
Computer Simulation Discussion of the
Technique and Comparison of Languages
By Daniel Teichroew* and John Francis Lubint

The purpose of this paper is to present a comparison of
some computer simulation languages and of some of the
packages by which each is implemented. Some considerations
involved in comparing software packages for digital computers
are discussed in Part I. The issue is obvious: users of digital
computers must choose from available languages or write
their own. Substantial costs can occur, particularly in training,
implementation and computer time if an inappropriate lan-
guage is chosen. More and more computer simulation lan-
guages are being developed: comparisons and evaluations of
existing languages are useful for designers and implementers
as well as users.

The second part is devoted to computer simulation and
simulation languages. The computational characteristics of
simulation are discussed with special attention being paid to a
distinction between continuous and discrete change models.
Part III presents a detailed comparison of six simulation lan-
guages and packages: SIMSCRIPT, CLP, CSL, GASP, GPSS
and SOL. The characteristics of each are summarized in a
series of tables. The implications of this analysis for designers
of languages, for users, and for implementers are developed.

The conclusion of the paper is that the packages now avail-
able for computer simulation offer features which none of the
more general-purpose packages do and that analysis of
strengths and weaknesses of each suggests ways in which both
current and future simulation languages and packages can
be improved.

This study was supported, in part, by funds made available
by the Ford Foundation to the Graduate School of Business,
Stanford University. However, the conclusions, opinions and
other statements in this publication are those of the authors and
are not necessarily those of the Ford Foundation.

A draft of this paper was prepared for the Workshop on Simula-
tion Languages, Graduate School of Business, Stanford Univer-
sity, March 6 and 7, 1964. The paper has benefitted from sugges-
tions from participants at the Workshop, particularly Michael
Montalbano, and from projects carried out by students in the
Graduate School of Business: H. Barnett, H. Guichelaar, Lloyd
Krause, John P. Seagle, Charles Turk, Victor Preisser. The paper
has also benefitted from discussions held in connection with the
Workshop on Simulation Languages, University of Pennsylvania,
March 17-18, 1966.

I. C o m p a r i s o n o f L a n g u a g e s a n d S o f t w a r e
P a c k a g e s for D ig i ta l C o m p u t e r s

Programming a problem for digital computers has been
aided considerably by the development of special purpose
programs, assemblers, interpreters and higher level lan-
guages. The basic purpose of all these "languages," and the
"software packages" that are provided to implement them
(compilers, documentation, diagnostic aids, etc.), is to pro-
vide a definer of problems and his programmer with a
means for communicating a problem to the machine with-
out doing so in machine language. The packages take care
of many of the mechanical details of programming:
memory location assignments, input-output commands,
and relationships among program segments. The languages
also help the problem definer and the programmer com-
municate with each other.

The term "language" is used here to mean the specifica-
tions of the language without regard to implementation;
the term "package" or "software package" means the set
of materials available to the user: programs, manuals, de-
bugging aids, etc. In a discussion of languages it is useful
to distinguish three different activities: (i) the specification
or design of a language, (ii) the implementation of the
language in the form of a computer program and docu-
mentation, and (iii) the use of the language and the pack-
age. Sometimes the same individuals are involved in all
three activities. I t is convenient to speak of three groups:
language designers, language implementers, and users.

The usefulness of languages and software packages has
been great, and the number of them has hmreased rapidly.
Frequently, more than one can be used for a particular
problem. The user must then choose from among several
competing packages, each of which may offer some features

The characteristics of the languages and software packages
change rapidly. The statements in the paper were originally in-
tended for the situation current in March, 1964. Where significant
changes have occurred the text has been modified.

* Division of Organizational Sciences, Case Institute of Tech-
nology, University Circle, Cleveland, Ohio.

j-Director for Computing Activities, University of Pennsyl-
vania, Philadelphia, Pa.

Volume 9 / Number 10 / October, 1966 Communications of the ACM 723

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365844.365851&domain=pdf&date_stamp=1966-10-01

CONTENTS
I. Comparison of Languages and Software Packages for Digital Computers

n . The Simulation Technique and Simulation Languages
1. Simulation as a Technique for Problem Solving and Research
2. Continuous-change Models
3. Discrete-change Models
4. Evaluation of Languages for Simulation

UI. Comparison of Six Discrete Flow Simulation Packages
1. Description of Six Languages
2. Previous Comparisons
3. Comparison of Six Sinmlation Packages

IV. Implications for Users, Language hnplementers, and Language Designers
1. Users
2. LaNguage Implementers
3. Language Designers

V. References and Bibliography

suitable for his particular problem or class of problems. A
comparison of existing languages and packages for a par-
ticular set of problems can be very helpful: language de-
signers and implementers from such a comparison can de-
termine features that should be incorporated into future
versions; users can utilize the comparison to help in select-
ing a particular language for particular applications.

As a practical matter, the use of a language is determined
not only by the properties of the language itself but also
by the characteristics of the package and by features of the
programming systems available for particular equipment.
These characteristics include the range of machines for
which the language is implemented; the relationship of the
package to the monitor system used: the availability of
manuals, training aids, primers and sample problems; the
evolution and maintenance of the language and the pack-
age; and the establishment and operation of a users organi-
zation to exchange information about the language.

The choice of a language and package is not an exact
process and because of the variety and range of evaluation
criteria that are possible, it is doubtful whether it ever will
be. This paper concentrates on the comparison of features
of languages and of packages designed and/or used for
simulation; user experience is mentioned as appropriate.

II. The Simulation Technique and Simulation
Languages

1. SIMULATION AS A TECHNIQUE FOR PROBLEM
SOLVING AND RESEARCH

Computer simulation has come into increasingly wide-
spread use to study the behavior of systems whose state
changes over time. [See, for example, IBM Corporation,
Bibliography on Simulation (1966)]. Alternatives to the use
of simulation are mathematical analysis, experimentation
with either the actual system or a prototype of the actual
system, or reliance upon experience and intuition. All, in-
cluding simulation, have limitations. Mathematical analy-
sis of complex systems is very often impossible; experi-
mentation with actual or pilot systems is costly and time
consuming, and the relevant variables are not always

subject to control. Intuition and experience are often the
only alternatives to computer simulation available but can
be very inadequate.

Simulation problems are characterized by being mathe-
matically intractable and having resisted solution by ana-
lytic methods. The problems usually involve many varia-
bles, many parameters, functions which are not well-
behaved mathematically, and random variables. Thus,
simulation is a technique of last resort. Yet, much effort is
now devoted to "computer simulation" because it is a
technique that gives answers in spite of its difficulties, costs
and time required.

I t is convenient to classify simulation models into two
major types: continuous change models and discrete
change models. Some problems are clearly best described
by one type or the other; for some problems either type
might be used.

2. C O N T I N U O U S - C H A N G E MODELS
Continuous-change models are appropriate when the

analyst considers the system he is studying as consisting
of a continuous flow of information or material counted in
the aggregate rather than as individual items. These
models are usually represented mathematically by differ-
ential or difference equations that describe rates of change
of the variables over time. Such models have long been
used in the physical sciences and engineering. Continuous-
change models have also been applied to economics and the
social sciences [see, for example, Tustin (1953), Allen
(1956), and Beach (1957)]. They have been applied in vari-
ous operations research problems [see, for example,
Morgenthaler, (1961)].

If possible, the analyst uses analytical or numerical tech-
niques to solve the system of differential or difference equa-
tions. If no available techniques are powerful enough or
appropriate, the analyst might consider simulation. Such
continuous-change models are naturally suited to elec-
tronic or mechanical analog computation. Unfortunately,
analog machines often cannot be used because the func-
tions involved are discontinuous, the number of variables
are large, some of the variables involved are random varia-
bles, some of the variables must be non-negative or some
of the operations required are not easily performed on
analog machines.

Continuous-change models can be simulated on digital
computers by using finite-difference equations which, in
the limit, approach the differential equations of continuous
flow. The problem definer using finite differences first
selects, as the state variables, the factors of interest. Let
Xdt) denote the value of the ith factor at time t and X(t)
the vector of all the Xi. X(t) then becomes the state vector
which describes the state of the system at time t. The prob-
lem definer next states the way in which the system
changes over time. Symbolically, this may be represented

by

x (t + zxt) = g(x(t) , z(t) , w)

724 Communications of the ACM Volume 9 / Number 10 / October, 1966

where X(t) represents the state vectors for all previous
values of t,

Z(t) represents the vector of values of exogenous
variables for all relevant values of t,

W represents the vector of parameter values,
g specifies the behavior of the system.

The formulation of a continuous-change model consists
of (i) identifying the state variables X, the exogenous
variables Z, and the parameters W, and (ii) developing the
functional relationship, g. The computational problem is
to compute X(t + At) when X(t) is given. The result of
the computations, that is, the output of the simulation, is
a table or graph of X(t) as a function of time or summaries
of these data.

The "continuous change" world view has been exten-
sively developed by Forrester [see Industrial Dynamics
(1961), Ch. 6]. He conceptualizes the world as made up of
money, men, material, information and capital goods, each
of which flows from "level" to "level" with rate of flow
controlled by "valves." A language, a flowcharting con-
vention and a compiler, DYNAMO, have been developed
to provide a means of using these ideas. The simulation
advances in discrete time intervals of length DT and each
state variable is computed as

X~(t 4- At) = Xi(t) + (AX~)DT

where AXe is an arithmetic expression. The effect is to
compute values of the function X~(t) by the method of first
differences. Experience indicates tha t the language is rela-
tively easy to learn and that simple problems can be pro-
grammed and run in a relatively short time. Unfortunately
the language has limitations for larger problems. Probably
the most annoying limitation is that the basic language
does not allow the use of subscripts. Different categories of
inventory, for example, must be identified by different
names and statements must be repeated for each category.
Further restrictions are the use of fixed-time increments,

computation of all statements at each time interval, first-
order difference approximations to continuous functions,
the limited number and rigid form of statements per-
mitted, the restricted manner in which past data can be
used, and the inability to enter exogenous data.

Continuous-change models can also be programmed in
either general purpose languages or some of the discrete
simulation languages. In certain cases, this is as easy and
efficient as in DYNAMO, particularly if subscripts are
required.

An efficient, widely used method for the solution of
"continuous flow" problems is the use of hybrid analog-
digital computers [see Scramsted (1962)]. There are lan-
guages developed for this application; see Table II.1.
Brennan and Linebarger (1964) and (1965) and Clancy and
Fineberg (1965) present comprehensive comparisons of
these particular languages.

3 . D I S C R E T E - C H A N G E M O D E L S

In discrete-change models, the changes in the state of
the system are conceptualized as discrete rather than con-
tinuous. Systems are idealized as network flow systems and
are characterized by the followhlg:
- - t h e system contains "components" (or "elements" or

"subsystems") each of which performs definite and
prescribed functions;

- - i tems flow through the system, from one component to
another, requiring the performance of a function at a
component before the item can move on to the next
component;

- -components have finite capacity to process the items
and therefore, items may have to wait in "waiting
lines" or "queues" before reaching a particular com-
ponent.

The main objective in studying such systems is to ex-
amine their behavior and to determine the "capacity" of
the system: e.g., how many items will pass through the

TABLE II.1. GENERAL CHARACTERISTICS OF SELECTED CONTINUOUS-CI-IANGE SIMULATION LANGUAGES FOR DIGITAL COMPUTERS a

Name

D E P I
DEPI 4
DAS
DYSAC

MIDAS

DIDAS9
D Y NASA R
P A R T N E R

FACTOLUS
HYPLOC
FORBLOC

COBLOC
ASTRAL
JANIS
DES-1
DYNAMO

Meaning of Name

Differential Equation Pseudo Interpreter

Digital Analog Simulator
Digitally Simulated Analog Computer

Modified Integration DAS (alias: much improved
DAS)

Digital Differential Analyzer Simulator
Dynamic Systems Analyzer
Proof of Analog Results Through Numerically

Equivalent Routines
The river in which Midas got rid of the golden touch
Hybr id computer block-oriented compiler
F O R T R A N compiled block-oriented simulation

language
CODAP language block-oriented compiler
Analog Schematic Translater to Algebraic language

Differential Equat ion Solver

Availability Originating Organization Machine Implemented Date

1957 Jet Propulsion Lab. Burroughs 204
1959 Allis Chalmers IBM 704
1963 Martin Co., Orlando, Florida IBM 7090
1961 U. of Wisconsin Interpreter, in 1604 assembler language,

for Wisconsin monitor
1968 Wright-Patterson Air Force Base, Dayton, Ohio In FORTRAN 1I for 7090 & 7094, in

FORTRAN IV for 7094 & 7040, all in-
terpreters

1957 Lockheed, Georgia IBM 704
1962 Jet Engine Die. of General Electric IBM 704/7090
1962 Aeronautical Die. of Honeywell IBM 650, Honeywell H-80O/1800

1964 IBM Research, San Jose, California IBM 1620
1964 U. of Wisconsin Compiler, in 7090/94 assembler language
1964 U. of Wisconsin In FORTRAN

1964 U. of Wisconsin Compiler, in 1604 assembler language
1958 Convair IBM 7094
1963 Bell Telephone Laboratories IBM 7090
1963 Scientific Data Systems SDS 9300
1962 MIT, Industrial Dynamics Group IBM 709/7090

a For a more complete list, see Clancy and Fineberg (1965)

V o l u m e 9 / N u m b e r 10 / O c t o b e r , 1966 C o m m u n i c a t i o n s o f t h e A C M 725

system in a given period of time as a function of the struc-
ture of the system? The analytical techniques which may
be used to solve such problems are queueing theory and
stochastic processes. Examples of problems which have
been formulated and studied as discrete change models are
job shops, communication networks, logistics systems and
traffic systems.

The computation in this type of simulation consists to a
large extent in keeping track of where individual items are
at any particular time, moving them from waiting line to
component, timing the necessary processing or functional
transformations and removing and transporting the items
to other components or waiting fines. The result of a simu-
lation "rtm" is a set of statistics describing the behavior
of the simulated system during the run.

Special packages have been prepared for certain specific
applications. To use these, the user supplies parameter
values, data, and control values to adapt the program to
his own model. Examples of such packages are the IBM-
GE Job Shop Simulator and the Job Shop Simulator pro-
duced by Ginsberg, Markowitz and Oldfather (1965).

If such special simulators are not available or if the user
decides not to use them, he can use general purpose lan-
guages such as FORTRAN, ALGOL, and PL/I . In the past,
programs for the simulation of discrete-change systems on
electronic digital computers were usually written directly
in assembly languages or in general purpose language
such as these.

But because simulation of discrete-change models does
involve computations which are common to many models,
a number of language and packages have been designed for

formulating and writing a program for any discrete-change
model. Table II,2 presents characteristics of some of these
discrete-change packages: the name of the package; the
general purpose language involved, if any; the originating
organization; the machines for which the package is avail-
able and whether the package is currently available or
planned. Six of these are discussed in more detail in
Section III.

References to manuals and specifications of these lan-
guages and packages are given in Section V.3. A selected
bibliography on the methodology of discrete-change simu-
lation is given in Section V.2.

4. EVALUATION OF LANGUAGES FOR SIMULATION
The choices an analyst faces in attacking a problem are

outlined in Table II.3. Obviously he must first choose the

TABLE II.3. SOLUTION TECHNIQUES FOR THE TWO

TYPES OF MODELS

Solution Iechnique Type of Model

Continuous change Discrete change

D i f f e r e n c e e q u a t i o n s Q u e u e i n g t h e o r y

D i f f e r e n t i a l e q u a t i o n s S t o c h a s t i c p r o c e s s e s

C a l c u l u s of v a r i a t i o n s
M a x i m u m p r i n c i p l e

A n a l y t i c a l t e c h -

n i q u e

S i m u l a t i o n :

(a) G e n e r a l p u r -

p o s e p a c k a g e s P L / I
(b) S p e c i a l p u r -

p o s e p a c k -

a g e s
(c) S i m u l a t i o n See T a b l e I I . 1

A s s e m b l e r s , F O R T R A N , M A D , A L G O L ,

I B M - G E J o b S h o p
S i m u l a t o r , e t c .

See T a b l e I I . 2

TABLE I I . 2 . GENERAL CHARACTERISTICS OF VARIOUS CONTEMPORARY DISCRETE-CHANGE SIMULATION P A C K A G E S

Simulation Package Computer Language Originating Organization Machines Implemented Availability

CLP CORC Cornell U. CDC 1604 Current
CSL FORTRAN Esso, Ltd. & IBM U.K. IBM 7090 Current
CSL 2 FORTRAN IBM U.K. IBM 7090/7094 In preparation
ESP ALGOL Eiliott Elliott 503 & 803
FORSIM IV FORTRAN MITRE IBM 7030 & others with FORTRAN compilers Current
GASP FORTRAN U.S. Steel Corp. IBM 7040/7044, 7090/7090, 1620, 7070/7074, CDC G20 Current
GPSS FAP IBM IBM 7090 Current
GPSS II FAP IBM IBM 7090/94, IBM 7040/44 Current

FORTRAN UNIVAC UNIVAC 1107 Current
GPSS I I I MAP IBM IBM 7090/7094, IBM 7040/7044 Current

- - IBM S/360 In preparation
GSP 2 -- U.S. Steel Co. Ltd. Ferranti Pegasus Current

Elliott 503 In preparation
Job Shop Simulator - - IBM-GE IBM 7090 Current
MILITRAN - - Systems Research Group for Office of IBM 7090/7094 Current

Naval Research
OPS - - MIT IBM 7090/7094 Current
QUICKSCRIPT - - Carnegie Inst. of Technology CDC G20 Current
SILLY -- U.S. Steel Corp. ~ In preparation
SIMON ALGOL Bristol College of Sci. & Teeh. Elliott 503 & 803
SIMPAC SCAT Systems Development Corp. IBM 7090 Not available
SIMSCRIPT FORTRAN RAND (SHARE) IBM 7090/7094, 7040/44 Current

FORTRAN California Analysis Corp. IBM 7090, 7090/7094, 7040/7044 Current
CDC3600, 3800, 6400, 6600, 6800
Philco 210, 211,212;
UNIVAC 490, 1107, I108

- - Digitek GE 625/635 Current
SIMTRAN FORTRAN MITRE IBM 7030 Current
SIMULA ALGOL Norwegian Computing Center UNIVAC 1107 In preparation
SOL ALGOL Burroughs, Case Inst. of Teeh. Burroughs B5000/5500 - -

UNIVAC 1107 Current
UNISIM FAP Bell Labs. IBM 7090/7094 Current

726 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 9 / N u m b e r 10 / O c t o b e r , 1966

type of model; in some cases, of course, the problem
clearly indicates which one should be chosen. It is true
that there are many problems that are best considered in
terms of discrete changes, and it makes little sense to try
to force these into the continuous-change model. However,
there are many other problems which can be investigated
efficiently by continuous-change models. These include
cases where levels of operation actually change continu-
ously, such as in pipeline networks, as well as cases where
items are discrete but may be considered in the aggregate
and measured continuously. The limitations of the
DYNAMO package should not necessarily be considered
as limitations of the continuous-change approach to model
formulation.

Once this choice has been made, the analyst must pick
a solution technique. If he selects simulation, he has two
and perhaps three choices available. He may select a gen-
eral purpose package (an assembly language, FORTRAN,
ALGOL, etc.) or a simulation language or package, or he
may find or write a program specially designed for his
problem. It is, of course, possible to write simulation pro-
grams using general purpose assemblers and compilers. A
survey conducted by Chen (1964) confirms the obvious
conclusion that in the past most such programs have been
so written. Indeed, some believe that general purpose lan-
guages are almost ahvays preferable, providing efficiency
without important disadvantages [see, for example,
Fedderson and O'Grady (1965)]. Furthermore, available
evidence supports another obvious conclusion: program-
ming in lower language systems such as assemblers takes
more programming time but results in object programs
with less execution time than programming in higher level
systems. Hence, one might do the simulation first in a
higher level language; if execution time is excessive, the
analyst or his programmer can reprogram in a lower level
system the parts that are taking the most time.

written in a widely used general-purpose language,
FORTRAN; GPSS because it is probably the most used and
is a package provided and maintained by the largest man-
ufacturer of electronic computers; CORC (with CLP) be-
cause it is part of a package designed specifically for teach-
ing; CSL because it differs from the others in the way that
it controls the simulation and because it was developed
outside the United States; and SOL because it is based on
ALGOL.

References to detailed specifications of all the packages
and languages listed in Table II.2 are given in Section V.3.
A brief description of the objectives of the designers and
implementers for the six selected languages is given below
because it is reasonable to discuss the characteristics of a
language (package) in terms of the objectives of the de-
signer (implementer).

GPSS [IBM, Reference Manual]:

" T h e program described herein is a general-purpose s imula tor
designed to aid sys tem s tudy work. The sys tem to be s imula ted
mus t be described by the user in te rms of a special block diagram.
The program operates on the IBM 7090 under the IBSYS/FoRTRAN
System, and no knowledge of the computer operation is assumed. The
user need only know the rules by which the block diagrams are
constructed.

" T h e s imula tor allows the user to s tudy the logical s t ruc tu re
of the system. The flow of traffic th rough the sys tem may be fol-
lowed, and the effects of compet i t ion for equ ipment in the sys tem
may also be measured. Computer o u t p u t may be arranged to pro-
vide informat ion on (1) the volume of traffic flowing th rough sec-
t ions of the system, (2) the d is t r ibu t ion of t r ans i t t imes for the
traffic flowing between selected points in the system, (3) the aver-
age ut i l iza t ion of elements in the system, and (4) the max imum
and average queue lengths a t selected points in the system.

"Var ious s ta t i s t ica l and sampling techniques may be in t ro-
duced into a GPSS I I model. Levels of pr ior i ty ma y be assigned to
selected uni t s of traffic, and complex logical decisions may be made
dur ing the s imulat ion. I t is also possible to s imulate the inter-
dependence of var iables in the system, such as queue lengths ,
inpu t ra tes and processing t ime ."

III. Comparison of Six Discrete Flow Simulation
Packages

1. DESCRIPTIONS OF SIX LANGUAGES

New simulation packages continue to be developed, mo-
tivated both by the introduction of new machines and by
dissatisfaction with existing packages. It seems evident
that simulation languages, for many applications, have
sufficient advantages over more general purpose languages
to justify their use. Indeed, the substantial number of
simulation languages for discrete-change models now avail-
able has introduced a new dimension to computer simula-
tion. A potential user can choose from among several com-
peting packages, each of which offers some features suita-
ble for his particular problem or class of problems.

The purpose of this section is to compare six discrete-flow
simulation languages and packages in detail. The six and
the reasons for selecting them are: SIMSCRIPT because of
its unique features; GAsP because it is a set of subroutines

CORC and CLP [Conway, Maxwell, and Walker]:

"Programming is the process of describing a computa t iona l
task in a form and a language t h a t will be intell igible to a com-
puter . Al though there are several different types of languages t h a t
can be employed, cer ta in ly the easiest to use from the po in t of
view of the person doing the programming is one which is no t un-
like famil iar ma themat i ca l no t a t ion and which uses Engl ish w o r d s
in a reasonably formal manner . FORTRAN and ALGOL are the two
mos t widely used languages of this type. Because they are mean t
for professional use in a wide va r i e ty of problems they have con-
s iderable complexity and take a fair amount of t ime to master .
For quick learning for the beginner a less sophis t ica ted language
is desirable, even a t the expense of some grammat ica l clumsiness
and some l imi ta t ion in the va r i e ty of problems i t can handle.
CORC is such a language ."

GASP [Kiviat]:

"GASP is a FORTRAN-compiled, s imula t ion-or iented program-
ming language. Simulat ion models, when expressed in GAsP-ori-
en ted flow-charts, are easily t ranscr ibed into machine-executable
FORTRAN s t a t emen t s S imulat ion models are usual ly designed
b y opera t ing or engineering personnel who are unfamil iar wi th
computer programming; they are coded and debugged by com-

V o l u m e 9 / N u m b e r 10 / O c t o b e r , 1966 C o m m u n i c a t i o n s o f t h e ACM 727

puter people equally unfamiliar with the processes being simu-
lated. GASl" is intended to bridge the gap between these two
groups. Engineers can formulate their problems in a machine-
independent language; programmers, familiar with the language,
can easily adapt their tbinking to the problem and code the model.
GAsP also provides debugging features that expedite the testing
and validation of the model

"GASP views simulation problems in a highly normalized man-
ner. Precise definitions are established for isolating different parts
of systems, for naming these parts and for specifying possible
relations between them. This specificity of structure allows GAsP
programmers to construct simulation models of systems rapidly
and economically. I t provides a programming compatability that
allows programs of simulation models to be united into larger,
more comprehensive programs with little or no change. I t provides
a standard of performance by which programming time and pro-
gram execution may be evaluated. I t provides a machine-inde-
pendent and easily expandable programming language. And per-
haps most important, it is simple, straightforward, and easy to
learn."

S I M S C R I P T [Markowi tz , Hausner , and Ka r r] :

"The SIMSCRIPT system described in this manual was developed
to meet the need to reduce programming time. I t also provides
increased flexibility in modifying such models in accordance with
the findings of preliminary analysis and other circumstances

"Fortunately, experience now confirms that much of the time
spent in both logical formulation and actual programming is spent
on operations that are often similar from one simulation problem
to the next. Thus there is a clear opportunity and need for a pro-
gramming system specially adapted to the problems of writing
simulation programs. SIMSCRIPW was designed to answer this
need

"Any digital simulation consists of a numerical description of
the "status" of the simulated system. This status is modified at
various points in simulated time which may be called "events."
SIMSCRIPT provides a standardized definition-form for specifying
the status description. I t also automatically provides a main
timing routine to keep track of simulated time and the occurrence
of events. An "event routine" is then written for each kind of
event, describing how the status is to change. The SIMSCRIPT
source language is specifically designed to facilitate the formula-
tion and programming of these event routines.

"Although SIMSCRIPT was developed for simulation problems,
and the present exposition is presented in terms of simulation
problems, SIMSCRIPT is actually a general programming system
that is also readily usable for non-simulation problems."

CSL [I B M U n i t e d K i n g d o m , L td , and Esso P e t r o l e u m Co.
Ltd] :

"Control and Simulation Language (CSL) is designed for the
formulation, as computer programs, of the complex decision-
making problems which arise in the control of industrial and com-
mercial undertakings.

" In the field of simulation, CSL eases the construction and ex-
pression of a logical model to represent the system under study
and provides built-in facilities for running the model on the
computer.

"The language is based on the use of groups of entities which
are the elements of the system, and in particular on subgroups
(or sets) of entities which have some common property. The ma-
jori ty of CSL statements make use of sets by examining their
membership, or by operating in some way on a complete set, or
on a selected member."

2. PREVIOUS COMPARISONS
Compar i sons of d iscre te change s imula t ion packages

h a v e been m a d e b y K r a s n o w and Mer ika l l i o (1964), F ree -

m a n (1964), M u r p h y (1964), Y o u n g (1963), Ginsberg
(1965), and T o c h e r (1965). T h e papers b y K r a s n o w and
Mer ika l l io , F r e e m a n and Toche r a re pub l i shed in genera l ly
ava i l ab le journals .

M u r p h y repor t s on a c o m p u t e r s imu la t ion mode l pro-
g r a m m e d in b o t h G P S S I I and SIMSCRIPT. T h e two pro-
g rams p roduced iden t ica l o u t p u t f rom the s ame inpu t a f te r
a p p r o p r i a t e a d j u s t m e n t s were m a d e in r a n d o m n u m b e r
genera t ion , the order in which events are caused, t he t r e a t -
m e n t of s imul t aneous events , and differences in n u m b e r
rounding . M u r p h y r e c omme nds SIMSCmPT in preference to
G P S S I I because SIMSemPT resu l ted in less execut ion t i m e
(3.6 minu te s for SIMSCRIPT c o m p a r e d to 26.8 minu t e s for
G P S S in a pa r t i cu l a r case on t h e I B M 7090) and requi res
less m e m o r y (10,000 vs. 20,000 words) and because of t h e
fol lowing fea tures :

(i) SIMSemPT can ope ra t e w i th v a r i a b l e - l e n g t h t i m e
inc remen t s b u t G P S S I I canno t ;

(ii) T h e SIMSCRIPT R e p o r t G e n e r a t o r is v e r y conven ien t ;
(iii) W o r k pack ing is ava i l ab le in SIMSCRIPT b u t no t in

G P S S ;
(iv) I n SIMSCl~IPT the size of a r r a y s need no t be k n o w n

a t compi la t ion t ime ; and
(V) I n SIMSCRIPT b u t no t in G P S S I I v a r i a b l e n a m e s can

be ass igned to p a r a m e t e r s for ease of ident i f ica t ion .

N o t e t h a t t he compar i son invo lved G P S S I I . Some of t h e
l imi t a t i ons of G P S S I I t h a t M u r p h y repor t s would n o t
a p p l y to G P S S I I I .

Y o u n g repor t s on her exper iences w i th SIMPAC, SIM-
SCRIPT and GPSS. She l ists condi t ions unde r which each of
these migh t be preferred, preferences t h a t are d e t e r m i n e d
p r i m a r i l y on the basis of sub jec t ive eva lua t ions .

Ginsberg l imi ts his c o m m e n t s to G P S S and SIMSCRIPT
" . . . because t h e y rece ived the mos t in te res t amongs t t h e
exis t ing l anguages . " H e s t a tes his conclusions as follows:

" In summary, we would answer the crucial question as to which
language to use for a given simulation model by stating: if it is
possible to write the program in GPSS, if memory limitations will
not be exceeded, and if the larger running time is not 'excessive'
then GPSS should be used. Otherwise SIMSCi~IPT or one of the
other languages should be used. Obviously, these judgments are
highly subjective but must and can be made before undertaking
all but very smM1 simulation experiments. In order to make these
judgments, there must exist one person who has a fairly complete
understanding of the proposed model, of the experiments to be
performed, and of both languages. This kind of person is by no
means easy to come by, but is necessary to insure any kind of
rational decision in the language selection problem."

3. COMPARISON OF SIX SIMULATION PACKAGES
S imu la t i on languages differ f rom genera l pu rpose pro-

g r a m m i n g packages in t h a t s imula t ion languages inc lude
fea tures which improve t h e communica t i ons be tween
p r o b l e m definer and p r o g r a m m e r and s impl i fy t he pro-
t r a m m i n g of t he c o m p u t a t i o n s t h a t are charac te r i s t i c of

s imu la t ion problems. These ends are accompl i shed pri-

m a r i l y t h r o u g h the fol lowing five capabi l i t i es :

- - t h e capab i l i t y to impose a fixed " s t r u c t u r e " on the

728 Communica t i ons of t he ACM Volume 9 / Number 10 / October , 1966

assigmnent of computer memory to variables and data.
This assignment is more complete, detailed, and specific
than that used in most general purpose languages.

- - c o m m a n d s to facilitate changing the state of the simu-
lated world. In most cases this is done by a "mas te r" or
" t iming" routine tha t controls the sequence in which sub-
programs are executed

- - c o m m a n d s which facilitate the determination of
whether or not a subprogram is to be executed at a par-
ticular time.

- - c o m m a n d s to facilitate computations tha t are used
frequently, in particular those dealing with random num-
bers and probabili ty distributions.

- - c o m m a n d s which facilitate the recording of statistics
during program execution and the reporting of results
after the simulation run is ended.

Simulation languages differ in the means used to provide
these five capabilities. A comparison, in tabular form, is
given for six languages. Tables I I I . l - I I I . 5 also include a
comparison of some characteristics, not necessarily unique
to simulation languages, tha t are important and useful.

(a) Structure of Memory Assignments--Data Structures.
Most users are not concerned with the details of program
compilation and execution. Nevertheless, the comparison
of languages can be aided by examining details such as the
structure of memory assignments. In simulation, as ill all
computer programs, some memory cells are used to store
data and others to store instructions; the contents of some
of these cells are changed as a result of the execution of the
instruction. In languages such as FORTRAN and ALGOL and
in general purpose assemblers, the programmer is free, in
the source program, to define variables as he wishes with
minor restrictions such as distinguishing between integers
and floating-point numbers. In the resulting object pro-
gram, the compiler or assembler assigns memory locations
to each variable as required. EssentiMly, therefore, most
compilers, interpreters, and assemblers t reat all variables
ill the same way. In simulation languages, on the other
hand, several types of variables usually can be defined.

Variables in languages such as FORTRAN and ALGOL m a y
be subscripted (be defined as "arrays") . For example, sup-
pose a variable of interest in a problem is temperature,
called T E M P . The value of this variable may depend on
city, day and hour. The possible values of the variable,
T E M P , might be stored in a three-dimensional array as
follows:

Any particular vMue could be denoted by specifying the
values of the arguments in an identifier such as " T E M P
(CITY, DAY, H O U R) . " This particular way of storing the
data and identifying da tum is, of course, not unique. The
three-dimensionM array, for example, could be broken up
into a number of two-dimensionM arrays or even one-
dimension arrays. Obviously too, the order of the sub-

scripts is arbitrary.
Most computer simulation languages have the capabili ty

of declaring and using subscripted variables just as in the
general purpose languages. Several of the simulation lan-

guages provide for additional capabili ty in storing data and
identifying them in the source language. The reason is tha t
there are some variables in almost every simulation model
which are t reated in special ways so tha t it is worthwhile
to provide specific mechanisms and specific names in the
language and in the package for them. In the discussion
which follows, names such as record, field and list are used
to distinguish these variables from "ordinary" variables.
I t is emphasized tha t logically these are "variables," no

different than any other variables.
The name used in this paper for an i tem of data in a

simulation language is " R E C O R D . " A record is a one-
dimensional variable consisting of one or more fields of
data. A " F I E L D " is a basic unit of data and may consist
of one or more binary digits, decimM digits, alphabetic, or
Mphanumeric characters. A field may be stored either in a
cell, a par t of a cell, or in several cells of the computer.

The basic use of a record is to describe an object in the
simulated world. The data in the fields of a record describe
the "propert ies" of the object. The record and its fields are
usually given names or identifications; it is conventional
to use names which are mnemonics for the object being

represented.
To illustrate these definitions, consider the simulation of

a barber shop. "Barbers" and "customers" might be ob-
j ects being simulated. An individuM barber might have the

following properties or characteristics:

his name
the t ime he begins his shift
the t ime he completes his shift
average t ime to complete a haircut
whether idle or busy at a particular instant of t ime

The data describing this barber may appear as follows:

HOUR

CITY ,~

\, / DAY

Average
Name Time In Time Out Time Status

Jones, R. 0800 1600 010 Busy

There would probably be several barbers, and there
would be a record to describe each one. I t is convenient to
have a name for a set or group of records describing similar
objects, in this case, barbers. The group of records might
be called BARBS and would appear as follows:

Volume 9 / Number 10 / October, 1966 Communications o f t h e ACM 729

Average
Name Time In Time Out Time Status

I
Jones, R. 0800 1600 010 Busy

N r ~

lSmith, J. 0900 1700 009 Idle

Actually, this "GROUP OF RECORDS" is nothing
more than a two-dimensional array. The designers of many
simulation languages found it useful to provide ways of
locating a particular item of data by conventions different
than those used in most general purpose languages. In our
illustration, a property of a particular barber is often of
interest. Instead of identifying these properties by BARBS
(NAME, PROPERTY), a simulation language might pro-
vide the capability of identifying it by NAME (BARBS)
or P R O P E R T Y (BARBS) on the justification that such
a procedure is more "natural" and meaningful for simula-
tion modeling.

Another capability that is often found in simulation can
be illustrated by the property "status." During the course
of the simulation, this property changes. When a barber
finishes a haircut, the status in his record must be changed
to "idle" if no customer is waiting. When a customer ar-
rives, the program must examine the status of each barber
to determine those who are idle. I t may be better if a sepa-
rate list were kept of all barbers who are idle. Then, when

any change occurs, only the list need be updated. Some
simulation languages provide special capabilities for main-
raining such "s ta tus" lists, that is, lists of names or identi-
fiers of records ("LIST OF RECORD NAMES") that
have certain properties.

The advantages of such a capability are: the procedure
saves memory space because the property need be stored
only when appropriate; the procedure saves computer time
because all possible records do not have to be searched
each time there is a change in the state of the simulated
world; problem definition and programming time are re-
duced because such lists are a natural mode of expressing
the state of the simulated world.

Another capability of simulation packages is designed
primarily to use memory space efficiently. This may be
illustrated in our example by the records for customers. A
group of records for customers might appear as follows:

N a m e

CUST 1

CUSTOMER RECORDS

Type of
Time A Time B Time F Service

617 648 723 CC

N N r ~

CUST 200]

Text is continued on page 7S~

TABLE III. i. STRUCTURE OF MEMORY ASSIGNMENTS-DATA STRUCTURES

GPSS I1 a S I M S C R I P T CLP] CSL GASP SOL

1. Obiect being simulated:
fundamental element
(Record)

L Properties of objects
(Fields)

3. Group of ob~ecte being
simulated (Group of
records)

4. Data about the environ-
ment (Variables)

5. List of names of objects
having certain properties
(List of record names)

~Tranasction 'b
~Storage'

'Facility'
'queue '
Transaction: 'Parameter'

'Priority'
'Mark Time'

Storage: 'Storage Capacity'
'Maximum Contents'
'Current Contents'
Utilization time integral
Total entries

Facility: 'Status'
Utilization integral
Total entries

Queue: 'Maximum Contents'
'Current Contents'
Utilization time integral
Total entries

'Transactions'
'Storage'
'Facilities'
'System Variable'
'Savex'
'Function'
'Frequency Table' [GPSS I I I 'System

Numerical Attributes (SNA)']
'Events Chain'
'Assembly Set'
'Service Chains'
' Interrupt Chains'
(Delayed Transactions) [GPSS I I I

'User Chain']

Individual entity

'Attribute'

'Enti ty '

'Permanent System
Variable' ('Array
Number')

'Set'

__ c s L

'Enti ty ' 'Enti ty ' 'Element '

'Attribute' 'Array' 'Attribute'

'Glass' 'Class' 'Element List Ma-
trix'

System variables 'Array' System variables

'List' 'Set' 'Element List' or
'Queue'

Variable, local
global

'Transaction'
'Facility'
~Store'
Value

Subscripted variabh

Global variables
tables

6. Can records be temporary? Yes Yes Yes No Yes Yes

a Names in quotes are actual names used in language indicated.
b Entries under GPSS are for GPSS II ; GPSS I I I changes are listed separately if a change has been made. Unless specifically noted, GPSS I I features are retained in

GPSS III .

730 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 9 / N u m b e r 10 / O c t o b e r , 1966

TABLE I l L 2 CHANGING THE STATE OF THE SIMULATED WORLD

1. Subprogram:
agent of
change

2. Who pro-
rides sub-
program?

3. Time con-
trol rou-
tine

4. Amount of
time ad-
vance

5. Exit after
time ad-
vance

6. Return of
control to
timing
routine

7. What flows
in simu-
lated
world?

8. What deter-
mines
when
change
occurs?

9. Can changes
be caused

externally?

GPSS II

Block subroutines: specific
blocks for 36 basic types
of system action

GPSS (except 'Help' pro-
vided by user)

Main scanning routine
IGPSS l I I GPSS I I I main

scanning routine]
To next scheduled 'Future

Event ' after completion
of all possible 'Current
Events '

To appropriate block sub-
routine

By block subroutine

'Transaction'

System status; change of
status forces new events;
scan before time advance

'Jobtape' for exogenous
events

'He lp ' fo r arbitrary modifi-
cation

SIMSCRIPT

'Event ' subroutine

User

'Timing Routine'

To next imminent event

Control transferred to
appropriate event
subroutine

By event subroutine

'Temporary En t i ty '

Tests in event sub-
routines

Yes: Exogenous event
tape

CLP

Block; Sub-
routine

User

Programmed
by user

Programmed
by user

Programmed
by user

Programmed
by user

Programmed
by user

Programmed
by user

CSL

'Activity' subroutine

User

Timing routine

To next imminent event,
by minimum value in
T-Cell aasoclated with
each entity

All activity subprograms
are activated cyclically

Automatically, when no
activity can be executed

'Ent i ty '

Tests in activity subrou-
tine

GASP

'Event ' subprogram
causing 'Activity '

User

'GASP Executive'

To next scheduled event

Control transferred to
appropriate event
subroutine

By event subroutine

Temporary 'Element'

Tests in event subpro-
gram

Yes; load any number of
exogenous events as
data input

SOL

'Process' statement; pro.
cedme

User

Programmed by user, us.
ing 'Walt' statement

To next point of program
after a Wait Statement
is completed

To active program

Programmed by user

'Transaction '

Determined by user
Parallelism by a 'dupli.

cate' operation

Yes

TABLE I I I . 3. COMMANDS TO FACILITATE SUBPROGI~AM EXECUTION

I. Create tempo-
rary records

2. Remove tem-
porary
records

3. Place (or re-
move) event
on schedule

4. Change list
membership

5. Sequencing in
list

6. Logical com-
mands and
phrases

GPSS I I

'Originate'
'Generate'

'Terminate'

Main scanning routine is
accessible by 'Priority, '
'Buffer,' 'Advance, '
'Help'

'Seize' 'Release'
' Interrupt ' 'Hold'
'Preempt ' 'Leave' 'Return ~
'Enter ' 'Store' 'Gate '
'Link' 'Unlink'
'Queue'
[GPSS I l l 'Depart ' 'Test '

no 'Hold' no 'Store']
'Current ' events chain by

priority by delay by
FIFO; 'Future ' events
chain by departure time
by FIFO; 'Service' by
priority by FIFO

Selection modes:
Both All Pick
P FN SIM
blank
Gate conditions:
NU SE SNF 1~
U SNE LS NM
I SF LR
Algebraic 'Compare'

t [GPSS I I I Selection Mode:
SBR]

SIMSCRIPT

'Create'

'Destroy'

'Cause '
'Cancel'
Exogenous event

'File'
'Remove' specific i tem
'Remove First '

F IFO
LIFO
Ranked on attribute value

'For Each' 'Loop'
'Find Max' 'Repeat '
'Find Min' 'Or'
'Find First ' 'And'
'Where' ' I f '
'With' qf E m p t y '
'Go To'

CLP

'Let'

'Erase'

Programmed by user

'Insert '
'Remove'

'First '
'Last '
Ranked on attributes
Removal by specifying

entity identification

' I f ' 'Repeat '
Simplified sequence con-

trol available to allow
automatic execution of
next statement in pro-
gram if tested condi-
tion is false.

Multi-way branching
available with single
' if ' statement.

CSL

No temporary en-
tities

T-Cell for each en-
t i ty gives time
available

'Load' 'Gains'
'Zero' 'Loses'
'Converse'

Add to 'Head' or
'Tail ' of Set;
'Rank ' set mem-
bers on specified
criterion

'Chain'
'For'
'In'
'Not In'
'Equals'

GASP

Temporary elements are
created by naming, are
stored in queues, may
cease to exist upon de-
parture from last queue

'Schdl'
'Remove'

'Filem'
'Fetehm'

FIFO
LIFO
High or low ranking of

attribute value

F O R T R A N

50L

Declaration
Schmoo Process

(reproduction)
'Start Statement'
Input statements
'Cancel'

Automatic

'Seize' 'Release'
'Enter ' 'Leave'
'Wait' 'Wait

UntiF

Priority
'Control Strength
First request

ALGOL

V o l u m e 9 / N u m b e r] 0 / O c t o b e r , 1966 C o m m u n i c a t i o n s o f t h e A C M 7 3 1

TABLE 111.4 PROGRAMMING FEATURES

GPSS I f SIMSCRIPT CLP CSL GA SP SOL

I. Basic unit of pro-
gram

2. Programming re-
quirements

3. Does language pro-
vide specific flow-
chart symbolism
for program ex-
pression?

4. Recursion: infinite
nesting

Ii. Arithmetic (data-
changing) com-
mands

6. Commands to col-
lect statistics

7. Functions, distribu-
tions, random
numbers

8. Input-output

9. Report output

O. Use for non-simula-
tion

'Block'

None other than

SIMSCRIPT statement
Event routine

Must know F O R T R A N

CLP or CORC state-
ment

Block
Subroutine

Must know CORC

CSL statement
Activity routine

F O R T R A N knowl-

F O R T R A N state-
ment

Event routine

Must know FOR-
GFSS (except 'Help '
in FAP)

[GPSS I I I (MAP)]

Yes No

No i No
I

'Assign' 'Help'
'Tabulate' 'Savex'
('Variable State-

ments')
[GPSS I I I 'Savevalue'

no 'Savex']

'Tabulate ~ 'Queue'
'Savex' ~Hold'
'Help' 'Store'
'Seize' 'Release'
'Enter ' 'Leave'
[GPSS I I I 'Depart ' no

'Store' no 'Hold']

'Functions': argument Un!
any standard sys-
tem variable

Uniformly distributed
random numbers

[GPS,~ l I I Any SNA
can be a dependent
variable of a func-
tion]

Built-in fixed I /O:
'Saves ~ transfers
model to tape

'Reads' restores model
from tape

'Write' places trans-
actions on tape

'Jobtape' recovers
transactions from
tape

'Print ' (Savexes)
Normal output:

Model listing
Clock time
Block counts
Savcxes
Facility statistics
Storage statistics
Queue statistics
Frequency tables
Summary statistics

Error Conditions
'Help' (arbitrary re-

ports)
[GPSS I I I can print

any equipment sta-
tistics]

No A

'Let ' 'Store'
'Compute' 'Do To'
(FORTRAN statements)

'Accumulate' 'Compute '
Number Sum-
Sum Squares
Mean Mean-

Square
Variance

Standard Deviation

Uniformly distributed ran-
dom numbers

Non-unifom continuous or
discrete probability dis-
tributions

Input-output commands:
'Save' 'Endfile'
'Read' 'Load'
'Read From' 'Record

Memory'
'Write On' 'Restore

Status'
'Advance'
'Backspace' 'Rewind'

Report generator

A gener~ purpose language
User-supplied 'Main' con-

t r~ routine replaces tim-
ing routine

No

No

CORC statements

CORC statements

Uniform random dis-
tribution

Exponential distribu-
tion

CORC functions
(square root, arctan,
max. rain etc.)

CORC I /O
CLP tape read and

write

Report writer
CORC output state-

ments

CORC language is a
proper subset of
CLP

edge useful

No

Yes, on logical test
chains

F O R T R A N state-
ments

'His t '
~SuIn'

Multiple random
number streams to
facilitate introduc-
tion of independent
random variables:

Normal distribu-
tion

Rectangular
Negative expo-

nential
Arbitrary

F O R T R A N input-
output statements

'Output '

F O R T R A N output
statements

No

T R A N

Yes

No

F O R T R A N state-
ments

'Collect'
'Histog'

Option-random oper-
ation or random de-
cision

Erlang distribu-
tion

Normal
Poisson
Uniform
Random numbers

from probability
list

Regression equa-
tion

Subroutines 'Datain ~
and 'Output '

GASP summary re-
port

'End Run ' (optional)
Stacking of runs, data

decks in sequence

'GASP Summary ' :
contents of all
queues, max. and
ave. queue length,
scheduled but un-
executed events
'End of Run ' : writ-
ten by user for out-
put beyond that of
'Summary '

GASP is imbedded in
F O R T R A N ; sub-
routines can be used
for any purpose

SOL statement

ALGOL knowl-
edge useful

No

Yes

ALGOL state-
men,s

'Tabulate' state-
ment

Rectangular dis-
tribution

Exponential
Poisson
Normal
Geometric
Arbitrary

Cards & tape
'Read' 'Write'

Output statements
Many automatic

summaries
Debug capability

Not intended, but
possible

732 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 9 / N u m b e r 10 / O c t o b e r , 1966

TABLE I I I . 5 , MECHANICS OF USE

[. Implementation:

Implementer
computers

Documenta-
tion [

Training

L Compilation and
running pro-
cedure

3. Debugging and
diagnostics

4. Memory
When dimen-

sioned

Packing

Allocation

External
memory
options

5. Speed
Compilation
Execution

~. Experimentation

7. Other imple-
mentations

GPSS I I

IBM Corp.

IBM 7090/94, 7040/44

IBM Corp.
Introductory manual
Users manual
Systems manual

IBM Corp.

FAP
Model deck is input to inter-

pretive routines.
Model deck may be altered

by overlaying any model
element.

Models may be batch run.
Block numbers can be sup-

plied at input time.
Run control cards: 'Jobtape'

'Job' 'Clear' 'Reset' 'Saves:
'Reads' ~Start'

[GPSS I I I MAP
Block numbers assigned

by assembler.]

Dynamic error indications
terminate run and cause
printout of system status
and accumulated statistics
for source language de-
bugging.

'Trace' allows transaction
moves to be followed.

Limited syntactical error
checking at input.

At FAP assembly of GPSS
[GPSS I I I At load time

(MAP)]
Set by PAP program I
[GPSS I I I MAP] I
Fixed by FAP/MAP a s -

sembly [
Dynamic for transactions
Tape

Models are self-initializing.
'Jobtape' can introduce an

initial transaction load.
Separate 'Prerun' may also

be used to introduce load.

UNIVAC 1107 (written in
FORTRAN)

IBM S/360, GPSS I I I only

SIMSCRIPT

RAND Corp.

SHARE: IBM 7090/94,
7040/44

Prentice-Hall, Inc.

California Analysis Center,
Inc.

Southern Simulation Service

Compilation and execution
by FORTRAN compiler

SIMSCRIPT source pro-
grams translated into
FORTRAN which are
then compiled (Recent
implementations compile
directly into machine lan-
guage)

Exogenous event tape
Record memory, restore

status commands

FORTRAN diagnostics
Report generator for snap-

shots

Load time

Yes, up to 4 attributes per
word

Dynamic for temporary
records

Tape

Initialization cards: values
of all permanent entities
and size of each entity (pro-
viding flexibility for
changes without recompil
ing); previously compiled
sections of programs need
not be recompiled

California Analysis Corp:
IBM 709, 7090/94
CDC 3600, 6800, 6400, 6000,

6800
Philco 210, 211, 212
UNIVAC 490, 1107, 1108

Digitek:
GE 625/635

CLP

Cornell Univer-
sity

CDC 1604

Cornell

Compile, load, and
go

Extensive CORC
diagnostics

Syntax errors cor-
rection

Program always
compiles

In source program

No

Dynamic for tem-
porary records

Tape

Initial values in
dictionary

CSL

IBM-UK

IBM 7090 (requires
1401-4 tapes for
FORTRAN
source state-
ment conver-
sion)

IBM-UK

IBM 1401 prepares
a FORTRAN
II program for
compilation and
execution on
IBM 7090

'Check'
FORTRAN diag-

nostics

In source program

No

Fixed

Tape

Initializing
tines

IBM Data Center,
London, CSL2

GA SP

P. Kiviat, RAND Corp

IBM 7040/44, 7090/94

P. Kiviat

None

GASP Executive and source
program compiled as FOR-
TRAN program using
standard FORTRAN
compiler

Batch processing of sequence
of jobs.

GASP Executive and source
programs must be recom-
piled if max number of
length of queues are
changed: otherwise only
'Datain' and source pro-
gram need be.

FORTRAN diagnostics
'Monitor' program (optional)

with 'Error' routine; trace
prints event times; COM-
MON memory dump
option

In source program

No

As in[FORTRAN

Tape (FORTRAN capa-
bility)

Programmed in 'Datain ' or
initializing data cards for
each run in batch; control
words to initialize some
storage areas.

IBl~ 1620
IBM 7070/74
CDC G-20

50L

Case Institute c
Tech.

UNIVAC 1107

Case

First pass by SO]
compiler to in
terpretive pseu
do-code, then
through inter-
preter for execu
tion.

Debugging incor
porated in model
selective tracin~

ALGOL run tim~
diagnostics

As in ALGOL

Dynamic

Tape

Initialized to zero,
not busy, empty
at creation, sim-
ulator in 'choice
state'

Burroughs B 5000/
5500 (not re-
leased)

V o l u m e 9 / N u m b e r 10 / O c t o b e r , 1966 C o m m u n i c a t i o n s o f t h e A C M 733

When a customer arrives, his name, t ime of arrival (Time
A), and type of service required are recorded. The t ime of
beginning of his haircut, T ime B, and the t ime of finishing,
Time F, are recorded when they occur.

During a simulation a large number of customers m a y
be processed. The detailed da ta concerning each one, which
must be available when each is in the system, is not of
interest after a customer leaves. Only summary informa-
tion about customers is needed for analysis. Therefore, it
could be very useful to provide a capabili ty of assigning
memory space to a customer when he arrives and to erase
the record when he leaves. This capabil i ty is provided in
some languages by permitt ing the specification of " tempo-
ra ry" records.

The names at tached by the analyst to "fields,"
"records," "groups," "var iables" and "lists" in a source
program are usually those of physical objects in the system
being simulated. The following is an example of names tha t
might be used in a barbershop simulation.

Physical object in simulation Represented in memory by

All barbers A group of records (called,
say, BARBS)

All customers A group of records (called,
say, CUSTS)

A particular barber One record (in the group
called BARBS)

A particular customer One record (in the group
called CUSTS)

The properties of a barber, e.g., Fields (of the records called
average time for a haircut BARBS)

The properties of a customer, Fields (of the records called
e.g., type of service required CUSTS)

The idle barbers List of names of those BARBS
records which represent bar-
bers who are idle

The customers waiting List of names of those CUSTS
records which represent
customers who are waiting

The hours the barber shop is Variables TOPEN and
open TCLOSE

The six simulation languages analyzed here differ from
general purpose languages in tha t they permit the analyst
to specify more than one type of memory assignment by
specifying more than one type of variable. The correspond-
ence between the da ta about the simulated world, the way
it is t reated by the computer, and the names used in the
various languages is as follows:

Data about the simulated world Computer assignment Table
III.1

Objects being simulated records line 1
Properties of objects fields line 2

being simulated
Groups of objects being groups of records line 3

simulated
Other data about the one-, two-, three-, . . , line 4

simulated world dimensional variables
Lists of objects having lists of record names line 5

certain properties

Table I I I .1 , in lines 1, 2, 3, 4 and 5, gives the actual
names used in a language using quotation marks. For ex-

ample, a group of objects being simulated is called a 'Class'
in CLP and CSL, an 'Element List Matr ix ' in GASP;
'Transact ions, ' 'Storages' and 'Facilities' in GPSS; and
'En t i ty ' in SIMSCaIPT. In SOL, any subscripted variable
may be used for this purpose. Line 6 in Table I I I .1 shows
tha t all languages except CSL permit the definition of
t emporary records.

There appears to be general agreement tha t the distinc-
tion between objects being simulated, properties of these
objects, groups of these objects, da ta describing the en-
vironment , and lists of objects having a particular prop-
erty is useful in formulating a simulation model and should
be retained in future discrete-change simulation lan-
guages. However, the mechanics of this definition can be-
come burdensome. There is also general agreement tha t
provision must be made for t emporary objects in order to
make efficient use of memory space.

(b) Changing the State of the Simulated World. Com-
puter programs are usually divided into parts, each of
which is relatively small and each of which is logically
distinct. The program is not only easier to write in this
way, but changes or corrections can be made in one par t
without affecting others. The computer program is exe-
cuted by providing means for determining the sequence in
which the parts or subprograms are to be executed.

In computer simulation, a division of the program into
subprograms representing "events" or "act ivi t ies" in the
simulated world has been adopted by most language de-
signers as both natural and useful.

EVENT--Represents a change in the simulated world. The event
is usually thought of as occurring instantaneously and taking
no time, e.g., a barber finishes a haircut.

ACTIVITY--Represents an occurrence in the simulated world
which takes time, e.g., a haircut.

In general any activi ty can be represented by two events,
the event which is the beginning of the act ivi ty and the
event which is the end of the activity. One can look at the
simulated world as one involving either "events" or
"activit ies." One can think of activities causing changes in
the s tate of the simulated world which then creates events,
or one can think of events as recording or marking instan-
taneous changes in the s tate of the simulated world and
thus providing the means by which the duration of an ac-
t ivi ty is computed. I t is possible to have circumstances in
which an event can occur without a corresponding act ivi ty;
for example, a barber may finish a haircut but cannot
begin another one because there is no customer waiting.
(However, he does then begin the act ivi ty of being idle.)

An activity or an event can only occur in the simulated
world if certainconditions are satisfied. For example, a hair-
cut can occur only if a barber is available and if a customer
is waiting. The logical relationships of conditions in most
simulations tends to be quite complex. In practice, one of
the major difficulties is to s tate conditions within the simu-
lation program so tha t the correct sequence of events and
activities will occur during execution of the program.

734 Communications o f t h e ACM Volume 9 / Number 10 / October, 1966

Three different methods for the determination of the
proper sequencing are used in the languages under con-
sideration here:

- -use of an Executive Routine that keeps track of
"time" by a Schedule of Events and executes subprograms
at the appropriate times (SIMsCRIPT, GASP, GPSS),

- -use of an Executive Routine that keeps track of
" t ime" without a Schedule of Events and executes sub-
programs in the order in which they appear in the particu-
lar program (CSL),

- -use of no preprogrammed routine, leaving to the user
the programming of sequence control (CLP).

In simulation packages which have an Executive Rou-
tine, a master or timing routine is employed to keep track
of "t ime." Some simulation languages explicitly recognize
a "schedule" or calender of events or activities. This is
done by having the master routine transfer control to the
subprograms at the appropriate times during execution of
the program. The subprogram is then executed, and con-
trol is transferred either to another subprogram or back to
the master routine. Simulation languages differ in the
method by which the subprogram to be executed is selec-
ted and whether or not the exit from the subprogram must
return to the master routine or passes directly to another
subprogram. Such languages must have commands to
place events on, or delete events from, the schedule at ap-
propriate times. The particular subprogram being executed
contains instructions representing the activity tha t follows.
I t also contains instructions that will determine what
other events will occur in the future and when they will
occur.

A language that does not explicitly recognize a schedule
of events (or activities) obviously does not require com-
mands to schedule or delete events. In such systems, each
subprogram must be preceded by a sequence of tests which
determine whether the particular subprogram can and
should be executed (whether the activity can be per-
formed) at a particular time.

A comparison of the six selected languages with respect
to changing the state of the simulated world is shown in
Table III.2. Each uses a subprogram as the basic building
block of the program (line 1): In SIMSCRIPT; GASP and
GPSS, the subprograms describe events, while in CSL
they describe activities. In CLP and SOL, the user can
choose either orientation. These are programmed by the
user, except in GPSS in which 36 specific, standard sub-
programs are provided and in SOL and GASP in which
some preprogrammed routines are also available, (line 2).

All packages, except CLP, provide an Executive Rou-
tine which, in addition to other functions, keeps track of
time and determines the order in which subprograms are
executed (line 3). In all, t ime is advanced to the next
imminent event instead of moving forward through time
in fixed increments (line 4). In CSL, the Executive Rou-
tine cycles through all subprograms, in order, until no
more activities can occur; control is then returned to the

Volume 9 / Number 10 / October, 1966

Executive. In SIMSCRIPT, GASP and GPSS, control is trans-
ferred to the particular subprogram needed at the time and
then back to the Executive (SIMSCl~IPT and GPSS) or, at
the option of the user, either to the Executive or another
subprogram (GASP) (lines 5 and 6). I t is not evident which
of the two methods of control, the "schedule of events" or
the testing for possible execution of all activities, is
preferable [Laski (1965) and Tocher (1965)].

The names assigned to objects tha t "flow through" the
simulated world in the several languages are listed in line 7
of Table III.2. Line 8 gives the conditions that determine
when change occurs. SOL is the only one that provides
explicitly for parallel (simultaneous) activities.

I t is necessary to provide for events and activities
created by factors outside the simulated world itself tha t
could not be caused by events internal to the simulation.
In simulating such situations, it is useful to have means to
incorporate such "exogenous events" with ease into the
subprogram-sequencing process. The availability of this
feature is shown in Table III.2, line 9.

(c) Commands to Facililate Subprogram Execution.
Simulation languages have been designed with commands
to make easy the order in which subprograms are executed.
Table III .3 lists the names of these commands in the six
language packages considered here. The first two lines give
the commands that can be used to create " temporary"
records (objects being simulated)--operations which are
particularly important in discrete-system simulations.
Line 3 gives the names of the commands used to place or
remove events from the schedule of events for those lan-
guages which use a list of names of events as a timing
control.

Simulation languages have commands to place (or de-
lete) names of records on lists other than the schedule of
events list. Because test conditions for the execution of a
particular subprogram involve membership in lists, simu-
lation languages usually have logical commands to deter-
mine whether a particular record belongs to a list, to select
the first, last, or other record in a list and to perform a
sequence of instructions for all members of a list if particu-
lar conditions are satisfied. Normally, the members of a
list are ordered according to a specified criterion when a
new number is added. (CLP permits more complicated
"list" structures.) The commands used for these opera-
tions are given in lines 4, 5 and 6.

(d) Programming Features. Other features of the lan-
guages are outlined in Table III.4. GPSS differs in a major
way from the other languages in its basic conceptual unit
for programming. In GPSS, the structure and action of a
system is described using block diagrams in which each
block represents a step in the action of the system. Thir ty-
six specific block types are included in the language, and
the system must be described by combinations of these.
The other languages employ the more common and more
general construction used in general purpose languages in

C o m m u n i c a t i o n s o f t h e ACM 735

which the basic unit is the statement; statements may be
combined to form subprograms (line 1).

All of the six languages except GPSS require some
knowledge of a particular general purpose language (line
2). A SIMSCmPT or GASP (SOL) user should know FORTRAN
(ALGOL) and he can incorporate FORTRAN (ALGOL) state-
ments in his source program. A CLP user must know
CoRc since it is an extension of CoRc. A CSL user will
find a knowledge of FORTRAN very useful. A GPSS user
can make use of F A P / M A P if he needs "help."

Some language designers believe that problem formula-
tion is easier if the language were designed to use standard
flowchart symbols and decision tables. GASP and GPSS
provide a flowchart convention; none of the languages
considered here incorporate decision table conventions
(line 3).

Because of the complexity of simulation programs, the
capability of recursion can be very useful. SOL possesses
the same recursion power that ALGOL does. CSL can use
recursion on logical test chains. The others do not have
this capability (line 4).

The arithmetic commands of the simulation language are
those of the general purpose language in which it is
embedded (CoRc for CLP; FORTRAN for SIMSCmPT, CSL,
and GASP; ALGOL for SOL). SIMSCRIPT provides several
additional commands. In GPSS several of the blocks are
used to do arithmetic operations (line 5).

A simulation program must compile and summarize
various statistics during a " run" or must store records of
the history of a run so that the results can be analyzed in
a separate operation. All six languages provide commands
to collect statistics during the simulation run (line 6).

Most simulation programs involve the generation of
random numbers and random variates having specified
probability distributions. The capability of the various
languages to do this is shown in line 7. The table look-up
feature of SIMSCmPT and GPSS for nonreetangular dis-
tributions and the cMling convention of SOL are particu-
larly powerful.

The input and output facilities are shown in line 8.
In line 9 are shown the facilities to generate output reports.
GASP, GPSS and SOL provide standard summaries which
do not have to be programmed. SIMSCRIPT and CLP have
flexible and powerful report generators but not standard
summaries.

A final feature of a language is the extent to which it
can be used for problems other than simulation (line 10).
SIMSCmPT is designed as a general programming package,
especially suited for but not limited to simulation problems.
GPSS is not usuMly appropriate for nonsimulation pro-
grams. The CoRc general-purpose compiler is a subset of
CLP and can be used for problems other than simulation.
CLP is itself a list processing language and can be so used.
GASP subroutines can be used in FORTRAN programs in
the same way as any other FORTRAN subroutines.

(e) Mechanics of Use. In the previous four sub-
sections we have dealt with characteristics of six simula-

tion languages. In this subsection, the characteristics
describing the packages are covered. These characteristics
are more the result of decisions made by the implementer
of the language than those made by the language designer
and hence they may vary from one implementation to
another.

A particular implementation of each language hasl been
selected for detailed comparison. The implementer, the
computers for which the package is available, the docu-
mentation, and training aids are shown ill Table III.5,
line 1. If there are other implementations, they are listed
in line 7. I t should be noted that, even if a package is
available for a particular machine, the incorporation of it
at a particular installation may be difficult and frustrating,
especially if the implementation was designed for a
different operating system.

The compilation and rmming procedure is described in
line 2. The implementer may choose to generate an object
program from the source program or to have the source
program interpreted at object time. The latter is the
method used by GPSS and SOL. GPSS is a FAP (MAP)
assembled program. The GPSS model is executed inter-
pretively in the same sense that control passes to the
appropriate block subprograms in a sequence determined
by the block diagram. In the Case Insti tute of Technology
implementation of SOL, the first pass through the SOL
compiler produces pseudocode which then is executed by
an interpreter. One disadvantage of all interpretative
systems compared with compilers is that more computer
time for execution is usually used.

The implementer has a choice of translating the source
language to a general purpose language for which a com-
piler already exists or to build a compiler tha t generates
object code directly. The early implementations of
SIMSCRIPT and CSL required translation to FORTRAN II;
recent implementations go directly to object code. GASP
is written in FORTRAN and is compiled as any other
FORTRAN program. CLP is compiled directly by a "load
and go" compiler. One advantage of a method based on
compiling is tha t the object program that results from
translation and compilation of a source program may be
re-used to avoid retranslation and compilation on subse-
quent runs.

Debugging and diagnostic aids (line 3) are largely those
available with the associated compiler languages. GPSS
has a variety of self-contained diagnostic aids. The CoRc
diagnostics associated with CLP are unusually extensive
and include correction of spelling and punctuation errors
by the compiler and error detection during run time. This
is possible because the compiler program remains in
memory during program execution. SIMSCRIPT is found by
many to be difficult to debug and suffers from limited
diagnostic capabilities in the package itself. A trace
capability, available relatively easily using the report
generator, can be used to overcome some of SIMSCRIPT
debugging limitations.

In simulation programs, as in other computer programs,

736 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / Number 10 / October, 1966

it is desirable to have syntax error detection and correction
if possible, during compilation and error detection during
run time. Interpretat ive systems have no particular
difficulty in providing these features. CLP demonstrates
tha t it is possible to have comprehensive error detection
and correction during both compile and run time.

One characteristic that is usually important is the size
of the problem that can be programmed and run. To a
large extent problem size is determined when memory
space is allocated and by whether data can be packed
(line 4). Memory is dimensioned at "load t ime" in SIM-
SCRIPT and GPSS, in the source program for the others.
Also, SIMSCRIPT permits word packing of up to 4 attributes
per word for more efficient use of core memory. Packing in
GPSS is not under programmer control unless FAP (MAP)
"Help" routines are used. The other packages do not
provide packing; in SOL, packing would depend on the
ALGOL implementation in which it is imbedded. Memory
allocation is not dynamic except for tempora~T record
allocation and reallocation in SIMSCRIPT, CLP and GPSS.
External tape memory can be used in all with, however,
significant increase in running time.

One of the features of concern to users is the computer
time required to debug, compile and execute programs.
Timing comparisons have been part of computer evaluation
ever since customers had to choose between two or more
machines and two or more language packages. Many
timing comparisons of general purpose languages against
each other and against simulation languages have been
reported. We believe that these results are almost always
not meaningful and thus are not useful for language
selection. In general, these comparisons do not provide a
complete description of the problem and of the programs
written and run to make the comparison. Rarely is a
detailed description of the background and experience of
the programmers given. Too often, the experimental
design is not described at all; rarely is the statistical
analysis of the results described nor is there detailed
presentation of the raw data from which conclusions were
drawn.

I t may be that detailed timing comparisons are not
justified anyway because shortest possible execution time
is only one criterion. Fast execution at the expense of pro-
gramming time, inconvenience and program complexity
may be a poor bargain.

Obviously, a user is interested ultimately in knowing
how long it will take to compile and to execute a simulation
program in one language compared with others. At present,
unfortunately, it is almost impossible to present a valid,
quantitative evaluation of such comparisons. For the six
subject languages, general purpose languages (and assem-
bly languages) usually appear to have less compilation and
execution time. Considering the state of the art, these
results are not surprising. Nevertheless, there should be
no essential reason why a language specifically designed
for simulation must be less "efficient" than a general pur-
pose language used for simulation.

Of the two most frequently used simulation languages,
GPSS and SIMSCRIPT, SIMSCRIPT is generally considered
to be faster in execution than GPSS II (if the SIMSCmPT
program is written properly). GPSS I I I is faster than
GPSS II, and the differential has been reduced.

A simulation package can be particularly useful if the
implementation provides features to make experimentation
and model manipulation easy. In line 6, the availability of
such features as initialization, parameter change and
program rerunning is detailed for the six packages here
discussed. Obviously, the ease or difficulty of simulation
experimentation will also depend on the operating system
and the operating procedure of a particular installation.

Implementations on other computers of each of the
simulation languages are given in line 10.

IV. I m p l i c a t i o n s for Users , L a n g u a g e
I m p l e m e n t e r s , a n d L a n g u a g e D e s i g n e r s

I t is apparent tha t none of the languages and packages
discussed here is the "best" for all purposes. However,
from this comparison, we can identify some implications
that are relevant for users, language implementers and
language designers.

1. USERS
The user would like a language that is best for formu-

lating his model. He would like a package that is best for
transforming the model into a computer program and for
running the model.

An analyst may formulate his problem as a continuous-
change model, a discrete change model, or a combination
of the two. The selection of a language for simulating
continuous-change models can be aided by study of the
comparisons given by Brennan and Linebarger (1964)
(1965) and by Clancy and Fineberg (1965). If the model is
a discrete-change model or a combination of the two types,
the analyst can choose a general purpose language or one
of the special purpose simulation languages. For model
formulation, the simulation languages have great advan-
tage because they help the definer of a simulation problem
crystallize his thinking and reduce model formulation
time and the programs are both documentation and a
means for communication.

The choice of a discrete simulation language and
package will depend to a large extent on the criteria tha t
are most important to a user:

1. If a user wants the most powerful simulation
package now generally available, he should use SIM-
SCRIPT. If he chooses SIMSCRIPT, however, a user would be
well advised to have expert help available because the
language is complex and the diagnostics are limited; many
have found the SIMSCmPT manual wanting. Furthermore,
a potential SIMSCRIPT user must know FORTRAN.

2. If the most important criterion is ease of learning
and use, GPSS should be chosen. GPSS is specifically
designed for new users, and no knowledge of computer
operation is assumed. Its use of flowcharts is considered

Volume 9 / Number 10 / October, 1966 Communications of the ACM 737

by many as being particularly attractive for non-pro-
grammers; a person familiar with flowcharts usually finds
GPSS not difficult.

3. If a user wishes to develop simulation capability by
adding to a presently available general purpose language,
he can add GAsP to FORTRAN, CLP to CORC, and SOL to
ALGOL. This approach will probably get him "on the air"
faster than incorporating SIMSCRIPT or CSL or whatever
into the operating system of his computer installation.
However, the user usually pays for this by accepting
restrictions in programming features and in size of prob-
lems that can be handled.

Usually, the user will be forced to use a simulation
package made available by his computing facility. The
management of the facility usually is responsible for
incorporating the package into the operating system, for
providing for the maintenance of the package, for fur:
nishing instruction in the language, and for assisting in the
use of the language. The computer center management
naturally tends to choose a package that is available for
the installed computer and its operating system. If there
is a choice, it will choose one that is consistent with its
operating philosophy and for which the implementation is
easy. A computer center is not likely to place as high a
value as an individual user on the value of the language
as a communication tool or on the minimization of problem
definition and programming time. The individual user
is thereby constrained in his choice of language. If he
chooses one that is not incorporated in the monitor system,
he pays in longer turnaround time, little or no pro-
gramming assistance and usually higher costs for com-
puter time because of setup and teardown charges.

I t may seem strange that we have not mentioned the
suitability of a particular language for a user's problem
as a criterion. There is as yet no conclusive evidence that
one simulation language is best for a variety of problems.
In fact the evidence so far seems to indicate the contrary:
a number of problems have been programmed with
approximately equal ease in several languages. 1

2. LANGUAGE IMPLEMENTERS
The factors which are primarily under the control of the

language implementer are those listed in Table III.5.
Many of the most serious deficiencies of present day
simulation packages, from the viewpoint of the user, are
caused by implementation rather than design. I t is there-
fore of considerable importance to improve language
implementation. The language implementer is often a
professional programmer who takes pride in writing
packages that use the least amount of memory space and

run in the least possible time. In doing so, he often intro-
duces restrictions and conventions that are bothersome
to the ultimate user.

We believe the greatest deficiency of presently available
packages is the lack of adequate documentation and
instructional material. Every language should have a basic
primer, a reference manual, worked-out examples and
exercises for the novice, a complete description of how to
get a program run, elementary hints for the novice, and
sophisticated hints for the experienced programmer. I t
may be that we should not expect such material from
language developers; users and groups of users may have
to do the job themselves. Whoever provides it, such
material is essential and needed.

Good diagnostic aids are particularly important in
simulation work because of the complexity of the models
being programmed and because of their stochastic nature.
Implementers must provide debugging aid during both
compilation and run time. However, because run time
efficiency is essential in almost all "production" simulation
work, we suggest that options be provided so that de-
bugging is available when needed but can be bypassed
when desired.

The size of problems that can be accommodated by a
particular implementation may depend to a great extent
on the way in which the use of external memories are
incorporated in the package. Implementers would be well
advised to consider a feature such as SIMSCRIPT'S "Record
Memory" and "Restore Status" or PL/ I ' s storage alloca-
tion statements, "ALLOCATE, FREE," "FETCH,"
and " D E L E T E . " They might also consider providing an
easily used capability for interruping a run so that it can
be continued at some later time.

One method used to increase the size of problem that
can be accommodated in fixed-word length machines is to
pack data in individual "words." Word packing makes
best use of memory but usually at a cost in running time.
The implementation should be designed so that any
running time penalty can be avoided whenever packing is
not actually used in a program. Dimension-free array
specification (such as in SIMSCmPT) and dynamic memory
allocation should be provided, both for efficiency and for
coding ease, again under user option. Provision should be
made for breaking up larger problems into smaller ones.

A number of simulation languages have been imple-
mented for more than one machine. There is every indica-
tion that this trend will continue and the languages like
SIMSCRIPT and GPSS will be available for most of the
larger commercially available computers. Such efforts
should be encouraged.

1 Special purpose simulation languages for specific applications
are in existence and have considerable support and justification.
See for example, MILI~RAN, Systems Research Group, Inc. (1964),
and UNISIM, Weber (1964). For an interesting application using
SIMSCRIPT for special job shop simulator problem, see Ginsberg,
Markowitz and Oldfather, "Programming by questionnaire"
(1965).

3. LANGUAGE DESIGNERS
Before a designer sets out to develop a new simulation

language, he should seriously consider whether a new
language is really necessary. A new language, in itself, is
not sufficient justification for existence; some demonstra-
tion of the usefulness of new features is necessary. Often,

738 C o m m u n i c a t i o n s o f the ACM Volume 9 / N u m b e r 10 / October, 1966

user complaints about existing languages are not with the
language per se but with certain features of the imple-
mentation: lack of documentation, lack of training aids,
difficulties in incorporating the package into a computer
center's monitor system, lack of adequate debugging
facilities, and so on. Such a realization, if valid, argues very
strongly for the design of a simulation based on a widely
available general purpose language. All the capability of
the general purpose language would be available; mecha-
nics of use would be straightforward. The new general
purpose language, PL / I , may be particularly attractive
for such applications because of its input-output features,
its asynchronous operations, its flexible data structures,
character and part-word data manipulating capability,
and its list processing and memory extending commands.

The desirable features of a simulation language that
have been noted in this comparison are summarized here
in the order they appear in Tables III .1-4:

(a) A language should provide for at least the five types
of variables: records, fields, groups of records, arrays or
system variables, and lists of record identifications. 5~Iore
flexibility in creating and manipulating data structures is
desirable because simulation models are becoming larger
and more complex. Multiple precision, Boolean, and
complex variables should be considered.

(b) Ability to create and destroy temporary entities
is useful and probably necessary.

(c) One improvement in simulation languages might
be in a rethinking about the fundamental nature of
discrete-event simulation. Whether the language is
oriented toward "events" or "activities" (or "Processes"
as in SOL and SI~ULA) will depend on the applications the
designer has in mind. I t may be possible to allow for all
three and let the user choose the appropriate orientation
when he writes his program. Another possible improvement
is in the capability for simulating parallel activities. If so,
there must be a method fo r dealing with simultaneous
events; one possibility is to allow subprograms to execute
either synchronously or asynchronously, as appropriate.
In simulating parallel processes, it is desirable to provide
for the ability to interrupt a process and to reinstate it at
a future time. Perhaps a language can be developed which
could combine the features of continuous and discrete
change languages.

(d) A timing or master routine should be provided,
but the user should have the ability to program his own
by "bypassing" or ignoring the package-supplied routine.

(e) Extensive list processing capability, as much as
tha t in SIMSCRIPT and more, is necessary in future simula-
tion languages. The language should permit complex tree
structures as well as simple lists.

(f) The language should have aids such as flowcharts
and decision tables to help in formulating complicated
simulation models.

(g) Recursion adds to language power and should be
available at user option. The ability to define procedures
and subprograms should be extended. I t is particularly
necessary to maintain compatibility between a user-
developed special programming language and the master
general purpose language.

(h) Commands to compile statistics easily must be
provided.

(i) Facility for generating variates having specified
and arbitrary probability distributions is needed.

(j) User experience indicates tha t the user should have
the option of a SIMSCRIPT-type flexible report generator
and a comprehensive standard summary. The standard
summary is necessary to save programming time. The
report generator is needed to produce reports that can be
used by management without transcription.

(k) Every possible aid to facilitate experimentation
with a simulation model should be provided: for multiple
runs, for changing parameter values, for changing data,
for analyzing results, for stopping and restarting runs and
for optimization.

RECEIVED January, 1966; REVISED June, 1966

V. References and Bibliography

1. References

ALLEN, R. G. D. (1965) Mathematical Analysis for Economists.
MacMillan & Co., New York.

BEACH, E. F. (1957) Economic Models, an Exposition. John
Wiley & Sons, New York.

BRENNAN, R. D., AND LINEBARGER, R. (1964) A survey of digital
simulation. Simulation 3, No. 6.

BRENNAN, R. D., AND LINEBARGER, R. (1965) An evaluation of
digital analogue simulator languages. Proc. IFIP Congress.
Vol. 2.

CHEN, G. K. C. (1964) Private communication.
CLANCY, J. J., AND FINEBERG, MARK S. (1965) Digital simulation

languages: a critique and a guide. Proc. AFIPS Fall Joint
Comput. Conf., Vol. 27, pp. 23-36.

FEDDERSEN, A. P., AND O'GRADY, W. D. (1965) "Simulation: A
decision device for resource allocation (Abs.). Bull. Oper. Res.
Soc. Am., 13 Suppl. 2, p. B168.

FORRESTER, J. W. (1961) Industrial Dynamics. MIT Press, Cam-
bridge, Mass., and John Wiley & Sons, New York.

FREEMAN, D. E. (1964) Programming languages ease digital
simulation. Contr. Eng. pp. 103-6a

GINSBERG, A. S. (1965) Simulation programming and analysis
of results. P-3141, RAND Corp., Santa Monica.

GINSBERG, A. S., MARKOWITZ, H. M., AND OLDFATHER, P. M.
(1965) Programming by questionnaire. RM-4460-PR, RAND
Corp., Santa Monica.

IBM Corporation, Job shop simulator.
IBM Corporation (1966) Bibliography on simulation. Rep. 320-

0924-0.
KRASNOW, H. S., AND MERIKALLIO, R. (1963) The past, present

and future of general simulation languages. Man. Sci. 11,236-67.
LASKI, J. G. (1965) On the time structure in Monte Carlo simula-

tions. Oper. Res. Quart. 16: 3, 329-340.

Volume 9 / Number 1O / October, 1966 Communications of the ACM 739

MORGENTHALER, G. W. (1961) The theory and application of
simulation in operations research. In Progress in Operations
Research, Russel L. Ackoff (ED.) John Wiley & Sons, New
York, pp. 363--419.

MURPHY, J. G. (1964) A comparison of the use of the GPSS and
SIMSCRIPT simulation languages in designing communications
network, Tech. Mem. TN--03969, Mitre Corp., Bedford, Mass.

SCRAMSTAD, H. K. (1962) Combined analog-digital techniques in
simulation. Advances in Computers, Vol. 3. Academic Press,
New York, pp. 275-298.

TOCHER, K. D. (1965) Review of simulation languages. Oper.
Res. Quart. 15, 2, 189-218.

TUSTIN, A. (1953) The Mechanism of Economic Systems. Harvard
U. Press, Cambridge, Mass.

YOUNG, KAREN (1963) A user's experience with three sim~llation
languages (GPSS, SIMSCRIPT, and SIMPAC). TM-1755/
000/00, Systems Development Corp., Santa Monica.

2. Selected Bibliography on Simulation

BLAKE, K., AND GORDON, C. (1964) Systems simulation with
digital computers," IBM Sys. J. 8, 3, 14-20.

BRENNEN, MICHAEL E. (1963) Selective sampling--a technique
for reducing sample size in simulation of decision-making prob-
lems. J. Ind. Engng. 14, 291-96.

BURDICK, D. S., AND NAYLOR, W. (1966) Design of computer
simulation experiments for industrial systems. Comm. ACM 9,
5, 329-338.

CLARK, C. E. (1961) Importance sampling in Monte Carlo
analyses. Oper. Res., 9, 603-20.

CONWAY, R. W. (1963) Some tactical problems in digital simula-
tion," Man. Sci. 10, 47-61.

DEAR, R. E. (1961) Multivariate analysis of variance and co-
variance for simulation studies involving formal time series.
Dec. FN-5644, System Development Corp., Santa Monica, 60
pp.

EHRENFELD, S., AND BEN-TUBIA, S. (1962) The efficiency of
statistical simulation procedures. Technometrics 4, 257-275.

FISHMAN, G. S., AND KIVIAT, P. H. (1965) Spectral analysis of
time series generated by simulation models. RM-4393-PR,
RAND Corp., Santa Monica, 73. pp.

FISHMAN, G. S. (1966) Problems in the statistical analysis of
simulation experiments: The comparison of means and the
length of sample records. RM-4880-PR, RAND Corp., Santa
Moniea, 22 pp.

GALLIHER, HERBERT P. (1959) Simulation of random processes.
Notes on Operations Research. Oper. Res. Center, MIT, Cam-
bridge, Mass., pp. 231-250.

GEISLER, MURRAY A. (1962) The sizes of simulation samples re-
quired to compute certain inventory characteristics with stated
precision and confidence. RM-3242-PR ASTIA no. AD, 286
796, RAND Corp., Santa Monica; also Man. Sci. 10, (1964),
261-86.

HAMMEn, C. (1961) Computers and simulation. Cybernetica 4,
4; 1 (t962), 50.

tIERMAN, H. H. (1961) Simulation: a survey. 1961 Western Joint
Cemput. Conf., 1.1, pp. 1-9.

HAWTHORNE, G. B., JR. (1964) Digital simulation and modeling.
Datamalion, I0, 25-29.

HOGGATT, A. C., AND BALDERSTON, F. E. (1964). Symposium on
Simulation Models: Methodology and Applications to the Be-
havioral Sciences. South-Western Publishing Co., Cinn. Ohio.

JACOBY, J. E., AND HARRISON, S. (1962) Multi-variable experi-
mentation and simulation models. Naval Res. Logistics Quart.
9,121-136.

Lawrence Radiation Lab. (1964) Monte Carlo methods, a bib-
liography covering the period 1949 to 1963. UCRL-T823D, U.
of California, 116 pp.

McARTHUR, D. S. (1961) Strategy in research--alternative
methods for design of experiments. IRE Trans. Eng. Man.
EN-8, 1, 34-40.

SCHENK, H., JR. (1963) Computing 'AD ABSURDUM.' The Na-
tion, June 15.

SHUBIK, MARTIN (1960) Bibliography on simulation, gaming,
artificial intelligence and allied topics. J. Am. Slat. Assoc. 55,
7366--751.

SMITH, E. C., JR. (1962) Simulation in systems engineering.
IBM Sys. J. 1, 33-50,

THOMAS, CLAYTON J. (1961) Military gaming. Progress in Opera-
lions Research, Vol. 1. John Wiley & Sons, Inc., New York,
pp. 421-464.

TOCHER, K. D. (1963). The Art of Simulation. D. Van Nostrand
Co., Inc., Princeton, N. J.

U. of Michigan, Proceedings (1960) Symposium on digital simu-
lation techniques for predicting the performance of large scale
systems, May 23-25, Ann Arbor, Mich., Rep. No. 2354-33X.

YAGIL, S. (1963) Generation of input data for simulations. IBM
Sys. J. 2, 288-296.

3. Simulation Languages: Manuals and Specifications

CLP :
CONWAY, R. W., MAXWELL, W. L., AND WALKER, R. J. (1963)

An Instruction Manual for CORC--The Cornell Computing
Language. Cornell U., Ithaca, N. Y.

MAXWELL, W. L., AND CONWAY, R. W. (1963) CPL Preliminary
Manual. Dept. of Indus. Eng., Cornell U.,Ithaca, N. Y., No. 3,
9580, October, 22 pp.

WALKER, W. E., AND DELFAUSSE, J. J, (1964) The Cornell list
processor. Cornell U., Ithaca, N. Y.

CSL:
BUXTON, J. N., AND LASKI, J. G. (1962) Control and simulation

language. Esso Petroleum Co., Ltd., and IBM United Kingdom,
Ltd., London, England, August. Reprinted in the Comput. J.
5, 3 (1964).

IBM United Kingdom, Ltd. and Esso Petroleum Co., Ltd. (1963)
Control and simulation language--introductory manual. March,
39 pp.

IBM United Kingdom, Ltd. and Esso Petroleum Co., Ltd. (1963)
Control and simulation language--reference manual. March,
95 pp.

DYNAMO:
PuGH, A. L., l I I (1961) DYNAMO User's Manual. MIT Press,

Cambridge, Mass.

ESP:
WILLIAM, J. W. J. (1964) E.S.P.--the Elliot simulator package.

Comput. J. 6, 328-331.

FORSIM IV:
FAMOLARI, E. (1964) FORSIM IV simulation language user's

guide. ESD-TDR-64-108, The MITRE Corp., May, 48 pp.

GASP:
BEL]KIN, J., AND RAO, M. R. (1965) GASP users' manual. United

States Steel Corp., Appl. Res. Lab., Monroeville, Pa.
KIVIAT, P. J. (1963) GASP--a general activity simulation pro-

gram. Proj. No. 90.17-019 (2), United States Steel Corp., Appl.
Res. Lab., Monroeville, Pa.

KIVIAT, P. J., AND COLKER, A. (1964) GASP-a general activity
simulation program. P-2864 RAND Corp., Santa Monica.

GPSS:
EFRON, R., AND GORDON, G. (1964) A general purpose digital

simulator and examples of its application: Part I--description
of the simulator. IBM Sys. J. 8, 1, 22-34.

740 Communica t ions of the ACM Volume 9 / Number 10 / October, 1966

GORDON, G. (1962) A general purpose systems simulator, IBM
Sys. J. 1, Sept., 18-32.

GORDON, G. (1961) A general purpose systems simulator pro-
gram. 1961 Eastern Joint Computer Conf., pp. 87-104.

HUROWITZ, M. (1965) General purpose systems simulator II,
GPSS II on the UNIVAC 1107, preliminary user manual. Univac
Div. of Sperry Rand Corp.

IBM Corporation. (1963) Reference manual, General Puipose
Systems Simulator II. B 20-6346 149 pp.

GSP:
TOCHER, K. D. Handbook of the general simulation program.

Vol. I (revised) and Vol. II. Dept. Operat. Res. Cybernetics
Rep. 77/ORC 3/Tech. and Rep. 88/ORC 3 Tech, The United
Steel Companies, Ltd., Sheffield, England.

TOCHER, K. D., AND OWEN, D. G. (1960) The automatic pro-
gramming of simulators. Proc. Second Intern. Conf. Operat. Res.
English Universities Press, 1960, p. 50.

MILITRAN:
Systems Research Group, Inc. (1964) MILITRAN reference

manual.
Systems Research Group, Inc. (1964) MILITRAN programming

manual.
Systems Research Group, Inc. (1964) MILITRAN operation

manual.

OPS:
GREENBERGER, M. (1964) The OPS-1 manual. Project MAC,

MIT, Cambridge, Mass., MAC--TR-8.
GREENBERGER, M. (1964) A new methodology for computer

simulation. Project MAC, MIT, Cambridge, Mass., MAC-
TR-13.

GREENBERGER, M., JONES, M. M., MORRIS, J. H., JR., AND NESS,
D. N. (1966) On-Line Computation and Simulation: The OPS-3
System. MIT Press, Cambridge, Mass.

QUIKSCRIPT:
TONGE, F. M., .KEELER, P., AND NE'WELL, A. (1965) QUIK-

SCRIPT, a SIMSCRIPT-like language for the G-20. Comm.
1959 ACM 8, 6, 350-354.

SIMCOM:
SANBORN, T. G. (1959) "SIMCOM--the simulation compiler.

Eastern Joint Comput. Conf., pp. 139.

SIMPAC:
BENNETT, R. P., COOKEY, P. n . , HOVEY, S. W., KRIBS, C. A., AND

LACKNER, M. R. (1962) SIMPAC user's manual. TM-602/
000/00, Sys. Develop. Corp., Santa Monica, April 15.

LACENER, M. R. (1962) Toward a general simulation capability.
1962 Western Joint Comput. Conf. p. 1-14.

SIMSCRIPT:
DIMSDALE, B., ANn MARKOWITZ, H. M. (1964) A description of

the SIMSCRIPT language. IBM Sys. J. 3, 1, 57-67.
GEISLER, M. A., AND MARKOWITZ,]~. M. (1963) A brief review

of SIMSCRIPT as a simulating technique. RM-3778-PR, RAND
Corp., Santa Monica.

HAUSER, B., AND MARKOWITZ, H.M. (1963) Technical appen-
dix on the SIMSCRIPT simulation programming language.
RM-3813-PR, RAND Corp., Santa Monica.

MARKOWITZ, H., HAUSNER, B., AND KARR, H. (1962) SIM-
SCRIPT: A simulation programming language. RAND Mem.
RM-3310-PR, RAND Corp., Santa Monica; also published,
Prentice Hall, Englewood Cliffs, N. J.

SIMULA:
AMIRY, A. P., AND TOCHER, K. D. (1963) New developments in

simulation. Proe. Third Internat. Conf. Operat. Res., pp. 832,
658.6, 161.

DAHL, 0. J., AND NYGAARD, K. (1963) Preliminary presentation
of the SIMULA language (as of May 18th, 1963), and some
examples of network descriptions. Norwegian Comput. Center,
Forsknongsveien, 1B, Oslo, Norway.

DAHL, 0. J., AND NYGAARD, K. (1965) SIMULA: A language for
programming and description of discrete event system, intro-
duction and user's manual. Norwegian Comput. Center,
Forsknongsveien 1B, Oslo, Norway.

NYGAARD, KRISTEN. (1963) A status report on SIMULA.--a
language for the description of discrete event network. Proc.
Third Intern. Conf. Operat. Res., p. 825, 658.6, 161.

NYGAARD, K. (1962) SIMULA--An extension of ALGOL to the
description of discrete event networks. Paper given at the
IFIPS Conference, Munich, Aug. 1962.

NYGAARD, K., (1963) SIMULA--an extension of ALGOL to the
description of discrete-event networks. Information Processing,
1962; Proc. IFIP Congress 62, North-Holland Publishing Co.,
Amsterdam, pp. 520-522.

SOL:
KNUTH, DONALD E., AND MCNELEr, J. L. (1963) SOL--A sym-

bolic language for general-purpose systems simulation. 45 pp.
KNUTH, DONALD E., AND MCNELEY, J. L. (1964) SOL--A sym-

bolic language for general purpose systems simulation. Trans.
IEEE pp. 401-414.

KNUTH, DONALD E., AND McNELEY, J. L. (1964) A formal defini-
tion of SOL. Proc. IEEE.

UNISM:
WEBER, J. H., AND GIMPELSON, L. A. (1964) UNISM--A simula-

tion program for communications networks. Proc. AFIPS
1964 Fall Joint Comput. Conf., pp. 233-249.

Volume 9 / Number 10 / October, 1966 Communica t ions of the ACM 741

