
Automatic Integration of a

Function with a Parameter

PHILIP t~ABINOWITZ $
Brown University,j: Providence, Rho& Island

Two efficient methods for automatic numerical integration
are Romberg integration and adaptive Simpson integration.
For integrands of the form f(x)g(x, a} where a is a parameter,
it is shown that Romberg's method is more efficient. A FORTRAN
program shows how to achieve this greater efficiency.

The use of automatic integration schemes has proven
very attractive to anyone who has had to evaluate a deft-
nite integral on a computer. The user need only prepare a
program for the integrand and specify the limits of integra-
tion and a tolerance E to be reasonably certain tha t the
automatic integration program will compute a value for
his integral tha t is correct to within the given tolerance e.
I f his tolerance is too small, the program will inform him
of this and give hin~ some information which will enable
him to decide what to do next, such as subdividing the
original interval of integration or accepting a larger error.
Of course, it is easy to fix up examples which will "bea t"
any of these schemes. However, since these almost never
occur in practice, we can safely use these schemes.

There are two principal methods of automatic integra-
tion which have proved themselves in practice to be both
accurate and efficient in terms of the number of functional
evaluations needed to achieve a specified accuracy. One
method is Romberg integration, which has been the sub-
ject of a series of investigations by Bauer, Stiefel,
Rutishauser and others [2, 3, 5-7, 10, 12, 13, 20-26]. Pro-
grams exist both in ALGOL [1, 2, 4--6, 11, 14] and in
FORTRAN [8]. The other method of automatic integration
is adaptive Newton-Cotes integration, which has been
brought to the at tention of the public only in the form of
algorithms published in the Algorithms Section of the Com-
munications of the ACM [15, 16, 18, 19]. Since the general

This work was supported by the Office of Naval Research,
Contract Nonr 562(36).

* Present address: Department of Applied Mathematics,
Wcizmann Institute of Science, Rehovoth, Israel.

"[Division of Applied Mathematics.

J. F. TRAUB, Editor

Newton-Cotes algorithm was given in recursive form [19]
and whereas the adaptive Simpson's rule integration was
also given in nonreeursive form [18] suitable for translating
into a FORTRAN program, our discussion is limited to the
latter. There has also been an a t tempt to combine Rom-
berg integration with an adaptive scheme [9, 21]. However
this method requires more information to be given by the
user and appears to be less efficient than the other schemes.

A principal difference between Romberg integration and
adaptive integration is that the former is a global scheme
and the sequence of evaluation points for the integrand is
independent of the nature of the integrand although, of
course, the number of such points will depend very much
on its form. On the other hand, the adaptive scheme is
local, and hence, both the sequence and the number of
evaluation points depend on the nature of the integrand.

If nothing is known about the integrand, adaptive inte-
gration is preferred to Romberg integration because of its
ability to handle more efficiently functions which have
singularities themselves or in their derivatives [27]. In fact,
the adaptive Simpson's rule integration routine is so good
that it even integrated correctly over the singularity in an
integraud whose integral is convergent [17]. I t is not the
purpose of this paper to discuss the relative merits of these
two integration schemes in general and we will limit our-
selves to listing some typie~d examples of Romberg and
adaptive Simpson integration in Table I.

There is one situation where the use of Romberg inte-
gration presents a considerable saving in computation
time. This is the case where the integrand is of the form
h(x, a) = f(x)g(x, a) where a is a parameter, and interest
centers in the integral for a series of values of a. More gen-
erally, h(x, a) may contain several subexpressions which
do not depend on a. However, the case h(x, a) =
f(x)g(x, a) suffices to illustrate the point. In the adaptive
ease, where the sequence of evaluation points depends on
the integrand h(x, a), it is necessary to compute the entire
integrand at all integration abscissae for each new value
of the parameter a. Alternatively, each new abscissa can
be stored in an array X and the corresponding value o f f (x)
in a second array F. Then, it can be determined whether
each value of x appears in the array X and if it does, f (x)
can be extracted from F. Otherwise, f (x) is computed and
then x a n d f (x) added to the arrays X and F, respectively.
This may be worthwhile if f (x) is such a complicated func-
tion that its evaluation consumes much more time than a
typical search in the randomly arranged array X. There

804 Communicat ions of the ACM Volume 9 / Number 1I / November, 1966

http://crossmark.crossref.org/dialog/?doi=10.1145%2F365876.365911&domain=pdf&date_stamp=1966-11-01

are o the r ways in which X m a y be a r r anged b u t these also
are t ime consuming. I t is clear t h a t the p r o g r a m m i n g in-
vo lved in th is a l t e r n a t i v e is non t r iv ia l . On the o the r hand ,
in the R o m b e r g case, we need to compu te f (x) on ly once
a t each in t eg ra t ion abscissa, us ing p rev ious ly c o m p u t e d
va lues when t h e y exist and c o m p u t i n g new va lues as
needed, w i thou t hav ing to s tore the abscissae a n d w i t h o u t
hav ing to search an a r r a y each t ime to de t e rmine w h e t h e r
a g iven abscissa appea r s in it . T h e t o t a l n u m b e r of po in t s
a t which f (x) is c o m p u t e d is equa l to the m a x i m u m n u m -
be r of po in t s needed to i n t eg ra t e h(x, a) . A poss ible
FORTnAN p r o g r a m to do th is is g iven in F igu re 1 where
on ly t he p e r t i n e n t po r t ions of the p r o g r a m are given.
Q U A D is a subrou t ine whose p a r a m e t e r s a re the endpo in t s
of i n t eg ra t ion A, B and a to le rance E P S a n d which re-
qui res the exis tence of a funct ion rou t ine F U N (X) to com-
p u t e the in t eg rand . T h e r e is also an u p p e r l imi t M to the
n u m b e r of po in t s computed .

Th is scheme was used successful ly in the c o m p u t a t i o n
of the fol lowing in tegra ls ar is ing in the so lu t ion of a p rob -
l em in r ad i a t i ve t ransfer .

F f (a) = fo 1 x -4 exp (- - R / x) E 3 (a x ~) dx

for a = 0 (. 1)3 where R = 10, 12 a n d Ea(x) is the 3rd
exponen t ia l in tegra l .

RECEIVED JUNE, 1966; REVISED JULY, 1966

DIMENSION E(M), FI(N)
COMMON ALPHA, LI, L, E

LI = 0
ALPHA = ALPHA1
DO i I = i, N
L=i
FI(I) = QUAD(A, B, EPS)
ALPHA = ALPHA + ALPHA2

END

FUNCTION FUN(X)
DIMENSION E(M)
COMMON ALPHA, L1, L, E
IF (L--L1) 1, 1, 2

2 Li=Li+i
E(Li) = F(X)

1 FUN = E(L)*G(X, ALPHA)
L=L+i
RETURN
END

FUNCTION F(X)

RETURN
END

FUNCTION G(X, ALPHA)
. . .

RETURN
END

F,o. 1. Program for the computation of FI(a) = fb f(x)g(x, a) dx
for a ranging from ,~1 to a l + (n--1)a2 in steps of ~2.

TABLE I . EXAMPLES OF TYPICAL ROMBERG AND

ADAPTIVE SIMPSON INTEGRATION

Function f(x)

~.1/2

X312

1

1

l + x 4
1

i + e ~

ex --
2

2 + sin 107rx

Exa*t Value of

0.66666667

0.40000000

0.69314718

0.86697299

0.37988551

0.777504631

1.1547005

Romberg
Value for
= 10 -8, 10 -6

0.66653263 i
0.66666633
0.40000854i
0.39999995
0.69314732
0.6931470¢
0.8669729~
0.8669730(
0.37988544
0.3798854¢
0.77750448
0.77750453
1.1547003
1.1547004

Number

P°in°ftsa I

65
4097

17
129

9
33
17
65
9

17
9

17
65

257

Adaptive Numbs
Simpson
Valuer or of

e = 10 -~, 10 -6 F°i~sb

0.66665866 55
0.66666655 199
0.40001016 19
0.39999992 91
0.69314743 19
0.69314711 55
0.86697326 19
0.86697293 67
0.37988543 19
0.37988543 19
0.77750459 19
0.77750459 19
1.1546288 163
1.1547002 883

The minimum number of points is 9 and the number of points
is always of the form 2"~+1

b The minimum number of points is 19 and the number of
points is always of the form 7+12k

REFERENCES

1. BAUER, F. L. Algorithm 60, Romberg integration. Comm.
ACM ~ (1961), 255; see also Comm. ACM 5 (1962), 168, 281.

2. BAUER, F. L. La m6thode d'int6gration num4rique de
Romberg. Colloque Bur l 'analyse num4rique, 22-24 mars
1961 £ Mons, 119-129.

3. BAUER, F. L., RUTISHAUSER, H., AND STIEFEL, E. New
aspects in numerical quadrature. Proc. Symposia Appl.
Math. Vol. 15, 1962, 199-218.

4. BAUMANN, R., FELICIANO, M., BAUER, F. L., AND SAMELSEN,
K. Introduction to ALGOL. Prentice-Hall, Englewood
Cliffs, N. J., 1964, 73.

5. BULInSCH, R. Bemerkungen zur Romberg-Integration.
Numer. Math. 6 (1964), 6-16.

6. BULIRSCH, R., AND STOER, J. Fehlerabschatzungen und
Extrapolation mit rationalen Funktionen bei Verfahren yon
Richardson-Typus. Numer. Math. 6 (1964), 413-427.

7. BULIRSCH, R., AND STOER, J. Asymptotic upper and lower
bounds for results of extrapolation methods. Numer. Math.
8 (1966), 93-104.

8. DUNKL, C . F . Romberg quadrature to prescribed accuracy.
SHARE File No. 7090-1481 TYQUAD.

9. ELLIOTT, J., AND Pi~AGER, W. Quadrature routine to evaluate
fpQ F(u) du. Brown U. Computing Lab., Providence, R. I.

10. FILIPPI, S. Des Verfahren yon Romberg-Stiefel-Bauer als
Spezialfall des allgemeinen Prinzips von Richardson.
Mathematik-Technik-Wirtschaft 11 (1964), 49-54, 98-100.

11. GRAM, C. Definite integral by Romberg's method. ALGOL
procedure. BIT $ (1964), 54-60; see also BIT $ (1964),
118-120.

12. HAVIE, T. One modification of Romberg's algorithm. BIT 6
(1966), 24--30.

13. KRASUN, A. M., AND PRAGER, W. Remark on Romberg
quadrature. Comm. ACM 8 (1965), 236-237.

14. KuBiK, R . N . Algorithm 257, Havie integrator. Comm. ACM
8 (1965), 381.

15. t[UNCIR, G. F. Algorithm 103, Simpson's rule integration.
Comm. ACM 5 (1962), 347.

16. McKEEMAN, W. M. Algorithm 145, adaptive numerical

Volume 9 / Number 11 / November, 1966 Communica t i ons of t he ACM 805

integration by Simpson's rule. Comm. ACM 5 (1962), 604;
see also Comm. ACM 8 (1965), 171.

17. MCKEEMAN, W.M. Certification of algorithm 145, adaptive
numerical integration by Simpson's rule. Comm. ACM 6
(1963), 167-168.

18. MC~xEEMAN, W. M., AND TESLER, LARR:f. Algorithm 182,
nonrecursive adaptive integration. Comm. ACM 6 (1963),
315; see also Comm. ACM 7 (1964), 244.

19. MCKEE~AN, W.M. Algorithm 198, adaptive integration and
multiple integration. Comm. ACM 6 (1963), 443-444.

20. MEINGUET, J. Methods for estimating the remainder in
linear rules of approximation: application to the Romberg
algorithm. S6minaire de Math6matique Appliqu6e et
M6canique, Universit6 Catholique de Louvain, Rept. no. 5,
1966.

21. PIgAGER, W. Introduction to Basic FORTRAN Programming
and Numerical Methods. Blaisdell Publishers, New York,
1965, 123-124.

22. ROMI~ERG, W. Vereinfachte numerische Integration. Det.
Kong. Norske Videnskab. Selskab Forhandlinger, 28, 7, 1955.

23. RUTISHA~SER, H. Ausdehnung des Rombergscher Prinzips.
Numer. Math. g (1963), 48---54.

24. STIEgEL, E. Altes und Neues fiber numerische Quadratur.
Z. Angew. Math. Mech. 41 (1961), 408--413.

25. STIEFEL, E., AND RUTISH2~USER, H. Remarques concernant
l'intdgration num6rique. Compt. Rend. Acad. Sci. Paris ~5~
(1961), 1899-1900.

26. STROUD, A.H. Error estimates for Romberg quadrature. J.
SIAM Numer. Anal., Ser. B, P (1965), 480--488.

27. THACHER, JR., H. C. Remark on algorithm 60, Romberg
integration. Comm. ACM 7 (1964), 420--421.

Automatic Error Bounds on Real
Zeros of Rational Functions

ROBERT H. DARGEL,* FRANK R. LOSCALZO AND
THOMAS H. WITT
University of Wisconsin, t Madison, Wisconsin

A procedure for implementing an interval arithmetic version
of the Newton-Raphson method is proposed. The procedure
requires only a starting interval over which the zeros of a given
rational function are to be located. The method automatically
provides bounds for roundofF error.

I . I n t r o d u c t i o n

The Newton-Raphson method for determining zeros is a
well-known iterative technique. Moore [3, Sec. 7-2] has
proposed an interval arithmetic version which will ap-
proximate all the real zeros of a rational function of one
variable in a given interval while also bounding roundoff
error. A procedure is described for implementing Moore's
method which has been programmed and tested on the
CDC 1604 computer at the University of Wisconsin Com-
puting Center.

I I . T h e o r e t i c a l B a c k g r o u n d

An interval number In, b] is a set of real numbers,
{x] a _< x -< b}. If [a~ b] and [c, d] are two interval numbers,

* Present address: General Dynamics, Electric Boat Div.,
Groton, Conn.

t Computer Sciences Department.

and if • denotes one of the real arithmetic operations -4-,
- , • or + , then the interval arithmetic operations are
defined by

[a , b] * [c , d] = l x * y l a ~ x ~ b , c ~ y ~ d } ,

except tha t [a, b] ÷ [c, d] is not defined for 0 E [c, d]. The
following formulas, which are used in [4], satisfy the
definition:

[a, b] Jr [c, d] = [aWc, b+d]

[a, b] - [c, d] = [a -d , b--c]

[a, b] [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b] ÷ [c, d] = [a, b] • [1/d, 1/c],

where the division operation requires 0 ~ [e, d].

Rounding in interval arithmetic is executed such that
the result of any interval arithmetic operation is guaran-
teed to contain the true answer. This is accomplished by
rounding negative left endpoints and positive right end-
points, but not rounding positive left endpoints or negative
right endpoints. Thus, the resultant interval is always
slightly enlarged by the rounding process.

A function F (X) , where X is an interval, is defined to
be a rational interval extension of a real rational function
f (x) if f (X) ~ {f(x) I z C X} and F([x, el) = f (x) . Simi-
larly, F ' (X) is an interval extension o f f (x) . Furthermore,
let re (X) be the midpoint of the interval X. Then Moore's
method defines the function

N (X) = re (X) -- (f (u (X)) / F ' (X))

and an interval extension of the Newton-Raphson method
is provided by the recursion relation, X~+i = N (X ,) f3 X , .
Moore [3, Lemma 7-2] has also shown that if X con-
tains a zero of f (x) , then N (X) also contains tha t zero.
Oonversely [3, Lemma 7-3], if X f3 N (X) is empty, then
X does not contain a zero of f (x) .

806 Communications of the ACM Volume 9 / Number 11 / November, 1966

