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Automatic Integration of a
Function with a Parameter
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Brown University,t Providence, Rhode Island

Two efficient methods for automatic numerical integration
are Romberg integration and adaptive Simpson integration.
For integrands of the form f{x)g(x, @) where a is a parameter,
it is shown that Romberg’s method is more efficient. A FORTRAN
program shows how to achieve this greater efficiency.

The use of automatic integration schemes has proven
very attractive to anyone who has had to evaluate a defi-
nite integral on a computer. The user need only prepare a
program for the integrand and specify the limits of integra-
tion and a tolerance e to be reasonably certain that the
automatic integration program will compute a value for
his integral that is correct to within the given tolerance e.
If his tolerance is too small, the program will inform him
of this and give him some information which will enable
him to decide what to do next, such as subdividing the
original interval of integration or accepting a larger error.
Of course, it is easy to fix up examples which will “beat”
any of these schemes. However, since these almost never
oceur in practice, we can safely use these schemes.

There are two principal methods of automatic integra-
tion which have proved themselves in practice to be both
accurate and efficient in terms of the number of functional
evaluations needed to achieve a specified accuracy. One
method is Romberg integration, which has been the sub-
ject of a series of investigations by Bauer, Stiefel,
Rutishauser and others [2, 3, 5-7, 10, 12, 13, 20-26]. Pro-
grams exist both in Areor [1, 2, 4-6, 11, 14] and in
ForTrRAN [8]. The other method of automatic integration
is adaptive Newton-Cotes integration, which has been
brought to the attention of the public only in the form of
algorithms published in the Algorithms Section of the Com-
munications of the ACM [15, 16, 18, 19]. Since the general
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Newton-Cotes algorithm was given in recursive form [19]
and whereas the adaptive Simpson’s rule integration was
also given in nonrecursive form [18] suitable for translating
into a ForTRAN program, our discussion is limited to the
latter. There has also been an attempt to combine Rom-
berg integration with an adaptive scheme [9, 21]. However
this method requires more information to be given by the
user and appears to be less efficient than the other schemes.

A principal difference between Romberg integration and
adaptive integration is that the former is a global scheme
and the sequence of evaluation points for the integrand is
independent of the nature of the integrand although, of
course, the number of such points will depend very much
on its form. On the other hand, the adaptive scheme is
local, and hence, both the sequence and the number of
evaluation points depend on the nature of the integrand.

If nothing is known about the integrand, adaptive inte-
gration is preferred to Romberg integration because of its
ability to handle more efficiently functions which have
singularities themselves or in their derivatives [27]. In fact,
the adaptive Simpson’s rule integration routine is so good
that it even integrated correctly over the singularity in an
integrand whose integral is convergent [17]. It is not the
purpose of this paper to discuss the relative merits of these
two integration schemes in general and we will limit our-
selves to listing some typical examples of Romberg and
adaptive Simpson integration in Table 1.

There is one situation where the use of Romberg inte-
gration presents a considerable saving in computation
time. This is the case where the integrand is of the form
h(z, @) = f(x)g(x, ) where « is a parameter, and interest
centers in the integral for a series of values of «. More gen-
erally, h(x, @) may contain several subexpressions which
do not depend on «. However, the case h(z,a) =
Flx)g(z, @) suffices to illustrate the point. In the adaptive
case, where the sequence of evaluation points depends on
the integrand h(z, &), it is necessary to compute the entire
integrand at all integration abscissae for each new value
of the parameter «. Alternatively, each new abscissa can
be stored in an array X and the corresponding value of f(x)
in a second array F. Then, it can be determined whether
each value of z appears in the array X and if it does, f(z)
can be extracted from F. Otherwise, f(z) is computed and
then z and f(z) added to the arrays X and F, respectively.
This may be worthwhile if f(z) is such a complicated funec-
tion that its evaluation consumes much more time than a
typical search in the randomly arranged array X. There
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are other ways in which X may be arranged but these also
are time consuming. It is clear that the programming in-
volved in this alternative is nontrivial. On the other hand,
in the Romberg case, we need to compute f(x) only once
at each integration abscissa, using previously computed
values when they exist and computing new values as
needed, without having to store the absecissae and without
having to search an array each time to determine whether
a given abscissa appears in it. The total number of points
at which f(z) is computed is equal to the maximum num-
ber of points needed to integrate h(x, &). A possible
ForRTrRAN program to do this is given in Figure 1 where
only the pertinent portions of the program are given.
QUAD is a subroutine whose parameters are the endpoints
of integration A, B and a tolerance EPS and which re-
quires the existence of a function routine FUN (X) to com-
pute the integrand. There is also an upper limit M to the
number of points computed.

This scheme was used successfully in the computation
of the following integrals arising in the solution of a prob-
lem in radiative transfer,

FI(a) = [t27* exp (—R/2)Es(aa’) du

for « = 0(.1)3 where B = 10, 12 and Ej(z) is the 3rd
exponential integral.

ReceElvED JUNE, 1966; REVISED JULY, 1966

DIMENSION EM), FI(N)
COMMON ALPHA, LI, L, E

LI=0

ALPHA = ALPHAI
DO1I=1,N
L=1

FI({I) = QUAD(A, B, EPS)
1 ALPHA = ALPHA 4 ALPHA2

END

FUNCTION FUN (X)
DIMENSION E(M)
COMMON ALPHA, L1, L, E
IF (L—L1) 1, 1, 2

2 Ll=L1+1
E(Ll) = F(X)

1 FUN = E(L)*G(X, ALPHA)
L=L+1
RETURN
END

FUNCTION F(X)
RETURN

END

FUNCTION G(X, ALPHA)

RETURN
END

FiG. 1. Program for the computation of FI(a) = f’; fl@)g(z, a)de
for « ranging from al to el 4+ (n—1)a2 in steps of «2.
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TABLE I. ExamprLes oF TypicAL ROMBERG AND
ApAPTIVE SiMPSON INTEGRATION

. Exact Value of| Romberg  |Number Adoptive |y iber
Function f(x) J 1i@) dx . Zallg_e,’f %—5 Poioisd . f%,%?:;gz-s Potiisb
zlf2 0.66666667| 0.66653263] 65 | 0.66665866] 55
0.66666633| 4097 | 0.66666655 199
32 0.40000000] 0.40000854] 17 | 0.40001016{ 19
0.39999995| 129 | 0.39999992| 91
1 0.69314718| 0.69314739 9 | 0.69314743| 19
14z 0.69314706| 33 | 0.69314711f 55
1 0.86697299| 0.86697292| 17 | 0.86697326| 19
14 2t 0.86697300 65 | 0.86697293| 67
1 0.37988551| 0.37988544 9 | 0.37988543| 19
1+ e 0.37988546| 17 | 0.37988543| 19
z 0.77750463| 0.77750448 9 1 0.77750459| 19
er — 1 0.77750453 17 | 0.77750459| 19
2 1.1547005 | 1.1547003 65 | 1.1546288 | 163
2 - sin 10rz 1.1547004 | 257 | 1.1547002 | 883

¢ The minimum number of points is 9 and the number of points
is always of the form 2741

b The minimum number of points is 19 and the number of
points is always of the form 74-12%
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Automatic Error Bounds on Real
Zeros of Rational Functions

RoserT H. DARGEL,* FrRANK R. L0SCALZO AND
TrOMAS H. WiTT
University of Wisconsin,T Madison, Wisconsin

A procedure for implementing an interval arithmetic version
of the Newton-Raphson method is proposed. The procedure
requires only a starting interval over which the zeros of a given
rational function are to be located. The method avtomatically
provides bounds for roundoff error.

I. Introduction

The Newton-Raphson method for determining zeros is a
well-known iterative technique. Moore [3, Sec. 7-2] has
proposed an interval arithmetic version which will ap-
proximate all the real zeros of a rational function of one
variable in a given interval while also bounding roundoff
error. A procedure is described for implementing Moore’s
method which has been programmed and tested on the
CDC 1604 computer at the University of Wisconsin Com-
puting Center.

II. Theoretical Background

An interval number [a, b] is a set of real numbers,
{z]a =2 = b}.If [a, b] and [¢, d] are two interval numbers,
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and if * denotes one of the real arithmetic operations -,

- or -+, then the interval arithmetic operations are
deﬁned by
la,b] #[c,d] = {z*xyla=2z<b c=sy=d,

except that [a, b] <+ [c, d] is not defined for 0 € [¢, d]. The
following formulas, which are used in [4], satisfy the
definition:

la, b} + [c, d} = [a+c, b+d]

la, b] — [¢, d] = [a—d, b—(]

[a, b] - [c, d] = [min(ac, ad, be, bd), max(ac, ad, be, bd)]
(a, b] + [c, d] = [a, b] - [1/d, 1/c],

where the division operation requires 0 ¢ [c, dJ.

Rounding in interval arithmetic is executed such that
the result of any interval arithmetic operation is guaran-
teed to contain the true answer. This is accomplished by
rounding negative left endpoints and positive right end-
points, but not rounding positive left endpoints or negative
right endpoints. Thus, the resultant interval is always
slightly enlarged by the rounding process.

A function F(X), where X is an interval, is defined to
be a rational interval extension of a real rational function
flx) ¥ F(X) D {f(z) |z € X} and F([z, z]) = f(x). Simi-
larly, F'(X) is an interval extension of f'(z). Furthermore,
let m(X) be the midpoint of the interval X. Then Moore’s
method defines the function

N(X) = m(X) — (f(m(X))/F (X))
and an interval extension of the Newton-Raphson method
is provided by the recursion relation, X+ = N(X,) N X, .
Moore [3, Lemma 7-2] has also shown that if X con-
tains a zero of f(x), then N(X) also contains that zero.

Conversely [3, Lemma 7-3], if X N N(X) is empty, then
X does not contain a zero of f(z).
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