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as before and computes
6" + Lé7a + JLé34 + KLér"

for testing this source of variation. Thus instances in which
exact tests exist for certain model terms can be considered
a special case of the algorithm,

If no exact F test exists for a certain model term, the
degrees of freedom corresponding to the denominator used
in calculating the F statistic for this term can be obtained
as

A2

5= ¥

(98 /w)

4 is the value used as the denominator in calculating the ¥
value, while the ¥, and »; are the calculated mean squares
and degrees of freedom, respectively of the model terms
whose EMS’s when combined equal the expectation of +.
See [3] for a derivation of this formula. All values for cal-
culating 5 are known besides the 4, and these are obtained
by constructing from the algorithm a table denoting the
structure of the EMS’s of the model terms. From the table
a triangular set of equations solvable by a backward solu-
tion is easily obtained. The solution vector gives the calcu-
lated mean squares which are to be used in computing .

All concepts and methodology presented in this paper
have been fully implemented on the IBM 7074 while the
authors were members of the Statistical Laboratory at
Iowa State University. An attempt was made to avoid
machine dependencies. As a consequence, the program
has been readily converted to the IBM 360, Model 50
now in use at Iowa State University. It is intended that
the algorithms developed will form part of a more ex-
tensive statistical computing system oriented toward
algebraic problem specification.

Acknowledgment. The authors wish to thank E. J. Car-
ney, Assistant Professor of Statistics, Iowa State Uni-
versity, for constructing a preliminary version of the var-
iance component algorithm to handle factorial models.
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ALGORITHM 293

TRANSPORTATION PROBLEM [H]

G. Baver (Recd. 9 July 1965 and 22 Aug. 1966)
Technische Hochschule, Braunschweig, Germany

procedure lranspl (m, n, inf, ¢, a, b, z, kw); value m, n, inf;
integer m, n, inf, kw; integer arrayc,a, b, z;
comment {franspl is derived from Algorithm 258, transport,
[Comm. ACM 8 (June 1965), 381] in order to reduce running time
by about 50 percent. The following notation is used.
¢ m, n-matrix of unit costs,
a array of quantities available,
b  array of quantities required, following the usual descrip-
tion of the transportation problem,
inf greatest positive integer within machine capacity,
z  m, n-matrix of flows,
kw optimal total costs (computed by procedure).
¢, a, b are disturbed by the procedure. Sum of afi] = sum of b[z].
Multiple solutions are left out of account. [Ref.: G. Hadley,
Linear Programming, Reading, London, 1962, p. 351];
begin integer 7, j, u, v, k, I, s, t, gd, h, p, cij, zij, at, bj, lsvj, nlvi;
Boolean zg;
integer array ¢, listu, nl[l:m], r, listo[l:n], Is[0:m-+n—1],
nl[l:mXn), lsv[0:n];
comment in the for-statement w := .- after 33, operate on
all pairs ¢, 7 with ¢[,51 = 0. To win time the array nl supervises
those zeros; the j-indices of zeros in row ¢ are kept in
nl[(G—1)Xn+1] - - nl[nlv[Z]]. In the for-statement » := ---
after s33, operate on all pairs ¢, j with z[7,j] & 0 (and ¢[Z,5]1=0).
ls supervises those essential zeros, the i-indices of essential
zeros in column j are kept in Is[lsy[j—1]41] - - Isllsv[j]
Procedure in adds to list Is, procedure out takes out from list
Is an essential zero in position 1, j;
procedure in;
begin
lsvj = lsv[j];
for { := lsv[n] step —1 until lsvj do Is[t+1] := Is[t];
for t := j step 1 until n do lsv[t] := lsvfi] + 1;
Is[lsyj+1) := ¢

end ;
procedure out ;
begin
lsvj := lsv[jl;
for t := lsv[j—1]+1 step 1 until lsyj do
begin
if Is[t] #% ¢ then go to next;
s = 1; go to ezx;
next:
end ;
ex:
for ¢ := j step 1 until n do Isy[t] := lsv[t]—1;

lsvj := lsv[n];
for ¢t := s step 1 until Isvj do Is[t] := Is[t+1]
end ;

for ¢ := 1 step 1 until m do
for j := 1 step 1 until » do z[¢,j] := 0;
for ¢ := 1 step 1 until m do nlo[i] := (E—1)Xn;
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Isv[0) := 0;
for j := 1 step 1 until » do
begin
listv(j] = 1;
lsufg] := 0
end ;
sl:
kw := gd := 0;
comment gd is the defect, i.e., the sum of quantities not yet
transported;
for ¢ := 1 step 1 until m do
begin
h .= inf;
for j := 1 step 1 until n do
if ¢[¢, j] < h then b := ¢[z, jl;
for j := 1 step 1 until n do
begin
ctj := cli, j} := c[z, j] — h;
if ¢czj = 0 then
begin
listvlg] := 0;
nlvt := nlofi] := nlofe] + 1;
nllnlyi] = j
end
end;
kw :=h X ali] + kw
end see next comment;
for j := 1 step 1 until » do
begin
if listv[j] = O then go to nextjl;
h = inf;
for 7 := 1 step 1 until m do
if c[¢, j] < h then h := c[t, j];
for ¢ := 1 step 1 until m do
begin
cij 1= cfi, 7] := cl¢, j] — h;
if ¢zj = 0 then
begin
nlvt ;= nlfi] := ] + 1;
nllnlvt] := j
end
end;
kw := h X b[f] + kw;
nextjl:
end,;
comment in step 1 the usual reduction of the matrix of costs
is achieved (dual problem), zeros are listed in nl;

§2:
for 7 := 1 step 1 until m do
begin
at = ali]; nlvi 1= nilvi];
for 4 := (t—1) X n + 1 step 1 until nlvi do
begin
if at = 0 then go to nexti2;
J = niful;
bj = bljl;
if b7 = 0 then go to nextjd;
h := z[t, j] := if at < bj then at else bj;
ai := at — h; b[§] := bj — h; in;
nextjs:
end;
nexti2:
ali) 1= at; 9d 1= gd + at
end;

comment applying a usual rule to all zeros we get an initial
flow (restricted primal problem) in step 2;

870 Communications of the ACM

s31:

if gd = 0 then go to s6;

comment problem is solved if defect has become zero;
s32:
for j := 1 step 1 until n do r[j] := 0;

k:=0;
for ¢ := 1 step 1 until m do
begin
if a[t] ¢ 0 then
begin
k =k +1; Lstulk] := i; g[t] := inf
end
else g[z] := 0
end;

comment 7[j] = 0 if column j is unlabeled, = ¢ if labeled
from row 4. g[i] = 0 if row 7 is unlabeled, = inf if afi] = 0,
i.e., ali] is a possible source of flow. The indices ¢ of labeled
rows are kept in lestull] - -+ lsiu[k]. In step 3, consisting of
step 32 and step 33, the maximal flow is found by the la-
beling process. Labeling ends in only two ways: (a) a column j
with b[j] > 0 has been labeled: go to step 4, (b) all labeling is
done, but a positive flow has not been found: go to s5;

§33:

l:=0;
for 4 := 1 step 1 until k do
begin
© = listufu]; nlvi := nlli;
begin
J = nlls];

if r[j] # 0 then go to nexij5;
rljl i=14; l:=141; Ustwll] := j;
if b[j] > 0 then go to s4;
nextjs:
end
end in each newly labeled row, see listu, look for zeros in
unlabeled columns, list them in listy;
if [ = 0 then go to s$5;
k.= 0;
for v := 1 step 1 until [ do
begin
J o= lst[vl; lsvj 1= lsv[jl;
for s := Isv[j—1]+1 step 1 until Isyj do

begin
1 := Iss];
if g[¢] = 0 then
begin
gil :=7; k:=k+1
Ustulk] := ¢
end
end

end in each newly labeled column, see listv, look for essential
zeros in unlabeled rows, label these rows, list them in Ilistu;

if £ = 0 then go to s5;

go to s33;

comment step 4. A column j with b[j] has been labeled, b[j]
is the sink of a possible positive flow, the path of which is
indicated by labels. Find the minimum flow % along the path;

h:=bjl; p:=3j;

mark:

1= rljl; J = glil;

if j = inf then

begin
if a[i] < h then h := aft]; go to re

end;

if z[i, j1 < h then h := z[1, j];

go to mark;
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re: ;
comment flow % along the labeled path thus reduces defect
without changing total costs. Correct list of essential zeros
if necessary. Start labeling anew, optimizing the restricted
primal problem;
Ji=p; bljl :=blj) — k; ali] :=alt] — &;
gd := gd — h;
rel:
1= rljl; zij := zli, j; «li, J] = 2y + ks
if zzj = 0 then in;
J = glel;
if j = inf then go to s31;
zij = zfi, ] = =li, j] — h;
if zzj = O then oul;
go to rel;
8h:
comment step 5. Flow is maximal. To find a new solution to
the dual, take the part of matrix ¢ which is the intersection
of labeled rows and unlabeled columns, reduce matrix in a
certain way;

k:=0; l:=n+1;
for j := 1 step 1 until n do
begin
if r[j] = O then
begin
k:=k+1; lLswk] :=3
end
else
begin
li=1—1; lLstwll] :==j
end
end list all labeled resp. unlabeled columns in lstv;
h = inf;
for 7 := 1 step 1 until m do
begin

if g[{] = O then go to nexti6;
for s := 1 step 1 until k do

begin
J = listv[s];
if c[i, j] < h then h := ¢[i, j]
end;
nexti6:

end find minimum % in partial matrix;
for ¢ := 1 step 1 until m do
begin
2g := g[t] = 0; nlvi := (@G—1) X n;
for s := 1 step 1 until n do
begin
j = liste[s];
if zg then ¢ij := c[7, 7]
else
cij := cli, j] = ¢[t, 5] + Ay
if ¢z = 0 then

begin
nlvi = nlvt 4+ 1;
nllnlvi] := j
end
end;
for s := 1 step 1 until & do
begin
7 = listv[s];
if zg then ¢ij := c[¢, j) :=c[¢,j] — R
else ¢ij := cf, jl;
if ¢ij = 0 then
begin
nlvt = nlot 4 1;
nifnlv) := 35
end
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end;
nlo[] 1= nlvi
end reduction, add h to labeled columns, subtract & from
labeled rows. Construct new list of zeros;
kw :=h X gd + kw;
comment total costs for new solution of dual;
go to $32;
s6:
comment solution, defect has become zero;
end

CERTIFICATION OF ALGORITHM 257 [D1]

HAVIE INTEGRATOR [Robert N. Kubik, Comm.
ACM 8 (June 1965), 381]

I. Farxas (Recd. 29 Apr. 1966 and 18 Aug. 1966)

Institute of Computer Science, University of Toronto,

Toronto 5, Ont., Canada

Havieinlegraior was translated with some modifications into
ForTraN IV and was run on the IBM 7094 II at the Institute of
Computer Science, University of Toronto. To reduce the effect of
roundoff, the calculations were carried through in double preci-
sion internally and the result was rounded to single precision. The
main change made was that the parameters z and infegrand in
havieintegrator were replaced by a single parameter of type FUNC-
TION in Fortran IV. The other change was that mask was re-
moved. The maximum order of approximation was kept less than
or equal to 25, and convergence was obtained in every case.

The results obtained for the two test cases were in agreement
with the author’s result. Besides, 14 other successful tests were
made and those shown in Table I are typical.

TABLE I
Integrand 4 B True value eps Error X 103 ,g]’;‘dg’; d
€* 0.0 1.0 1.7182818 10-¢ 0 3
10— 240 2
102 3700 2
2 0.01 1.1 .26555932  10-¢ -2 4
104 59 3
10~2 36041 2
VT 0.0 1.0 66666667 107 —27 3
10~ —1982 2
102 — 126848 2
1/vz 0.01 1.0 1.8000000 106 0 3
10~ 140 2
102 790 2

Like other integration algorithms that determine sample points
in the interval in a deterministic manner, havieintegrator may fail
in certain instances. For example, any integrand with the property
that f(a) = f(b) = fl(a + b)/2)]will lead to the value (b — a)f(a)
which will in general not be an acceptable approximation to
J& #(x) dz. Thus fi” sin? z dz leads to 0. Moreover, [ ze~= dx leads
to “‘almost zero” (in fact, 5.7966 X 10717).

Please turn the page to the 1966 Algorithms Index.
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REAL SIMPLE ROOTS 4=66(273)
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GUADRATURE
HAVIE INTEGRATOR
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ROMBERG QUADRATURE COEFFICIENTS

6=65(381),11=66(795),
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SYMM,MAT =LLT AND STURM SEQ. COMP,J.V9(103)
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EXACT SOLUTION UF LINEAR EQNS, 9-66(683)
ITER,REFIN+=SOLNGOF POS,DEF.MTX NUM,MATH,V8(206)
REAL AND CUMPLEX LINEAR SYSTEM NUM,MATH,V8(222)

OKRTHUGONALIZATION
SCHMIDT ORTHONORMALIZATION COMPUTING VI(159)

SIMPLE CALCULATICNS ON STATISTICAL DATA
CONFIDENCE INTERVAL FOR A RATIO 7-66(514)

RANDUM NUMBER GENERATQORS
PSEUDO=RANDUM NUMBERS 10=65(605),9=66(687)
RANDOM UNIFORM COMP,BULL.V9(105)

PERMUTATIQONS AND COMBINATIONS
ALL PERMUTATIONS OF N GBJECTS COMP,BULL.V9(104)

OPERATIUNS RESEARCH» GRAPH STRUCTURES

MUTUAL PRIMAL~DUAL METKOD 5=66¢326)
EXAMINATION SCHEDULING 6=66(433)s11=66(795)
TRANSPORTATION PROBLEM 12=66(869)
PLOTTING
GRAPH PLUTTER 2=66¢88)
RELOCATION
INTERCHANGE 2 BLOCKS UF DATA 5=66¢326)
SORTING
QUICKERSORT 11=65(669),5=66(354)
SYMBOL MANIPULATION
BASIC LIST PROCESSING BIT 1966(166)
APPRUXIMATION OF SPECIAL FUNCTIONSsos
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FLETCHER=MILLER~ROSENHEAD, INDEX OF MATH, TABLES
GAMMA FUNCTION 2=610106)s7262(391)»
9=66(685)
GAMMA FUNCTION 4=61¢180)»9=66(685)
GAMMA FUNCTION 3%62(¢166)59"66(685)

GAMMA FUNCTION

9=66(683)
LOGARITHM OF GAMMA FCN,
DERIV.UF BUYS ERROR FCAN,
COMPL.ERROR INT+=CUMPLEX ARG,

3'64(143):10-64(586):

9=66(684)»966(685)
COMP (BULL.V9(105)
BIT 1965(290)

ELLIPTIC INTEGRAL=SECUND KIND 4=61(180),1°66(12)
DERIVATIVES OF EXPC(X .UR IX)/X 4=66(272)
REGULAR COULOMB WAVE FCNS, 11=66(793)

ALL OTHERS
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