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Two efficient methods for automatic numerical integration 
are Romberg integration and adaptive Simpson integration. 
For integrands of the form f(x)g(x, a} where a is a parameter, 
it is shown that Romberg's method is more efficient. A FORTRAN 
program shows how to achieve this greater efficiency. 

The use of automatic integration schemes has proven 
very  attractive to anyone who has had to evaluate a deft- 
nite integral on a computer. The user need only prepare a 
program for the integrand and specify the limits of integra- 
tion and a tolerance E to be reasonably certain tha t  the 
automatic integration program will compute a value for 
his integral tha t  is correct to within the given tolerance e. 
I f  his tolerance is too small, the program will inform him 
of this and give hin~ some information which will enable 
him to decide what  to do next, such as subdividing the 
original interval of integration or accepting a larger error. 
Of course, it is easy to fix up examples which will "bea t"  
any of these schemes. However, since these almost never 
occur in practice, we can safely use these schemes. 

There are two principal methods of automatic integra- 
tion which have proved themselves in practice to be both 
accurate and efficient in terms of the number of functional 
evaluations needed to achieve a specified accuracy. One 
method is Romberg integration, which has been the sub- 
ject of a series of investigations by  Bauer, Stiefel, 
Rutishauser and others [2, 3, 5-7, 10, 12, 13, 20-26]. Pro- 
grams exist both in ALGOL [1, 2, 4--6, 11, 14] and in 
FORTRAN [8]. The other method of automatic integration 
is adaptive Newton-Cotes integration, which has been 
brought to the at tention of the public only in the form of 
algorithms published in the Algorithms Section of the Com- 
munications of the ACM [15, 16, 18, 19]. Since the general 
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Newton-Cotes algorithm was given in recursive form [19] 
and whereas the adaptive Simpson's rule integration was 
also given in nonreeursive form [18] suitable for translating 
into a FORTRAN program, our discussion is limited to the 
latter. There has also been an a t tempt  to combine Rom- 
berg integration with an adaptive scheme [9, 21]. However 
this method requires more information to be given by  the 
user and appears to be less efficient than the other schemes. 

A principal difference between Romberg integration and 
adaptive integration is that  the former is a global scheme 
and the sequence of evaluation points for the integrand is 
independent of the nature of the integrand although, of 
course, the number of such points will depend very  much 
on its form. On the other hand, the adaptive scheme is 
local, and hence, both the sequence and the number of 
evaluation points depend on the nature of the integrand. 

If  nothing is known about the integrand, adaptive inte- 
gration is preferred to Romberg integration because of its 
ability to handle more efficiently functions which have 
singularities themselves or in their derivatives [27]. In  fact, 
the adaptive Simpson's rule integration routine is so good 
that  it even integrated correctly over the singularity in an 
integraud whose integral is convergent [17]. I t  is not the 
purpose of this paper to discuss the relative merits of these 
two integration schemes in general and we will limit our- 
selves to listing some typie~d examples of Romberg and 
adaptive Simpson integration in Table I. 

There is one situation where the use of Romberg inte- 
gration presents a considerable saving in computation 
time. This is the case where the integrand is of the form 
h(x, a) = f(x)g(x, a) where a is a parameter,  and interest 
centers in the integral for a series of values of a. More gen- 
erally, h(x, a) may contain several subexpressions which 
do not  depend on a. However, the case h(x, a) = 
f(x)g(x, a) suffices to illustrate the point. In  the adaptive 
ease, where the sequence of evaluation points depends on 
the integrand h(x, a), it is necessary to compute the entire 
integrand at all integration abscissae for each new value 
of the parameter  a. Alternatively, each new abscissa can 
be stored in an array X and the corresponding value o f f (x )  
in a second array F. Then, it can be determined whether 
each value of x appears in the array X and if it  does, f (x)  
can be extracted from F. Otherwise, f (x)  is computed and 
then x a n d f ( x )  added to the arrays X and F, respectively. 
This may be worthwhile if f (x) is such a complicated func- 
tion that  its evaluation consumes much more time than a 
typical search in the randomly arranged array X. There 
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are  o the r  ways  in which  X m a y  be  a r r anged  b u t  these  also 
are  t ime  consuming.  I t  is clear  t h a t  the  p r o g r a m m i n g  in-  
vo lved  in th is  a l t e r n a t i v e  is non t r iv ia l .  On the  o the r  hand ,  
in the  R o m b e r g  case, we need  to  compu te  f ( x )  on ly  once 
a t  each in t eg ra t ion  abscissa,  us ing  p rev ious ly  c o m p u t e d  
va lues  when  t h e y  exist  and  c o m p u t i n g  new va lues  as 
needed,  w i thou t  hav ing  to  s tore  the  abscissae  a n d  w i t h o u t  
hav ing  to search an  a r r a y  each t ime  to de t e rmine  w h e t h e r  
a g iven abscissa  appea r s  in it .  T h e  t o t a l  n u m b e r  of po in t s  
a t  which  f ( x )  is c o m p u t e d  is equa l  to the  m a x i m u m  n u m -  
be r  of po in t s  needed  to  i n t eg ra t e  h(x,  a ) .  A poss ible  
FORTnAN p r o g r a m  to do th is  is g iven  in F igu re  1 where  
on ly  t he  p e r t i n e n t  po r t ions  of the  p r o g r a m  are  given.  
Q U A D  is a subrou t ine  whose p a r a m e t e r s  a re  the  endpo in t s  
of i n t eg ra t ion  A,  B and  a to le rance  E P S  a n d  which  re- 
qui res  the  exis tence of a funct ion  rou t ine  F U N ( X )  to  com- 
p u t e  the  in t eg rand .  T h e r e  is also an  u p p e r  l imi t  M to the  
n u m b e r  of po in t s  computed .  

Th is  scheme was used  successful ly  in the  c o m p u t a t i o n  
of the  fol lowing in tegra ls  ar is ing in the  so lu t ion  of a p rob -  
l em in r ad i a t i ve  t ransfer .  

F f ( a )  = fo 1 x -4 exp ( - - R / x ) E 3 ( a x  ~) dx 

for a = 0 ( . 1 )3  where  R = 10, 12 a n d  Ea(x)  is the  3rd  
exponen t ia l  in tegra l .  

RECEIVED JUNE, 1966; REVISED JULY, 1966 

DIMENSION E(M), FI(N)  
COMMON ALPHA, LI, L, E 

LI  = 0 
ALPHA = ALPHA1 
DO i I = i, N 
L=i 
FI(I) = QUAD(A, B, EPS) 
ALPHA = ALPHA + ALPHA2 

END 

FUNCTION FUN(X) 
DIMENSION E(M) 
COMMON ALPHA, L1, L, E 
IF  (L--L1) 1, 1, 2 

2 Li=Li+i 
E(Li) = F(X) 

1 FUN = E(L)*G(X, ALPHA) 
L=L+i 
RETURN 
END 

FUNCTION F(X) 

RETURN 
END 

FUNCTION G(X, ALPHA) 
. . .  

RETURN 
END 

F,o. 1. Program for the computation of FI(a) = fb f(x)g(x, a) dx 
for a ranging from ,~1 to a l  + (n--1)a2 in steps of ~2. 

TABLE I .  EXAMPLES OF TYPICAL ROMBERG AND 

ADAPTIVE SIMPSON INTEGRATION 

Function f(x) 

~.1/2 

X312 

1 

1 

l + x  4 
1 

i + e ~  

ex -- 
2 

2 + sin 107rx 

Exa*t Value of 

0.66666667 

0.40000000 

0.69314718 

0.86697299 

0.37988551 

0.777504631 

1.1547005 

Romberg 
Value for 
= 10 -8, 10 -6 

0.66653263 i 
0.66666633 
0.40000854i 
0.39999995 
0.69314732 
0.6931470¢ 
0.8669729~ 
0.8669730( 
0.37988544 
0.3798854¢ 
0.77750448 
0.77750453 
1.1547003 
1.1547004 

Number 

P°in°ftsa I 

65 
4097 

17 
129 

9 
33 
17 
65 
9 

17 
9 

17 
65 

257 

Adaptive Numbs  
Simpson 
Valuer or of 

e = 10 -~, 10 -6 F°i~sb 

0.66665866 55 
0.66666655 199 
0.40001016 19 
0.39999992 91 
0.69314743 19 
0.69314711 55 
0.86697326 19 
0.86697293 67 
0.37988543 19 
0.37988543 19 
0.77750459 19 
0.77750459 19 
1.1546288 163 
1.1547002 883 

The minimum number of points is 9 and the number of points 
is always of the form 2"~+1 

b The minimum number of points is 19 and the number of 
points is always of the form 7+12k 
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Automatic Error Bounds on Real 
Zeros of Rational Functions 

ROBERT H. DARGEL,* FRANK R. LOSCALZO AND 
THOMAS H. WITT 
University of Wisconsin, t Madison, Wisconsin 

A procedure for implementing an interval arithmetic version 
of the Newton-Raphson method is proposed. The procedure 
requires only a starting interval over which the zeros of a given 
rational function are to be located. The method automatically 
provides bounds for roundofF error. 

I .  I n t r o d u c t i o n  

The Newton-Raphson method for determining zeros is a 
well-known iterative technique. Moore [3, Sec. 7-2] has 
proposed an interval arithmetic version which will ap- 
proximate all the real zeros of a rational function of one 
variable in a given interval while also bounding roundoff 
error. A procedure is described for implementing Moore's 
method which has been programmed and tested on the 
CDC 1604 computer at the University of Wisconsin Com- 
puting Center. 

I I .  T h e o r e t i c a l  B a c k g r o u n d  

An interval number In, b] is a set of real numbers, 
{x ] a _< x -< b}. If [a~ b] and [c, d] are two interval numbers, 
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and if • denotes one of the real arithmetic operations -4-, 
- ,  • or + ,  then the interval arithmetic operations are 
defined by 

[ a , b ] * [ c , d ] = l x * y l a ~ x ~ b ,  c ~ y ~ d } ,  

except tha t  [a, b] ÷ [c, d] is not  defined for 0 E [c, d]. The  
following formulas, which are used in [4], satisfy the 
definition: 

[a, b] Jr [c, d] = [aWc, b+d] 

[a, b] - [c, d] = [a -d ,  b--c] 

[a, b] [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] 

[a, b] ÷ [c, d] = [a, b] • [1/d, 1/c], 

where the division operation requires 0 ~ [e, d]. 

Rounding in interval arithmetic is executed such that  
the result of any interval arithmetic operation is guaran- 
teed to contain the true answer. This is accomplished by 
rounding negative left endpoints and positive right end- 
points, but  not rounding positive left endpoints or negative 
right endpoints. Thus, the resultant interval is always 
slightly enlarged by the rounding process. 

A function F ( X ) ,  where X is an interval, is defined to 
be a rational interval extension of a real rational function 
f ( x )  if f ( X )  ~ {f(x) I z C X} and F([x, el) = f ( x ) .  Simi- 
larly, F ' ( X )  is an interval extension o f f ( x ) .  Furthermore,  
let re (X)  be the midpoint of the interval X. Then Moore's 
method defines the function 

N ( X )  = re (X)  -- ( f ( u ( X ) ) / F ' ( X ) )  

and an interval extension of the Newton-Raphson method 
is provided by the recursion relation, X~+i = N ( X , )  f3 X , .  
Moore [3, Lemma 7-2] has also shown that  if X con- 
tains a zero of f ( x ) ,  then N ( X )  also contains tha t  zero. 
Oonversely [3, Lemma 7-3], if X f3 N ( X )  is empty,  then 
X does not contain a zero of f ( x ) .  
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