
Compiling Techniques for Boolean Expressions and
Conditional Statements in ALGOL 60

Z)e~

H. D. Huskey and W. H. Wattenburg

University of California, Berkeley, and Bendix Corporation, Los Angeles, California

1. Introduction

[n this note compiling routines will be described for
Boolean expressions involving the operators V , / ~ and -1.
The Boolean variables allowed include relational expres-
sions. These routines will then be used in describing pro-
eedures for compiling conditional statements and Boolean
assignment statements as defined in AL(mL 60.

Any at tempt to describe a general compiling algorithm
immediately presents the following problem: If an al-
gorithm is constructed to produce efficient object programs
for a particular machine it will be a highly specialized
routine. For this reason an intermediate language is being
used for the object code of the compiling routines being
developed at Berkeley. In this note "object code" and
"object machine" will imply this intermediate language
and a hypothetical machine whose order code is the inter-
mediate language.

Appendix I contains a description of those portions of
the intermediate language which are used by the routines
to be described in this paper.

2, Compiling System

It is also difIicult to describe a particular portion of a
compiling system without describing the rest of the system
to which it belongs. Hence, it, is necessary (o present the
general characteristics of the compiling system before
proceeding with the detail routines for Boolean expressions
and conditional statements.

The compiler performs a single scan of the source lan-
guage. For each identifier, commands are generated ac-
cording to the delimiters which enclose the identifier.
The particular commands generated are determined by
two quantities, POP (previous operator) and NOP (next
operator). A third register PS (peek symbol) is carried
along and is normally equal to POP. I t is used in the few
eases where it is necessary to examine a delimiter ahead
of NOP.

The main entry to the compiler is a block labeled
EXECUTIVE. The entire compiler is local lo this block.
Within this block are a number of blocks labeled according
to the type of ALGOL statements handled by the logic
within |:hem (the ones of interest in this paper will be those
labeled BOOLEAN R O U T I N E and RELATIONAL
I{OUTINE). The program immediately following
E X E C U T I V E determines the block to which control

70 C o m m u n i c a t i o n s o f t h e A C M

must be transferred to process the portion of source pro-
gram presently under consideration,

FIND NEXT ~'' ~' ~ I) L t A M I I E R , BUILD COMMAND,
and AR[[HML [[C art procedures used by ninny routines

T ~ ' r a in the compiler. I?rocedure F IND N l , X I DELIMITER
performs the scanning of the source program. Whenever
it is called it finds the next delinfiter and places the code
for this delimiter in NOP. The previous value of NOP is
assigned to POt' and PS. If in scanning forward to find the
nex~ delimiter an identifier is encountered, the address for
this identifier is assigned to AI)DRI!;SS. If no identifier is
encountered, ADDRESS is set, to zero.

r) I)rocedure B U I L [COMMAND (OPCOPE, AI)-
DRESS); string OI?CODE; integer AI I)I{LSS; places a
command in lhe object program list. Whenever BUILD
COMMAN[is called with the actual parameter
ADDRLSS, a command with an absolute address (equal
to the value of ADDRESS) is entered in the command list.
However, when the actual parameter in place of OPCODE
is a type 2 or type 3 command (see Appendix I) a dummy
address is used. In this ease BUILD COMMAN) is
called with one of the identifiers A, B, C, D, . . . in place
of ADDRESS.

Procedure ARITHMI/iTI)IC is called whenever an arith-
metic operator is encountered. It, is essentially Huske~'"
algorithm ~ for compiling algebraic expressions. When a
non-arithmetic delimiter is encountered it. return-transfers
with the code for this delimiter in NOP.

The codes assigned to the various delimiters are given
in Table 1.

3. Boolean Expressions

A program can easily be compiled to compute the value
of a Boolean expression such as

(3 .1) A V B ~ C A D V - 1 (E / ~ F V G)

if one requires all the logical operations to be carried out
and the result tested for true or false. In general, how-
ever, /.his would produce inefficient object programs. For
example, the expression (3.1) is completely determined if
A is t rue - - the re is no need to examine the rest of the ex-
pression. Likewise, if any one of the variables in the term
B A C / ~ D is false there is no need to examine the other

~ HUSKEY, H. D. , Comt) i | i ng t e c h n i q u e s for a lgebra ic expres-
s ions . Computer Journal of The British Computer Society, in press. ,

ZZ(;

~v h

~ 1 g:,

2,.~. 71 'It 'C

s i ~ q

i I f a

~:L I o

Li

' (~ it }l

~- _I-~

11 8,,(. N

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366062.366098&domain=pdf&date_stamp=1961-01-01

t h e

TABLE !

~')d*.Jiler Code Dehmiter Code lFdimi~er Code

, i0 = 41 procedure 62
; i I ¢ 42 o w n 63
(12 > 43 Boolean 64
) 13 >= ,il in teger (;5
[14 < 45 real 66
} 15 N 46 array 67

l 6

I)egit~ 50 switch 68
21 end 51 string 6{)

-- 22 if 52 label 70
* 23 then 53 value 7l
/ 24 else 54
+ 25 for 55
T 26 step 56

unt i l 57
V 31 while 58
/ \ 32 do 59
--~ 33 comment 60
D 34 go to 61

35

~:wo variables. The algori thm presented in the B()0IA~AN

I ' ~ 0 U T I N E which follows produces an object, program

which takes into account such situations. The object pro-

grams are op t immn in the sense tha t only the necessary

nf inimum number of variables are tested, assuming tha t

ihe expression is evaluated in s tr ict left to right order.

The following picture is helpful in describing the

algori thm. The source program tha t follows the Boolean

expression contains two entry points to which control is

{ransferred depending on whether the Boolean expression

is t r u e or fa l se . These points are called T R U E E X I T

and Ii 'ALSE E X I T . The rules governing the routine are
~hnple:

if a variable followed by the operator ~/ is true, then a transfer
should occur to a point which tests the next variable which is at;
:~ lower level and is preceded by the operator A; if [tone exists,
ihcn to TRUE EXIT. If a wwiablc followed by the operator / \ is
false then a transfer should occur to a poin(~ which tests the next
variable which is at the same or a lower level and is preceded by ~/;
if none exists, then to FALSE EXIT.

The appearance of a variable fit a Boolean expression

r(sults in the command "clear and add var iable" in the

objec t program. Each appearance of an operator (V or A)

results in a test of the accumula tor by the object program,

plus possibly one or morn of the type 3 commar~ds (see

Appendix I) which properly connect the object program.

The test commands are always " t ransfer on t rue" (TT)

or "tr~msfer on false" (TF) with d u m m y addresses. In

practice these will be " t ransfer on non-zero" or " t ransfer

on zero" depending upon the part icular values used to

represent t r u e and f a l s e in a machine. Parentheses within

a Boolean expression are taken care of by using the type 3

commands SL and RS which restrict the scope of the

loading commands ILB, I L F , etc. Only two different

d u m m y addresses are required for a Boolean expression

of any complexi ty (the d u m m y addresses A and B are

used in the B O O L E A N R O U T I N E) .

The eft'eel of - l ' s in a B o o l e a n expression is determined

according to de M o r g a n ' s Theorem. If a var iable is ef-

fectively complemen ted t h e n the test is changed (T T

becomes TF, T F becomes T T) . If an opera tor is effectively

changed then the d u m m y addres s of the "transfer command

is ctmnged (A to B, B to A t .

B()OLEAN R()UTINE: b e g i n
procedure C[[ANGE NOT FLAG; begin if NOT

FLAG = 0 t h e n NOT FLAG := I
else NOT FLA(~ := 0 end change not flag;
procedure LOAI) NOT I, EVEL; begin CHANGE

N()T FLAG; NOT LEVEL := LEVEL;
if NOT IA';VEL > NOT HISTORY" TABLE [NHTI]

then N H T [:= NHTI + 1;
NOT ttIS'FORY TABLE [NHTI] := NOT LEVEL

end load not, level,
procedure ILEI)UCE NOT HISTORY TABLE;

begin C H A N G E NOT FLAIl;
NHTI := N H T I - 1; NOT LEVEL := NOT

H[STORY" TABLE [NHTI] end reduce not
history taMe ;

procedure N O T R()UTINE; begin if NOT FLAG
> 0 then T E S T FLA(I := 1 ;

LI : i f I,EVEL > N O T IAi]VEI, then go to L3 else
1,2: R.I);I)UCI~ N O T tiISTORY TABLI!]; if NHTI =

0 then go to 1,4 else go to LI;
L3: if NOT FI,AG > 0 then OIXERATOI~L FLAG := 1;
L4: end not routine;

comment [,he above procedures are used to keel)
track of the apDearance of the Boolean opertttor -~
(not) in a Boolean expression. The NOT FLAG
(i or 0) indicates whether tim Boolean variable
under consideration has in effect been comple-
mented by a previous -7. However, one must keep
track of the levels at which previous m's have
appeared since they could negate entire expres-
sions. This is ~ecomplished by storing the levels
at which m's have appeared in a list called NOT
HISTOR.Y TABLE whose index is NHTL Before
any Boolean operator (A or V) is processed the
NOT R O U T I N E is called, which determines the
net effect (ff all -~'s in the Boolean expression up
to this operator. The NOT ROUTINE sets two
flags, the T E S T FLAG and f, he OPERATOR
FLAG. If the OPERATOR FLAG = 1, then the
operator presently being processed has in effect
been changed according to de Morge.n's Theorem.
If the T E S T FLAG = 1, then the previous vari-
able has in effect been complemented according
to de Morge.n's Theorem. Hence, the logic of pro-
cedure N O T ROUTINE forces the BOOLEAN
ROUTINE to compile programs for the expanded
equivalent (according to de Morgan's Theorem)
of any Boolean expression.
LEVEL a t any point in the source program is

equal to one plus [be number of left parentheses
encountered minus the number of right parentheses
encountered. N O T LEVEL is e, lways equal to the
highest value stored in the NOT HISTORY TABLE
and as such is always equM to the level of the most
recent --1 which can still effect the following pro-
gram;

ENTRY: BOOLEAN FLA.G := 1;
DISTRIBUTE: i f N 0 P = 3 1 t h e n g o t o OR else if NOP =

32 t h e n g o t o A N D e l s e i f N O P = 33 t h e n g o t o
N O T e l s e i f N O P = 12 t h e n g o t o L F P A R E N -

C o m m u n i c a t i o n s o f t h e A C M 7 I

T H E S I S e l s e i f N O P = 13 t h e n go to I{T I}A -
R E N T I I E S IS ;

i f 2 1 < N () P A N O P < 26 V 41 < N()I) A N O P <
46 t h e n g o t o E X H ' ;

c o m m e n t if control reaches EXIT from this state-
ment it means that a relational expression has
been encountered. E X E C U T I V E will transfer
eonlrol to HEI,ATI(iNAL ROUTINE;

ENI): BUIIA) COMMANI) (' C L A ' , AI}I)RESS); NOT
I{()UTINE; if TEST FLAG = 1 t h e n BUIIA)
C()MMAND ('TT' , A) e l s e BU ILl) (,()M~ IAN I)
('TF' , A); go to EXIT;

c o m m e n t if eonlrol real:he8 END the Boolean
expression has been terminated and only the
apI}rol)riale test for the last wtriahle which
apl)eared in the expressio~ is necessary before
returning to EXECUTIVI!;.

OR: i f NHTI # 0 t h e n NOT R()UTINE; if' AI)I)IfESS
0 t h e n BUIIA) COMMANI) (' C L A ' , All)
DRESS);

if P()P = 13 t h e n go to 0112 else if ()PERATOIR
FLAG = 1 t h e n go toOIIA else i f TEST FLAG =
l t h e n go to C5 e l s e g o t o C l ;

c o m m e n t labels CI- (D ape the entries t.o eolnmand
ge neFa t 0rs ;

Oil.l: i f TEST FLAG = [t h e n go to C6 else go to C2;
OR2: i f OPERATOR FLAG = 1 t h e n go to OR3 else i f

TEST F r *r, = 1. t h e n go to C8 e lse go to (/ ;
OR3: i f 'PEST FLAG = I t h e n go to C7 else go to C3;
AND: if Nt IT[# 0 t h e n NOT ROUTINIi; e lse if AD-

I)RESS # 0 t h e n BUILI) COMMANI) ('CI,A',
AI) DRESS) ;

i f 1)Ol , = 13 t h e n go to AN I) 2 else if OPERATOIL
FLAG = 1 t h e n go t o A N t) I e l s e i f TEST
FLAG = 1 t h e n go to C6 e l s e go t o C2;

AND 1: i f TEST FLAG = I t h e n g o to C5 e l s e go to CI;
AND 2: i f OPERATOII. FLAG = 1 t h e n go to ANI) 3

[i'r ~(, e l s e i f T E S T , , , = 1 t h e n g o to C7 e l s e
g o to C3;

ANI) 3: i f TEST FLAG = I t h e n go t o C 8 e l s e g o t o C 4 ;
c o m m e n t the commands which are generated when-

ever a Boolean ot)erat0r (A or V) appears depend
on only four things: (1) the ol}erator , (2) the TEST
FLAG, (3) the OPEIIATOR FLAG and (4)
whether the previous ol}erator (POP) was a right
l:}arenthesis. These eolnbinations are l)roduced hy
tim eolnmal~d generators following t;he labels
CI-C8 (there are 0nly 8 different; eommand
sequences) ;

NOT: LOAI) NOT FLAG; F I N I) N E X T I)ELIMITEl t :
go to 1) ISTRIBUTE;

LF PARENTHESIS: LEVEL := LEVEL + l; go io (;9;
RT PARENTHt,]SIS: LEVEL := LEVIi;I, - 1 ; FINI) NEXT

D E L I M I T E R ; if NOP = 3t V NOP = 32 t h e n
go to I)ISTRIF~U'I'E e l s e BUIL.D C()MMAND
fiRS', A); BUILD COMMAND ('RS' , B); go to
DISTRIB UTE ;

C1: BUILI) COMMAND ('TT' , B); BUIIA) COM-
MANI) ('HAg', A); F INI) NEXT I)t)]L[M[TER;
go to D I S T R I B U r T I i] ;

C2: BUIL1) COMMANI) ('TF ' , A); F I N D N E X T
I)EI , IMITER; go to I)ISTRIBUTI);;

C3: B U I M) COMMAND ('TF ' , A); BUILI) COM-
MAND (' ILB' , B); BUILI) COMMANI)
('RS' , A); BUILI) COMMAN1) ('RS' , B);
F I N D N E X T D E L I M I T E R ; go to DIS-
TRIBUTE;

C4: BUILD COMMAND ('RS' , A); BUILD COM-
MANI) f i R S ' , B); BUILD COMMAND

72 C o m m u n i c a t i o n s o f t h e A C M

('TT', B); t~U[I,D (~ONiMANI) ('[LB', A);
FINI) N E X T DEIAMITli;t{; go ~, DIS-
T R I t ~. [; T E ;

C5: BUiLI) COMMANI) ('TF' , B); BUILI) COM.
M A N t) (' I L B ' , A) ; F[NDNEXTI)I! ;LIM[TER.,
go to I)[STI~II~UTE;

C6: BUi1A) COMMANI) (' T T ' , A); F [NI) NEXT
I)EL[M[TEII4 go to DISTRIt3UTE;

C7: BUII,I) C()MMAND ('TT' , A); B I I L I) COM-
MAND ('limB', B); BUILD COMMAND
('RS', B); BUILI) COMMAND (' i tS ' , A);
F IND N E X T I)ELIMITt*;II; go to DIS.
T R I B U T E;

C8: BUILD COMMANI) ('RS', B); BUILI) COM-
MAN 1) ('RS', A) ; B U II, I) C()MM AN 1} ('T F', B);
BUIIA) COMMANI) (' ILB' , A); FINI) NEXT
DELIMITE[/4 go to DIS'FRIBUTI!;;

C9: BUHA) COMMAND ('S l / , A); BUILI) COM-
MANI) ('SL', B); FINI) NEXT I)Ii;IAMITER;
go to DISTRIBUTE;

c o m m e n t when BU[LI) COMMAND is called a~ld
~he aeLtlal parameters correspond It() a t spe 2 or
type 3 IL command the address I)ortion of the
(~oIiltl0.and is always a dummy address. Only two
different dummy addresses are needed for the
commands generated by 13()OI,EAN ROUTINE
and these have been indicated by A and B;

EXIT: FINI) NEXT I)EI,IMITEI¢ end Boolean routine;
go to EXI!;CUTIVIi~; . . .

III_,LA [[(NAI, I{()UTINE:
p r o c e d u r e IUiiI,ATION TEST; eammlent after

the two sMes of a relational expression haws been
compared (the left always slHbtPaete({ fl'Oltt Ill{,
right) the contents of the aecumulator lll/lst e
lested. This procedure SUl)I)lies the at)prol}riate
lesl for each of the Pelation:tl ol)el'ators. The
relational operator tllldel' eOllSidePation is indb
eared hy the value of IIEI+AT[CIN TEST Ii'LA(;.
"Phere are two possiMe tests for each relational
of:}erator depending upon whether the delimiter
which hounds the relalional expressioi~ on the
right is a Boo lea~ V or A . The delimiter then
has the same effeet as the operator A ;

hegin i n t eg e r It; K := Rt!iLATION TEST
FLAt; - 40; s w i t c h K := EQUAL, NOT
I)'~QUAI., (HUi;ATER TITAN, GIUi]ATER THAN
()R EQUAl,, I,I?;SS THAN, I,I?]SS TITAN Oil
EQ UAL;

,f b,N L TEST FLAG 0 t h e n BUILI) C()MMANI) EQUAL:) =
('TNZ' , A) e l s e BUILI) C O M M A N 1) ('TZ', B);
g o to [{[i~'['(J[lN;

NOT EQUAL: i f ENI) TEST FLAG = () t h e n BUII,I) C()M-
MANI) ('TZ', A) else BUIIA) COMMANI)
('TNZ', B); go tn RETURN;

GI{EATER THAN: if ENt) TEST FLAt} = 0 t h e n BUII,)
COMMANI.) ('TZP', A) e l s e B U I I A } COM-
M A N I) ('TN' , B); go to RETURN;

Gt{EATER THAN ()R EQUAL: if ENI) TEST FLAG = 0
t h e n BUI LI) COMMAN 1) ('TP' , A) e l s e BU ILl)
COMMAN1} ('TZN', B); go to RETURN;

LESS THAN: i f END TEST FLAG = 0 t h e n B U I L D C()M-
M A N I) ('TZN' , A) e l s e BUIIA.) COMiVIANI)
('TP' , B); go to RETURN;

LESS THAN OR EQUAL: i f END TEST FLAG = 0 then
BUILD COMMAN]) ('TN' , A) e l s e BUI[I}
COMMAND ('TZP', B);

RE T U RN : end Ilelation Test, procedure;

. > !jl ̧

i~ ̧ ~

% %

~i ̧ ~ ;

~! ̧ :;̧ 5

ii ̧ 2)~

MAIN ENTRY: NI;;(}ATI()N FI,AG := 1 ; LEVEL := LF, VEL
+ 1; AIf ITHMETIC; RELATION TEST
FI~AG := NOP; LEVEL := M,WF, I, - 1;
NOP := 21; FINI) NF, XT I)ELIMITER;
ARITttMETIC; go to BB;

t~H: if N()P = 31 then go to CC;
if NOP = 5;f then go to DD e l se RELATION

TEST; go to RELATION EXIT;
comment when control reaches BB the delimiter

which bounds ~he relationM expression on the
righ{; has been eucountered.

CC: ENI) TEST FLAG := 1; RELATION TEST;
BUILI) COMMAND ('ILB', A); go to RELA-
TION EXIT ;

I)l): RELATION TEST; BUILD COMMAND
('ILB', B);

RI;I~ATION EXIT: FIN].) NEXT DELIMITER end Relation
Routine; go to EXECUTIVE. . .

[{OOLEAN ASSIGNMENT STATEMENTS. Consider the
Boolean assignment statement

(3.2) I(:= M A N V P ' . . .

Assume that the expression on the right of (3.2) has been
compiled according to the BOOLEAN t{OUTINE. The
object program can be completed by adding the following
sequence of commands.

ALSE :EXIT:

TRUE EXIT:

ILB A
CLA f a l s e
STO K
TC C
ILB B
CLA true
STO K
ELB C

The I LB A and iLB B commands load the locations at
which they appear into tile address portions of the corre-
sponding transfer commands preceding them (in the
object program for tile Boolean expression M f N V P).
A ghird dummy address C is needed to jump over the true
alternative in ease the Boolean expression is false. The
ELB C loads the location at which it appears into the
address portion of TC C.

CONI)ITIONAL STATEMENTS. Consider a conditional
statement such as

(3.3) i f Br t h e n Sl e l s e i f B2 t h e n S2 e l s e Sa; $4 - . - .

Again we assume that the Boolean expressions B~ and
B2 are compiled according to BOOLEAN ROUTINE.
When a delimiter i f , t h e n or e l s e appears, the following
commands are entered in the object program:

(3.4) it" SL A
SL B

(3.5) then ILB B

(3.6) e l s e TC C
ILB A

RS A
RS B

In addition, the commands

(3.7) ; ILB C
ILB A

are entered in the object program when the semicolon
following the complete conditional statement is en-
countered.

The ILB B ill the commands for t h e n represents the
T R U E E X I T . Tile ILB A in the commands for e l s e

represents the FALSE EXIT . Tile ILB C (3.7) connects
the TC C (3.6) to provide tile necessary jump if the state-
ment following t h e n is executed. The ILB A is necessary
in tile commands for the semicolon (3.7) in case the condi-
tional statement is only an if clause (no e l s e appears in
the statement); the semicolon then becomes the FALSE
E X I T . The SL A and SL B commands for i f and the
RS A and RS B for e l s e make the algorithm valid for any
level of conditional statement (including conditional
statements after t h e n which is not presently allowed in
the ALGOL 60 report). These commands have the effect
of enclosing tile different levels in parenthesis.

I t should be noticed that only three different dummy
addresses are necessary for any level of conditional state-
rnents, including the Boolean expressions within them.

4 . E x a m p l e s

Consider the Boolean expression:

(4.1) b V - ~ (e V ~ (x < y A m g V h) Ak) V
m + n = p + q .

The program compiled by the BOOLEAN R O U T I N E and
the R E L A T I O N A L R O U T I N E for this example is given
below. The values of NOT FLAG, TEST FLAG and
O P E R A T O R FLAG are included for each h'ansfer com-
mand generated.

OPER-
Command NOT TEST ATOR
Location Command FLAG FLAG FLAG

l CLA b
2 TT B 0 0 0
3 SL A
3 SL B
3 CLA e
4 TT A 1 1 1
5 SL A
5 SL B
5 CLS x
6 A I) D 3'
7 TZN A 0 0 0
8 ' CLA g
9 TF B 1 1 0

10 ILB A
10 CLA h
11. RS A
II RS B

ii TT B
12 ILB A
12 C bA k
13 RS A
13 RS B
13 TF B 1 1 0
14 ILB A
:14 CLS n

C o m m u n i c a t i o n s o f t h e ACM 73

4/¸

ii!i~ •

D

l

15 S U B m
16 ADD p
117 Al)l) q
18 T N Z A
19 TC B

50 ILB B (TII.UE EXVI')

100 ILB A (FALSE EXIT)

For clarity, symt)ols have been used inslead of assigning
numerical addresses to b, e, x, y, etc., and all commands
involving the dummy addresses A and B have been in-
dented. The command location for any type 3 command is
the same as that of the next type I or type 2 command
since the type 3 eomman(ls (h} not appear in the actual
maehirm coding.

The following coding is the result after the type 3 com-
mands have been executed according to their definition in
Appendix I.

1 CLA b
2 T T 50
3 CI,A e
4 TT 12
5 CLS x
6 A I) D y
7 TZN l0
8 CI,A g
9 T F 50

10 CLA h
1 t T T 50
12 CLA k
13 T F 50
14 CI,S It
15 S U B rn
16 A t) D p
17 ADD q
18 TNZ 100
19 TC 50

50 (TRUI!; EXFF)

100 (FALSE EXIT)

IHi;LATI()NAI~ I{()UTINE forced A I H T H M E T I C to
compile the two relational expressions x < y and m -I- n =
p + q as if they were the arithmetic expressions - Ix) -t- y
a n d - I r a + n) + p + q.

A good check on the BOOLEAN ROUTINIi; is that it
compiles the same program as above for the expression

(4 .2) b V (- l e / ~ (x < y / ~ --ig Vh)V -~k)V In -~- I1 = p + q

which is the equivalent of (4.1).

C o n c l u s i o n s

The method described in this paper for compiling
Boolean expressions is an alternative to the usual method

74 C o m m u n i c a t i o n s o f the ACM

which would compile an ot)jeet program that performs ~lli
logical operaiions indicated in the expression. The metb(d
presented in this paper will eompih, a.n object progran~
which tesls the minimum number of logical variables i~
determining the value of the expression.

The B()OI,EAN II()UTINI!; in conjunction witt~
RE LATIONAL ROUTINI~ will ('ompile programs for a
Boolean expression of any complexity involving the
operators ' ~ , / ~ , -7. The logical variables in the expressi011
(tan also be simple or eornpound relational expressions 0f
any complexity. The metho(l is especially appropriate for
compiling Boolean expressions involving a large numl)er 0f
l~enns, several levels of logic within the expression or rela-
tional expressions.

This method can easily be used within a compiler which
produces a particular machine coding rather than the
intermediate language described in Appendix I. It simply
means that, the information retained by the type 2 and
type 3 commands in an IL program must now be kept in
lists within t h e compiler. In this case the intermediate
hmguage ('an still be used as a con('ise and eonvelfient
means for describing the compiler routines.

API)EN I) I X [

The intermediate l~mguage (IL) is similar to most
symbolic (',()des in that it consists of a number of individual
instruclions which indicate operations to be performed on
data or on lhe 1)rogram. There are five types of commands
in the language of which three will be presented here.
Types 4 and 5 which concerti address modification, looping
operations and input-output operations will not be dis-
cussed for they are not involved in the BOOI,EAN
{ () b l [N l , or R1A~AIIONAL R O b I I N E .

The type :l commands perform the m'ithmefic opera-
tions of add, subtract, multiply and divide. I t is assumed
that; the result, of any of these operations remains in a
storage cell called A C C U M U L A I O I L

TYPE 1
Command O peratio~t

CLA AI)I)R
ADD ADDR
SUB AIi)DR
ISB ADDR
CLS ADDR
M P Y AI)DR
I)IV ADDR
IDV ADI)R

(AI)I)lt) --~ (AC)
(AI)DR) + (AC) --~ (AC)
(AC) - (AI)I)R)--, (AC)
(A1)I)R) -- (AC) --~ (AC)
-- (AI) I)R) + (AC)
(AC) X (AI)DR)~ (AC)
(AC)/(ADDR) --~ (AC)
(ADI)R)/(AC) --~ (AC)

(AI)DR) means "the contents of AI)I)R." :

Integer arithmetic is assumed in the above operations~
A corresponding set of commands exists for floating p o i n t
arithmetic.

The type 2 commands include the usual conditional
and unconditional transfers of control within a p r o g r a m #

However, the commands are always written with a d u m m y
address, rather than an absolute location. These dummY:
addresses are replaced by absolute locations by the type
commands to be described in the next. paragraph.

i {

TYPE 2
Comma~M Operalion,

T (" I)UMMY ADDRESS Transfer control
T T " " Transfer if (AC) is true
" l 'V " " Transfer if (AC) is false
T Z " " Transfer if (AC) = 0
TNZ " " Transfer if (AC) ~ 0
T i Transfer if (AC) > 0
TZP " " Transfer if (AC) ~ 0
TN " " Transfer if (AC) < 0
TZN " " Transfer if (AC) ~ 0

Tiw type 3 commands perform the operation of conll-
I)t~i h~g ~he type 2 commands, i.e., they repl:tce tile dumnly
addr~':;:-cs of type 2 commands with absolute locations.
Thv absolute location loaded into type 2 commarlds by
a lyp(* :; command is tile location itt the program at which
~hv ~3'i~> 3 command appears. A type 3 command always
(.,~a{ ~i~s a duminy address, and it can operate only on type
2 c~mmm,~ds which have the same d u m m y address.

TYPE 3
Command Operation

/{,t~ ~t~(MMY AI)I)RESS hmlusiveLoad Backward. The
location at which this com-
mand appears is loaded into
the address portion of a l l

previous type 2 commands
with the same dummy ad-
dress as the [LB command.

lie!' I) tMMY AI) I)RESS Inclusive Load Forward. Loads
all future type 2 eolnmands

ELB DUMMY ADDRESS

ELF I)UMMY ADI)IIESS

SL DUMMY ADDRESS

RS DUMMY ADDRESS

with the same dummy ad-
d less.

Exclusive Load Backward.
Loads only the most recent
type 2 comnmnd with the
same dummy address.

Exclusive Load Forward.
Loads only the next type 2
command with the same
dummy address.

Stop Loading. Stops the load-
ing of previous type 2 eom-
m:tnds with the same dummy
address by ILB or ELB
commands. Stops the loading
of future type 2 commands
with the same dummy ad-
dress by previous ILF or
ELF eolninands.

Remove Stop. Removes the
effect of the last previous
SL command with the same
dummy address.

The type 2 and type 3 c o m m a n d s are used to properly
commet a compiled in termediate language program. These
commands allow an II, p r o g r a m to retain information
normally kept in lists within a compiler. There is an addi-
tional feattn'e added by using these commands: type 1
commands can be added or deleted from any I L program
without altering the proper commot ion of the program.

The SLANG System
R. A. Sibley

IBM Systems Center, Bethesda, Maryland

Early in 1960, a project was initiated for the purpose of
de~eloping a programming language suited to the task of
w~iti~g compiler type programs. Through the use of such
a ta~guage and its associated processors, it, was hoped that
a~l of die now classical advantages of a problem-oriented
lang~mge might be put to work for the compiler writer.
'~ kmguage was developed. Referred to as SLANG, the
~o~ation is pat terned after ALGOb "58" and has proved to
tw cow~'enient for expressing m a n y of those processes
fu~damentaI to automat ic programming. More important ,
iiw pr(@ct has focused at tent ion on what appears to t)e
a~ important area for programming research. This area
of e~deavor is concerned with the following observation:

h i:~ p()ssible to describe processes in a machine-independent
bmgtmge which are in themselves machine dependent.

Mati~ematical techniques are in a large measure machine-
i~dependent and thus systems such as FORTItAN have been
suceesdul. Compiling techniques have been extremely

machine dependent. This has resulted in a great deal of
difficulty whenever an a t t e m p t has been made to apply
the methods of automat ic p r o g r a m m i n g to the eor~struetion
of compilers.

In addition to the beginning of an understanding of the
need for new compilation techniques, the urork reported
here has produced the beginnings of what, would seem to
be a contribution to the deve lopmen t of such techniques.
Indeed, results indicate t h a t it is not only possible to de-
scribe the compilation process for a problem-oriented
language in a maehine-indeperldent manner, but tha, t such
a description can be t ransla ted into the machine language
of any of a class of computers b y a single program rumling
on a single computer.

C o n c e r n i n g M a c h i n e I n d e p e n d e n c e

Suppose tha t processors for a series of problem-oriented
machine-independent languages POLMI~, i = 1, 2, - . , , ,,
are required. W h a t advan tages are to be gained by de-

Communica t ions of the ACM 75

