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1. Introduction 

[n this note compiling routines will be described for 
Boolean expressions involving the operators V , / ~  and -1. 
The Boolean variables allowed include relational expres- 
sions. These routines will then be used in describing pro- 
eedures for compiling conditional statements and Boolean 
assignment statements as defined in AL(mL 60. 

Any at tempt  to describe a general compiling algorithm 
immediately presents the following problem: If an al- 
gorithm is constructed to produce efficient object programs 
for a particular machine it will be a highly specialized 
routine. For this reason an intermediate language is being 
used for the object code of the compiling routines being 
developed at Berkeley. In this note "object code" and 
"object machine" will imply this intermediate language 
and a hypothetical machine whose order code is the inter- 
mediate language. 

Appendix I contains a description of those portions of 
the intermediate language which are used by the routines 
to be described in this paper. 

2, Compiling System 

It  is also difIicult to describe a particular portion of a 
compiling system without describing the rest of the system 
to which it belongs. Hence, it, is necessary (o present the 
general characteristics of the compiling system before 
proceeding with the detail routines for Boolean expressions 
and conditional statements. 

The compiler performs a single scan of the source lan- 
guage. For each identifier, commands are generated ac- 
cording to the delimiters which enclose the identifier. 
The particular commands generated are determined by 
two quantities, POP (previous operator) and NOP (next 
operator). A third register PS (peek symbol) is carried 
along and is normally equal to POP. I t  is used in the few 
eases where it is necessary to examine a delimiter ahead 
of NOP. 

The main entry to the compiler is a block labeled 
EXECUTIVE.  The entire compiler is local lo this block. 
Within this block are a number of blocks labeled according 
to the type of ALGOL statements handled by the logic 
within |:hem (the ones of interest in this paper will be those 
labeled BOOLEAN R O U T I N E  and RELATIONAL 
I{OUTINE). The program immediately following 
E X E C U T I V E  determines the block to which control 

70  C o m m u n i c a t i o n s  o f  t h e  A C M  

must be transferred to process the portion of source pro- 
gram presently under consideration, 

FIND NEXT ~'' ~' ~ I ) L t A M I I E R ,  BUILD COMMAND, 
and AR[ [ HML [ [C art procedures used by ninny routines 

T ~  ' r a  in the compiler. I?rocedure F IND N l , X I  DELIMITER 
performs the scanning of the source program. Whenever 
it is called it finds the next delinfiter and places the code 
for this delimiter in NOP. The previous value of NOP is 
assigned to POt'  and PS. If in scanning forward to find the 
nex~ delimiter an identifier is encountered, the address for 
this identifier is assigned to AI)DRI!;SS. If no identifier is 
encountered, ADDRESS is set, to zero. 

r ) I)rocedure B U I L [  COMMAND (OPCOPE, AI)- 
DRESS); string OI?CODE; integer AI I)I{LSS; places a 
command in lhe object program list. Whenever BUILD 
COMMAN[ is called with the actual parameter 
ADDRLSS, a command with an absolute address (equal 
to the value of ADDRESS) is entered in the command list. 
However, when the actual parameter in place of OPCODE 
is a type 2 or type 3 command (see Appendix I) a dummy 
address is used. In this ease BUILD COMMAN ) is 
called with one of the identifiers A, B, C, D, . . .  in place 
of ADDRESS. 

Procedure ARITHMI/iTI)IC is called whenever an arith- 
metic operator is encountered. It, is essentially Huske~'" 
algorithm ~ for compiling algebraic expressions. When a 
non-arithmetic delimiter is encountered it. return-transfers 
with the code for this delimiter in NOP. 

The codes assigned to the various delimiters are given 
in Table 1. 

3. Boolean Expressions 

A program can easily be compiled to compute the value 
of a Boolean expression such as 

(3 .1)  A V B ~ C  A D V - 1  (E / ~ F V G )  

if one requires all the logical operations to be carried out 
and the result tested for true or false.  In general, how- 
ever, /.his would produce inefficient object programs. For 
example, the expression (3.1) is completely determined if 
A is t rue - - the re  is no need to examine the rest of the ex- 
pression. Likewise, if any one of the variables in the term 
B A C / ~  D is false there is no need to examine the other 
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( 12 > 43 Boolean 64 
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-- 22 if 52 label 70 
* 23 then 53 value 7l 
/ 24 else 54 
+ 25 for 55 
T 26 step 56 

unt i l  57 
V 31 while 58 
/ \  32 do 59 
--~ 33 comment  60 
D 34 go to 61 
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~:wo variables. The  algori thm presented in the B()0IA~AN 

I ' ~ 0 U T I N E  which follows produces an object, program 

which takes into account  such situations. The  object  pro- 

grams are op t immn in the sense tha t  only the necessary 

nf inimum number  of variables are tested, assuming tha t  

ihe expression is evaluated  in s tr ict  left to right order. 

The  following picture is helpful in describing the 

algori thm. The source program tha t  follows the Boolean 

expression contains two entry  points  to which control is 

{ransferred depending on whether  the Boolean expression 

is t r u e  or fa l se .  These points are called T R U E  E X I T  

and Ii 'ALSE E X I T .  The  rules governing the routine are 
~hnple: 

if a variable followed by the operator ~/ is true, then a transfer 
should occur to a point which tests the next variable which is at; 
:~ lower level and is preceded by the operator A; if [tone exists, 
ihcn to TRUE EXIT. If a wwiablc followed by the operator / \  is 
false then a transfer should occur to a poin(~ which tests the next 
variable which is at the same or a lower level and is preceded by ~/; 
if none exists, then to FALSE EXIT. 

The appearance of a variable fit a Boolean expression 

r(sults  in the command  "clear  and add var iable"  in the 

objec t  program. Each appearance of an operator  (V  or A )  

results in a test of the accumula tor  by the object  program, 

plus possibly one or morn of the type 3 commar~ds (see 

Appendix I) which properly connect  the object  program. 

The  test commands  are always " t ransfer  on t rue"  (TT)  

or  "tr~msfer on false" (TF) with d u m m y  addresses. In 

practice these will be " t ransfer  on non-zero" or " t ransfer  

on zero" depending upon the part icular  values used to 

represent t r u e  and f a l s e  in a machine. Parentheses within 

a Boolean expression are taken care of by using the type 3 

commands  SL and RS which restrict  the scope of the 

loading commands  ILB,  I L F ,  etc. Only two different 

d u m m y  addresses are required for a Boolean expression 

of any complexi ty  ( the d u m m y  addresses A and B are 

used in the B O O L E A N  R O U T I N E ) .  

The eft'eel of - l ' s  in a B o o l e a n  expression is determined 

according to de M o r g a n ' s  Theorem.  If a var iable  is ef- 

fectively complemen ted  t h e n  the test is changed ( T T  

becomes TF,  T F  becomes  T T ) .  If an opera tor  is effectively 

changed then the d u m m y  addres s  of the "transfer command  

is ctmnged (A to B, B to  A t .  

B()OLEAN R()UTINE: b e g i n  
procedure C[ [ANGE NOT FLAG; begin if NOT 

FLAG = 0 t h e n  NOT FLAG := I 
else NOT FLA(~ := 0 end change not flag; 
procedure LOAI)  NOT I, EVEL; begin CHANGE 

N()T FLAG; NOT LEVEL := LEVEL; 
if  NOT IA';VEL > NOT HISTORY" TABLE [NHTI] 

then N H T [  :=  NHTI + 1; 
NOT ttIS'FORY TABLE [NHTI] := NOT LEVEL 

end load not, level, 
procedure ILEI)UCE NOT HISTORY TABLE; 

begin C H A N G E  NOT FLAIl; 
NHTI := N H T I  - 1; NOT LEVEL := NOT 

H[STORY" TABLE [NHTI] end reduce not 
history taMe ; 

procedure N O T  R()UTINE; begin if  NOT FLAG 
> 0 then T E S T  FLA(I := 1 ; 

LI : i f  I,EVEL > N O T  IAi]VEI, then go to L3 else 
1,2: R.I);I)UCI~ N O T  tiISTORY TABLI!]; if NHTI = 

0 then go to 1,4 else go to LI; 
L3: if  NOT FI,AG > 0 then  OIXERATOI~L FLAG := 1; 
L4: end not routine;  

comment  [,he above procedures are used to keel) 
track of the apDearance of the Boolean opertttor -~ 
(not) in a Boolean expression. The NOT FLAG 
(i or 0) indicates whether tim Boolean variable 
under consideration has in effect been comple- 
mented by a previous -7. However, one must keep 
track of the levels at which previous m's have 
appeared since they could negate entire expres- 
sions. This is ~ecomplished by storing the levels 
at which m's have appeared in a list called NOT 
HISTOR.Y TABLE whose index is NHTL Before 
any Boolean operator (A or V) is processed the 
NOT R O U T I N E  is called, which determines the 
net effect (ff all -~'s in the Boolean expression up 
to this operator.  The NOT ROUTINE sets two 
flags, the T E S T  FLAG and f, he OPERATOR 
FLAG. If the OPERATOR FLAG = 1, then the 
operator presently being processed has in effect 
been changed according to de Morge.n's Theorem. 
If the T E S T  FLAG = 1, then the previous vari- 
able has in effect been complemented according 
to de Morge.n's Theorem. Hence, the logic of pro- 
cedure N O T  ROUTINE forces the BOOLEAN 
ROUTINE to compile programs for the expanded 
equivalent (according to de Morgan's Theorem) 
of any Boolean expression. 
LEVEL a t  any point in the source program is 

equal to one plus [be number of left parentheses 
encountered minus the number of right parentheses 
encountered. N O T  LEVEL is e, lways equal to the 
highest value stored in the NOT HISTORY TABLE 
and as such is always equM to the level of the most 
recent --1 which can still effect the following pro- 
gram; 

ENTRY: BOOLEAN FLA.G := 1; 
DISTRIBUTE: i f  N 0 P  = 3 1  t h e n  g o  t o  OR else if NOP = 

32 t h e n  g o  t o  A N D  e l s e  i f  N O P  = 33 t h e n  g o  t o  
N O T  e l s e  i f  N O P  = 12 t h e n  g o  t o  L F  P A R E N -  
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T H E S I S  e l s e  i f  N O P  = 13 t h e n  go to I{T I}A - 
R E N T I I E S  IS ; 

i f 2 1  < N ( ) P  A N O P  < 26 V 41 < N()I)  A N O P  < 
46 t h e n  g o  t o  E X H ' ;  

c o m m e n t  if control reaches EXIT  from this state- 
ment it means that  a relational expression has 
been encountered.  E X E C U T I V E  will transfer 
eonlrol to HEI,ATI(iNAL ROUTINE;  

ENI):  BUIIA) COMMANI) ( ' C L A ' ,  AI}I)RESS); NOT 
I{()UTINE; if  TEST FLAG = 1 t h e n  BUIIA) 
C()MMAND ( 'TT' ,  A) e l s e  BU ILl) (,()M~ IAN I) 
( 'TF' ,  A); go to EXIT;  

c o m m e n t  if eonlrol real:he8 END the Boolean 
expression has been terminated and only the 
apI}rol)riale test  for the last wtriahle which 
apl)eared in the expressio~ is necessary before 
returning to EXECUTIVI!;. 

OR: i f  NHTI # 0 t h e n  NOT R()UTINE;  if' AI)I)IfESS 
# 0 t h e n  BUIIA) COMMANI) ( ' C L A ' ,  All) 
DRESS); 

if  P()P = 13 t h e n  go to 0112 else if  ()PERATOIR 
FLAG = 1 t h e n  go toOIIA else i f  TEST FLAG = 
l t h e n  go to  C5 e l s e  g o  t o C l ;  

c o m m e n t  labels CI- (D ape the entries t.o eolnmand 
ge neFa t 0rs ; 

Oil.l: i f  TEST FLAG = [ t h e n  go to C6 else go to C2; 
OR2: i f  OPERATOR FLAG = 1 t h e n  go to  OR3 else i f  

TEST F r *r,  = 1. t h e n  go to C8 e lse  go to ( /  ; 
OR3: i f 'PEST FLAG = I t h e n  go to C7 else go to C3; 
AND: if  Nt IT[  # 0 t h e n  NOT ROUTINIi; e lse  if  AD- 

I)RESS # 0 t h e n  BUILI) COMMANI) ( 'CI,A',  
AI) DRESS) ; 

i f  1)Ol , = 13 t h e n  go to  AN I) 2 else if  OPERATOIL 
FLAG = 1 t h e n  go  t o  A N t )  I e l s e  i f  TEST 
FLAG = 1 t h e n  go to  C6 e l s e  go  t o  C2; 

AND 1: i f  TEST FLAG = I t h e n  g o  to  C5 e l s e  go  to  CI;  
AND 2: i f  OPERATOII. FLAG = 1 t h e n  go to ANI) 3 

[i'r ~(, e l s e  i f  T E S T  , , . . . . ,  = 1 t h e n  g o  to  C7 e l s e  
g o  to  C3; 

ANI) 3: i f  TEST FLAG = I t h e n  go t o C 8 e l s e g o  t o C 4 ;  
c o m m e n t  the commands which are generated when- 

ever a Boolean ot)erat0r (A or V) appears depend 
on only four things: (1) the ol}erator , (2) the TEST 
FLAG, (3) the OPEIIATOR FLAG and (4) 
whether the previous ol}erator (POP) was a right 
l:}arenthesis. These eolnbinations are l)roduced hy 
tim eolnmal~d generators following t;he labels 
CI-C8 (there are 0nly 8 different; eommand 
sequences) ; 

NOT: LOAI) NOT FLAG; F I N I ) N E X T  I)ELIMITEl t :  
go to 1) ISTRIBUTE;  

LF PARENTHESIS:  LEVEL := LEVEL + l; go io (;9; 
RT PARENTHt,]SIS: LEVEL := LEVIi;I, - 1 ; FINI)  NEXT 

D E L I M I T E R ;  if NOP = 3t V NOP = 32 t h e n  
go to  I)ISTRIF~U'I'E e l s e  BUIL.D C()MMAND 
fiRS', A); BUILD COMMAND ( 'RS' ,  B); go to 
DISTRIB UTE ; 

C1: BUILI)  COMMAND ( 'TT' ,  B); BUIIA) COM- 
MANI) ('HAg', A); F INI)  NEXT I)t)]L[M[TER; 
go to  D I S T R I B U r T I i ] ;  

C2: BUIL1) COMMANI) ( 'TF ' ,  A); F I N D  N E X T  
I )EI , IMITER;  go to  I)ISTRIBUTI);; 

C3: B U I M )  COMMAND ( 'TF ' ,  A); BUILI) COM- 
MAND ( ' ILB' ,  B); BUILI)  COMMANI) 
( 'RS' ,  A); BUILI)  COMMAN1) ( 'RS' ,  B); 
F I N D  N E X T  D E L I M I T E R ;  go to  DIS- 
TRIBUTE;  

C4: BUILD COMMAND ( 'RS' ,  A); BUILD COM- 
MANI) f i R S ' ,  B); BUILD COMMAND 
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('TT', B); t~U[I,D (~ONiMANI) ( '[LB',  A); 
FINI)  N E X T  DEIAMITli;t{; go ~, DIS- 
T R I t ~. [; T E ; 

C5: BUiLI)  COMMANI) ( 'TF' ,  B); BUILI) COM. 
M A N t ) ( ' I L B ' , A ) ;  F[NDNEXTI)I! ;LIM[TER.,  
go to I)[STI~II~UTE; 

C6: BUi1A) COMMANI) ( ' T T ' ,  A); F [NI)  NEXT 
I)EL[M[TEII4 go to DISTRIt3UTE; 

C7: BUII,I) C()MMAND ( 'TT' ,  A); B I I L I )  COM- 
MAND ('limB', B); BUILD COMMAND 
('RS',  B); BUILI) COMMAND ( ' i tS ' ,  A); 
F IND N E X T  I)ELIMITt*;II; go to DIS. 
T R I B U T E; 

C8: BUILD COMMANI) ( 'RS',  B); BUILI) COM- 
MAN 1) ( 'RS',  A) ; B U II, I) C()MM AN 1} ('T F', B); 
BUIIA) COMMANI) ( ' ILB' ,  A); FINI)  NEXT 
DELIMITE[/4 go to DIS'FRIBUTI!;; 

C9: BUHA) COMMAND ( 'S l / ,  A); BUILI) COM- 
MANI) ( 'SL', B); FINI)  NEXT I)Ii;IAMITER; 
go to DISTRIBUTE;  

c o m m e n t  when BU[LI) COMMAND is called a~ld 
~he aeLtlal parameters correspond It() a t spe  2 or 
type 3 IL command the address I)ortion of the 
(~oIiltl0.and is always a dummy address. Only two 
different dummy addresses are needed for the 
commands generated by 13()OI,EAN ROUTINE 
and these have been indicated by A and B; 

EXIT:  FINI)  NEXT I)EI,IMITEI¢ end  Boolean routine; 
go to EXI!;CUTIVIi~; . . .  

III_,LA [ [( NAI, I{()UTINE: 
p r o c e d u r e  IUiiI,ATION TEST; eammlent  after 

the two sMes of a relational expression haws been 
compared (the left always slHbtPaete({ fl'Oltt Ill{, 
right) the contents of the aecumulator lll/lst e 
lested. This procedure SUl)I)lies the at)prol}riate 
lesl for each of the Pelation:tl ol)el'ators. The 
relational operator tllldel' eOllSidePation is indb 
eared hy the value of IIEI+AT[CIN TEST Ii'LA(;. 
"Phere are two possiMe tests for each relational 
of:}erator depending upon whether the delimiter 
which hounds the relalional expressioi~ on the 
right is a Boo lea~  V or A .  The delimiter then 
has the same effeet as the operator A ;  

hegin  i n t eg e r  It; K := Rt!iLATION TEST 
FLAt;  - 40; s w i t c h  K := EQUAL, NOT 
I)'~QUAI., (HUi;ATER TITAN, GIUi]ATER THAN 
()R EQUAl,, I,I?;SS THAN, I,I?]SS TITAN Oil 
EQ UAL; 

,f b,N L TEST FLAG 0 t h e n  BUILI) C()MMANI) EQUAL: . . . . .  ) = 
( 'TNZ' ,  A) e l s e  BUILI )  C O M M A N 1 )  ('TZ', B); 
g o  to  [{[i~'['(J[lN; 

NOT EQUAL: i f  ENI)  TEST FLAG = () t h e n  BUII,I) C()M- 
MANI) ( 'TZ', A) else BUIIA) COMMANI) 
( 'TNZ',  B); go tn RETURN;  

GI{EATER THAN: if  ENt )  TEST FLAt} = 0 t h e n  BUII,) 
COMMANI.) ( 'TZP',  A) e l s e  B U I I A }  COM- 
M A N I )  ( 'TN' ,  B); go to RETURN;  

Gt{EATER THAN ()R EQUAL: if  ENI) TEST FLAG = 0 
t h e n  BUI LI) COMMAN 1) ( 'TP' ,  A) e l s e  BU ILl) 
COMMAN1} ('TZN', B); go to RETURN;  

LESS THAN: i f  END TEST FLAG = 0 t h e n  B U I L D  C()M- 
M A N I )  ( 'TZN' ,  A) e l s e  BUIIA.) COMiVIANI) 
( 'TP' ,  B); go to  RETURN;  

LESS THAN OR EQUAL: i f  END TEST FLAG = 0 then 
BUILD COMMAN]) ( 'TN' ,  A) e l s e  BUI[I} 
COMMAND ( 'TZP',  B); 

RE T U RN :  end  Ilelation Test, procedure; 
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MAIN ENTRY: NI;;(}ATI()N FI,AG := 1 ; LEVEL := LF, VEL 
+ 1; AIf ITHMETIC; RELATION TEST 
FI~AG := NOP; LEVEL := M,WF, I, - 1; 
NOP := 21; FINI) NF, XT I)ELIMITER; 
ARITttMETIC; go to BB; 

t~H: if N()P = 31 then go to CC; 
if NOP = 5;f then go to DD e l se  RELATION 

TEST; go to RELATION EXIT; 
comment when control reaches BB the delimiter 

which bounds ~he relationM expression on the 
righ{; has been eucountered. 

CC: ENI) TEST FLAG := 1; RELATION TEST; 
BUILI) COMMAND ('ILB', A); go to RELA- 
TION EXIT ; 

I)l): RELATION TEST; BUILD COMMAND 
('ILB', B); 

RI;I~ATION EXIT: FIN].) NEXT DELIMITER end Relation 
Routine; go to EXECUTIVE. . .  

[{OOLEAN ASSIGNMENT STATEMENTS. Consider the 
Boolean assignment statement 

(3.2) I(  := M A N V P ' . . .  

Assume that  the expression on the right of (3.2) has been 
compiled according to the BOOLEAN t{OUTINE.  The 
object program can be completed by adding the following 
sequence of commands. 

ALSE :EXIT: 

TRUE EXIT: 

ILB A 
CLA f a l s e  
STO K 
TC C 
ILB B 
CLA true 
STO K 
ELB C 

The I LB A and iLB B commands load the locations at 
which they appear into tile address portions of the corre- 
sponding transfer commands preceding them (in the 
object program for tile Boolean expression M f N V P). 
A ghird dummy address C is needed to jump over the true 
alternative in ease the Boolean expression is false. The 
ELB C loads the location at which it appears into the 
address portion of TC C. 

CONI)ITIONAL STATEMENTS. Consider a conditional 
statement such as 

(3.3) i f  Br t h e n  Sl e l s e  i f  B2 t h e n  S2 e l s e  Sa; $4 - . -  . 

Again we assume that the Boolean expressions B~ and 
B2 are compiled according to BOOLEAN ROUTINE. 
When a delimiter i f ,  t h e n  or e l s e  appears, the following 
commands are entered in the object program: 

(3.4) it" SL A 
SL B 

(3.5) then ILB B 

(3.6) e l s e  TC C 
ILB A 

RS A 
RS B 

In addition, the commands 

(3.7) ; ILB C 
ILB A 

are entered in the object program when the semicolon 
following the complete conditional statement is en- 
countered. 

The ILB B ill the commands for t h e n  represents the 
T R U E  E X I T .  Tile ILB A in the commands for e l s e  

represents the FALSE EXIT .  Tile ILB C (3.7) connects 
the TC C (3.6) to provide tile necessary jump if the state- 
ment following t h e n  is executed. The ILB A is necessary 
in tile commands for the semicolon (3.7) in case the condi- 
tional statement is only an if clause (no e l s e  appears in 
the statement); the semicolon then becomes the FALSE 
E X I T .  The SL A and SL B commands for i f  and the 
RS A and RS B for e l s e  make the algorithm valid for any 
level of conditional statement (including conditional 
statements after t h e n  which is not presently allowed in 
the ALGOL 60 report). These commands have the effect 
of enclosing tile different levels in parenthesis. 

I t  should be noticed that only three different dummy 
addresses are necessary for any level of conditional state- 
rnents, including the Boolean expressions within them. 

4 .  E x a m p l e s  

Consider the Boolean expression: 

(4.1) b V - ~  ( e V ~  ( x < y A  m g V h )  Ak)  V 
m + n = p + q .  

The program compiled by the BOOLEAN R O U T I N E  and 
the R E L A T I O N A L  R O U T I N E  for this example is given 
below. The values of NOT FLAG, TEST FLAG and 
O P E R A T O R  FLAG are included for each h'ansfer com- 
mand generated. 

OPER- 
Command NOT TEST ATOR 
Location Command FLAG FLAG FLAG 

l CLA b 
2 TT B 0 0 0 
3 SL A 
3 SL B 
3 CLA e 
4 TT A 1 1 1 
5 SL A 
5 SL B 
5 CLS x 
6 A I ) D  3' 
7 TZN A 0 0 0 
8 ' CLA g 
9 TF B 1 1 0 

10 ILB A 
10 CLA h 
11. RS A 
II RS B 

ii TT B 
12 ILB A 
12 C bA k 
13 RS A 
13 RS B 
13 TF B 1 1 0 
14 ILB A 
:14 CLS n 
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15 S U B  m 
16 ADD p 
117 Al)l) q 
18 T N Z  A 
19 TC B 

50 ILB B (TII.UE EXVI') 

100 ILB A (FALSE EXIT) 

For clarity, symt)ols have been used inslead of assigning 
numerical addresses to b, e, x, y, etc., and all commands 
involving the dummy addresses A and B have been in- 
dented. The command location for any type 3 command is 
the same as that of the next type I or type 2 command 
since the type 3 eomman(ls (h} not appear in the actual 
maehirm coding. 

The following coding is the result after the type 3 com- 
mands have been executed according to their definition in 
Appendix I. 

1 CLA b 
2 T T  50 
3 CI,A e 
4 TT 12 
5 CLS x 
6 A I ) D  y 
7 TZN l0 
8 CI,A g 
9 T F 50 

10 CLA h 
1 t T T  50 
12 CLA k 
13 T F  50 
14 CI,S It 
15 S U B  rn 
16 A t ) D  p 
17 ADD q 
18 TNZ 100 
19 TC 50 

50 (TRUI!; EXFF) 

100 (FALSE EXIT) 

IHi;LATI()NAI~ I{()UTINE forced A I H T H M E T I C  to 
compile the two relational expressions x < y and m -I- n = 
p + q as if they were the arithmetic expressions - Ix) -t- y 
a n d - I r a  + n )  + p + q. 

A good check on the BOOLEAN ROUTINIi;  is that  it 
compiles the same program as above for the expression 

(4 .2)  b V ( - l e / ~ ( x  < y / ~  --ig Vh)V -~k)V In -~- I1 = p + q 

which is the equivalent of (4.1). 

C o n c l u s i o n s  

The method described in this paper for compiling 
Boolean expressions is an alternative to the usual method 
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which would compile an ot)jeet program that  performs ~lli 
logical operaiions indicated in the expression. The metb(d 
presented in this paper will eompih, a.n object progran~ 
which tesls the minimum number of logical variables i~ 
determining the value of the expression. 

The B()OI,EAN II()UTINI!;  in conjunction witt~ 
RE LATIONAL ROUTINI~ will ('ompile programs for a 
Boolean expression of any complexity involving the 
operators ' ~ , / ~ ,  -7. The logical variables in the expressi011 
(tan also be simple or eornpound relational expressions 0f 
any complexity. The metho(l is especially appropriate for 
compiling Boolean expressions involving a large numl)er 0f 
l~enns, several levels of logic within the expression or rela- 
tional expressions. 

This method can easily be used within a compiler which 
produces a particular machine coding rather than the 
intermediate language described in Appendix I. It simply 
means that, the information retained by the type 2 and 
type 3 commands in an IL program must now be kept in 
lists within t h e  compiler. In this case the intermediate 
hmguage ('an still be used as a con('ise and eonvelfient 
means for describing the compiler routines. 

API)EN I ) I X  [ 

The intermediate l~mguage (IL) is similar to most 
symbolic (',()des in that it consists of a number of individual 
instruclions which indicate operations to be performed on 
data or on lhe 1)rogram. There are five types of commands 
in the language of which three will be presented here. 
Types 4 and 5 which concerti address modification, looping 
operations and input-output operations will not be dis- 
cussed for they are not involved in the BOOI,EAN 
{ ( ) b l [ N l ,  or R1A~AIIONAL R O b I I N E .  

The type :l commands perform the m'ithmefic opera- 
tions of add, subtract, multiply and divide. I t  is assumed 
that; the result, of any of these operations remains in a 
storage cell called A C C U M U L A I O I L  

TYPE 1 
Command O peratio~t 

CLA AI)I)R 
ADD ADDR 
SUB AIi)DR 
ISB ADDR 
CLS ADDR 
M P Y  AI)DR 
I)IV ADDR 
IDV ADI)R 

(AI)I)lt) --~ (AC) 
(AI)DR) + (AC) --~ (AC) 
(AC) - (AI)I)R)--, (AC) 
(A1)I )R)  -- (AC) --~ (AC) 
-- (AI ) I )R)  + (AC)  
(AC) X (AI)DR)~  (AC) 
(AC)/(ADDR) --~ (AC) 
(ADI)R)/(AC) --~ (AC) 

(AI)DR) means "the contents of AI)I)R." : 

Integer arithmetic is assumed in the above operations~ 
A corresponding set of commands exists for floating p o i n t  
arithmetic. 

The type 2 commands include the usual conditional 
and unconditional transfers of control within a p r o g r a m  # 

However, the commands are always written with a d u m m y  
address, rather than an absolute location. These dummY: 
addresses are replaced by absolute locations by the type 
commands to be described in the next. paragraph. 

i { 



TYPE 2 
Comma~M Operalion, 

T ( "  I)UMMY ADDRESS Transfer control 
T T  " " Transfer if (AC) is true 
" l 'V  " " Transfer if (AC) is false 
T Z  " " Transfer if (AC) = 0 
TNZ " " Transfer if (AC) ~ 0 
T i  . . . . .  Transfer if (AC) > 0 
TZP " " Transfer if (AC) ~ 0 
TN " " Transfer if (AC) < 0 
TZN " " Transfer if (AC) ~ 0 

Tiw type 3 commands  perform the operation of conll- 
I)t~i h~g ~he type 2 commands,  i.e., they repl:tce tile dumnly 
addr~':;:-cs of type 2 commands with absolute locations. 
Thv absolute location loaded into type 2 commarlds by 
a lyp(* :; command  is tile location itt the program at which 
~hv ~3'i~> 3 command appears. A type 3 command  always 
(.,~a{ ~i~s a duminy address, and it can operate only on type 
2 c~mmm,~ds which have the same d u m m y  address. 

TYPE 3 
Command Operation 

/{,t~ ~t~( MMY AI)I)RESS hmlusiveLoad Backward. The 
location at which this com- 
mand appears is loaded into 
the address portion of a l l  

previous type 2 commands 
with the same dummy ad- 
dress as the [LB command. 

lie!' I) tMMY AI) I)RESS Inclusive Load Forward. Loads 
all future type 2 eolnmands 

ELB DUMMY ADDRESS 

ELF I)UMMY ADI)IIESS 

SL DUMMY ADDRESS 

RS DUMMY ADDRESS 

with the same dummy ad- 
d less. 

Exclusive Load Backward. 
Loads only the most recent 
type 2 comnmnd with the 
same dummy address. 

Exclusive Load Forward. 
Loads only the next type 2 
command with the same 
dummy address. 

Stop Loading. Stops the load- 
ing of previous type 2 eom- 
m:tnds with the same dummy 
address by ILB or ELB 
commands. Stops the loading 
of future type 2 commands 
with the same dummy ad- 
dress by previous ILF or 
ELF eolninands. 

Remove Stop. Removes the 
effect of the last previous 
SL command with the same 
dummy address. 

The type 2 and type 3 c o m m a n d s  are used to properly 
commet a compiled in termediate  language program. These 
commands  allow an II,  p r o g r a m  to retain information 
normally kept in lists within a compiler.  There is an addi- 
tional feattn'e added by using these commands:  type 1 
commands  can be added or deleted from any  I L  program 
without  altering the proper commot ion  of the program. 

The SLANG System 
R. A. Sibley 

IBM Systems Center, Bethesda, Maryland 

Early in 1960, a project was initiated for the purpose of 
de~eloping a programming language suited to the task of 
w~iti~g compiler type  programs. Through the use of such 
a ta~guage and its associated processors, it, was hoped that  
a~l of die now classical advantages  of a problem-oriented 
lang~mge might  be put  to work for the compiler writer. 
'~ kmguage was developed. Referred to as SLANG, the 
~o~ation is pat terned after ALGOb "58"  and has proved to 
tw cow~'enient for expressing m a n y  of those processes 
fu~damentaI  to automat ic  programming.  More important ,  
iiw pr(@ct has focused at tent ion on what appears to t)e 
a~ important  area for programming research. This area 
of e~deavor is concerned with the following observation: 

h i:~ p()ssible to describe processes in a machine-independent 
bmgtmge which are in themselves machine dependent. 

Mati~ematical techniques are in a large measure machine- 
i~dependent and thus  systems such as FORTItAN have been 
suceesdul.  Compiling techniques have been extremely 

machine dependent.  This has resulted in a great  deal of 
difficulty whenever an a t t e m p t  has been made to apply 
the methods of automat ic  p r o g r a m m i n g  to the eor~struetion 
of compilers. 

In  addition to the beginning of  an understanding of the 
need for new compilation techniques,  the urork reported 
here has produced the beginnings  of what, would seem to 
be a contribution to the deve lopmen t  of such techniques. 
Indeed, results indicate t h a t  it is not  only possible to de- 
scribe the compilation process for a problem-oriented 
language in a maehine-indeperldent  manner,  but  tha, t such 
a description can be t ransla ted into the machine language 
of any  of a class of computers  b y  a single program rumling 
on a single computer.  

C o n c e r n i n g  M a c h i n e  I n d e p e n d e n c e  

Suppose tha t  processors for  a series of problem-oriented 
machine-independent languages  POLMI~,  i = 1, 2, - . ,  , ,, 
are required. W h a t  advan tages  are to be gained by de- 
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