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Based upon a machine-readable statistical model and 
related symbolic specifications, an efficient method of per- 
forming calculations for statistical models of a balanced com- 
plete nature is presented. Fixed, mixed, and random analysis 
of variance models are considered. A procedure for obtaining 
variance components and calculated F statistics for the model 
terms is included. 

I n t r o d u c t i o n  

Any practical statistical computing system must employ 
special techniques to handle computations for balanced 
comp'ete experimental structures. Although the general 
theory of the linear hypothesis applies to models with 
fixed effects, computer storage and time considerations 
make a regression approach very inefficient. Furthermore,  
the frequency of analyses associated with such structures 
justifies considerable attention to this case. 

In this paper, computational methods are presented for 
accepting as input an algebraic statistical model along 
with related symbolic specifications and for performing the 
statistical calculations dictated by the model. A compre- 
hensive t reatment  is given for analysis of variance of 
balance complete structures of fixed, mixed, and random 
models. I t  is an extension of a previous article [1] that  
discussed a notational scheme and related algorithm for 
fixed models. However, in [1] certain restrictions are im- 
posed in writing the algebraic model, and in some cases 
pooling is required to obtain an appropriate sum of 
squares. The methods given in the present paper essentially 
remove these alphabetic restrictions and obviate any need 
for pooling sums of squares. These methods have also been 
extended to handle covariance models as discussed in [4]. 

A time comparison of algorithms for computing sums of 
squares was made between the method of factorial de- 
composition given in [1] and the general method of com- 
putation being presented here. The results of a represent- 
ative set of problems indicate tha t  the general method of 
solution is no less than twice as fast as the method of 
factorial decomposition. Moreover, this ratio increases 
with the order of the model. 

Research leading to this paper was one segment of a 
study in statistically oriented computer languages and 
systems supported in part  by the National Science Founda- 
tion. 
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S p e c i f i c a t i o n  o f  t h e  M o d e l  

The algebraic model representing the experimental 
structure involves effect or factor symbols and subscript 
symbols with an error term also subscripted. The analysis 
of variance model on the variate y~jk~ where factors P and 
A are crossed and factor T is nested within P can be written 
in a form suitable for computer input as 

Y ( I J K L )  = P ( I )  + T ( I J )  + A ( K )  -4- P A ( I K )  

+ T A ( I J K )  + E ( I J K L )  

The limit of each subscript or number of levels of each 
factor must also be specified along with a designation of 
which effects are random. If, for example, the limits for 
I, J ,  K and L were 3, 4, 2 and 2 respectively, the factor P 
were fixed, and the factors T and A were random, then 
the specifications 

L I M I T S ,  I = 3, J = 4, K = 2, L = 2 
RANDOM,  T, A 

complete the model definition. 
Model specifications discussed in this paper permit any 

letter to denote effect and subscript symbols. The only 
rules for writing model terms are those related statistically 
to balanced complete structures. The algebraic model 
fully describes the nature of the statistical problem and 
from it the computations which need to be performed can 
readily be determined. 

C o m p u t a t i o n  R e q u i r e d  for  Fixed,  Mixed  a n d  
R a n d o m  M o d e l s  

Because of the y e w  general method employed, the 
means, residual@ degrees of freedom and sum of squares 
are obtainable for all terms of any model representing a 
balanced complete structure. The method used to compute 
the sum of squares for a given model term takes a linear 
combination of the means of the observations to form the 
residuals for the model term. Experience has dictated the 
fact that  investigators are invariably interested in obtain- 
ing the classification means designated by the model. 
Hence the computation of these means should be con- 
sidered as an intermediate step in the processing. 

Scheff6 [3] presents rules for determining the residuals 
and degrees of freedom which correspond to each line in 
the analysis of variance table for a balanced complete 
model. A representation of the residuals and degrees of 
freedom of the terms of the model described in the previous 
section is given in Table I. 

1. ASSIGNMENT OF NUMERICAL VALUES 
To facilitate the computational procedure, the alpha- 

betic effect and subscript symbols employed in the model 
statement are assigned numerical values. This permits the 

1 The residuals of a model term arc defined as the set of values 
which, when squared and then summed over M1 subscripts, yields 
the sum of squares of the model term. 
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T A B L E  I .  RELATIONSHIP BETWEEN MODEL TERMS, 
DEGREES OF FREEDOM AND RESIDUALS 

Model term Degrees of Freedom Residuals 

P ( I )  I -- 1 Y ~ . . . -  Y .... 
T ( I J )  I ( J  - 1) Y ~ s . . -  Y~... 
A (K)  K - 1 Y..k. -- Y .... 

P A ( I K )  (I  -- 1)(K - 1) Y~.k. -- Yi.., -- Y..k. -t- Y .... 
T A ( I J K )  I ( J  -- 1)(K - 1) Yi~k. -- Yis..  -- Yi .k  + Y~... 

T A B L E  I I .  ORDER AND LENGTH OF MEAN ARRAYS 
IN CORE STORAGE 

( I l lu s t r a t ed  for  four  subsc r ip t s )  

Stage Means LSTF[ 

I n p u t  
1 
2 

Y~jk~ I J K L  
Yi~k. I J K  

Y~j.z I J L  
Y~j.. I J  

Y~. ~ I K L  
Y~.~. I K  

Yi..~ I L  
Y~... I 

Y.~kt J K L  
Y.¢k. J K  
Y.~.~ J L  
Y . j . .  J 

Y. .m K L  
Y..k.  K 
Y...~ L 

Y .... 1 

algorithm to perform algebraic operations upon the effect 
and subscript symbols of a given model term. The value 1 
is assigned to the last  subscript and its corresponding ef- 
feet symbol if it has one. Assignment of numerical values 
progresses by  powers of 2 such that  the first effect and 
subscript symbols are given the value 2 ~-t where n is the 
order of the model. For the model given, the assignment 
would be 

LEFCT LSUB LNVES 

P I 2 3 

T J 2 ~ 
A K 2 

L 1 

2. COMPUTATION OF I~EANS 

A task initial to the analysis of any model by the algo- 
rithm is the construction of all possible arrays of means 
from the data. These means are obtained such that means 
computed at any given stage are formed by summing the 
data and all means formed at previous stages over the 
subscript associated with that stage. These arrays of means 
follow the data in the same one-dimensional array (FIA) 
in core storage. The order and size of the arrays are il- 
lustrated in Table II. 

The assignment of numerical values to the effect and 
subscript symbols provides a method of determining the 
location in FIA of any given array of means. There are 2 ~ 

arrays in F I A  including the data and the over-all mean. 
The value obtained by  the subtraction of the sum of the 
numerical values of the subscripts occurring in a given 
array of means from 2 ~ specifies the relative position in 
F I A  of tha t  array. 

3. INSPECTION OF ~/[ODEL TERMS 

Since the inspection of alphabetic symbols is cumber- 
some and unnecessary, the model terms are converted to 
and stored in binary notation. Consider allotting a char- 
acter of a word in core storage for each possible effect and 
subscript of each model term. Proceeding from left to right 
an effect or subscript is denoted by a "1"  if it occurs in 
the model t e rm and a "0"  if it does not. The  ar- 
rays L M E F T  and L M S U B  denote the effects and sub- 
scripts, respectively, of the model terms. These tables 
take on the form below for the model given allowing for 
ten factors. 

Source LMEFT LMSUB 

P (I) 1000000000 1000000000 
T ( I J )  0100000000 1100000000 
A (K) 0010000000 0010000000 
P A  ( I K )  1010000000 1010000000 
T A  ( I J K )  0110000000 1110000000 

From these tables one can readily determine for a 
given model te rm the floating and associated subscripts 
and their numerical values. In  the example, the residuals 
for the model te rm T A ( I J K )  are 

yijk. -- Ylj.. -- y~.k. -~ y~... 

By properly summing the numerical values of the sub- 
scripts, a list (call it L L O C A )  which gives the relative 
locations in F I A  of these four sets of means can be con- 
structed. The numerical values of the floating subscripts 
are included in each sum and a combinatorial breakdown 
is performed on the associated subscripts, such tha t  for 
T A  ( I J K )  the desired values are 

LLOCA 

8 - + 4 + 2  . . . . . . . . .  14 
8 + 4  . . . . . . . . . . . . . .  12 
8 + 2  . . . . . . . . . . . . . .  10 
8 . . . . . . . . . . . . . . . . . . .  8 

4. FORMATION OF 1RESIDUALS 

The mat te r  of locating means in core storage has been 
discussed. Once the required arrays are located for a given 
term, the problem of taking the correct linear combination 
of the means remains. Clearly a relationship nmst  be 
developed between the array of means which contains all 
of the subscripts included in the t e r m - - t h e  pr imary  array 
- - a n d  the remaining arrays of means- -secondary  a r r a y s - -  
of which the residuals for the t e rm are composed. Fortu- 
nately, the residuals may  be formed in the area in which the 
data is originMly stored. This follows from the fact tha t  
for bManced complete structures, the data enters into the 
computations of residuals for no more than one model term. 
I f  such a te rm is given priority in the order of the computa-  
tions, storage requirements are reduced since additional 
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array storage is then not required for residual computation.  
Notice tha t  arrays of means can enter into the computa-  
tions of residuals for more than one model term. 

At  the end of the operation of combining means to form 
the residuals for T A  ( I J K ) ,  the first 24 locations of the F I A  
array will contain 

FIA  (1) 
FIA (2) 
FIA (3) 

FIA(24) 

Ym. -- Y11.. -- Yl.L + YL.. 
ylle. -- yn.. -- YL2. ~ YL.. 
y121. - -  y12.. - -  Yl.1. -~- Yl...  

y342. --  y3~.. --  y~.2. "to y3... 

These linear combination of means are formed sequentially 
as indicated below 

yiCk. (initialization) 
yij~. -- yi~.. 
y i j k .  - -  y i ] . .  - -  y l . k .  

YOk. -- Y~i.. -- Y~.k. q" y~... 

Consider an associated pair of mapp ings - - a  pr imary 
map  and a secondary map. The pr imary  mapping gives the 
location of a certain mean of the pr imary  array stored in 
one-dimensional array form. The mapping for the pr imary 
array y~j~. can be expressed as: 

Location of Y~ik. 

= ( i  - -  1 ) J K  + ( j  - -  1 ) K  -t- ( k  - 1 ) 1  -I- i 

I f  y~k. is taken as the pr imary  array, a secondary mapping 
in general with respect to this array is of the form 

( i  --  1 ) C ,  + (3" --  1 ) C ,  + (k  --  1)C~ + 1 

where 

'0 if the a th  subscript of the pr imary array does 
not occur in the secondary array, 

C,  = I The product of the limits of the subscripts ap- 
pearing to the right of the a th  subscript in 
the secondary array or 1 if a is the last sub- 
script in the secondary array otherwise. 

As an example of this secondary mapping, consider y~j.., 
a secondary array with respect to y~j,.. This mapping can 
be represented as 

( i - -  1 ) Y +  ( j - -  1)1 + ( k - -  1 ) 0 +  1. 

Utilization of the mappings presented provides the frame- 
work of combining secondary arrays with a given pr imary 
array. 

The  sign, S, which is employed to combine a secondary 
ar ray  with a pr imary one is given by 

S = ( - - 1 )  a'l+a~2 

where N~ = the number  of subscripts in the pr imary 
array, 

N2 = the number  of subscripts in the secondary 
array. 

5 .  S U M S  O F  S Q U A R E S  A N D  D E G R E E S  O F  ~ R E E D O M  

Sums of squares and degrees of freedom for the analysis 

of variance model are computed in the following manner:  
(a) The total  sum of squares for the variable being 

processed is calculated as it is defined. For  the example, 
this is 

E E E E (yi k  - y.. 
i j k l 

(b)  The model terms are operated upon term by term. 
For  each te rm the residuals and degrees of freedom are 
formed. The residuals are squared, summed over all sub- 
scripts present in the term, and multiplied by  the product 
of the limits of the subscripts not present to form the sum 
of squares. For the model te rm T A  ( I J K )  in the example, 
the sum of squares is computed as 

L ~  ~ ~ (Yiik. --  Yo'.. --  Ylk .  -t- y,...)2. 
i j k 

(c) The error sum of squares is obtained by subtracting 
the cumulative sums of squares associated with the model 
terms from the total  sum of squares. 

(d) The degrees of freedom are calculated as illustrated 
in Table  I from the ar ray  of limits of subscripts. 

Notice tha t  all sums of squares other than the error sum 
of squares are formed from residuals. One of the principal 
reasons for taking this approach is the well-known fact 
tha t  more accurate results are produced using this method 
as compared with other possible methods of computation. 

V a r i a n c e  C o m p o n e n t s  a n d  F V a l u e s  

In  models containing random factors the estimation of 
the components of variat ion and testing hypotheses con- 
cerning their magnitude are pr imary objectives. In  a model 
in which all factors are fixed, the calculation of F values 
presents no particular problem. However  the analysis of 
models containing random factors requires the derivation 
of the expected mean square (EMS) of each source of 
variation. Rules for forming EMS ' s  for analysis of variance 
models are presented in [3]. 

The composition of the EMS' s  of the model terms tells 
one how to perform the F test  of the hypothesis correspond- 
ing to each line of the analysis of variance table. The  
numera tor  mean square used to test a certain hypothesis 
is the one corresponding to that  line, while the denomi- 
nator  mean square employed is the one which has the same 
expected value as the numerator  under the hypothesis. 
I f  for the denominator no such line exists, a linear combi- 
nation of the estimates of the variance components is 
employed whose expectation equals that  of the numerator  
mean square under the null hypothesis. I f  no line in the 
analysis of variance table is equal to the EMS of the 
numerator  under the hypothesis, the appropriate  F test, 
as described in [2], is only approximate.  In  this case an 
approximation of the degrees of freedom corresponding to 
the denominator must  also be made. Tests in which the 
calculated mean square corresponding to one of the model 
terms can appropriately serve as the denominator for 
calculating the F value are telzned exact tests (under the 
normali ty assumption).  In  exact tests the degrees of 
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T A B L E  I I I .  EXPECTED MEAN SQUARES OF A MIXED MODEL 

Source off variation Degrees of freedom Expected mean square 

2 
P ( I )  I -- 1 o 2 + L a T a  + J L  O*2p A -][- 

K L  Cr2T + J K L  ~r2e 

a 2 +  La~.A + K L ~ 2 r  
~2 + L ~ a  + I J L  c,2a 

z 2 +  Lc/. 2A + J L  ff2 p A 

O-2 

T(IJ) Z(] - 1) 
A ( K )  K -- 1 

P A ( I K )  ( I  - 1) (K - 1) 
T A ( I J K )  I ( J  --  1) (K -- 1) 
E ( I J K L )  I J K ( L  ~ 1) 

T o t a l  I J K L  -- 1 

freedom of the denominator are the degrees of freedom 
of the model te rm whose mean square is being used as 
the denominator. In  both exact and approximate F tests, 
the degrees of freedom of the numerator  are the degrees 
of freedom corresponding to the source of variat ion being 
tested. 

An algorithm for computing the variance component 
and F value corresponding to each source of variat ion is 
now discussed. This algorithm is a logical extension of 
what  has been described up to this point and many  of the 
arrays previously built are applicable. Table I I I  gives the 
EMS ' s  of the model presented earlier. A parameter  (call 
it I F O R )  conveniently indicates the random nature of 
these factors by  a "1"  in the appropriate  positions of the 
word. For this model I F O R  = 0110000000. 

An important  operation upon which the Mgorithm de- 
pends is the ordering of the model terms such tha t  to ob- 
tain the estimate of the variance component and the de- 
nominator  of the F value corresponding to a particular 
model term, one need only look at  the model terms below 
the one being operated upon. I f  powers of two are assigned 
to the subscripts in the order in which they occur in the 
model, the desired rearrangement  is accomplished if the 
numerical values of the subscripts of each of the model 
terms are summed, and the model terms rearranged such 
tha t  a model term whose subscripts sum to less than the 
subscripts of another model te rm precedes it in the re- 
arrangement.  

Basically the procedure involves the determination of 
EMS ' s  given the structure of the model and the random 
factors. Est imates of the variance components and the 
denominators necessary to compute F values for the model 
terms are computed te rm by  te rm beginning with the t e rm 
which contains the largest subscript sum. Est imates of 
variance components already computed at  a given period 
in t ime are used to obtain values yet  to be computed. 

The steps performed to obtain the variance component 
and denominator for a model term in generM (the I t h  
term) follow. The objective is to determine the composition 
of the EMS of the I t h  term. Consider the J t h  term as 
being one of the terms below the I t h  after the rearrange- 
ment  process. 

(1) A "control word" is constructed for the I t h  model 
term. I t  consists of a I~OGICAL OR of the parameter  IFOR 

and the location of the LMEFT array corresponding to 
the I t h  model term. 

(2) An inspection process is performed to determine 
if all of the subscripts which occur in the I t h  term occur 
in the J t h  te rm utilizing the pert inent locations of the 
LMSUB array. I f  all of the subscripts do occur in the J t h  
term, the variance component of the J t h  term is eligible 
for inclusion. 

(3) (Assume the J t h  te rm is eligible.) A comparison 
is made between L M E F T ( J )  and the control word. 
I f  for each 1 which occurs in L M E F T ( J ) ,  a 1 also occurs 
in the corresponding position of the control word, then 
the variance component of the J t h  te rm and its coeffi- 
cient occur in the expected mean square of the I t h  term. 

Steps (2) and (3) are performed for each model te rm 
below the I t h  after the rearrangement.  

Consider the computations performed for the model 
term T( IJ ) .  At this stage of the algorithm the values 

. 2  ^2  e 2, ZTa, z~a ,  and eA 2 have been obtained. 

(1) The control word is formed for T ( I J )  : 

IFOR = 0110000000 

The effect symbols for T ( I J )  are: 

0100000000 

Thus the "control word"  is: 

0110000000 

(2) ~2 appears  in the denominator of the linear com- 
bination used for testing ~r ~ = 0 and in solving for its 
estimate. 

(3) Next  one determines if 2 a r t  appears  in the EMS of 
T( IJ ) .  All of the subscripts contained in T ( I J )  are 
present in T A ( I J K ) .  Also for each 1 in the location of 
LMEFT corresponding to T A ( I J K )  a 1 also appears  in 
the control word. 

control word . . . . . . . . . . . . . . . . . . . . . . . . . .  0110000000 
effect symbols of TA ( I J K )  . . . . . . . . . . . . .  0110000000 

Thus e~a and its coefficient L appear  in the EMS of 
T( I J ) .  

(4) The  model te rm P A ( I K )  is now inspected. I t  is 
not included in the computat ions since all the subscripts 
in T ( I J )  are not in P A ( I K ) .  (Also the factor P is fixed.) 

(5) ~a 2 is also not involved in the calculations for 
T ( I J )  since the subscript K does not occur in the model 
t e rm T( IJ ) .  

The denominator for testing the hypothesis ZT 2 = 0 
has now been determined to be M S r a ,  the mean square 

2 
with expectation 2 + Lc~Ta. The estimate of zr  ~ is cal- 
culable from the equation 

MS~ = e 2 + Le~,A + KLan3. 

By an inspection of Table I I I ,  clearly there exists no 
2 exact test  for Ho: aF = O. In  performing the computa-  

tions for P(I )  the algorithm proceeds in its generM manner  
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as before and computes  

a 2 + La~A + J L ~ A  + K L ~ T  2 

for tes t ing this source of var ia t ion.  Thus  instances in which 

exact  tests  exist for cer ta in  model  terms can be considered 

a special case of the a lgor i thm.  

I f  no exact  F test  exists for a certain model  term,  the  

degrees of f reedom corresponding to the  denomina to r  used 

in calculat ing the F s tat is t ic  for this t e rm can be obta ined  

a s  
^2 
3/ p - -  
^2 

is the value used as the denominator in calculating the F 
value, while the -~ and ~ are the calculated mean squares 
and degrees of freedom, respectively of the model terms 
whose EMS's  when combined equal the expectation of 7. 
See [3] for a derivation of this formula. All values for cal- 
culating p are known besides the ~ and these are obtained 
by constructing from the algorithm a table denoting the 
structure of the EMS's  of the model terms. From the table 
a triangular set of equations solvable by a backward solu- 
tion is easily obtained. The solution vector gives the calcu- 
lated mean squares which are to be used in computing ~. 

All concepts and methodology presented in this paper 
have been fully implemented on the IBM 7074 while the 
authors were members of the Statistical Laboratory at 
Iowa State University. An at tempt  was made to avoid 
machine dependencies. As a consequence, the program 
has been readi ly  conver ted  to the  I B M  360, Mode l  50 

now in use at  I o w a  S ta t e  Univers i ty .  I t  is in tended  t h a t  

the  a lgor i thms developed will fo rm par t  of a more  ex- 

tens ive  s ta t is t ical  comput ing  sys tem or iented  toward  

algebraic p rob lem specification. 

Acknowledgment .  The  authors  wish to t h a n k  E.  J.  Car-  

ney,  Ass is tan t  Professor  of Stat is t ics ,  Iowa  S t a t e  Uni -  

vers i ty ,  for cons t ruc t ing  a p re l iminary  vers ion of the  ea r -  

lance componen t  a lgor i thm to handle  factorial  models.  

RECEIVED DECEMBER 1965; REVISED JULY 1966 

REFERENCES 

1. ~-IEMMERLE, W. J. Algebraic specifications of statistical 
models for analysis of variance computations. J.  ACM 1I 
(1964), 234-239. ~ 

2. SATTERTHWAITE, F. E. An approximate distribution of esti- 
mates of variance components. Biometrics 2 (1946), 110-114. 

3. SCI-IEFF]~, HENRY. The Analysis of Variance. John Wiley, 
New York, 1959. 

4. SC~ILATER, J . E .  Analysis of variance and covariance compu- 
tations on a digital computer for balanced complete struc- 
tures based on algebraic model specifications. M.S. Thesis, 
Iowa State U. Library, 1965. 

COLLECTED ALGORITHMS FROM C A C M  

1961-1966 

An ACS~ Looseleaf  Service 

Subscr ip t ions:  A C M  Members ,  $15; N o n m e m b e r s  $25. 

J. G. HERRIOT, Editor 

A L G O R I T H M  293 

T R A N S P O R T A T I O N  P R O B L E M  [H] 

G. BAYER (Recd. 9 J u l y  1965 and 22 Aug. 1966) 

Technische  Hochschule ,  Braunschweig ,  G e r m a n y  

p r o c e d u r e  transpl (m, n, inf, c, a, b, x, kw); value m, n, inQ 
in teger  m, n, inf, kw; in teger  array c, a, b, x; 

c o m m e n t  transpl is derived from Algorithm 258, transport, 
[Comm. ACM 8 (June 1965), 381] in order to reduce running time 
by about 50 percent. The following notation is used. 
c m, n-matrix of unit costs, 
a array of quantities available, 
b array of quantities required, following the usual descrip- 

tion of the transportation problem, 
in] greatest positive integer within machine capacity, 
x m, n-matrix of flows, 
kw optimal total costs (computed by procedure). 
c, a, b are disturbed by the procedure. Sum of a[i] = sum of bill. 
Multiple solutions are left out of account. [Ref.: G. Hadley, 
Linear Programming, l~eading, London, 1962, p. 351]; 

b e g i n  in teger  i, j ,  u, v, k, l, s, t, gd, h, p, cij, xij, ai, bj, lsvj, nlvi; 
B o o l e a n  zg ; 
in teger  array g, listu, nlv[l:m], r, listv[l:n], ls[O:m+n--1], 

nl[l:mXn], lsv[O:n]; 
c o m m e n t  in the for-statement u : . . . .  after s33, operate on 

all pairs i, j with c[i,j] = 0. To win time the array nl supervises 
those zeros; the j-indices of zeros in row i are kept in 
n l [ ( i - 1 ) X n + l ]  . . .  nl[nlv[i]]. In the for-statement v : . . . .  
after s33, operate on all pairs i , j  with x[i,j] ~ 0 (and c[i,j] =0). 
ls supervises those essential zeros, the /-indices of essential 
zeros in column j are kept in ls[lsv[j--1]+l] . . .  ls[lsv[j] 
Procedure in adds to list ls, procedure out takes out from list 
ls an essential zero in position i, j ;  

p r o c e d u r e  in; 
b e g i n  

lsvj := lsv[j]; 
for t := lsv[n] step --1 un t i l  Isvj do ls[t+l] := ls[t]; 
for t := j s t ep  l u n t i l n  do lsv[t] := Isv[t] + 1; 
ls[lsvj+l] := i 

e n d  ; 
p r o c e d u r e  out ; 
b e g i n  

Isvj := lsv[j]; 
for t := lsv[j--1]+l step 1 u n t i l  lsvj do 
b e g i n  

i f  ls[t] ~ i t hen  go to next; 
s := t; go toex;  

next: 
e n d  ; 

ex : 
for t := j step 1 u n t i l  n do  Isv[t] := lsv[t]--l; 
lsvj := lsv[n]; 
for t := s step 1 u n t i l  lsvj do ls[t] := ls[t+l] 

e n d  ; 
for i := 1 step 1 u n t i l  m do  

for j := 1 step 1 u n t i l  n do  x[i,j] := 0; 
for i := 1 step 1 u n t i l  m do  nlv[i] := (i--1)Xn; 
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