great advan- 
tage because they help the definer of a simulation problem 
crystallize his thinking and reduce model formulation 
time and the programs are both documentation and a 
means for communication. 

The choice of a discrete simulation language and 
package will depend to a large extent on the criteria tha t  
are most important to a user: 

1. If  a user wants the most powerful simulation 
package now generally available, he should use SIM- 
SCRIPT. If he chooses SIMSCRIPT, however, a user would be 
well advised to have expert help available because the 
language is complex and the diagnostics are limited; many 
have found the SIMSCmPT manual wanting. Furthermore, 
a potential SIMSCRIPT user must  know FORTRAN. 

2. If  the most important criterion is ease of learning 
and use, GPSS should be chosen. GPSS is specifically 
designed for new users, and no knowledge of computer 
operation is assumed. Its use of flowcharts is considered 
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by many as being particularly attractive for non-pro- 
grammers; a person familiar with flowcharts usually finds 
GPSS not difficult. 

3. If a user wishes to develop simulation capability by 
adding to a presently available general purpose language, 
he can add GAsP to FORTRAN, CLP to CORC, and SOL to 
ALGOL. This approach will probably get him "on the air" 
faster than incorporating SIMSCRIPT or CSL or whatever 
into the operating system of his computer installation. 
However, the user usually pays for this by accepting 
restrictions in programming features and in size of prob- 
lems that can be handled. 

Usually, the user will be forced to use a simulation 
package made available by his computing facility. The 
management of the facility usually is responsible for 
incorporating the package into the operating system, for 
providing for the maintenance of the package, for fur: 
nishing instruction in the language, and for assisting in the 
use of the language. The computer center management 
naturally tends to choose a package that is available for 
the installed computer and its operating system. If there 
is a choice, it will choose one that is consistent with its 
operating philosophy and for which the implementation is 
easy. A computer center is not likely to place as high a 
value as an individual user on the value of the language 
as a communication tool or on the minimization of problem 
definition and programming time. The individual user 
is thereby constrained in his choice of language. If he 
chooses one that is not incorporated in the monitor system, 
he pays in longer turnaround time, little or no pro- 
gramming assistance and usually higher costs for com- 
puter time because of setup and teardown charges. 

I t  may seem strange that we have not mentioned the 
suitability of a particular language for a user's problem 
as a criterion. There is as yet no conclusive evidence that 
one simulation language is best for a variety of problems. 
In fact the evidence so far seems to indicate the contrary: 
a number of problems have been programmed with 
approximately equal ease in several languages. 1 

2. LANGUAGE IMPLEMENTERS 
The factors which are primarily under the control of the 

language implementer are those listed in Table III.5. 
Many of the most serious deficiencies of present day 
simulation packages, from the viewpoint of the user, are 
caused by implementation rather than design. I t  is there- 
fore of considerable importance to improve language 
implementation. The language implementer is often a 
professional programmer who takes pride in writing 
packages that use the least amount of memory space and 

run in the least possible time. In doing so, he often intro- 
duces restrictions and conventions that are bothersome 
to the ultimate user. 

We believe the greatest deficiency of presently available 
packages is the lack of adequate documentation and 
instructional material. Every language should have a basic 
primer, a reference manual, worked-out examples and 
exercises for the novice, a complete description of how to 
get a program run, elementary hints for the novice, and 
sophisticated hints for the experienced programmer. I t  
may be that we should not expect such material from 
language developers; users and groups of users may have 
to do the job themselves. Whoever provides it, such 
material is essential and needed. 

Good diagnostic aids are particularly important in 
simulation work because of the complexity of the models 
being programmed and because of their stochastic nature. 
Implementers must provide debugging aid during both 
compilation and run time. However, because run time 
efficiency is essential in almost all "production" simulation 
work, we suggest that options be provided so that de- 
bugging is available when needed but can be bypassed 
when desired. 

The size of problems that can be accommodated by a 
particular implementation may depend to a great extent 
on the way in which the use of external memories are 
incorporated in the package. Implementers would be well 
advised to consider a feature such as SIMSCRIPT'S "Record 
Memory" and "Restore Status" or PL/ I ' s  storage alloca- 
tion statements, "ALLOCATE, . . . .  FREE,"  "FETCH,"  
and " D E L E T E . "  They might also consider providing an 
easily used capability for interruping a run so that it can 
be continued at some later time. 

One method used to increase the size of problem that 
can be accommodated in fixed-word length machines is to 
pack data in individual "words." Word packing makes 
best use of memory but usually at a cost in running time. 
The implementation should be designed so that any 
running time penalty can be avoided whenever packing is 
not actually used in a program. Dimension-free array 
specification (such as in SIMSCmPT) and dynamic memory 
allocation should be provided, both for efficiency and for 
coding ease, again under user option. Provision should be 
made for breaking up larger problems into smaller ones. 

A number of simulation languages have been imple- 
mented for more than one machine. There is every indica- 
tion that this trend will continue and the languages like 
SIMSCRIPT and GPSS will be available for most of the 
larger commercially available computers. Such efforts 
should be encouraged. 

1 Special purpose simulation languages for specific applications 
are in existence and have considerable support and justification. 
See for example, MILI~RAN, Systems Research Group, Inc. (1964), 
and UNISIM, Weber (1964). For an interesting application using 
SIMSCRIPT for special job shop simulator problem, see Ginsberg, 
Markowitz and Oldfather, "Programming by questionnaire" 
(1965). 

3. LANGUAGE DESIGNERS 
Before a designer sets out to develop a new simulation 

language, he should seriously consider whether a new 
language is really necessary. A new language, in itself, is 
not sufficient justification for existence; some demonstra- 
tion of the usefulness of new features is necessary. Often, 
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user complaints about existing languages are not with the 
language per se but  with certain features of the imple- 
mentation: lack of documentation, lack of training aids, 
difficulties in incorporating the package into a computer 
center's monitor system, lack of adequate debugging 
facilities, and so on. Such a realization, if valid, argues very  
strongly for the design of a simulation based on a widely 
available general purpose language. All the capability of 
the general purpose language would be available; mecha- 
nics of use would be straightforward. The new general 
purpose language, PL / I ,  may be particularly attractive 
for such applications because of its input-output features, 
its asynchronous operations, its flexible data structures, 
character and part-word data manipulating capability, 
and its list processing and memory extending commands. 

The desirable features of a simulation language that  
have been noted in this comparison are summarized here 
in the order they appear in Tables III .1-4:  

(a) A language should provide for at least the five types 
of variables: records, fields, groups of records, arrays or 
system variables, and lists of record identifications. 5~Iore 
flexibility in creating and manipulating data structures is 
desirable because simulation models are becoming larger 
and more complex. Multiple precision, Boolean, and 
complex variables should be considered. 

(b) Ability to create and destroy temporary entities 
is useful and probably necessary. 

(c) One improvement in simulation languages might 
be in a rethinking about the fundamental nature of 
discrete-event simulation. Whether  the language is 
oriented toward "events"  or "activities" (or "Processes" 
as in SOL and SI~ULA) will depend on the applications the 
designer has in mind. I t  may be possible to allow for all 
three and let the user choose the appropriate orientation 
when he writes his program. Another possible improvement 
is in the capability for simulating parallel activities. If so, 
there must be a method fo r  dealing with simultaneous 
events; one possibility is to allow subprograms to execute 
either synchronously or asynchronously, as appropriate. 
In simulating parallel processes, it is desirable to provide 
for the ability to interrupt a process and to reinstate it at 
a future time. Perhaps a language can be developed which 
could combine the features of continuous and discrete 
change languages. 

(d) A timing or master routine should be provided, 
but  the user should have the ability to program his own 
by "bypassing" or ignoring the package-supplied routine. 

(e) Extensive list processing capability, as much as 
tha t  in SIMSCRIPT and more, is necessary in future simula- 
tion languages. The language should permit complex tree 
structures as well as simple lists. 

(f) The language should have aids such as flowcharts 
and decision tables to help in formulating complicated 
simulation models. 

(g) Recursion adds to language power and should be 
available at user option. The ability to define procedures 
and subprograms should be extended. I t  is particularly 
necessary to maintain compatibility between a user- 
developed special programming language and the master 
general purpose language. 

(h) Commands to compile statistics easily must be 
provided. 

(i) Facility for generating variates having specified 
and arbitrary probability distributions is needed. 

(j) User experience indicates tha t  the user should have 
the option of a SIMSCRIPT-type flexible report generator 
and a comprehensive standard summary. The standard 
summary is necessary to save programming time. The 
report generator is needed to produce reports that  can be 
used by management without transcription. 

(k) Every  possible aid to facilitate experimentation 
with a simulation model should be provided: for multiple 
runs, for changing parameter values, for changing data, 
for analyzing results, for stopping and restarting runs and 
for optimization. 
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