as before and computes

$$\hat{\sigma}^2 + L\hat{\sigma}_{TA}^2 + JL\hat{\sigma}_{PA}^2 + KL\hat{\sigma}_T^2$$

for testing this source of variation. Thus instances in which exact tests exist for certain model terms can be considered a special case of the algorithm.

If no exact F test exists for a certain model term, the degrees of freedom corresponding to the denominator used in calculating the F statistic for this term can be obtained as

$$\hat{v} = rac{\hat{\gamma}^2}{\sum (\hat{\gamma_i}^2/
u_i)}$$

 $\hat{\gamma}$ is the value used as the denominator in calculating the F value, while the $\hat{\gamma}_i$ and ν_i are the calculated mean squares and degrees of freedom, respectively of the model terms whose EMS's when combined equal the expectation of γ . See [3] for a derivation of this formula. All values for calculating $\hat{\nu}$ are known besides the $\hat{\gamma}_i$ and these are obtained by constructing from the algorithm a table denoting the structure of the EMS's of the model terms. From the table a triangular set of equations solvable by a backward solution is easily obtained. The solution vector gives the calculated mean squares which are to be used in computing $\hat{\nu}$.

All concepts and methodology presented in this paper have been fully implemented on the IBM 7074 while the authors were members of the Statistical Laboratory at Iowa State University. An attempt was made to avoid machine dependencies. As a consequence, the program has been readily converted to the IBM 360, Model 50 now in use at Iowa State University. It is intended that the algorithms developed will form part of a more extensive statistical computing system oriented toward algebraic problem specification.

Acknowledgment. The authors wish to thank E. J. Carney, Assistant Professor of Statistics, Iowa State University, for constructing a preliminary version of the variance component algorithm to handle factorial models.

RECEIVED DECEMBER 1965; REVISED JULY 1966

REFERENCES

- HEMMERLE, W. J. Algebraic specifications of statistical models for analysis of variance computations. J. ACM 11 (1964), 234-239.
- SATTERTHWAITE, F. E. An approximate distribution of estimates of variance components. Biometrics 2 (1946), 110-114.
- Scheffé, Henry. The Analysis of Variance. John Wiley, New York, 1959.
- 4. Schlater, J. E. Analysis of variance and covariance computations on a digital computer for balanced complete structures based on algebraic model specifications. M.S. Thesis, Iowa State U. Library, 1965.

COLLECTED ALGORITHMS FROM CACM 1961-1966

An ACM Looseleaf Service

Subscriptions: ACM Members, \$15; Nonmembers \$25.

Algorithms

J. G. HERRIOT, Editor

ALGORITHM 293

TRANSPORTATION PROBLEM [H]

G. BAYER (Recd. 9 July 1965 and 22 Aug. 1966)

Technische Hochschule, Braunschweig, Germany

procedure transp1 (m, n, inf, c, a, b, x, kw); value m, n, inf; integer m, n, inf, kw; integer array c, a, b, x;

comment transp1 is derived from Algorithm 258, transport, [Comm. ACM 8 (June 1965), 381] in order to reduce running time by about 50 percent. The following notation is used.

- c m, n-matrix of unit costs,
- a array of quantities available,
- b array of quantities required, following the usual description of the transportation problem,
- inf greatest positive integer within machine capacity,
- x = m, n-matrix of flows,
- w optimal total costs (computed by procedure).

c, a, b are disturbed by the procedure. Sum of a[i] = sum of b[i]. Multiple solutions are left out of account. [Ref.: G. Hadley, Linear Programming, Reading, London, 1962, p. 351];

begin integer i, j, u, v, k, l, s, t, gd, h, p, cij, xij, ai, bj, lsvj, nlvi;Boolean zg;

integer array g, listu, nlv[1:m], r, listv[1:n], ls[0:m+n-1], $nl[1:m\times n]$, lsv[0:n];

comment in the for-statement $u := \cdots$ after s33, operate on all pairs i, j with c[i,j] = 0. To win time the array nl supervises those zeros; the j-indices of zeros in row i are kept in $nl[(i-1)\times n+1]\cdots nl[nlv[i]]$. In the for-statement $v := \cdots$ after s33, operate on all pairs i, j with $x[i,j] \neq 0$ (and c[i,j] = 0). ls supervises those essential zeros, the i-indices of essential zeros in column j are kept in $ls[lsv[j-1]+1]\cdots ls[lsv[j]$ Procedure in adds to list ls, procedure out takes out from list ls an essential zero in position i, j;

```
procedure in;
begin
  lsvj := lsv[j];
  for t := lsv[n] step -1 until lsvj do ls[t+1] := ls[t];
  for t := j step 1 until n do lsv[t] := lsv[t] + 1;
  ls[lsvj+1] := i
end
procedure out ;
begin
  lsvj := lsv[j];
  for t := lsv[j-1]+1 step 1 until lsvj do
  begin
    if ls[t] \neq i then go to next;
    s := t; go to ex;
next:
  end ;
  for t := j step 1 until n do lsv[t] := lsv[t]-1;
  lsvj := lsv[n];
  for t := s step 1 until lsvj do ls[t] := ls[t+1]
for i := 1 step 1 until m do
  for j := 1 step 1 until n do x[i,j] := 0;
for i := 1 step 1 until m do nlv[i] := (i-1) \times n;
```

```
lsv[0] := 0;
                                                                        s31:
  for j := 1 step 1 until n do
                                                                          if gd = 0 then go to s6;
  begin
                                                                          comment problem is solved if defect has become zero;
    listv[j] := 1;
    lsv[j] := 0
                                                                          for j := 1 step 1 until n do r[j] := 0;
  end ;
s1:
                                                                          for i := 1 step 1 until m do
  kw := gd := 0;
                                                                          begin
  comment gd is the defect, i.e., the sum of quantities not yet
                                                                            if a[i] \neq 0 then
    transported:
                                                                            begin
  for i := 1 step 1 until m do
                                                                              k := k + 1; listu[k] := i; g[i] := inf
  begin
                                                                            \mathbf{end}
    \mathbf{h} := inf;
                                                                            else g[i] := 0
    for j := 1 step 1 until n do
                                                                          end;
      if c[i, j] < h then h := c[i, j];
                                                                          comment r[j] = 0 if column j is unlabeled, = i if labeled
    for j := 1 step 1 until n do
                                                                            from row i. g[i] = 0 if row i is unlabeled, = inf if a[i] \neq 0,
    begin
                                                                            i.e., a[i] is a possible source of flow. The indices i of labeled
      cij := c[i, j] := c[i, j] - h;
                                                                            rows are kept in listu[1] \cdots listu[k]. In step 3, consisting of
      if cij = 0 then
                                                                            step 32 and step 33, the maximal flow is found by the la-
      begin
                                                                            beling process. Labeling ends in only two ways: (a) a column j
        listv[j] := 0;
                                                                            with b[j] > 0 has been labeled: go to step 4, (b) all labeling is
        nlvi := nlv[i] := nlv[i] + 1;
                                                                            done, but a positive flow has not been found: go to s5;
        nl[nlvi] := j
                                                                        s33:
      end
                                                                          l := 0;
    end:
                                                                          for u := 1 step 1 until k do
    kw := h \times a[i] + kw
  end see next comment;
                                                                            i := listu[u]; \quad nlvi := nlv[i];
  for j := 1 step 1 until n do
                                                                            begin
                                                                              j := nl[s];
    if listv[j] = 0 then go to nextj1;
                                                                              if r[j] \neq 0 then go to nextj5;
    h := inf;
                                                                              r[j] := i; l := l + 1; listv[l] := j;
    for i := 1 step 1 until m do
                                                                              if b[j] > 0 then go to s4;
                                                                        nexti5:
      if c[i, j] < h then h := c[i, j];
                                                                            end
    for i := 1 step 1 until m do
                                                                          end in each newly labeled row, see listu, look for zeros in
                                                                            unlabeled columns, list them in listv;
      cij := c[i, j] := c[i, j] - h;
                                                                          if l = 0 then go to s5;
      if cij = 0 then
                                                                          k := 0;
      begin
                                                                          for v := 1 step 1 until l do
        nlvi := nlv[i] := nlv[i] + 1;
                                                                          begin
        nl[nlvi] := j
                                                                            j := listv[v]; lsvj := lsv[j];
      end
                                                                            for s := lsv[j-1]+1 step 1 until lsvj do
    end:
                                                                            begin
    kw := h \times b[j] + kw;
                                                                              i := ls[s];
nextj1:
                                                                              if g[i] = 0 then
  end:
                                                                              begin
  comment in step 1 the usual reduction of the matrix of costs
                                                                                g[i] := j; k := k + 1;
    is achieved (dual problem), zeros are listed in nl;
s2:
                                                                                 listu[k] := i
  for i := 1 step 1 until m do
                                                                            end
  begin
                                                                          end in each newly labeled column, see listy, look for essential
    ai \,:=\, a[i] \,;\, nlvi \,:=\, nlv[i] \,;
                                                                            zeros in unlabeled rows, label these rows, list them in listu;
    for u := (i-1) \times n + 1 step 1 until nlvi do
                                                                          if k = 0 then go to s5;
      if ai \approx 0 then go to nexti2;
                                                                          go to 833;
      j := nl[u];
                                                                          comment step 4. A column j with b[j] has been labeled, b[j]
                                                                            is the sink of a possible positive flow, the path of which is
      bj := b[j];
                                                                            indicated by labels. Find the minimum flow h along the path;
      if bj = 0 then go to nextj4;
                                                                          h := b[j]; \quad p := j;
      h := x[i, j] := if ai < bj then ai else bj;
      ai := ai - h; b[j] := bj - h; in;
                                                                        mark:
                                                                          i := r[j]; j := g[i];
nextj4:
                                                                          if j = inf then
    end;
                                                                          begin
nexti2:
    a[i] := ai; gd := gd + ai
                                                                            if a[i] < h then h := a[i]; go to re
  comment applying a usual rule to all zeros we get an initial
                                                                          if x[i, j] < h then h := x[i, j];
    flow (restricted primal problem) in step 2;
                                                                          go to mark;
```

```
re:;
  comment flow h along the labeled path thus reduces defect
    without changing total costs. Correct list of essential zeros
    if necessary. Start labeling anew, optimizing the restricted
    primal problem;
  j := p; b[j] := b[j] - h; a[i] := a[i] - h;
  gd := gd - h;
 i := r[j]; xij := x[i, j]; x[i, j] := xij + h;
  if xij = 0 then in;
  j := q[i];
  if j = inf then go to s31;
  xij := x[i, j] := x[i, j] - h;
  if xij = 0 then out;
  go to rel;
s5: ;
  comment step 5. Flow is maximal. To find a new solution to
    the dual, take the part of matrix c which is the intersection
    of labeled rows and unlabeled columns, reduce matrix in a
    certain way;
  k := 0; \quad l := n + 1;
  for j := 1 step 1 until n do
  begin
    if r[j] = 0 then
    begin
      k := k + 1; listv[k] := j
    \mathbf{end}
    else
    begin
      l := l - 1; listv[l] := j
    end
  end list all labeled resp. unlabeled columns in listv;
  h := inf;
  for i := 1 step 1 until m do
  begin
    if g[i] = 0 then go to nexti6;
    for s := 1 step 1 until k do
    begin
      j := listv[s];
      if c[i, j] < h then h := c[i, j]
    end;
nexti6:
  end find minimum h in partial matrix;
  for i := 1 step 1 until m do
    zg := g[i] \neq 0; nlvi := (i-1) \times n;
    for s := 1 step 1 until n do
    begin
      j := listv[s];
      if zg then cij := c[i, j]
      cij := c[i, j] := c[i, j] + h;
      if cij = 0 then
      begin
        nlvi := nlvi + 1;
        nl[nlvi] := j
      end
    end:
    for s := 1 step 1 until k do
    begin
      j := listv[s];
      if zg then cij := c[i, j] := c[i, j] - h
      \mathbf{else}\ cij\ :=\ c[i,\,j];
      if cij = 0 then
      begin
        nlvi := nlvi + 1;
        nl[nlvi] := j
      end
```

```
end;
  nlv[i] := nlvi
end reduction, add h to labeled columns, subtract h from
  labeled rows. Construct new list of zeros;
kw := h × gd + kw;
comment total costs for new solution of dual;
go to s32;
s6: ;
comment solution, defect has become zero;
end
```

CERTIFICATION OF ALGORITHM 257 [D1]
HAVIE INTEGRATOR [Robert N. Kubik, Comm.
ACM 8 (June 1965), 381]
L FARKAS (Road, 29 Apr. 1966 and 18 Aug. 1966)

I. Farkas (Recd. 29 Apr. 1966 and 18 Aug. 1966) Institute of Computer Science, University of Toronto, Toronto 5, Ont., Canada

Havieintegrator was translated with some modifications into FORTRAN IV and was run on the IBM 7094 II at the Institute of Computer Science, University of Toronto. To reduce the effect of roundoff, the calculations were carried through in double precision internally and the result was rounded to single precision. The main change made was that the parameters x and integrand in havieintegrator were replaced by a single parameter of type FUNCTION in FORTRAN IV. The other change was that mask was removed. The maximum order of approximation was kept less than or equal to 25, and convergence was obtained in every case.

The results obtained for the two test cases were in agreement with the author's result. Besides, 14 other successful tests were made and those shown in Table I are typical.

TABLE I						
Integrand	A	В	True value	eps	Error × 108	Order required
e^x	0.0	1.0	1.7182818	10-6	0	3
				10^{-4}	240	2
				10^{-2}	3700	2
x^{12}	0.01	1.1	.26555932	10-6	-2	4
				10-4	5 9	3
				10^{-2}	36041	2
\sqrt{x}	0.0	1.0	.66666667	10^{-6}	-27	3
				10-4	-1982	2
				10^{-2}	-126848	2
$1/\sqrt{x}$	0.01	1.0	1.8000000	10^{-6}	0	3
				10^{-4}	140	2
				10^{-2}	790	2

Like other integration algorithms that determine sample points in the interval in a deterministic manner, havieintegrator may fail in certain instances. For example, any integrand with the property that f(a) = f(b) = f[(a+b)/2)] will lead to the value (b-a)f(a) which will in general not be an acceptable approximation to $\int_a^b f(x) \ dx$. Thus $\int_0^{2\pi} \sin^2 x \ dx$ leads to 0. Moreover, $\int_0^{30} x e^{-x} \ dx$ leads to "almost zero" (in fact, 5.7966 \times 10⁻¹⁷).

Please turn the page to the 1966 Algorithms Index.

Index By Subject TC Algorithms, 1966

```
C1 DPENATIONS ON POLYNOMIALS AND POWER SERIES C1 273 SOLN. OF EQNS. BY REVERSION 1-66(11)
                                                                                                                    SIMULTANEOUS LINEAR EQUATIONS
288 LINEAR DIOPHANTINE EQUATIONS 7-66(514)
290 EXACT SOLUTION UF LINEAR EQNS. 9-66(683)
ITEM-REFIN.-SOLN.OF POS.DEF.MIX NUM.MATH.V8(206)
REAL AND CUMPLEX LINEAR SYSTEM NUM.MATH.V8(222)
      ZEROS OF POLYNOMIALS
256 MUDIFIED GRAEFFE METHUD 6-65(379),9-66(687)
       283 REAL SIMPLE ROOTS
                                                                     4-66(273)
                                                                                                                            ORTHOGONALIZATION
SCHMIDT ORTHONORMALIZATION COMPUTING V1(159)
      SUMMATION OF SERIES, CONVERGENCE ACCELERATION 277 CHEBYSHEV SERIES COEFFICIENTS 2-66(86)
                                                                                                                     SIMPLE CALCULATIONS ON STATISTICAL DATA 289 CONFIDENCE INTERVAL FOR A RATIO 7-66(514)
                                                  GUADRATURE
      257 HAVIE INTEGRATOR 257 12-66(871)
D 1
                                                                     6-65(381),11-66(795),
Di
      279 CHEBYSHEV QUADRATURE 4-66(270)
280 GREGORY QUADRATURE COEFFICIENTS 4-66(271)
281 ROMBERG QUADRATURE COEFFICIENTS 4-66(271)
                                                                                                                                                   RANDUM NUMBER GENERATORS
01
                                                                                                                                                                                   10-65(605),9-66(687)
                                                                                                                     266 PSEUDO-RANDOM NUMBERS
D1
                                                                                                                            RANDOM UNIFORM
                                                                                                                                                                                   COMP.BULL. V9(105)
                                                                                                               G5
                              ORDINARY DIFFERENTIAL EQUATIONS
5-60(312),4-66(273)
                                                                                                                            PERMUTATIONS AND COMBINATIONS ALL PERMUTATIONS OF N COJECTS COMP.BULL.V9(104)
          9 RUNGE-KUTTA
      218 KUTTA-MERSON
D2
                                                                    12-63(737),10-64(585),
D2
       218
               4-66(273)
             EXTRAPOLATION METHOD
                                                                                                                     OPERATIONS RESEARCH, GRAPH STRUCTURES
285 MUTUAL PRIMAL-DUAL METHOD 5-66(326)
286 EXAMINATION SCHEDULING 6-66(433),11
                                                                    NUM.MATH.V8(10)
                                                                                                                                                                                   5=66(326)
6=66(433),11=66(795)
             INTEGRAL EQUATIONS
SYSTEM OF VOLTERRA EQNS. ZH.VYCH.MAT.MAT.FIZ.-
                                                                                                                     293 TRANSPORTATION PROBLEM
05
               1965(933)
                                                                                                                                                                  PLOTTING
                                                                                                                     278 GRAPH PLUTTER
                                                                                                                                                                                   2-66(88)
              AITKEN INTERPOLATION COMP.J. V9(211)
              NEVILLE INTERPOLATION
                                                                                                                    284 INTERCHANGE 2 BLOCKS UF DATA
                                                                                                                                                                                   5=66(326)
      CURVE AND SURFACE FITTING

275 EXPUNENTIAL CURVE FIT

276 CONSTRAINED EXPUNENTIAL FIT

L1 APPROX. ON A DISCRETE SET

CHEBYSHEV APPROX.-DISCRETE SET

NUM.MATH.V8(303)
E2
                                                                                                                                                                  SORTING
                                                                                                                    271 QUICKERSORT
                                                                                                                                                                                   11-65(669),5-66(354)
E2
                                                                                                                            SYMBOL MANIPULATION
BASIC LIST PROCESSING BIT 1966(166)
      MINIMIZING OR MAXIMIZING A FUNCTION
178 MINIMIZE FUNCT. OF N VARIABLES 6-63(313),9-66(684)
251 FUNCTION MINIMIZATION 3-65(169),9-66(686)
              MIN.OF UNIMODAL FCN.OF 1 VAR.
                                                                                                                                 APPROXIMATION OF SPECIAL FUNCTIONS...
FUNCTIONS ARE CLASSIFIED SO1 TO $22, FOLLOWING
      MATRIX OPERATIONS, INCLUDING INVERSION

274 HILBERT DERIVED TEST MATRIX 1-66(11)

287 INTEGER MATRIX TRIANGULATION 7-66(513)

SYMM.DECOMP.OF POS.DEF.BAND MTX NUM.MATH.V7(357)

SYMM.DECOMP.OF POS.DEF.MAX. NUW.MATH.V7(368)

SYMM.DECOMP.OF POS.DEF.BAND MTX COMPUTING V1(77)
                                                                                                                               FLETCHER-MILLER-ROSENHEAD, INDEX OF MATH, TABLES MMA FUNCTION 2-61(106),7-62(391),
F1
F1
F1
                                                                                                                     34 GAMMA FUNCTION
34 9-66(685)
                                                                                                              514
                                                                                                              514
                                                                                                              514 54 GAMMA FUNCTION
514 80 GAMMA FUNCTION
514 221 GAMMA FUNCTION
                                                                                                                                                                                   4-61(180),9-66(685)
3-62(166),9-66(685)
                                                                                                                                                                                   3-64(143),10-64(586),
                                                                                                              $14 221 9=66(685)
$14 291 LOGARITHM OF GAMMA FCN.
                                                                                                                                                                                   9-66(684),9-66(685)
                                                                                                                            DERIV.UF BOYS ERROR FCA.
COMPL.ERROR INT.-COMPLEX ARG.
                                                                                                                                                                                   COMP.BULL. V9(105)
BIT 1965(290)
              EIGENVALUES AND EIGENVECTORS OF MATRICES
HOUSEHULDER RED.-COMPLEX MAT. NUM.MATH.V8(79
SYMM.MAT.-LLT AND STURM SEQ. COMP.J.V9(103)
                                                                    NUM.MATH.V8(79
CDMP.J.V9(103)
                                                                                                              S21 56 ELLIPTIC INTEGRAL-SECUND KIND
S22 282 DERIVATIVES OF EXP(X OR IX)/X
S22 292 REGULAR COULOMB WAVE FCNS.
                                                                                                                                                                                   4-61(180),1-66(12)
                                                                                                                                                                                   11-66(793)
                                                DETERMINANTS 4-61(176),9-63(520),
        41 DETERMINANT EVALUATION
41 3-64(144),9-66(686)
                                                                                                                            MANY-ELECTRON WAVEFUNCTIONS
       269 DETERMINANT BY GAUSSIAN ELIM.
                                                                                                                                                                                  CACH 4-66(278)
                                                                    11-65(668),9-66(686)
```

Key—1st column: A1, B1, B3, etc. is the key to the underlined Modified Share Classification heading each group of algorithms; 2d column: number of the algorithm in CACM; 3d column: title of algorithm: 4th column: month, year and page (in parens) in CACM, or reference elsewhere. This index supplements the previously published indexes: Index by Subject to Algorithms: 1960–1963 [CACM 7 (Mar. 1964), 146–149]; 1964 [CACM 7 (Dec. 1964), 703]; and 1965 [CACM 8 (Dec. 1965), 791].