Check for
Updates

Compiling Techniques for Boolean Expressions and
Conditional Statements in ALGOL 60

H. D. Huskey and W. H. Wattenburg

University of California, Berkeley, and Bendix Corporation, Los Angeles, California

1. Introduction

In this note compiling routines will be described for
Boolean expressions involving the operators \/, A and —.
The Boolean variables allowed include relational expres-
sions. These routines will then be used in describing pro-
cedures for compiling conditional statements and Boolean
assignment statements as defined in Arcor 60.

Any attempt to describe a general compiling algorithm
immediately presents the following problem: If an al-
gorithm is constructed to produce efficient object programs
for a particular machine it will be a highly specialized
routine. For this reason an intermediate language is being
used for the object code of the compiling routines being
developed at Berkeley. In this note “object code” and
“object machine” will imply this intermediate language
and a hypothetical machine whose order code is the inter-
mediate language.

Appendix I contains a description of those portions of
the intermediate language which are used by the routines
to be deseribed in this paper.

2. Compiling System

It is also difficult to describe a particular portion of a
compiling system without deseribing the rest of the system
to which it belongs. Hence, it is necessary to present the
general characteristics of the compiling system before
proceeding with the detail routines for Boolean expressions
and conditional statements.

The compiler performs u single scan of the source lan-
guage. I'or each identifier, commands are generated ac-
cording to the delimiters which enclose the identifier.
The particular commands generated are determined by
two quantities, POP (previous operator) and NOP (next
operator). A third register PS (peek symbol) is carried
along and is normally equal to POP. It is used in the few
2ages Where it is necessary to examine a delimiter ahead
of NOP.

The main entry to the compiler is a block labeled
EXECUTIVE. The entire compiler is local to this block.
Within this block are a number of blocks labeled according
to the type of AncoL statements handled by the logie
within them (the ones of interest in this paper will be those
labeled BOOLEAN ROUTINE and RELATIONAL
ROUTINE). The program immediately following
EXECUTIVE determines the block to which control

70 Communications of the ACM

must be transferred to process the portion of source pro-
gram presently under consideration.

FIND NEXT DELIMITER, BUILD COMMAND,
and ARITHMETIC are procedures used by many routines
in the compiler. Procedure FIND NEXT DELIMITER
performs the scanning of the source program. Whenever
it is called it finds the next delimiter and places the code
for this delimiter in NOD. The previous value of NOP is
assigned to POP and PS. If in scanning forward to find the
next delimiter an identifier is encountered, the address for
this identifier is assigned to ADDRIESS. If no identifier i
encountered, ADDRESS is set to zero.

Procedure BUILD COMMAND (OPCOPE, AD-
DRESS); string OPCODE; integer ADDRESS; places a
command in the object program list. Whenever BUILD
COMMAND is called with the actual parameter
ADDRESS, a command with an absolute address (equal
to the value of ADDRIESS) is entered in the command list.
However, when the actual parameter in place of OPCODE
is a type 2 or type 3 command (see Appendix I) a dummy
address is used. In this case BUILD COMMAND is
called with one of the identifiers A, B, C, D, - - - in place
of ADDRESS.

Procedure ARITHMETIC is called whenever an arith-
metic operator is encountered. It is essentially Huskey’s
algorithm! for compiling algebraic expressions. When 8
non-arithmetic delimiter is encountered it return-transfers
with the code for this delimiter in NOP,

The codes assigned to the various delimiters are given
in Table 1.

3. Boolean Expressions

A program can easily be compiled to compute the value
of a Boolean expression such as

(3.1) AVBACADYV - EAFVG)

if one requires all the logical operations to be carried out
and the result tested for true or false. In general, how-
ever, this would produce inefficient object programs. For
example, the expression (3.1) is completely determined if
A is true—there is 1o need to examine the rest of the ex-
pression. Likewise, if any one of the variables in the term
B A C A D is false there is no need to examine the other

1 Huskey, H. D., Compiling techniques for algebraic expres-
sions. Computer Journal of The British Computer Society, in press.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366062.366098&domain=pdf&date_stamp=1961-01-01

TABLE 1

Delimiler Code Deliniter Code Delimiier Code

, 10 = 41 procedure 62

11 # 42 own 63

(12 > 43 Boolean 64

) 13 > 44 integer 65

{ 14 < 45 real 66

| 15 = 46 array 67

16

begin 50 switch 68

- 21 end 51 string 69

- 22 if 52 tabel 70

* 23 then 53 value 71
/ 24 else 54
& 25 for 55
T 26 step 56
until 57
\V4 31 while 58
/A 32 do 59
- 33 comment 60
> 34 go to 6l

= 35

two variables, The algorithm presented in the BOOLEAN
ROUTINE which follows produces an object program
which takes into account such situations. The object pro-
grams are optimum in the sense that only the necessary
minimum number of variables are tested, assuming that
the expression is evaluated in strict left to right order.

The following picture is helpful in describing the
algorithm. The source program that follows the Boolean
expression contains two entry points to which control is
transferred depending on whether the Boolean expression
1z true or false. These points are called TRUE EXIT
and FALSE EXIT. The rules governing the routine are
simple:

1 a variable followed by the operator \/ is true, then a transfer
should oceur to a point which tests the next variable which is at
s lower level and is preceded by the operator A; if none exists,
then to TRUE EXIT. If a variable followed by the operator A is
false then a transfer should oceur to a point which tests the next
variable which is at the same or a lower level and is preceded by \/;
if none exists, then to FALSE EXIT.

The appearance of a variable in a Boolean expression
results in the command “clear and add variable” in the
object program. Fach appearance of an operator (\/ or A)
results in a test of the accumulator by the object program,

Appendix I) which properly connect the object program.
The test commands are always “transfer on true” (T'T)
or “transfer on false” (TF) with dummy addresses. In
practice these will be “transfer on non-zero” or “transfer
on zero” depending upon the particular values used to
represent true and false in a machine. Parentheses within
a Boolean expression are taken care of by using the type 3
commands SL and RS which restrict the scope of the
loading commands ILB, ILF, ete. Only two different
dummy addresses are required for a Boolean expression
of any complexity (the dummy addresses A and B are
used i the BOOLEAN ROUTINE).

The effect of —’s in a Boolean expression is determined
according to de Morgan’s Theorem. If a variable is ef-
fectively complemented then the test is changed (TT
becomes TF, TF becomes T'T). If an operator is effectively
changed then the dummy address of the transfer command
is changed (A to B, B to A).

BOOLEAN ROUTINE: begin

procedure CHANGE NOT FLAG; begin if NOT
FLAG = 0 then NOT FLAG := 1

else NOT FLAG := 0 end change not flag;

procedure LOAD NOT LEVEL; begin CHANGE
NOT FLAG; NOT LEVEL := LEVEL;

if NOT LEVEL > NOT HISTORY TABLE [NHTI)
thea NHTI := NHTI + I;

NOT HISTORY TABLE [NHTI] := NOT LEVEL
end load not level,

procedure REDUCE NOT HISTORY TABLE;
begin CHANGIE NOT FLAG;

NHTI := NHTI — 1; NOT LEVEL := NOT
HISTORY TABLE [NHTI] end reduce not
history table;

procedure NOT ROUTINE; begin if NOT FLAG
> 0 then TEST FLAG =1

1.1: if LEVEL > NOT LEVEL then go to L3 else

1.2: REDUCE NOT HISTORY TABLE; if NHTI =
0 then go ro 14 else go to Li1;

1.3: if NOT FLAG > 0 then OPERATOR FLAG := 1;

[4: end not routine;

comment the above procedures are used to keep
track of the appearance of the Boolean operator —

(not) in a Boolean expression. The NOT FLAG

(1 or 0) indicates whether the Boolean variable

under consideration has in effect been comple-

mented by a previous —. However, one must keep
track of the levels at which previous —’s have
appeared since they could negate entire expres-
sions. This is accomplished by storing the levels
at which —’s have appeared in a list called NOT

HISTORY TABLE whose index is NHTI. Before

any Boolean operator (A or V) is processed the

NOT ROUTINE is called, which determines the

net effect of all —’s in the Boolean expression up

to this operator. The NOT ROUTINE sets two
flags, the TEST FLAG and the OPERATOR

FLAG. If the OPERATOR FLAG = 1, then the

operator presently being processed has in effect

been changed according to de Morgan’s Theorem.

If the TEST FLAG = 1, then the previous vari-

able has in effect been complemented according

to de Morgen’s Theorem. Hence, the logie of pro-
cedure NOT ROUTINE forces the BOOLEAN

ROUTINE to compile programs for the expanded

equivalent (according to de Morgan’s Theorem)

of any Boolean expression,

LEVEL at any point in the source program is
equal to one plus the number of left parentheses
encountered minus the number of right parentheses
encountered. NOT LEVEL is always equal to the
highest value stored in the NOT HISTORY TABLE
and as such is always equal to the level of the most
recent — which ean still effect the following pro-
gram;

ENTRY: BOOLEAN FLAG :=1;
DISTRIBUTE: if NOP = 31 then go to OR else if NOP =

32 then go to AND else if NOP = 33 then go to

NOT else if NOP = 12 then go to LF PAREN-

Communiecations of the ACM 7L

THESIS else if NOP = 13 then go 1o RT PA-
RENTHESIS;
if 21 < NOP A NOP <26 /41 < NOP A NOP <
46 then go to EXIT;
comment if control reaches EXIT from this state-
ment it means that a relational expression has
been encountered. EXECUTIVE will transfer
control to RELATIONAL ROUTINIE;
BUILD COMMAND (‘CLA’, ADDRESS); NOT
ROUTINE; if TEST FLAG = 1 then BUILD
COMMANID (TP, A) else BUILD COMMAND
(‘TF’, A); go to EXIT;
comment if control reaches END the Boolean
expression has heen terminated and only the
appropriate test for the last wvariable which
appeared in the expression is necessary before
returning to EXECUTIVE.
OR: if NHTI # 0 then NOT ROUTINE; if ADDRESS
(0 then BUILD COMMAND (‘CLA’, AD-
DRESS);
it POP = 13 then go to OR2 else if OPERATOR
FLAG = | then go to QR else if TEST FLAG =
1 then go to Ch else go to Cl;
comment labels C1-C9 are the entries to command
generators;
if TEST FLAG = 1 then go to C6 else go to C2;
if OPERATOR FLAG = 1 then go to OR3 else if
TEST FLAG = 1 then go to C8 else go to C4;
if TEST FLAG = 1 then go to C7 else go to C3;
if NHTL # 0 then NOT ROUTINE else if AD-
DRESS # 0 then BUILD COMMAND (‘CLA’,
ADDRESS);
if POP = 13 then go to AND 2 else if OPERATOR
FLAG = 1 then go to AND 1 else if TEST
FLAG = 1 then go to C6 else go to C2;
if TEST FLAG = 1 then go to C5 else go to Cl;
if OPERATOR FLAG = 1 then go to AND 3
else if TEST FLAG = 1 then go to C7 else
go to C3;
if TEST FLAG = 1 then go to C8 else go to C4;
comment the commands which are generated when-
ever a Boolean operator (A or \/) appears depend
on only four things: (1) the operator, (2) the TEST
FLAG, (3) the OPERATOR FLAG and (4)
whether the previous operator (POP) was a right
parenthesis. These combinations are produced by
the command generators following the labels
C1-C8 (there are only 8 different command
sequences) ;
LOAD NOT FLAG; FIND NEXT DELIMITER:
go to DISTRIBUTE;
LF PARENTHESIS: LEVEL := LEVEL + I; go to (9;
RT PARENTHESIS: LEVEL := LEVEL — 1; FIND NEXT
DELIMITER; if NOP =31V NOP = 32 then
go to DISTRIBUTE else BUILD COMMAND
(‘RS’, A); BUILD COMMAND (‘R§’, B); go to
DISTRIBUTE;

C1: BUILD COMMAND (“I'T", B); BUILD COM-
MAND (1LB’, A); FIND NEXT DELIMITER;
go to DISTRIBUTE;

END:

OR1:
OR2:

OR3:
AND:

AND 1:
AND 2:

AND 3:

NOT:

C2: BUILD COMMAND (‘TF’, A); FIND NEXT
DELIMITER; go to DISTRIBUTE;
C3: BUILD COMMAND (‘T¥’, A); BUILD COM-

MAND (ILB’, B); BUILD COMMAND
(‘RS', A); BUILD COMMAND (‘RS’, B);
FIND NEXT DELIMITER; go to DIS-
TRIBUTE;

C4: BUILD COMMAND (‘RS', A); BUILD COM-
MAND (‘R8’, B); BUILD COMMAND

72 Communications of the ACM

(U110, B); BUILD COMMAND (ILB’, Aj,

FIND NEXT DELIMITER; go to DIS.
TRIBUTE,
Ca: BUILD COMMAND (‘TF', B); BUILD COM.

MAND (‘ILB’, A); FIND NEXT DELIMITER,
go to DISTRIBUTE;
C6: BUILD COMMAND (“I'1°, A); FIND NEXT
DELIMITER; go vo DISTRIBUTE;

C7: BUILD COMMAND (T, A); BUILD COM.
MAND (‘ILB’, B); BUILD COMMAND
(RS, B); BUILD COMMAND (RS, Ay
FIND NEXT DELIMITER; go to DIS
TRIBUTE;

C8: BUILD COMMAND (‘RS’, B); BUILD COM.
MAND (‘RS’, A); BUILD COMMAND (“I'F’, By,
BUILD COMMAND (ILB’, A); FIND NEXT
DELIMITER; go to DISTRIBUTL;

C9: BUILD COMMAND (‘SL7, A); BUILD COM.
MAND (‘SI’, B); FIND NEXT DELIMITER,
go to DISTRIBUTE;

comment when BUILD COMMAND is called and
the actual parameters correspond to a type 2 o
type 3 1L command the address portion of the
command is always a dummy address. Only two
different dummy addresses are needed for the
commands generated by BOOLEAN ROUTINE
and these have been indicated by A and B;

FIND NEXT DELIMITER end Boolean routine;
zo to EXECUTIVE;

EXIT:

RELATIONAL ROUTINE:
procedure RELATION TEST;
the two sides of a relational expression bave been
compared (the left always subtracted from the
right) the contents of the accumulator must be
tested. This procedure supplies the appropriate
test for each of the relational operators. The
relational operator under consideration is indi-
cated by the value of RELATION TEST FLAG.
There are two possible tests for each relational
operator depending upon whether the delimiter
which bounds the relational expression on the
right is a Boolean \/ or A. The delimiter then
has the same effect as the operator /\;
begin integer K; K := RELATION TEST
FLAG ~ 40; switch K := B[QUAL, NOT
EQUAL, GREATER THAN, GREATER THAXN
OR LQUAL, LESS THAN, LESS THAN OR
EQUAL;
it END TEST FLAG = 0 then BUILD COMMAND
(“PNZ’, A) else BUILD COMMAND (“T7’, B);
go to RETURN;
it END TEST FLAG = 0 then BUILD COM-
MAND (‘T%’, A) else BUILD COMMAND
(“INZ’, B); go to RETURN;
GREATER THAN: if END TEST FLAG = 0 then BUILD
COMMAND (“TZP’, A) else BUILD COM-
MAND (“TN’, B); go to RETURN;

GREATER THAN OR EQUAL: if END TEST FLAG =¥
then BUILD COMMAND (“I'P’, A) else BUILY
COMMAND (‘TZN’, B); go to RETURN;

LESS THAN: if END TEST FLAG = 0 then BUILD COM-
MAND (“TZN’, A) else BUILD COMMAND
(‘TP’, B); go to RETURN;

LESS THAN OR EQUAL: if END TEST FLAG = 0 then
BUILD COMMAND (“TN’, A) else BUILD
COMMAND (‘TZP’, B);

end Relation Test procedure;

comment after

EQUAL:

NOT EQUAL:

RETURN:

MAIN ENTRY: NEGATION FLAG :=1; LEVEL:= LEVEL
+ 1 ARTTHMETIC; RELATION TEST
FLAG := NOP; LEVEL := LEVEL - 1;
NOP = 2l; FIND NEXT DELIMITER;
ARITHMETIC; go to BB;
BB: if NOP = 31 then go to CC;
if NOP = 53 then go to DD else RELATION
TEST; go to RELATION EXIT;
comment when control reaches BB the delimiter
which bounds the relational expression on the
right has been encountered.
CC: END TEST FPLAG := I; RELATION TEST;
BUILD COMMAND (‘ILB’, A); go to RELA-
TION EXTIT;
DD RELATION TEST;
CILB’, B);
RELATION EXIT: FIND NEXT DELIMITER end Relation
Routine; go to EXECUTIVE . . .

BUILD COMMAND

Boouran AssieyMENT StaTEMENTS. Consider the

Boolean assignment statement

(3.2) K=MANVP....

Assume that the expression on the right of (3.2) has been
compiled according to the BOOLEAN ROUTINE. The
object program can be completed by adding the following
sequence of commands.

FALSE EXIT: 1L.B A

: CLA false
STO K
TC C

TRUE EXIT: ILB B
CLA true
STO K

ELB C

The ILB A and ILB B commands load the locations at
which they appear into the address portions of the corre-
sponding transfer commands preceding them (in the
object program for the Boolean expression M A N \/ P).
A third dummy address C is needed to jump over the true
alternative in case the Boolean expression is false. The
ELB C loads the location at which it appears into the
address portion of TC C.

CONDITIONAL STATEMENTS.
statement such as

Consider a - conditional

(3.3) if By then S else if B, then S, else S;; S -

Again we assume that the Boolean expressions By and
By are compiled according to BOOLEAN ROUTINE.
When a delimiter if, then or else appears, the following
commands are entered in the object program:

B.4) if SL A
S, B
(3.5) then LB B
(3.6) else TC C
ILB A
RS A
RS B

In addition, the commands

3.7 ILB C
ILB A

are entered in the object program when the semicolon
following the complete conditional statement is en-
countered. .

The ILB B in the commands for then represents the
TRUE EXIT. The ILB A in the commands for else
represents the FALSE EXIT. The ILB C (3.7) connects
the TC C (3.6) to provide the necessary jump if the state-
ment following then is executed. The ILB A is necessary
in the commands for the semicolon (3.7) in case the condi-
tional statement is only an if clause (no else appears in
the statement); the semicolon then becomes the FALSE
EXIT. The SL A and SI: B commands for if and the
RS A and RS B for else make the algorithm valid for any
level of conditional statement (including conditional
statements after then which is not presently allowed in
the Arncon 60 report). These commands have the effect
of enclosing the different levels in parenthesis.

It should be noticed that only three different dummy
addresses are necessary for any level of conditional state-
ments, including the Boolean expressions within them.

4. Examples
Consider the Boolean expression:

41 bV-Vax<yA-gVhAKkYV
m-+n=p-+d.

The program compiled by the BOOLEAN ROUTINE and

the RELATIONAL ROUTINE for this example is given

below. The values of NOT FLAG, TEST FLAG and

OPERATOR FLAG are included for each transfer com-

mand generated.

or o B

C'Lo;::;;zg)zd Command I{yL(zi% gfig FLAG

1 CLA b

2 T B 0 0 0

3 SL A

3 SL B

3 CLA e

4 T A 1 1 1

5 SL A

5 SL B

5 CLS x

6 ADD y

7 TZN A a 0 0 0

8 ‘& CLA g - - :

9 TF B o 1 10

10 ILB A ’

10 CLA h

11 RS A

11 RS B

11 ™ B

12 ILB A

12 CLA k

13 RS A

13 RS B

13 TF B 1 ‘ 1 0

14 ILB A

14 CLS n

Communications of the ACM 73

15 SUB m

16 ADD p

17 ADD q

18 TNZ A

19 T™C B

50 ILB B (TRUE EXIT)

100 ILB A (FALSE EXIT)

For clarity, symbols have been used instead of assigning
numerical addresses to b, e, x, y, ete., and all commands
involving the dummy addresses A and B have been in-
dented. The command location for any type 3 command is
the same as that of the next type | or type 2 command
since the type 3 commands do not appear in the actual
machine coding.

The following coding is the result after the type 3 com-
mands have been executed according to their definition in
Appendix I.

1 CLA b
2 T 50
3 CLA ¢
4 T 12
5 CLS «x
6 ADD y
7 TZN 10
8 CLA g
9 TF 50
10 CLA h
1 T 50

12 CLA k
13 TF 50
14 CLS n

15 SUB m
16 ADD p
17 ADD q

18 TNZ 100
19 TC 50

50 (TRUE EXIT)

100 (FALSE EXIT)

RELATIONAL ROUTINE forced ARUTHMETIC to
compile the two relational expressions x < yandm + n =
P + qasif they were the arithmetic expressions — (x) + y
and —(m +n) + p + q.

A good check on the BOOLIEAN ROUTINT is that it
compiles the same program as above for the expression
42) bV (me Ax <y A =g VRV =k)V m+ n=p + g
which is the equivalent of (4.1).

Conclusions

The method described in this paper for compiling

Boolean expressions is an alternative to the usual method

74 Communications of the ACM

which would compile an object program that performs af
logical operations indicated in the expression. The methy]
presented in this paper will compile an object progran
which tests the minimum number of logical variables i
determining the value of the expression.

The BOOLEAN ROUTINE in conjunction wit
RELATIONAL ROUTINE will compile programs for 3
Boolean expression of any complexity involving the
operators \/, /\, —. The logical variables in the expressio
can also be simple or compound relational expressions of
any complexity. The method is especially appropriate for
compiling Boolean expressions involving a large number ¢f
terms, several levels of logic within the expression or rels.
tional expressions.

This method can easily be used within a compiler which
produces a particular machine coding rather than the
intermediate language described in Appendix 1. It simply
means that the information retained by the type 2 and
type 3 commands in an IL program must now be kept in
lists within the compiler. In this case the intermediate
language can still be used as a concise and convenien
means for deseribing the compiler routines.

APPENDIX I

The intermediate language (IL) is similar to most
symbolic codes in that it consists of a number of individual
instructions which indicate operations to be performed ou
data or on the program. There are five types of commands
in the language of which three will be presented here,
Types 4 and 5 which concern address modification, looping
operations and input-output operations will not be dis
cussed for they are not involved in the BOOLEAN
ROUTINIE or RELATIONAL ROUTINE.

The type 1 commands perform the arithmetic opers
tions of add, subtract, multiply and divide. It is assumed
that the result of any of these operations remains in a
storage cell called ACCUMULATOR.

TYPE 1

Command Operation B
CLA ADDR (ADDR) — (AC)
ADD ADDR (ADDR) + (AC) — (AC)
SUB ADDR (AC) — (ADDR) — (AC)
ISB ADDR (ADDR) — (AC) — (AC)
CLS ADDR — (ADDR) — (AC)
MPY ADDR (AC) X (ADDR) — (AC)
DIV ADDR (ACY/(ADDR) — (AC)
IDV ADDR (ADDR)/(AC) — (AC)

(ADDR) means ‘“the contents of ADDR.”

Integer arithmetic is assumed in the above operations:
A corresponding set of commands exists for floating point
arithmetic. :

The type 2 commands include the usual conditionsl
and unconditional transfers of control within a prograni.
However, the commands are always written with a dummy
address, rather than an absolute location. These dummy
addresses are replaced by absolute locations by the type 3:
commands to be described in the next paragraph.

TYPE 2

Command Operaiion
T DUMMY ADDRESS Transfer control
1 « «“ Transfer if (AC) is true
'y « « Transfer if (AC) is false
1 w “ Transfer if (AC) =0
EIA “ “ Transfer if (AC) =0
e “ “ Transfer if (AC) > 0
IVAY “ ¢ Transfer if (AC) 2 0
I~ “ ¢ Transfer if (AC) < 0
TAN «“ « Transfer if (AC) 20

The type 3 commands perform the operation of com-
pleting the type 2 commands, i.e., they replace the dummy
addresses of type 2 commands with absolute locations.
The absolute location loaded into type 2 commands by
@ 1vpe 3 command is the location in the program at which
the type 3 command appears. A type 3 command always
contains o dummy address, and it ean operate only on type
2 eommands which have the same dummy address.

TYPE 3

Command

1.5, DUMMY ADDRESS

Operation
Inclusive Load Backward. The
location at which this com-
mand appears is loaded into
the address portion of all
previous type 2 commands
with the same dummy ad-
dress as the ILB command.
Inclusive Load Forward. Loads
all future type 2 commands

ILE DUMMY ADDRESS

with the same dummy ad-

dress.

ELB DUMMY ADDRESS Fxclusive Load Backward.
Loads only the most recent
tyvpe 2 command with the
same dummy address.

ELF DUMMY ADDRESS Exclusive Load Forward.

Loads only the next type 2
command with the same
dummy address.

Stop Loading. Stops the load-
ing of previous type 2 com-
mands with the same dummy
address by ILB or ELB
commands. Stops the loading
of future type 2 commands
with the same dummy ad-
dress by previous ILF or
ELF commands.

Remove Stop. Removes the
effect of the last previous
SIL command with the same
dummy address.

SL DUMMY ADDRESS

RS DUMMY ADDRESS

The type 2 and type 3 commands are used to properly
connect a compiled intermediate language program. These
commands allow an I, program to retain information
normally kept in lists within a compiler. There is an addi-
tional feature added by using these commands: type 1
commands can be added or deleted from any IL program
without altering the proper connection of the program.

The SLANG System

R. A. Sibley
IBM Systems Center, Bethesda, Maryland

Farly in 1960, a project was initiated for the purpose of
developing a programming language suited to the task of
writing compiler type programs. Through the use of such
o language and its associated processors, it was hoped that
all of the now classical advantages of a problem-oriented
language might be put to work for the compiler writer.
A language was developed. Referred to as SLaxg, the
notation is patterned after ALcor “58” and has proved to
b convenient for expressing many of those processes
fundamental to automatic programming. More important,
the project has focused attention on what appears to be
an important area for programming research. This area
of endeavor is concerned with the following observation:

It is possible to describe processes in a machine-independent
{anguage which are in themselves machine dependent.

Mathematical techniques are in a large measure machine-
independent and thus systems such as Forrran have been
suceesstul. Compiling techniques have been extremely

machine dependent. This has resulted in a great deal of
difficulty whenever an attempt has been made to apply
the methods of automatic programming to the construction
of compilers.

In addition to the beginning of an understanding of the
need for new compilation techniques, the work reported
here has produced the beginnings of what would seem to
be a contribution to the development of such techniques.
Indeed, results indicate that it is not only possible to de-
scribe the compilation process for a problem-oriented
language in a machine-independent manner, but that such
a description can be translated into the machine language
of any of a class of computers by a single program running
on a single computer.

Concerning Machine Independence

Suppose that processors for a series of problem-oriented
machine-independent languages POLMI; i = 1,2, -+, »,
are required. What advantages are to be gained by de-

Communications of the ACM 75

