Check for
Updates

for L := 0 step 1 until Lmaz do

if abs(F[L]—Fapproz[L]) > epsilon X abs(F[L]) then

begin

for k := 0 step 1 until Lmax do Fapprozlk] := Flk];
nul ;= mul := nu; nu = nu + 10;
if nu < 300 then go to LO else
begin
outstring (1, ‘convergence difficulty in Coulomb’);
go to L5
end

end

end;

t1 := 6.2831853072 X eia;

comment The constant 27 in the preceding statement must be

supplied more accurately if more than 11 significant digits are

desired in the final results;

if abs(tl) < 1 then

begin

2:=s8:=1; L:=1;

L4: L =L+ 1;

12 1= {1 X £2/L; s:= s+ 12;

if abs(i2) > epsilon X abs(s) then go to I4;

s 1= sqri(1/s)

end

else

s 1= sqri(tl/(exp({1)—1));

F[0] := s X F[0];

for L := 1 step 1 until Lmazr do

begin

s 1= (L—.5) X sqrt(L 1 2+eta2) X s/(LX (L+.5));

FIL] := s X F[L]

end;

L5: end Coulombd;

comment The procedure Coulomb was tested on the CDC 3600
computer, with the procedure minimal in single precision (un-
less stated otherwise). The tests included the following:

(i) Generation of ®1(1, p) = [CL(n)p ™" (n, p), L = 0(1)21,
to 8 significant digits (d=8) for 5 = 0, —5(2)5, p = .2,
1(1)5. The results were in complete agreement with values
tabulated in [4].

(ii) Computation of Fe(n, ), Fo'(n,p) = (d/dp}Fe(n,p) to 6
significant digits for 5 = 0(2)12, p = 0(5)40, using
Fy = (o7 +n)Fy — (1494, . Comparison with [5]
revealed frequent discrepancies of one unit in the last
digit. In addition, beginning with » = 8, the results became
progressively worse for p = 30, 35, 40, being correct to
only 2-3 digits when 4 = 12, p = 40. With the procedure
minimal in double precision, however, these errors dis-
appeared.

(iii) Computation to 8 significant digits of Fo(n, p), Fo'(n, p) for
p = 29, p = .5(.5)20(2)50. The results agreed with those
published in {1} for p £ 16, but became increasingly in-
accurate for larger values of p. Complete agreement was
observed, however, when the procedure minimal was
operating in the double-precision mode;
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CERTIFICATION OF ALGORITHM 257 [D1]

HAVIE INTEGRATOR [Robert N. Kubik, Comm. ACM
8 (June 1965), 381]

Kennere Hiustrom (Recd. 28 Feb. 1966, 29 Apr. 1966
and 15 July 1966)

Applied Mathematics Division, Argonne National Labora-
tory, Argonne, Illinois

Work performed under the auspices of the U.S. Atomic Energy Commission,

M Havie Integrator was coded in CDC 3600 Forrran. This rou-
tine and a ForrranN-coded Romberg integration routine based
upon Algorithm 60, Romberg Integration [Comm. ACM 4 (June
1961), 255] were tested with five and four integrands, respectively.

The results of these tests are tabulated below. (The ALgoL-
coded Havie routine was transcribed and tested for the two
integrands used by Kubik, with identical results in both cases.)

In the following table, A is the lower limit of the interval of
integration, B is the upper limit, EPS the convergence criterion,
VI the value of the integral and VA the value of the approxima-
tion,

Number
of
Integrand 4] B EPS VI Routine V4 Punc-
Evalu-
ations
cosz 0 w2 107 1.0 Havie 0.9999999981 1
Romberg  1.000000000 17
= 0 4.3 108  0.886226024 Havie 0.886226924 17
Romberg  0.886336925 65
Inz 1 10 10~ 14.0258509  Havie 14. 02585084 65
Romberg  14.02585085 85

(@)
—py) 0 20 107 5707276 Havie 5.770724810 32,769
ot Romberg  5.770724810 16,385
cos (4z) 0 T 1078 0.0 Havie 3.1415926536 38

8 Since in the Havie procedure, the sample points of the interval, chosen for
function evaluation, are determined by halving the interval and are, therefore,
function-independent, there are functions for which the convergence criterion is
satisfied before the requisite accuracy is obtained. An example is the integrand
f(x) = cos (4z) integrated over the interval [0, 7]. The value obtained from the
routine is = 7. The true value of the integral is 0.

This inherent limitation applies to all integration algorithms that obtain sample
points in a fixed manner.

REMARK ON ALGORITHM 286 [H]
EXAMINATION SCHEDULING [J. E. L. Peck and M.
R. Williams, Comm. ACM 9 (June 1966), 433].

The 6th and 7th lines from the end of the procedure should be
corrected by the insertion of a begin end pair so that they read
if row [7] < 0 then

begin outinteger (1, ©); outinleger (1, row [[1); outinteger

(1, wld])

end

1966 Algorithms Index will appear in the
December issue of Communications.
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