Check for
Updates

TLSE The proper transfers are set following the first
statement or expression of a conditional.
lgo Lo [Gt address in Clalal) to

next target instruetion address ; place current
target instruction nddress in afal.

THIEN This sets a previously unspecified transfer
Seb address in Clala)) to next larger instruction
address

cC This serves merely to adjust the temporary
counter in conditional expressions.
if ala] # 97 then 8TV ; a:= a—1 ;

h o= h—1

CCl

hoi= h+t ; a = s+l ; ala] = 9kl

i

Practical Considerations

Specifications for other parts of the translator may be
obtained using the same principles that were used in con-
nection with the expressions, We close with some comments
on the implementation of these for a given machine.

An internal representation may be chosen for the
ArGor delimiters and “identifiers” which simplifies coding.
This means that the precedence level of operations and
relations is apparent in the representation and yet that
they may be considered alike as incoming symbols. Type
designations must be included in the representation of the
“Identifiers.” States must be given internal representations

which permit the operations to be easily incorporated as
part of the states in the cases 12 and 153,

The coding for the building blocks is for the most part
self-evident. In our discussion the consideration of type
has been omitted. This can be taken into account in the
building blocks XU and EXB, and needs be treated no-
where else. Provision must be made in the two blocks for
writing the target equivalent for each binary operation and
relation. It follows that they will in general be much
larger pieces of code than indicated in our swnmary.

The matrix represents essentially a switching program,
which may be implemented in several ways. The matrix
itself, complete with error stops and without the OTHER-
WISE feature may be put into memory and the switching
may be accomplished by a double jump. This is fast, but
perhaps wasteful of memory space. Another approach lists
the permissible pairs with the addresses of the correspond-
ing codes in a table. A table look-up operation then does
the switching. A final possibility is to write the program
for each column separately. The controlling state then
determines which of these programs fo enter.

It must be emphasized that in the approach outlined
here, the scan for expressions is not considered isolated
from the scan for the rest of the Arcown program. The re-
cursive nature of ALcow is such that this cannot be readily
done. Unlike in some other algebraic systems, it is not de-
sirable to have separate programs to handle different kinds
of statements. In following the approach outlined, not only
for the expressions which have merely served as an example
of techniques, but for the processing of the entire language,
the recursive nature of the language is automatically re-
flected in an equally recursive translation process.

Use of Magnetic Tape for Data Storage in the
ORACLE-ALGOL Translator

H. Bottenbruch

Qak Ridge National Laboratory, Tennessee

The ALcor 60 language was designed to simplify formu-
lation of computation processes to be executed on electronic
computers. mphasis in the design of the language was put
on ease of formulation rather than efficient use of the
facilities of a computer. Where in many cases a translation
program can produce an efficient machine program from an
ALGoL description of a computation process, there are
certain areas which a translator cannot handle efficiently.
[n such cases, in order to insure efficient use of computers,
information has to be added to an Ancor, program to allow
a translation program to produce efficient programs. Oune

of these cases is use of auxiliary storage, which is particu-
larly important for a machine like the OracLe with its
limited internal memory (2000 words) and its powerful
tapes.

This paper deseribes how to use magnetic tape for data
storage in the OracLi-ALcoL Translator. Every attempt
was made to keep the additional information which has to
be supplied to the translator if tapes are used as small as
possible. It was an important consideration to keep this
additional information separated from the Avcorn program
so that the operational meaning of 4 program is not

Communications of the ACM 15

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366062.366075&domain=pdf&date_stamp=1961-01-01

changed when this information is ignored. Furthermore, it
was attempted to keep up with the high standard of
notational convenience set forth in Arcor 60. Compromises
were necessary, however, to secure efficiency in the target
program,

We will use tapes only for storage of arrays, not for
simple variables. Those arrays which are to be stored on
tapes are declared so. The translator inserts the necessary
ingtructions for transmitting elements of the tape arrays
between high speed storage and tapes. There is one sub-
routine (ealled tape-positioner) which af object time decides
whether a transmission is necessary or not, and which
executes it if this is necessary.

L. Brief Description of the ORACLE Tapes

There are four tapes, each having a capacity of approxi-
mately 250,000 words (2%). Information is stored in blocks
of 128 words. After execution of a tape order the read-
write head of a tape stops in the gap between two succes-
give blocks. The following tape operations are used in this
paper:

(a) Read forward: Read the block on tape t which is to the
right of the read-write head into locations A, A+41, - - - | A+127.
The leftmost word of the book will go into location A, the right-
most word will go into location A--127.

(b) Read backward: Read the block on tape t which is to the
left of the read-write head of tape t into locations A+4-127, A+126,
- -+, A. The leftmost word of the block will go into location A+-127,
the rightmost word will go into loecation A.

(¢) Write forward: Write information from location A to A+4-127
into the block immediately to the right of the read-write head of
tape t. The word in location A goes into the leftmost word of the
block, ete.

(d) Write backward: Write information from location A4127
to A into the block immediately to the left of the read-write head
of tape t. The word from location A+127 goes into the leftmost
word of the block, etc,

(e) Hunt forward: Move the read-write head of tape t, b
blocks to the right.

(f) Hunt backward: Move the read-write head of tape t, b
blocks to the left.

In the OracLy, operations 5 and 6 go on in parallel to other
operations not involving the moving tape. Execution of
of operations 1 to 4 takes approximately 50 milliseconds.
(In comparison: Floating point arithmetic (programmed)
takes 3 milliseconds per operation.) The blocks can be used
in any desired order, and information at the end of the
tape is not lost if a block at the beginning of the tape is
used in an operation. Two machine instructions are needed
to execute these operations.

In reading and writing information, any number of
words can be transferred. We do not make use of this
facility.

2. Specifications

2.1. A new declaration is added to the language which
declares that one or more arrays are to be stored on one of
the four tapes during execution of the program. The
declaration begins with the new delimiter tape, is followed

16 Communications of the ACM

by a numberi (0 £ 1 £ 3), and then a normal Avgor array
declaration follows.

2.2. Only one declaration may be given for cach tape.

2.3. These declarations have to be at the very beginning
of each program.

24. The arrays will be stored on the designated tape in
the order in which they are written in the tape array
declaration. The first clement of ecach array is always
stored in the first location of a (physical) block on the
tape.

2.5. The clements of tape arrays are stored in lexico-
graphical order; that is, al4, i, k] is stored after al3, [, m]
regardless of the values 1, k, £, m. And a[3, 4, k] is stored
before al3, 5, m| regardless of the values of k and m, cte.
There are no gaps between the elements of one array.

2.6. The elements of a tape array can be used inside any
program in the same way as the elements of any non-tape
array.

2.7. In order fo assure efficiency in using the tapes, the
following new statements are added to the OracLe-ALGoL
language:

tapestate i := read only |
tapestate i := wrile only } 1i=40,1,2,3
tapestate 1 := read writh

The effect of the first statement is that information will
never be written from high-speed storage onto tape i after
that statement is given, until statement two or three is
given for that same tape. Similar remarks hold for the
second and third statements.

2.8. During execution of the target program one block
of each tape which is declared will be “represented” in high-
speed storage. If an element of a tape array is referred to,
a subroutine first determines whether that block of the
tape on which this clement lies is represented in high speed
storage. If so, the required operation is executed without
any tape motion.

If it is not represented, the following action will take
place depending on the state of the tape:

(a) In the read only state the block in which the referenced
element lies is called into high speed storage, and a certain loca-
tion which keeps track of the tape standing is changed to the new
position.

(b) In the write only state, the block just represented in high
speed storage is written on tape, then a hunt order is given to the
block in which the referenced element lies. The location mentioned
in (a) is changed accordingly.

(¢) In the read write state, the block just represented in high
speed storage is written on tape, and then the block in which the
referenced element lies is read into high speed storage.

In order to use the tape arrays efficiently, the elements
stored on tape must be used sequentially. The subroutine
which transmits information between tapes and high speed
storage uses the backward or forward read and write order,
whichever is fastest. It automatically changes the orders
for computing the address of a tape array element depend-
ing on the way (backward or forward) in which the tape
information is recorded in high speed storage.

2.9. Using the tapestate write only is not foolproof. Tt is
impossible to make this foolproof without treating it the
sarae and incfficient way as the read write state. Here is a
discussion of a possible blunder using the write only state.

If a tape is in wrife only state, and not all the elements
of the (physical) block BI represented in high speed stor-
age are changed before an element in a different block B2
1s referred to, all the storage locations of BI on the tape
will nevertheless be changed to whatever the information
in high speed storage was before the first element in Bl
was called for,

This means, for instance, that it is impossible, in the
write only state, to change all elements of an array except
the first one, or that it is impossible to change only every
second element, ete.

If a computation process requires such things, the read
write state must be used.

Since a new block is started with each array, No errors
of the above mentioned type can occur in case all elements
of an array are changed (or if the elements which are not
changed are no longer needed).

If, in matrix work, the elements of certain rows undergo
changes, other rows being unaffected, use of the inefficient
read write state can be avoided by giving an array-declara-
tion where the number of columns is a multiple of 128.
This assures that a new physical block is started for each
row.

3. Implementation

3.1. A numerical address will be associated with each
location on each of the tapes. The addresses used for tape 0
range from 2% to 29— 1, those for tape one range from 29
to 2¥ + 251, etc. This means that the 19th, 20th and
21st bit of the binary representation of an address deter-
mine the tape number.

A tape declaration associates one of the above mentioned
numerical tape addresses to each element of each array in
accordance with 2.4 and 2.5.

If, for instance, a tape declaration runs as follows:

tape 0 array a, b{l : 4], ¢[2 :3,4 : 7];

the following addresses will be associated with the elements
of these arrays:

Element Address Element Address
all] 218 cl2, 4] 2154256
al2] 2184 § c{2, 5] 2184257
al3] 21849 el2, 7] 2184950
al4] 21843 : :
b(1] 2184128 c[3, 4] 2184260
b4] 214131 ¢ls, 71 214263

3.2. One part of the implementation is the construction
of a program which seans the tape array declarations and
builds up a table which for each array contains the in-
formation:

L. First location of the array.

2. Control information determined by the subscript

bounds of the declaration.

The work to be done here is very similar to the work
which has to be done for normal arrays, the only difference
being the way in which the initial address for the tape
array is computed.

3.3. Non-tape arrays are handled in a particularly
simple way in the present OrRAcLE-ALGOL Translator, al-
though in some cases it is not very efficient. Whenever an
element of an array (subscripted variable) appears in a
program, the translator creates a call for a subroutine
(called “address caleulation’) which computes the ad-
dress of that element and places it into a special location.
We will call this location ADD. This is done regardless of
where and in which connection the subscripted variable is
used. After this subroutine call the translator inserts in-
structions to use the address. The same scheme can be used
for tape arrays. The tape-address of a subscripted variable
is first computed by the routine “address caleulation.” For
tape arrays, however, another subroutine (the “tape
positioner,” see below) is called after execution of routine
“address-calculation.” On exit from the “tape positioner,”
the required tape location is represented in high speed
storage, and its associated high speed storage address is in
location ADD. This address can be used in the same way
as the address of an ordinary subscripted variable.

3.4. The major part of the implementation is the con-
struetion of the subroutine ‘“tape positioner.” This sub-
routine, when supplied with a tape address in location
ADD, controls the necessary tape motions and transmis-
sions, and replaces the tape address in ADD by a high
speed storage address.

TFollowing is a “quasi” ALcoL procedure which does this.
The procedure uses the following quantities:

1. An array FRTL (one element for each type). FRTLJt] con-
tains the first location of tape t which is represented in high speed
storage.

2. An array FHS (one element for each tape). FHS[t] contains
the first high speed storage location used by tape t.

3. An array tapestate (one element for each tape). Tapestate
[t] contains, in a certain code, the present state of tape t (read
only, write only, read write).

4. An array Dilt] (one element for each type). Dit] contains,
in certain code, whether tape t is represented in forward or back-
ward mode in high speed storage.

The quantities 1, 2, 3, and 4 are global quantities to the
procedure tape positioner in the sense of Arcow 60.

The only parameter to the procedure is the referenced
address (a tape address) given in ADD,

The procedure needs the local quantities t, 6, and d.
Here, t denotes the tape number involved, 8 is the differ-
ence between the required address and the first address of
tape t which is represented in high speed storage, and d is
the difference in blocks between these two addresses.

The tape motions and transfers to be carried out depend
on the tapestate. They are written down in the program
only for the read write state. The actions to be carried out

Communications of the ACM 17

for the other two states form a subsct of those for the
read write state. The proper subscts are given by yes-no
information.

In the following quasi-Ancon program, the words “read
write,” “forward” and “backward” have been used to
represent the numbers by which these words are repre-
sented inside the machine. The statements which handle
tape motions are self-explanatory. The high speed storage
locations which are involved in transmitting information
are not explicitly given in the read and write statements.
The first of these locations is contained in FRTL{t].

The subroutine assumes that on entering it the read-
write head of each tape will be at the beginning or end of
the block represented in high speed storage depending on
the tapestate and the direction, according to the following
table. The subroutine will leave the head in a position de-
termined by the same table.

Di(t] = backward

tapestate [t) Dift] = forward

Read only end beginning
Write only beginning end
Read write beginning end

A quasi-Arcorn program for the “Tape positioner’’:

t = ADD +2 17 18;
L:delta := ADD — FRTL{t|;
if = (0 £ delta A delta < 128) then begin comment if this
condition is fulfilled, the required tape address is not repre-
sented in high speed storage;
d 1= ent (delta/128);
if tapestate [t] = read write then begin

Read Wrile
only only

if Di[t} = forward then begin No Yes
Write on tape t

forward; No Yes

d:=d ~ 1end Yes Yes

else Write on tape t backward; No Yes

ifd <o then begin Yes Yes

Dift] := backward; Yes Yes

Hunt backward — (d 4+ 1) Yes Yes
on tape t;

Read tape t backward; Yes No
Hunt forward [on tape No No
t end

else begin
Dift] := forward; Yes Yes
Hunt forward d on tape t; Yes Yes
Read tape t forward; Yes No

Hunt backward 1 on tapet No No
end end;
FRTL[L] := 128 X ent (ADD/128); go 1o L end;
if Dilt] = forward then ADD := FHS[t] + delta else
ADD := FHS|t] + 127 — delta;

3.5. The statements mentioned in 2.7 will be translated
into a call of a subroutine which changes the tape states.
In addition to changing the variable tapestate [t], certain
tape motions must be done by thig subroutine and, if the
state is changed from read write or write only to read only,
the information in high speed storage must be written on
tape.

18 Communications of the ACM

More exactly, the following tape actions must be taken .

Action to be taken

Old State New State Dift} = forward Dift] = backward

- -
i Hunt backward 1 ‘ Hunt forward i
\ on tape t | on tape L

[[Read write
[Write only | Hunt backward 1 | Hunt forward |
|

Read only

Read only
on tape t { on tape t

Write forward ou? Write backward
tape t | ontapet

None “ None

Write forward on | Write backward

on tape t
E None
\

Read write | Read only
Write only
. Read only
} tape t
| Read write | None

|
i

Read write
Write only

1
\

Write only

4. Example for Using Tape Arrays

A sequence of measurements is punched on a paper
tape. Itach measurement consists of a series of numbers
m; (= 1,2, -+, n) which lie between | and 10. The num-
ber zero is punched after each series to indicate the end
of that measurement. n may differ from one measurement
to another and is less than 100000. The number —1 is
punched at the very end of the tape instead of zevo. It ix
required, for each measurement, to punch the numbers
(m; — m)?/p where

113
p = ;1“2:1 (mi—m)?
m is the mean value of the m; for each measurement. The
numbers (m;-—m)%/p may, within each measurement, be
punched in any order desired. The control numbers zero
and — 1 are inserted as in the original tape.
The formula

1
p=--pmg~ m?
n

is used to compute p, saving one pass through the numbers.
array all : 105]; integeri,n; reals,t,c,m,p;
tapestate] := write only
M: s:=0; t:=0;
for i 1= 1 step 1 until 45 do beginn := 1;
if (e =0)V (¢ = —1) then go to L;

tape 1

read ¢;

afili=¢; s:=s4¢; t:=t+c2end
L: n:=n— I
m := g/n; p = t/m— m7l2;
tapestate 1 := read only

fori := nstep —1 until 1 do punch (afi] — m) T2/p;
punch ¢;

if (c = —1) then stop else go to M; [See Footnote 1.]

Using the tapestate write only does not cause the trouble
mentioned in 2.9. The tape will first be written in the
forward mode and will then be read in the backward mode-
So if B blocks are used by one measurement the tape will
move 2B blocks, with the tape in rewound position after
each measurement is processed.

! The program is written in OrRacLE-ALGOL, with the extensions
set forth in this paper.

Using the tapes in an uncritical way might well vesult in
o total tape movement of 12B blocks, namely if

{a) the read wrile state is used throughout,

{h) the trick for computing p is not used,

{¢) the elements of each array are always used in the
order from 1 to n.

I{ no provision would be made internally for the forward
and backward mode, the best possible program would
result in a total tape movement of 4B blocks.

If the read write state would be used throughout and no
provision would be made internally for the forward and
backward mode, the best possible program would result in
total tape movement of 6B blocks.

5. Extensions of the Techniques to Storage of Pro-
grams on Tapes

A program which is too big to fit into the memory at one
time must be divided into segments. Segmentation in the
OnracLE-ALcoL translator will be done in the same way as
1= done in Orprr {1}, because the Orprr routines can be
used with practically no change. If we started from serateh,
we would do segmentation in the following way:

A new delimiter segment is added to the language. A
statement may be declared a “tape-segment” by preceding
it with the string:

tape i segment --- , wherei = 0,1, 2, 3.
A segment is o statement, and it is automatically a block,
even if no declarations are given for this statement. A seg-
ment may itself be part of another segment, which may
even have a different tape number. If a statement 8 is
declared a tape i segment, it will normally be stored on
tape 1, and will be transmitted into high speed storage only
if control is transferred to that segment S. The storage

space for 8 will be made available for storage of other seg-
ments after control has left segment S. If 8 is a block with
own varlables, these are stored on tape i along with the
program for 8, and they are transmitted to high speed
storage if control is transferved to 8., These variables must
be written on tape after control has left 8. A subsegment
88 of 8 is called into high speed storage only if control is
transferred to 88, In this case, 8 remains in high speed
storage together with its own variables.

Storage space on tape and in high speed storage can be
allocated to the segments at translation time, but this
alloeation is much more complicated than it is in the
normal case. The translator has to construct a table which
contains, for all segments, the storage space allocated to
them. A go to statement to a label of a segment must be
translated into a eall of subroutine which transmits the seg-
ment into high speed storage and then jumps to the first
order of that segment. The above mentioned table is not
required at execution time.

The idea can be extended to procedures. A procedure
which is declared a tape i procedure is normally stored
on tape 1 and is transmitted to high speed storage if and
only if it is called. Procedures which are local to a segment
S and which are not declared tape procedures are con-
sidered part of 8, and are transmitted along with the code
for 8 whenever control is transferred to S.

ACKNOWLEDGMENT

This paper is the result of discussion which the writer
had with A. A. Grau, A. C. Downing, and G. J. Atta on
the subject of tape files.

REFERENCE

1. Gravu, A, A. Br an: OracLe Binary Interal Translator (Orsrr)
Oak Ridge National Laboratory, Sept. 1959, Central Files
Number 59-9-20.

The CLIP Translator

Donald Englund and Ellen Clark

System Development Corporation, Santa Monica, California

Introduction

Crrp, a compiler and language designed for information
processing, is the joint research project of E. Book, H.
Bratman, Ellen Clark, D. Englund, H. Isbitz, H.
Manelowitz and E. Myers of the System Development
Corporation. A Crir compiler for the IBM 709 computer
has been written. As a test of the adequacy of the language,
the Curp compiler was written in its own language and
has successfully reproduced itself.

The compiler is divided into two parts, a generator and
translator. This paper will concern itself primarily with
the translator.

CLIP Language

The Crrp language is based on ArgoL but has the follow-
ing additional data declarations which were found to be
needed in information processing:

1. TABLE declarations specify the subseripted variables or
items which make up the table. The size and form (Boolean,
alpha-nureric, integer, signed integer) of each item are declared,
and provision is made for packing items into parts of a machine
word. Initial data may be supplied if desired.

2. STRING declarations define a contiguous set of alphanu-
meric characters. Initial data may be given. Operations are per-
mitted on any contiguous subset of a string.

3. ORIGIN declarations permit the programmer to specify the

Communications of the ACM 19

