
rep;

I" r ~.i .[.
L.

b e g
:) :~- i-i-~()I'~:ii:

i t m (~ l f i i '

, , t t ~ (, d in(

t (_? 17(~ e :

, o l

~ e n t i

[) (:) i I11
t o

X v i l I de-ii!i
I~-y usedi!:
• s <) f t h~:!ii

i}

iii~i:

' ~ t h I : :

]'; I,S 1,; The t)roper ir *usfcrs are s~ t tolh)wmg" " the first
s/at:cnaent or expression of a conditional.

Igo t o } - , = ; S(t address in C(~[a]) to
next target instruetionaddress ; placecurrenl
(arget inst FI.LU t iOl / :[d([l '(?SS i l t (~ Ii~l.

T H E N This sets a previ()usly unspecified transfer

Set ad(h'(~ss in C(e,[a]) (o taext larger instruction
add ress

(/ / This serves merely to ad jus t the temporary
eotmter in conditional expressions.

if ~[a] > '~[hl' then S T \ ; a := a - I
h := h - I

(,C

h := h + I ; a := a ÷ l ; ~ [a / : = '~[M'

Prac t i ca l C o n s i d e r a t i o n s

Specifications for other parts of the translator may be
obtained using the same principles tha t were used in con-
ne<.ti<m with the expressions. We close with some comments
on the implementation of these for a given machine.

An intenml representation may be chosen for the
AL(;OL delimiters and "identifiers" which simplifies coding.
This me,ms that the precedence level of operations and
relations is apparent in the representat ion and yet that
they may be considered alike as incoming symbols. Type
([('signations must be included in the representat ion of the
"identifiers." States must be given intertml representations

which permit, the operations to be easily incorporated as
part of the states in the cases E2 and E3.

The coding for the building blocks is for the most par t
self-evident. [n our discussion the consideration of type
has been omitted. This can be taken into account in the
building blocks EX(" and EXB, and needs be treated no-
where else. Provision must be made in the two blocks for
writing the target equivMent for each binary operation and
relation. I t follows that they will in generM be much
larger pieces of code than indicated in our summary.

The matrix represents essentiMly a switching program,
which nmy be implemented in several ways. The matrix
itself, complete with error stops and without the OTHER-
WISE feature may be put into memory and the switching
may be accomplished by a double jump. This is fast, but
perhaps wasteful of memory space, Another approach lists
the permissible pairs with the addresses of the correspond-
ing codes in a table. A table look-up operation then does
the switching. A final possibility is to write the program
for each column separately. The controlling state then
determines which of these programs to enter.

lit must be emphasized that in the approach outlined
here, the scan for expressions is not considered isolated
from the scan for the rest of the ALGOL program. The re-
cursive nature of ALGOL is such that this cannot be readily
done. Unlike in some other algebraic systems, it is not de-
simble to have separate programs to handle different kinds
of statements. In following the approach outlined, not only
for the expressions which have merely served as an example
of techniques, but for the processing oi the ent, ire language,
the recursive nature of the language is automatically re-
fleeted in an equally reeursive translation process.

Use of Magnetic Tape for Data Storage in the
ORACLE-ALGOL Translator

H. Bottenbruch

Oak Ridge National Laboratory, Tennessee

The ALc~or, 60 language was designed to simplify formu-
Iatk)u of computat ion processes to be executed on electronic
computers. Emphasis in the design of the language was put
on case of formulation rather than efficient use of the
facilities of a computer. Where in m a n y cases a translation
program can produce an efficient machine program from an
AL(~OL description of a computat ion process, there are
certain areas which a translator cmmot handle effieiently.
[n such cases, in order to insure eNeient use of computers,
itfformation has to be added to an ALOOL program to allow
a translation program to produce efficient programs. One

of these cases is use of auxiliary storage, which is particu-
larly important for a machine like the ()~¢ACLI,: with its
limited internal memory (2000 words) and its powerful
tapes.

This paper describes how to use magnetic tape for data
storage in the OaAeL~:-ALGoL Translator. E v e w at tempt
was made to keep the additional informatkm which has to
be supplied to the translator if tapes are used as small as
possible. I t was art important consideration to keep this
additional information separated front the ALCOL program
so that, the operational meaning of a program is not

C o m m u n i c a t i o n s o f t h e A C M] 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366062.366075&domain=pdf&date_stamp=1961-01-01

changed when this information is ignored. Furthermore, it
was a t t empted to keep up with the high s tandard of
no ta t iona l convenience set, forth in ALGOL 60. Compromises
were necessary, however, to secure efficiency in the target
p rogram.

We will use tapes orfly for storage of arrays, not for
s imple variables. Those ar rays which are to be stored on
t a p e s are declared so. The t ranslator inserts the necessary
ins t ruc t ions for t ransmit t ing elenmnts of the tape arrays
between high speed storage and tapes. There is one sub-
rou t ine (called tape-positioner) which at object time decides
whe the r a trm|smission is necessary or not, and which
executes it if this is necessary.

1 . B r i e f D e s c r i p t i o n o f t h e O R A C L E T a p e s

There are four tapes, each having a capaci ty of approxi-
m a t e l y 250,000 words (21s). Informat ion is stored in blocks
o f 128 words. After execution of a tape order the read-
wr i te head of a tape stops in the gap between two sucres-
g ive blocks. The following tape operat ions are used in this
p a p e r :

(a) Read forward: Read tile block on tape t which is to the
right of the read-write head into locations A, A+i , - - • , A+127.
The leftmost word of the book will go into location A, the right-
most word will go into h)cation A+127.

(b) Read backw~rd: Read tile block on tape t which is to the
left of the read-write head of tape t into locations A+127, A+126,
- - . , A. The leftmost word of the block will go into location A+127,
tile rightmost word will go into location A.

(c) Write forward: Write information from location A to A+127
into tile block immediately to the right nf the read-write head of
tape t. The word in location A goes into the leftmost word of the
block, etc.

(d) Write backward: Write information from location A+127
to A into the block immediately to the left of the read-write head
of tape t. The word from location A+127 goes into the leftmost
word of the block, etc.

(e) Hunt forward: Move the read-write head of tape t, b
blocks to the right.

(f) Hunt backward: Move the read-write head of tape t, b
blocks to the left,.

I n the OaACLE, operations 5 and 6 go on in parallel to other
opera t ions not involving the moving tape. Execution of
o f operations 1 to 4 takes approximate ly 50 milliseconds.
(I n comparison: Floating point ar i thmetic (programmed)
t akes 3 Inilliseeonds per operation.) The blocks can be used
in any desired order, and inff)rmation at the end of tile
t a p e is not lost if a block at the beginning of the tape is
used in an operation. Two machine instructions are needed
t o execute these operations.

h l reading and writing information, any number of
words can be transferred. We do not make use of this
facil i ty.

2 . S p e c i f i c a t i o n s

2.1. A new declaratkm is added to the language which
declares tha t one or more arrays are to be stored on one of
t h e four tapes during execution of the program. The
declara t ion begins with the new delimiter t ape , is followed

1.6 Communicat ions of the ACM

7

by a mnnber i (0 =< i ~ 3), and then a normal ALGOL ar ray
declaration follows.

2.2. ()nly one declaration m a y be given for each tape.
2.3. These declarations have to be at the very beginning

of each program.
2.4. The arrays will be stored on the designated tape in

the order in which they are written in the tape ar ray
declaration. The first element of each ar ray is always
stored in the first location of a (physical) block on the
tape.

2.5. The clements of tape ar rays are stored in lexico-
graphical order; tha t is, a[4, i, k] is stored after a[3, f, m]
regardless of the values i, k, f, m. And a[3, 4, k] is stored
before a[3, 5, m] regardless of the values of k and m, etc.
There are no gaps between the elemenis of (me array.

2.6. The elelnents of a tape a r ray can be used inside any
program in the same way as the elem(mts of any non-tape
array. ;

2.7. In order to assure efficiency in using tile tapes, the
following new s ta tements are added to the ()RAChI!:-AI,(IOL
language:

tapestate i := read only)
t a p e s t a t e i := write only t i = 0, 1, 2, 3
tap:state i : = read writej

The effect of the first s ta tement is tha t information will
never be written fronl high-speed storage onto tape i after
t ha t s ta tement is given, until s t a tement two or three is
given for tha t same tape. Similar remarks hold for the
second and third s tatements .

2.8. During execution of the target program one block
of each tape which is declared will be "r(.p~ t'esml t ed" 'm high-
speed storage. If' an element of a tape a r ray is referred to,
a subroutine first determines whether that, block of the
tape on which this element lies is represented in high speed
storage. If so, the required operat ion is executed without
arty tape motion.

If it is not represented, the folh)wing action will take
place depending on the state of the tripe:

i;

2

(a) In tile read only state the block in which the referenced
element lies is called into high speed storage, and a certain loca-
tion which keeps track of the tape standing is changed to the new
position.

(b) In the write only state, the block just represented in high
speed storage is written on tape, then a hunt order is given to the
block in which the referenced element lies. The location mentioned
in (a) is changed accordingly.

(c) In the read write state, the block just represented in high
speed storage is written on tape, and then the block in which the
referenced element lies is read into high speed storage.

In order to use the tape ar rays efficiently, the elements
stored on tape mus t be used sequentially. The subroutine
which t ransmits informatiorl between tapes and high speed
storage uses the backward or forward read and write order,
whichever is fastest. It, au tomat ica l ly changes the o r d e r s :
for comput ing the address of a tape a r ray element depend-
ing on the way (backward or forward) in which the tape
information is recorded in high speed storage.

in
s f l

di

of
a~
is
w
in

W~

t~
s e

W;

oi
ot
el

ct
r~

ti,
T
r £

,

1o
r~

t(
2 :

rE

n l

a (

tt
ol

" " ' V ;

,:h'h

'()~i) i ~)(i:

i

2.9. Using th(~ tat)estate write only is not foolproof. [~ is
imp<>ssi}>le t(> make this foolpro<>f without treating it the
same and inel[icient way as the read write state.]Iere is a
discttssion of a possible blunder using the write only state.

K a tape is in write only state, and not all the elements
of the (physical) block B1 represented in high speed stor-
age are changed before an element in a different block B2
is referred t<), all the st<)rage locations of BI on the tape
will nevertheless t)e (:hanged to whatever the irfformation
in high speed storage was before the first element in B1
was called for.

This means, for instance, tha t it is impossible, in the
write only state, to change all elements of an array except
the first one, or that it is impossible to change only every
second element, etc.

If a computat ion process requires such things, the read
write state must be used.

Since a new block is started with each array, no errors
of the at)ore mentioned type can occur in ease all elements
of an array are changed (or if the elements which are not
changed are no longer needed).

If, in matrix work, the elements of certain rows undergo
changes, other rows being unaffected, use of the inettieient
read write state can be avoided by giving an array-declara-
tion where the number of columns is a multiple of 128.
This assures tha t a new physical block is started for each
r o w .

3. h n p l e m e n t a t i o n

3.1. A numerical address will be associated with each
location on each of the tapes. The addresses used for tape 0
range from 2 ~s to 2 ' 9 - t, those for tape one range from 2 ~°
to 2 '° + 2 ~s- 1, etc. This means that, the 19th, 20th and
21st bit of the bina~T representation of an address deter-
mine the tape number.

A tape declaration associates one of the above mentioned
numerical tape addresses to each element of each array in
accordance with 2.4 and 2.5.

If, for instance, a tape declaration runs as follows:

t a p e 0 ar r ay a, b[1 : 4], c[2 : 3, 4 : 7];

the following addresses will be associated with the elements
of these arrays:

Element Address Element Address

al l] 2 ~s el2, 41 2ts+256
a[2] 2~S+l c[2, 5] 2~a+257
a[31 218+2 c[2, 71 218+259
a[4] 2 '8+3 : :
b i l l 2~s-b128 c[3, 4] 218-1-260

: : : :

b[41 2~s+131 c[3, 7] 2~ +263

3.2. One part of the inlplementation is the construction
of a program which scans the tape array declarations and
builds up a table wtfi<'h for each array contains the in-
formation:

1. li'irst location of the array.

2. Control information determined by the subscript
bounds of the declaration.

The work to be done here is very similar to the work
which has to be done for normal arrays, the only difference
being the way in which the initial address for the tape
array is computed.

3.3. Non-tape arrays are handIed in a particularly
simple way in the present ()I~ACL~:-Ar~GOL Translator, al-
though in some eases it is not very efficient. Whenever an
element of an array (subscripted variable) appears in a
program, the translator creates a call for a subroutine
(called "address calculation") which computes the ad-
dress of that element and places it into a special location.
We will call this location ADD. This is done regardless of
where and in which connection the subscripted variable is
used. After this subroutine call tile translator inserts in-
structions to use the address. The same scheme can be used
for tape arrays. 3"he tape-address of a subscripted variahle
is first computed by the routine "address calculation." For
tape arrays, however, another subroutine (the "tape
positioner," see below) is called after execution of routine
"address-calculation." On exit from the "tape positioner,',
the required tape location is represented in high speed
storage, and its ass(Mated high speed storage address is in
location ADD. This address can be used in the same way
as the address of an ordinary subscripted variable.

3.4. The major part, of the implementation is the con-
struction of the subroutine "tape positioner." This sub-
routine, when supplied with a tape address in location
ADD, controls the necessary tape motions and transmis-
sions, and replaces the tape address in ADD by a high
speed storage address.

Following is a "quasi" ALGOL procedure which does this.
The procedure uses the following quantities:

1. An array FRTL (one element for each type). FRTL[t] con-
tains the first location of tape t which is represented in high speed
storage.

2. An array FHS (one element for each tape). FHS[t] contains
the first 19igh ~peed storage location used by tape t.

3. An array tapestate (one element for each tape). Tapestate
[t] contains, in a certain code, the present state of tape t (read
only, write only, read write).

4. An array Di[t] (one clement for each type). Di[t] contains,
in certain code, whether tape t is represented in forward or back
ward mode in high speed storage.

The quantities 1, 2, 3, and 4 are global quantities to the
procedure tape positioner in the sense of ALGOL 60,

The only parameter to the procedure is the referenced
address (a tape address) given in ADD.

The procedure needs the local quantities t, a, and d.
Here, t denotes the tape number involved, ~t is the differ-
ence between the reqtfired address and the first address of
tape t which is represented in high speed storage, and d is
the difference in blocks between these two addresses.

The tape motions and transfers to be carried out depend
on the tapestate. They are written down in the program
only for the read write state. The actions to be carried out

C o m m u n i c a t i o n s o f t i l e ACM 17

for the o ther two s ta tes form a subsel of those for {;he,
read write s la te . The proper subsets are given by yes-no
information.

In tim following quasi-ALGoL program, the words " r ead
wri te ," " f o r w a r d " and " b a c k w a r d " have been used to
represent the numbers by which these words are repre-
sented inside the machine. The s t a l emcn t s which handle
tape mot ions arc self-explanatory. The high speed s torage
k)t 'ations which are involved in t r ansmi t t ing informat ion
are not expl ic i t ly given in the read and write s t a t ements .
The first (}f these locations is conta ined in iPR£1PL[t].

The subrout ine assumes tha t on enter ing it the read-
write head of each tape will be a t thc beginning or end (}f
tilt' block represented in ifigh speed storage depending on
tile t apes ta te and the direction, ac(',ording to the following
lable. The subroul ine will leave the head in a posi t ion de-
te rmined by the same table.

t a p e s t a t e [t] I) i [t] = f o r w a r d l) i [t] = b a c k w a r d

.. 4 ... [.

t~ea(i only end begirming
Write only beginning end
Read write beginning end

A quasi-ALGO:t, program for tit(, " T a p e pos i t ioner" :

t := ADD + 2 T 18;
L:de/ta := AI)D -- FRTL[t];

i f --7 (0 N delta A delta < 128) then begin e(nmnent if this
condition is fulfilled, the required tape ad(lress is not repro-
seated in high speed storage;
(t := ent (delta/128);

if tapestate [t] = read writ(; then begin

Read Write
only o~tly

N o Yes i f l) i [t l = forward then begin
Write on tape t
forward; No Yes
d := d - 1 e n d Yes Yes

e l s e Wri te on tape t backward; N o Yes
i f d < 0 t h e n begin Yes Yes

l)i[t] := backward; Yes Yes
Hunt backward - (d q- 1) Yes Yes
on tape t;
Read tape t backward; Yes No
Hunt forward I on tape No No
t end

e l s e begin
Dill] := forward; Yes Yes
Hunt forward d on tape t; Yes Yes
Read tape t forward; Yes No
Hunt backward 1 on tape t No No
e n d e n d ;

F R T L [t] := 128 X ent' (ADD/128); go to L end;
i f Di [t] = forward then ADD := FHS[t] + delta e l s e

ADD := FHS[t] + 127 - delta;

3.5. The s t a t emen t s ment ioned in 2.7 will be t r an s l a t e d
into a call of a subrout ine which changes the t ape s ta tes .
In add i t ion to changing the var iable t apes ta te It], cer ta in
tape mot ions mus t be done by this subrout ine and , if the
s ta te is changed from read write or write only to read only,
the informat ion in high speed s torage mus t be wr i t t en on
tape.

1 8 C o m m u n i c a t i o n s o f t h e ACM

%

2Io,'e ex~ctly, the followi~g tape a(:tions must: be taken:

Actkm to be taken
O l d S t a t e N e w S t a t e I) i{t] = f o r w a r d l) i [t l = b a c k w ~ r d

Read oMy

Read only

Read write

Read write
Write only

t(ead write

Writ(: only

Read only

Write only
Read only

J
Write {}niT'] Read write

thmtbackward l Hunt forward 1
on tai}e t on tape. t

Htmtbackwardl Hunt forward /
on tape t o n t a p e t

Write forward °n Write backward
la/)e t on tape t

None None
Write forward on Write backw~trd

tape t or, t:~pe t
None None

4 . E x a m p l e f o r U s i n g T a p e A r r a y s

A sequence of measurements is punched on a p a p e r
tape. Eacil measurement consists of a series of n u m b e r s
m~ (i = 1,2, .- • , n) which lie between I and i0. The n u m -
ber zero is punched af ter each series to indicate the e n d
of tha t measurement , n m a y differ from one m e a s u r e m e t l t
to another and is less than 100000. The nuvtber - 1 is
puncimd a t the very end of the t ape ins tead of zero. I t is
required, for each measurement , to punch the n u m b e r s
(mi - m)Vp where

1
P = - k (m~--m)2;

11 i = l

m is the mean value of the m: for each measurement . T i m
numbers (m i - m) ~ / p may, within each measu remen t , be
punched in any order desired. The control number s zero
and - 1 are inserted as ill the original tape.

Tim formula

1
p ~ - - . ~ l l l l 2 - - i n 2

n

is used to compute p, saving one pass through the n u m b e r s .

t a p e 1 a r r a y a [1 : 105]; i n t e g e r i , n; r e a l s , t , c , m , p ;
t a p e s t a t e 1 := w r i t e o n l y

M: s : = 0 ; t : = 0 ;
for i := 1 s t e p 1 u n t i l ~05 d o b e g i n n := i;

r e a d e ; i f (c = 0) V (e = - 1) t h e n go t o L ;
~[i] := c; s := s-4-c; t := t + c T 2 e n d

L : n : = n - i ;
m := s /n ; p := t / n - i n T 2 ;
t apes ta te 1 := read only
for i := n s t e p - 1 u n t i l 1 d o p u n c h (a[i] -- m) ~ 2 / p ;
punch e;
i f (c = --1) t h e n s t o p e l s e go to M; [See F o o t n o t e 1-I

Using {he t apes t a t e write onlg does not cause the t r o u b l e
tnemtioncd in 2.9. The tape will first be wr i t t en in t h e
forward mode and will then be read in the backward m o d e .
So if B blocks are used by one measurement the t a p e wi l l
move 2B blocks, wi th the tape in rewound pos i t ion a f t e r
each Ineasurement is processed.

The program is written in ORAC.I.E-ALGoL, with the extensicms
set, forth in this paper.

?

):
¢

5,,

B~
3I
O

h

h

, c

) r ~-ard
.e: t :5

) ~ t C kwtii l

e

~L

1

|7

I
L * r (: , r e (m ,

't 'ILl

(" Z(q~) I

t l I-Jit)(y

~T -

/ |

t t
) 1 :

T(si~g the tapes in a~l uncritieal way might well result in
~. ~otal tape movement of t2B blocks, namely if

(a) the r'ead wxite state is used throughout,
(h) the trick for computing p is not used,
(c) the elements of each array arc alwaTs used in the

~c(ter from 1 to n,
Ii" no provision would be made internally for the forward

mid baekwar(l tootle, the best possible program would
reslflt i~t ~ total tape moveinent of 4B blocks.

It' the read wrile state would be used throughout and no
pr()vision would be made internally for the forward and
backward mode, the best possible program would result in
~otal tape movement of 6B blocks.

5. E x t e n s i o n s o f t h e T e c h n i q u e s to S t o r a g e o f Pro-
g r a m s on T a p e s

A program which is too big to fit into the niemory at one
t ime must bc divided into seginents. Segmentation in the
()I~A(::LE-ALGot, translator will be done in the same way as
is done in ()Iu~tT [1], because the O~nnT routines can be
~sed with practically no change. [f we started from scratch,
we would do segmentation in the following way:

A new delirniter s e g m e n t is added to the language. A
s ta lemcnt may be declared a "iape-segment" by preceding
it with the string:

tape i segment ... , where i = 0, 1, 2, 3.

A segment is a statement, and it is automatically a blo(,k,
even if no declarations are given for this statement. A seg-
ment may itself be part of another segment, which may
('\-e~ have a different tape number. If a statemellt S is
declared a t ape i segn len t , it will normally be stored on
tape i, and will be transmitted into high speed storage only
if control is transferred to tha t segment S. The storage

space for S will be made av~dlable for storage of other seg-
ments after control has left segment S. If S is a block with
own variables, these are stored on tape i along with the
program for S, and they are transmitted to high speed
storage if control is t ransferred to S. These variables mttst
be written (m tape af ter eonl;rol has left S. A subsegment
SS of S is called into high speed storage only if control is
transferred to SS. In this ease, S remains in high speed
storage together with its own variables.

Storage space on tape and in high speed storage can be
alloe, ated to the segments a t translation time, but this
allocation is much more complicated than it is in the
normal case. The translat()r has to construct a table which
contains, for all segments, the storage space allocated to
them. A go to statement to a label of a segment musl, be
translated into a call of subroutine which transmits the seg-
ment into high speed s torage and then jumps to the first
order of that segment. The above mentioned table is not
required at execution time.

The idea can be extended to procedures. A procedure
which is declared a t a p e i p r o c e d u r e is normally stored
on tape i and is t ransmit ted to high speed storage if and
only if it is ealled. Procedures which are local to a segment
S and which are not deciared tape procedures am con-
sidered part of S, and are t ransmit ted along with the (:()de
for S whenever c(mtrol is transferred to S.

ACKNOWIA!] I)GMENT

This paper is the result of discussion which the writer
had with A. A. Grau, A. C. Downing, and G. J. Atta on
the subject of tape tiles.

I~.EF ERENCE

1. GRAU', A, A. ET AL: ORACIA,." Binary I n t e r a l T r a n s l a t o r (ORBIT)
Oak Ridge National Laboratory, Sept. 1959, Cenl~ral Files
Number 59-9-20.

The CLIP Translator
Donald Englund and Ellen Clark

System Development Corporation, Santa Monica, California

| n t r o d u e t i o n

CLH', a compiler and language designed for information
processing, is the joint research project of E. Book, H.
Eratman, Ellen Clark, D. Enghmd, H. Isbitz, H.
?~Ianelowitz and E. Myers of the System Development
Corporation. A CL:W compiler for the IBM 709 computer
hits been written. As a test of the adequacy of the language,
the CLiP compiler was written in its own language and
has successfully reproduced itself.

The compiler is divided into two parts, a generator and
translator. This p~tper will concern itself primarily with
the translator.

CLIP L a n g u a g e

The CHP language is based on ALCmL but has tile follow-
ing additional data deelarations which were found to be
needed in information processing:

1. TABLE declarations specify the subscripted variables or
items which make up the table. The size and form (Boolean,
alpha-numeric, integer, signed integer) of each item are declared,
and provision is made for packing items into parts of a machine
word. :initial data may be supplied if desired.

2. STRING declarations define a contiguous set of alphanu-
meric characters. Initial data may be given. Operations are per-
mitred on any contiguous subset of a string.

3. ORIGIN declarations permit the programmer to specify the

Communicat ions of the ACM 19

