
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A Slicing-Based Approach for Locating Type Errors

T.B. Dinesh, Frank Tip

Software Engineering (SEN)

SEN-R9824 October 1998

Report SEN-R9824
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

A Slicing-Based Approach for Locating Type Errors

T. B. Dinesh

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

T.B.Dinesh@cwi.nl

Frank Tip

IBM T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

tip@watson.ibm.com

Abstract

The e�ectiveness of a type checking tool strongly depends on the accuracy of the positional informa-
tion that is associated with type errors. We present an approach where the location associated with an

error message e is de�ned as a slice Pe of the program P being type checked. We show that this approach

yields highly accurate positional information: Pe is a program that contains precisely those program
constructs in P that caused error e. Semantically, we have the interesting property that type checking

Pe is guaranteed to produce the same error e. Our approach is completely language-independent, and

has been implemented for a signi�cant subset of Pascal.

1991 Mathematics Subject Classi�cation: 68N20 [Software]: Compilers and generators, 68Q55 [The-

ory of computing]: Semantics, 68Q65 [Theory of computing]: Abstract data types; algebraic

speci�cation.

1991 Computing Reviews Classi�cation System: D.3.4. [Programming languages]:

Processors|Translator writing systems and compiler generators; D.2.1.[Software engineering]:
Requirements/Speci�cations|Languages, Tools; F.3.1. [Logics and meanings of programs]: Spec-

ifying and verifying and reasoning about Programs|Speci�cation techniques.

Key Words & Phrases: Semantics-based tool generation, Program slicing, Type checking, Static seman-

tics speci�cation, Pascal.

Note: This research was supported in part by the Netherlands Organization for Scienti�c Research

(NWO) under the Generic Tools for Program Analysis and Optimization project.
This is a revised and expanded version of a paper that was presented at the USENIX Conference on

Domain Speci�c Languages (DSL'97) [14]. The paper also borrows some material from a case study that

was presented at the 2nd International Workshop on the Theory and Practice of Algebraic Speci�cations

(ASF+SDF'97) [13].

1 Introduction

Type checkers are tools for determining the constructs in a program that do not conform to a language's
type system. Type checkers are usually incorporated in interactive programming environments where they
provide programmers with rapid feedback on the nature and locations of type errors. The e�ectiveness of
a type checker crucially depends on two factors:

� The \informativeness" of the type errors reported by the tool.

� The quality of the positional information provided for type errors.

1

Figure 1: The CLaX environment. The top window is a program editor with two buttons attached to it for

invoking a type checker and an interpreter, respectively. The bottom window shows a list of four type errors reported

by the type checker. After selecting an error message in the bottom window, the Slice button can be pressed to

obtain the associated slice.

We believe that the second factor is especially important. For example, consider an assignment statement
x = y where x and y are of two incompatible types. What is the source of the error? Speci�cally, one might
ask whether the assignment construct itself is \causing" the error, or if the declarations of x and y, where
the incompatible types are introduced, constitute the error's real \source". As another example, consider
a situation where a label is de�ned twice inside some procedure. Ideally, the location of this error would
comprise both occurrences of the label.

We pursue a semantically well-founded approach to answer the question of what the location of a type
error should be. In this approach, the behavior of a type checker is algebraically speci�ed by way of a
set of conditional equations [2], which are interpreted as a conditional term rewriting system (CTRS) [26].
These rewriting rules express the type checking process by transforming a program's abstract syntax tree
(AST) into a list of error messages. We use dynamic dependence tracking [17, 18] to determine a slice of
the original program as the positional information associated with an error message. This approach has the
following advantages:

� The tracking of positional information is completely language-independent and automated; no infor-
mation needs to be maintained at the speci�cation level.

� Unlike previous approaches [10, 34], no constraints are imposed on the style in which the type checker
speci�cation is written. Error locations are always available, regardless of the speci�cation style being
used.

2

� The approach is semantically well-founded. If type checking a program P yields an error message e,
then the location Pe associated with e is a projection of P that, when type checked, will produce the
same error message e. For details about semantic properties of slices, the reader is referred to [17, 18].

Although positional information is always available for any error message, the accuracy1 of these locations
depends inversely on the degree to which the speci�ed type checker's behavior is deterministic. This issue
will be explored in Section 4.3.

We have implemented a prototype type checking system using the ASF+SDF Meta-environment [25, 34],
a programming environment generator that implements algebraic speci�cations by way of term rewriting.
Dependence tracking was previously implemented in the ASF+SDF system's term rewriting engine for the
purpose of supporting dynamic slicing in generated debugging environments [30]. Fig. 1 shows a snapshot of
a type checking environment for the language CLaX, a Pascal-like language. The most interesting features
of CLaX are: nested scopes, overloaded operators, arrays, goto statements, and procedures with reference
and value parameters. The top window of Fig. 1 is a program editor, which has two buttons labeled
`TypeCheck' and `Execute' attached to it, for invoking the type checker and the interpreter, respectively.
The bottom window shows a list of four error messages reported by the type checker for this program.

1. The �rst error, undefined-label i, indicates that the program contains a reference to a label i, but
there is no statement with label i in the same scope.

2. The second error message, multiple-declaration-in-same-scope n, points out that an identi�er n
is declared more than once in the same scope.

3. The third error, expected-label-found INTEGER, indicates that the program contains an identi�er
that has been declared as an integer, but which is used as a label.

4. The fourth error, in-call expected-arg VAR INTEGER found-arg REAL, points out a type error in
a procedure call. In particular, that a procedure is called with a argument type REAL when it was
expecting an argument of type INTEGER.

Note that these error messages do not provide any information as to where the type violations occurred
in the program text.

However, positional information may be obtained by selecting an error message and clicking on the
`Slice' button. In Fig. 2(a){(d), the slices obtained for each of the four error messages of Fig. 1 are shown2.
Each slice is a view of the program's source indicating the program parts that contribute to the selected
error. Placeholders, indicated by `<?>' in the �gure, indicate program components that do not contribute to
the error under consideration. The semantics of \not contributing towards a certain error message" may be
characterized informally as follows: If a placeholder in the slice with respect to an error e is replaced with
a program component of the same kind3, type checking the resulting program is guaranteed to produce the
same error e.

1. Fig. 2(a) shows the slice for the undefined- label error. Clearly, the GOTO i statement is the source
of the error, because there is no statement with label i.

2. Fig. 2(b) shows the slice obtained for the multiple-declaration-in-same -scope error. The problem
here is that n is a parameter as well as a local variable of procedure square. Note that both declarations
of n occur in the slice.

3. Fig. 2(c) shows the slice obtained for the expected-label-found INTEGER error. Note that, in
addition to the GOTO i statement and the declaration of i as an INTEGER, all declarations in the inner
scope appear in the slice. Informally, this is the case because replacing any of these declarations by

1 Accuracy indicates the quality of the slice obtained. Generally, \small" slices, which contain few program constructs, are

desirable because they convey the most insightful information.
2An alternative way for displaying slices would be to highlight the corresponding text areas in the program editor of Fig. 1.

3 Although all placeholders are displayed as `<?>', placeholders are typed. In order to preserve syntactic validity of the

program, an expression placeholder may only be replaced by another expression, an unlabeled-statement placeholder may only

be replaced by another unlabeled-statement, etc.

3

(a) (b)

(c) (d)

Figure 2: Slices reported by the CLaX environment for each of the type errors of Fig. 1.

4

declarations for variable i may a�ect the outcome of the type checking process, in the sense that the
expected-label-found INTEGER error would no longer occur.

4. Fig. 2(d) shows the slice obtained for the in-call expected-arg VAR INTEGER found-arg REAL

error. Observe that the slice precisely indicates the program components responsible for this problem:
(i) the call site square(x) that gave rise to the problem, (ii) the type, INTEGER, of square's formal
parameter (note that the name of this parameter is irrelevant), and (iii) the declaration of variable x
as a REAL.

The reader may observe at this point that, in addition to the program constructs responsible for a type
error, a slice generally also contains certain structural information such as BEGIN and END keywords and
declaration and statement list separators that are not directly related to an error. The occurrence of this
structural information is due to the way slices are computed. If desired, displaying this information could
easily be suppressed to a large extent. For example, removal of all BEGIN, END, and DECLARE keywords and
list separators from the computed slices would reduce the amount of \noise" considerably. In certain cases,
slices may contain IF or WHILE statements whose condition and body are omitted from the slice (see, e.g.,
Fig. 2(d)). Such constructs can also be removed from the slice without a�ecting the semantic content. We
consider slice postprocessing to be primarily a user-interface issue, which is outside the scope of this paper.

The remainder of the paper is organized as follows. In Section 2, related work is discussed. In particular,
the relation to our previous work on origin tracking is discussed, and the slice notion introduced in the
present paper is compared with the traditional notion of a program slice. Section 3 presents our approach
for specifying type checkers. In Section 4, the use of term rewriting for executing speci�cations, as well as
dependence tracking, the mechanism for computing slices are presented. Section 5 presents a case study in
which our techniques are applied to CLaX, a Pascal-like imperative language. We describe some experiments
we conducted using the CLaX prototype, in particular, the e�ect of certain speci�cation changes on the
accuracy of the computed slices is discussed. Conclusions and possible directions for future work are stated
in Section 6.

2 Related Work

The work presented in this paper is closely related to earlier work by the same authors. The CLaX type
checker [12] was developed in the context of the Compare (compiler generation for parallel machines)
project, which was part of the European Union's ESPRIT-II program. We originally used origin tracking

[35] to associate source locations with type errors. Origin tracking is similar in spirit to dependence tracking
in the sense that it establishes relationships between subterms of terms that occur in a rewriting process.
The key di�erence between the two techniques is that origin tracking establishes relationships between
equal subterms (either syntactically equal, or equal in the algebraic sense), whereas dependence tracking
determines for each subterm the context needed to create it. The use of origin tracking for obtaining
positional information was further investigated in [10, 11]. Although the results were encouraging (in terms
of accuracy of positional information), origin tracking was found to impose restrictions on the style in which
the type checker speci�cation was written. Since origin tracking only establishes relationships between equal
terms, the error messages generated by the type checker must contain fragments that literally occur in the
program source; otherwise, positional information is unavailable. In [10, 11], this problem was circumvented
by tokenization, i.e., using an applicative syntax structure and rewriting the speci�cation in such a way that
error messages always contain literal fragments of program source, which guarantees the non-emptyness
of origins. Modi�cation of the type checker speci�cation resulted in adequate positional information for
type errors. By contrast, our approach does not require any modi�cations to speci�cations at all. In
the previous section, we have described techniques for improving the quality of positional information by
avoiding determinism in speci�cations, but it should be emphasized that such improvements are completely
optional.

The dependence tracking relation we use for obtaining positional information was developed by Field
and Tip [17, 18] for the purpose of computing program slices. A program slice [37, 38, 31] is usually de�ned
as the set of statements in a program P that may a�ect the values computed at the slicing criterion, a
designated point of interest in P . Two kinds of program slices are usually distinguished. Static program

5

slices are computed using compile-time dependence information, i.e., without making assumptions about a
program's inputs. In contrast, dynamic program slices are computed for a speci�c execution of a program.
An overview of program slicing techniques can be found in [31].

By applying dependence tracking to di�erent rewriting systems, various types of slices can be obtained.
In [16] programs are translated to an intermediate graph representation named Pim [15, 4]. An equational
logic de�nes the optimization/simpli�cation and (symbolic) execution of Pim-graphs. Both the translation
to Pim and the equational logic for simpli�cation of Pim-graphs are implemented as rewriting systems, and
dependence tracking is used to obtain program slices for selected program values. By selecting di�erent
Pim-subsystems, di�erent kinds of slices can be computed, allowing for various cost/accuracy tradeo�s to
be made. In [30], dynamic program slices are obtained by applying dependence tracking to a previously
written speci�cation for a CLaX-interpreter.

The slice notion presented in the current paper di�ers from the traditional program slice concept in the
following way. In program slicing, the objective is to �nd a projection of a program that preserves part of
its execution behavior. By contrast, the slice notion we have used here is a projection of the program for
which part of another program property|type checker behavior|is preserved. It would be interesting to
investigate whether there are other abstract program properties for which a sensible slice notion exists.

Another approach to providing positional information for type errors is pursued by van Deursen [33, 32].
Van Deursen investigates a restricted class of algebraic speci�cations called Primitive Recursive Schemes
(PRSs). In a PRS, there is an explicit distinction between constructor functions that represent language
constructs, and other functions that process these constructs. Van Deursen extends the origin tracking
notion of [35] by taking this additional structure into account, which enables the computation of more
precise origins.

Heering [21] has experimented with higher-order algebraic speci�cations to specify static semantics. We
believe that the approach of this paper would work very well with higher-order speci�cations, since these
allow one to avoid deterministic behavior, which adversely a�ects slice accuracy. However, this would require
extension of the dependence tracking notion of [17, 18] to higher-order rewriting systems.

Fraer [20] uses a variation on origin tracking [7, 6, 8] to trace the origins of assertions in a program
veri�cation system. In cases where an assertion cannot be proved, origin tracking enables one to determine
the assertions and program components that contributed to the failure of the veri�cation condition.

Flanagan et al. [19] have developed MrSpidey, an interactive debugger for Scheme, which performs a
static analysis of the program to determine operations that may lead to run-time errors. In this analysis, a
set of abstract values is determined for each program construct, which represents the set of run-times values
that may be generated at that point. These abstract values are obtained by deriving a set of constraints from
the program in a syntax-directed fashion, which approximate the data
ow in the program. In addition, a
value
ow graph is constructed, which models the
ow of values between program points. MrSpidey has an
interactive user-interface that allows one to visually inspect values as well as
ow-relationships.

3 Speci�cation of Static Semantics and Type Checking

A static semantics speci�cation only determines the validity of a program and is not concerned with prag-
matic issues such as the source location where a violation of the static semantics occurred, or even what
program construct caused the violation. A type checker speci�cation typically uses the static semantics spec-
i�cation as a guideline, and speci�es the presentation and source location of type errors in invalid programs.
Adding such reporting information to a static semantics speci�cation is a cumbersome and error-prone task,
because keeping track of positional information can be nontrivial, especially if multiple program fragments
together constitute a type error.

In [12], we introduced an abstract interpretation style for writing static semantics speci�cations. In a
nutshell, this style advocates the following:

� reducing program constructs to their type,

� evaluating type expressions at an abstract level, and

� only specifying the type-correct cases.

6

[Eq1] tc(begin Decls Stats end) = dist(Stats, tenv(Decls))

[Eq2] dist(Stat1;Stat2, Tenv) = dist(Stat1, Tenv); dist(Stat2, Tenv)

[Eq3] dist(Id := Exp, Tenv) = dist(Id, Tenv) := dist(Exp, Tenv)

[Eq4] dist(Exp
1
+ Exp

2
, Tenv) = dist(Exp

1
, Tenv) + dist(Exp

2
, Tenv)

[Eq5] dist(Id, Tenv) = type-of(Id, Tenv)

[Eq6] type-of(Id, tenv(T�

1
; Id:Type;T�

2
)) = Type

[Eq7] natural + natural = natural

[Eq8] natural := natural = \correct"

Figure 3: Static semantics speci�cation for determining the validity of assignments.

[Er1] msgs(Stat1;Stat2) = msgs(Stat1);msgs(Stat2)

[Er2] msgs(\correct") = \No errors"

[Er3] Msg�; \No errors"; Msg�0 = Msg�; Msg�0

[Er4] msgs(T1 := T2) = msgs(T2)

when simpletype(T2) 6= true

[Er5] msgs(T1 := T2) = \Incompatible types in assignment."

when simpletype(T2) = true

[Er6] msgs(T1 + T2) = \Operands of + should have the same type."

[Er7] simpletype(natural) = true

[Er8] simpletype(string) = true

Figure 4: Postprocessing to obtain human-readable messages.

Operationally, the static semantics speci�cation describes a transformation of a program to a set of type-
expressions for program constructs that are type-incorrect.

Fig. 3 shows a tiny static semantics speci�cation for determining the validity of assignment statements in
straight-line
ow programs. The reader should be aware that this speci�cation only serves to illustrate the
general style of specifying a static semantics and is incomplete; for example, it does not verify if variables
are declared more than once. Equation [Eq1] de�nes a top-level function tc for checking a program.
Informally, [Eq1] states that checking a program involves (i) creating an initial type-environment that
contains variable-type pairs, and (ii) distributing the type-environment over the program's statements,
using an auxiliary function dist. For the simple example we study here, the type-environment consists of
the declaration section of the program, to which the constructor function tenv is applied. Equation [Eq2]

expresses the distribution of type-environments over lists of statements, and [Eq3] and [Eq4] the distribution
over assignment operators and `+' operators, respectively. [Eq5] states how an identi�er is reduced to its
type, using an auxiliary function type-of, which is de�ned in [Eq6]. Note that the variables T �

1
and T �

2
in

[Eq6] match any sublist of (zero or more) declarations in a declaration section. Equation [Eq7] expresses the
abstract evaluation of additions, and [Eq8] states that the assignment of a natural expression to a natural
variable is valid.

As an example, consider checking the following program block:

tc(begin x : natural; y : string;x := x + x; x := y + x end)

Application of [Eq1] results in:

dist(x := x + x; x := y + x, tenv(x : natural; y : string))

Application of [Eq2] yields:

7

dist(x := x + x, tenv(x : natural; y : string));

dist(x := y + x, tenv(x : natural; y : string))

At this point, [Eq3] can be applied to both components, producing:

dist(x, tenv(x : natural; y : string))

:= dist(x + x, tenv(x : natural; y : string));

dist(x, tenv(x : natural; y : string))

:= dist(y + x, tenv(x : natural; y : string))

The left-hand sides of both assignments can be reduced to their types using [Eq5] and [Eq6], resulting in:

natural := dist(x + x, tenv(x : natural; y : string));

natural := dist(y + x, tenv(x : natural; y : string))

Using [Eq4] and [Eq5], the right-hand sides of the assignments can be simpli�ed:

natural := natural + natural;

natural := string + natural

Using equation [Eq7], the �rst assignment can be simpli�ed:

natural := natural;

natural := string + natural

Finally, application of [Eq8] yields the �nal result:

\correct";
natural := string + natural

The fact that this term contains a subterm that cannot be reduced to \correct" indicates that the
program is not type-correct. Note that the non-\correct" subterm already gives a rough indication of the
nature of the type violation.

Fig. 4 shows a set of equations that de�ne a function msgs that transforms the cryptic messages produced
by the speci�cation of Fig. 3 into human-readable form. The equations of Fig. 4 assume that the term to
which they are applied is fully normalized w.r.t. type checking equations of Fig. 3.

Equation [Er1] distributes function msgs over all statements in a block. [Er2] transforms the constant
correct, which was derived from a type-correct program construct, into a message \No errors". Since
we are not interested in generating messages for correct statements, equation [Er3] eliminates \No errors"
from lists of messages. Equations [Er4] and [Er5] perform the post-processing of expressions that are derived
from incorrect assignment statements. Note that these equations are conditional : they are only applicable
if a certain condition holds. (Here, the condition veri�es if the right-hand side of the expression is a simple
type, using auxiliary equations [Er7] and [Er8].) [Er4] postprocesses assignment statements whose right-
hand side consists of an irreducible expression; whereas [Er5] postprocesses assignments whose left-hand
side and right-hand side are incompatible. Equation [Er6] postprocesses `+' expressions with incompatible
arguments. The reader should observe that the speci�cation of Fig. 4 only serves to illustrate the general
technique and that it is incomplete; For example, it does not handle nested expressions.

As an example, we will postprocess the term \correct"; natural := string + natural by applying
the equations of Fig. 4 to the term:

msgs(\correct"; natural := string + natural)

Applying [Er1] produces:

msgs(\correct"); msgs(natural := string + natural)

Using equation [Er2], we obtain:

\No errors"; msgs(natural := string + natural)

By applying [Er3], the \No errors" message is eliminated:

8

(A2) (A1)

T1T0 T2

creation

residuation

0

intmul

intmul

intsub intsub

intmul

intmul

intsub

0

3

1

2

3

0

1 2

3

Figure 5: Example of creation and residuation relations.

msgs(natural := string + natural)

Since the right-hand side of the assignment is not of a simple type (we cannot derive the constant true

from the term simpletype(string + natural), conditional equation [Er4] can be applied, producing:

msgs(string + natural)

Application of [Er6] yields the human readable error message:

\Operands of + should have the same type."

The CLaX type checker speci�cation that has been used to generate the snapshots of Fig. 1 and 2 follows
the same basic principles that have been presented in this section. Language features such as gotos, nested
scopes, and arrays introduce some additional complexity, but pose no fundamental problems. An annotated
listing of the CLaX speci�cation appears in [13].

4 Term Rewriting and Dependence Tracking

4.1 Term rewriting

In the previous section, speci�cations were \executed" by repeatedly applying equations to terms|a mech-
anism that is usually referred to as term rewriting. Both theoretical properties of term rewriting systems
[26] such as termination behavior, and e�cient implementations of rewriting systems [23, 24] have been
studied extensively.

Term rewriting [26] can be viewed as a cyclic process where each cycle begins by determining a subterm
t and a rule l = r such that t and l match. This is the case if a substitution � can be found that maps every
variable X in l to a term �(X) such that t � �(l) (� distributes over function symbols). For rewrite rules
without conditions, the cycle is completed by replacing t by the instantiated right-hand side �(r). A term
for which no rule is applicable to any of its subterms is called a normal form; the process of rewriting a term
to its normal form (if it exists) is referred to as normalizing. A conditional rewrite rule [3] (such as [Er4]

and [Er5] in Figure 4) is only applicable if all its conditions succeed; this is determined by instantiating
and normalizing the left-hand side and the right-hand side of each condition. Positive (equality) conditions
(of the form t1 = t2) succeed i� the resulting normal forms are syntactically equal, negative (inequality)
conditions (t1 6= t2) succeed if they are syntactically di�erent.

9

D0

�

�0

C

C

T

T 0

C0

C0

D0

Figure 6: Depiction of the de�nition of a term slice.

4.2 Dependence tracking

Thus far, we have described the process of specifying a type checker, and the execution of such speci�cations
by way of term rewriting. In order to obtain positional information, we use a technique called dependence

tracking that was developed by Field and Tip [17, 18]. For a given sequence of rewriting steps T0 ! � � � ! Tn,
dependence tracking computes a slice of the original term, T0, for each function symbol or subcontext (a
notion that will be presented below) of the result term, Tn.

We will use the following simple speci�cation of integer arithmetic (taken from [30]) as an example to
illustrate dependence tracking:

[A1] intmul(0;X) = 0

[A2] intmul(intmul(X, Y);Z) = intmul(X; intmul(Y, Z))

By applying these equations, the term intsub(3, intmul(intmul(0, 1), 2)) may be rewritten as follows
(subterms a�ected by rule applications are underlined):

T0 = intsub(3; intmul(intmul(0, 1), 2))

�! [A2]

T1 = intsub(3; intmul(0, intmul(1, 2)))

�! [A1]

T2 = intsub(3; 0)

By carefully studying this example, one can observe the following:

� The outer context intsub(3, �) of T0 (`�' denotes a missing subterm) is not a�ected at all, and
therefore reappears in T1 and T2.

� The occurrence of variables X, Y, and Z in both the left-hand side and the right-hand side of [A2]

causes the respective subterms 0, 1, and 2 of the underlined subterm of T0 to reappear in T1.

� Variable X only occurs in the left-hand side of [A1]. Consequently, the subterm intmul(1, 2) (of T1)
that is matched against X does not reappear in T2. In fact, we can make the stronger observation
that the subterm matched against X is irrelevant for producing the constant 0 in T2: the \creation"
of this subterm 0 only requires the presence of the context intmul(0, �) in T1.

The above observations are the cornerstones of the dynamic dependence relation of [17, 18]. Notions of
creation and residuation are de�ned for single rewrite-steps. The former involves function symbols produced
by rewrite rules whereas the latter corresponds to situations where symbols are copied, erased, or not a�ected

10

by rewrite rules4. Figure 5 shows all residuation and creation relations for the example reduction discussed
above.

Roughly speaking, the dynamic dependence relation for a sequence of rewriting steps � consists of
the transitive closure of creation and residuation relations for the individual steps in �. In [17, 18], the
dynamic dependence relation is de�ned as a relation on contexts, i.e., connected sets of function symbols in
a term. The fact that C is a subcontext of a term T is denoted C v T . For any sequence of rewrite steps
� : T ! � � � ! T 0, a term slice with respect to some C0 v T 0 is de�ned as the subcontext C v T that is
found by tracing back the dynamic dependence relations from C 0. The term slice C satis�es the property
that C can be rewritten to a term D0 w C0 via a sequence of rewrite steps �0, where �0 contains a subset of
the rule applications in �. This property is illustrated in Figure 6.

Returning to the example, we can determine the term slice with respect to the entire term T2 by tracing
back all creation and residuation relations to T0. The reader may verify that the term slice with respect to
intsub(3, 0) consists of the context intsub(3, intmul(intmul(0, �), �)).

The bottom window of the CLaX environment of Figure 1 is a textual representation of a term that
represents a list of errors. The slices shown in Figure 2(a){(d) are computed by tracing back the dependence
relations from each of the four \error" subterms.

4.3 The e�ect of determinism on slice accuracy

We have argued that our approach for obtaining positional information does not rely on a speci�c speci-
�cation style. Nevertheless, experimentation with the CLaX type checker has revealed that the accuracy

of the computed slices inversely depends on the degree to which the speci�cation is deterministic. As a
general principle, more determinism in a speci�cation leads to less accurate slices. To understand why this
is the case, consider the nature of dynamic dependence relations. Suppose that type checking a program P

involves a sequence of rewrite steps r that ultimately lead to an error e. The slice Pe associated with e has
the property that it can be rewritten to a term containing e, using a subset r0 of the rewrite-steps in r. If
the rewrite steps in r encode a deterministic process such as the explicit traversal of a list of statements,
this deterministic behavior will also be exhibited by r0, to the extent that it contributed to the creation of
e.

As an example, consider rewriting the term:

type-of(tenv(x : integer; y: string; z : integer), y)

according to the speci�cation of Figure 3. By applying equation [Eq6], this term rewrites to the constant
string. By tracing back the dynamic dependence relations, we �nd that the context

type-of(tenv(�; y: string; �), y)

was needed to create this result. Now suppose that instead of equation [Eq6], we use the following two
equations for reducing the same term:

[Eq6a] type-of(Id, tenv(Id:Type; D�)) = Type

[Eq6b] type-of(Id, tenv(Id0:Type; D�)) = type-of(Id, tenv(D�))

when Id0 != Id

The resulting term would be the same as before: the constant string, which is obtained by �rst applying
equation [Eq6b] followed by applying equation [Eq6a]. However, the subcontext needed for creating this
result would now consist of:

type-of(tenv(x : �; y: string; �), y)

The variable x in the �rst element of the type environment is now included in the slice because the
order in which the type environment is traversed is made explicit in the speci�cation. Informally stated,
the resulting term string is now dependent on the fact that the �rst element of the type environment is
not an entry for variable y.

4The notions of creation and residuation become more complicated in the presence of so-called left-nonlinear rules and

collapse rules . This is discussed at greater length in [17, 18].

11

The use of list functions and list matching in speci�cations (i.e., allowing function symbols with a variable
number of arguments and variables that match sublists) has the e�ect of reducing determinism, and therefore
improving slice accuracy. We believe that more powerful mechanisms for expressing nondeterminism such
as higher-order functions [21] can in principle improve slice accuracy even further.

Experimentation with the CLaX type checker speci�cation of [12] revealed a small number of cases
where slices were unnecessarily inaccurate due to overly deterministic behavior. Virtually all of these cases
consisted of explicit traversals of lists, with the purpose of �nding a speci�c list element, or verifying whether
or not a list contained a certain element more than once. In each of these cases, the use of list functions
allowed us to specify the same function nondeterministically with little e�ort.

5 A case study: type-checking the CLaX language

We now turn our attention to a case study, in which we apply our techniques to a Pascal-like imperative
programming language named CLaX. The most interesting features of CLaX are: nested scopes, overloaded
operators, arrays, goto statements, and procedures with reference and value parameters.

The CLaX language was originally developed as the demonstration language of the ESPRIT-II Compare
(Compiler Generation for Parallel Machines) project [1], and the original (informal) description of the
semantics of CLaX can be found in [29]. Since then, CLaX has been used as a basis for various software
tools, including type checkers, interpreters, and debuggers [12, 10, 11, 34, 30], as well as a test-bed for
origin-tracking techniques [35, 32, 17]. In the present paper, we will only present some of the highlights of
the CLaX speci�cation. For more details on the CLaX language, the reader is referred to [12].

We use the combined formalism ASF+SDF to de�ne the syntax, the static semantics, and the dynamic
semantics of CLaX. ASF+SDF is a combination the Algebraic Speci�cation Formalism ASF [2] and the
Syntax De�nition Formalism, SDF [22]. ASF features �rst-order signatures, conditional equations, modules,
and facilities for import, export, and hiding. SDF allows for the simultaneous de�nition of a language's
lexical syntax, context-free syntax, and abstract syntax. The combined formalism, ASF+SDF [34], is
unusually
exible in the sense that it allows one to specify the syntax of a language, and then de�ne
equations in terms of that user-de�ned syntax. The ASF+SDF Meta-environment [25] is an implementation
of ASF+SDF. By interpreting equations as rewrite-rules, speci�cations can be executed as term rewriting
systems.

5.1 Speci�cation of the CLaX syntax in ASF+SDF

In order to give the reader an impression of what an ASF+SDF speci�cation looks like, we will brie
y
address some of the highlights of the ASF+SDF-speci�cation of CLaX, starting with the de�nition of the
CLaX syntax. For a full overview of ASF+SDF, the reader is referred to [34, 25].

Fig. 7 shows two of the modules that together de�ne the CLaX syntax. Module SyntaxProgram is the
top-level module that de�nes the syntax of CLaX programs. Since module SyntaxProgram relies on several
sorts (i.e., speci�cation-level types) that are not de�ned locally, it needs to import the modules in which
these sorts are de�ned. The imports section of SyntaxProgram consists of:

imports SyntaxHeaders SyntaxStats

stating that two auxiliarymodules, SyntaxHeaders and SyntaxStats, are imported. Module SyntaxProgram
de�nes a sort PROGRAM, and contains grammar rules for constructing programs. For instance, the rule

"DECLARE" DECL-LIST "BEGIN" STAT-SEQ "END" -> BLOCK

states that a BLOCK may consist of a keyword `DECLARE' followed by a declaration list (sort DECL-LIST), a
keyword `BEGIN', a sequence of statements (sort STAT-SEQ), and a keyword `END'. Note that there is another
grammar rule for the case where a BLOCK does not contain any declarations. Grammar rule

"PROGRAM" ID ";" BLOCK "." -> PROGRAM

subsequently de�nes a PROGRAM to consist of the keyword `PROGRAM' followed by an identi�er (sort ID), a
BLOCK, and a period. Finally, the variables section of module SyntaxProgram

12

[_]Program[0-9']* -> PROGRAM

de�nes variables of sort PROGRAM that can be used in the equations of any modules that imports SyntaxProgram.
This rule de�nes the lexical syntax of a variable of sort Program to consist of an underscore character, fol-
lowed by character sequence `Program', followed by zero or more occurrences of a digit or a quote character.

Module SyntaxHeaders, which de�nes the syntax of declarations and procedure headers, is also shown
in Fig. 7. Various types of declarations are de�ned. Label declarations (sort LABEL-DECL) consist of an
identi�er, followed by a colon, and the keyword `LABEL'. Variable declarations consist of an identi�er, a
colon, and a TYPE (de�ned in module SyntaxTypes not shown here). Procedure declarations consist of a
procedure header (sort PROC-HEAD), followed by a BLOCK. Finally, empty declarations (sort EMPTY-DECL)
have no concrete syntax at all. Sort DECL is introduced to represent all of these kinds of declarations, so
that they can be uniformly represented in declaration lists (sort DECL-LIST). Sort DECL-LIST illustrates the
use of lists in ASF+SDF:

{ DECL ";" }* -> DECL-LIST

de�nes declaration list to be a sequence of zero or more declarations separated by semicolons. Formal
parameters (sort FORMAL) are de�ned to consist of variable declarations, optionally preceded by the keyword
`VAR' (for reference parameters). Procedure headers are de�ned as follows:

"PROCEDURE" ID -> PROC-HEAD

"PROCEDURE" ID "(" {FORMAL ";"}+ ")" -> PROC-HEAD

indicating that a procedure header consists of the keyword `PROCEDURE', followed by an identi�er, and
optionally followed by an open bracket, a list of one or more formal parameters separated by semicolons,
and a close bracket.

Fig. 8 shows an example of a CLaX program.

5.2 High-level overview of the CLaX type checker speci�cation

Before delving into some of the more interesting details of the CLaX type checker speci�cation, we will brie
y
overview the global design of the speci�cation. As can be seen from the import diagram of the type checker
modules (see Fig. 9), the type checker speci�cation imports the CLaX syntax of module SyntaxProgram
that was discussed previously. The CLaX type checker performs (roughly) the following steps in order to
type check a BLOCK of statements:

� The declarations of a block are processed, yielding a local type environment. A type-environment
essentially represents the context in which a particular statement, block, or expression is type checked.

� Some checks are performed on the local type environment. For example, we check if each identi�er is
unique within its scope, and if the index ranges of arrays contain at least one element.

� The local type environment is combined with the type environments corresponding to the BLOCK's
surrounding scopes, and this combined type environment is distributed over every program construct.

� All IF and WHILE statements are
attened: the statement series inside these statements are moved
outside the IF/WHILE, and the condition of the IF or WHILE is transformed into an \abstract" TEST

statement. This allows us to localize the checking of the validity of all conditional expressions in one
place.

� Identi�ers and values are rewritten to a common abstract interpretation. We use types for abstract
representations. For example, any constant `17' is rewritten to `INTEGER', and any identi�er declared
as a real is rewritten to `REAL'.

� Expressions are interpreted abstractly using the abstract values obtained in the previous step. Any
type-correct expression is rewritten to its abstract value. For example, an expression `INTEGER +

INTEGER' is rewritten to `INTEGER'.

13

%% Module SyntaxProgram

imports SyntaxHeaders SyntaxStats

exports

sorts PROGRAM %% BLOCK is defined in Module SyntaxHeaders

context-free syntax

"DECLARE" DECL-LIST "BEGIN" STAT-SEQ "END" -> BLOCK

"BEGIN" STAT-SEQ "END" -> BLOCK

"PROGRAM" ID ";" BLOCK "." -> PROGRAM

variables

[_]Program[0-9']* -> PROGRAM

%% Module SyntaxHeaders

imports SyntaxTypes

exports

sorts PROC-HEAD LABEL-DECL PROC-DECL VAR-DECL DECL DECL-LIST

FORMAL BLOCK

context-free syntax

ID ":" "LABEL" -> LABEL-DECL

ID ":" TYPE -> VAR-DECL

PROC-HEAD ";" BLOCK -> PROC-DECL

-> EMPTY-DECL

VAR-DECL -> DECL

PROC-DECL -> DECL

LABEL-DECL -> DECL

EMPTY-DECL -> DECL

{ DECL ";" }* -> DECL-LIST

VAR-DECL -> FORMAL

"VAR" VAR-DECL -> FORMAL

"PROCEDURE" ID -> PROC-HEAD

"PROCEDURE" ID "(" {FORMAL ";"}+ ")" -> PROC-HEAD

variables

[_]Decl"+"[0-9']* -> {DECL ";"}+

[_]Decl"*"[0-9']* -> {DECL ";"}*

[_]LabelDecl[0-9']* -> LABEL-DECL

[_]VarDecl[0-9']* -> VAR-DECL

[_]ProcDecl[0-9']* -> PROC-DECL

[_]ProcHead[0-9']* -> PROC-HEAD

[_]Decl[0-9']* -> DECL

[_]Block[0-9']* -> BLOCK

[_]Formal[0-9']* -> FORMAL

[_]Formal"+"[0-9']* -> {FORMAL ";"}+

[_]DeclList[0-9']* -> DECL-LIST

[_]EmptyDecl[0-9']* -> EMPTY-DECL

hiddens

sorts EMPTY-DECL

Figure 7: Some modules of the ASF+SDF speci�cation of the CLaX syntax.

14

PROGRAM �bonacci;
DECLARE
lab : LABEL;
count : INTEGER;
�b : ARRAY[1..20] OF INTEGER;

BEGIN
count := 3;
�b[1] := 1;
�b[2] := 1;
lab: �b[count] := �b[count-1] + �b[count-2];
count := count + 1;
WRITE("count = "); WRITE(count); WRITE("nn");
IF count <= 20 THEN
GOTO lab

END
END.

Figure 8: Example of a CLaX program.

TcErrors

TcLabel

SyntaxConsts

TcBooleans

TcSyntaxExt

SyntaxProgram

TcNint

TcTenv

TcExpr

TcProc

Tc

Figure 9: Import diagram for the type checking modules. The dashed line indicates the separation between the

type checking phase, and the postprocessing phase in which human-readable error messages are produced.

15

%% Module TcTenv

imports TcSyntaxExt TcBooleans

exports

sorts TENV

context-free syntax

TYPE -> EXPR

"[" {DECL ";"}* "]" -> TENV

TENV* -> TENV-LIST

type-of(TENV-LIST, EXPR) -> TYPE

variables

[_]C"*" -> TENV*

[_]D"*"[']* -> {DECL ";"}*

[_]D[']* -> DECL

[_]D"+"[']* -> {DECL ";"}+

[_]Tenv[']* -> TENV

[_]Tenv"*"[']* -> TENV*

[_]Tenv"+"[']* -> TENV+

[_]TenvList[']* -> TENV-LIST

equations

[1] _IntConst = INTEGER

[2] _RealConst = REAL

[3] _BoolConst = BOOLEAN

[4] (ARRAY[_IntConst .. _IntConst'] OF _Type) [INTEGER] = _Type

Figure 10: Module TcTenv of the ASF+SDF speci�cation of the CLaX type checker.

� Type correct statements (e.g., assignments whose left-hand side and right-hand side are both rewritten
to `INTEGER') are are reduced to the constant `true'.

� Human-readable error messages are generated from the list of remaining abstract expression in a way
that is similar to that of Fig. 4. Any statement that was reduced to `true' in the previous step is
simply removed at this point, since it did not contribute to the list of type errors.

� Dependence tracking (see Section 4) is used to trace these human-readable error messages back to the
source.

In the next few sections, we will explore some of the more interesting aspects of these steps in more detail.

5.3 Type-environments

The ASF+SDF syntax de�nitions we have seen so far were used to describe the syntax of the CLaX language.
It is important to understand that exactly the same kind of syntax de�nitions are used to express the
auxiliary data structures used by the type checker. To illustrate this point, Fig. 10 shows module TcTenv
of the CLaX type checker speci�cation, which speci�es the syntax of type-environments. The rule

"[" {DECL ";"}* "]" -> TENV

de�nes a type-environment (sort TENV) to consist of a list of zero or more semicolon-separated declarations
between square brackets. Combined type environments (sort TENV-LIST), which capture the declarations
of multiple nested scopes, are simply de�ned as a list of TENVs.

Module TcTenv also de�nes an auxiliary function type-of that computes the type of an expression in
the context of a given combined type environment. The inclusion of this operation in TYPE indicates our
intention that it reduces expressions to an abstract value.

In order to be able to rewrite expressions to their abstract value (i.e., their type), sort TYPE is injected
into sort EXPR by the following grammar rule:

16

TYPE -> EXPR

This enables us to write equations that rewrite constants that occur in expressions to their abstract value
since the evaluation of constants does not rely on the type environment. Equations [1]|[3] of Fig. 10
over sort EXPR) rewrite all constants found in expressions to their abstract values. The variables IntConst,
RealConst, and BoolConst in these equations will only match terms that represent integer constants, real
constants, and boolean constants, respectively.

5.4 Processing expressions and statements

To give the reader an impression of the equations that evaluate expressions in the abstract domain, two
representative equations of module TcExpr are shown below:

[t14] INTEGER _Op INTEGER = INTEGER when _Op = _Aop

[t17] _SimpleType _Op _SimpleType = BOOLEAN when _Op = _Cop

In these equations, variable Op is of sort OP (operator), variable Aop is of sort AOP (arithmetic operator),
variable Cop is of sort COP (comparison operator), and variable SimpleType is of sort SIMPLE-TYPE.
Equation [t14] states that an expression consisting of an arithmetic operator applied to two subexpressions
of sort INTEGER evaluates to sort INTEGER. Equation [t14] states that an expression consisting of an
comparison operator applied to two subexpressions of the same simple type evaluates to type BOOLEAN.
Note that we use a variable of sort SIMPLE-TYPE here instead of a variable of sort TYPE because comparison
operations on non-simple types such as arrays are not allowed in CLaX.

Below we show two of the equations (taken from module Tc) that abstractly evaluate statements.

[R1] _SimpleType := _SimpleType = true

[R4] WRITE (_SimpleType) = true

Equation [R1] rewrites an assignment to true if its left-hand side and right-hand side are of the same
simple (i.e., non-array) type. Equation [R4] rewrites type-correct WRITE statements to true.

5.5 Generating error messages

The result of type checking a CLaX program is a list of abstract values representing incorrect constructs.
These constructs can be transformed into human-readable error messages in a modular manner, by applying
the function errors of module TcErrors to the output of the type checking function. This function is
distributed over all transformed statements that remain after type checking. Each equation for the function
errors handles one particular type-error.

As an example, we show the processing of LABEL := EXPR; here an error-message
cannot-assign-to-label is generated by the following equation:

[S03] errors(LABEL-TYPE := _Expr) = cannot-assign-to-label

5.6 An extended example

As an example, we will study the type checking of the following CLaX program in some detail:

PROGRAM test;

DECLARE

n : REAL;

i : INTEGER;

PROCEDURE square (n : INTEGER);

DECLARE

x : REAL;

step : LABEL;

BEGIN

x := 0; step := n; step := step * 0.01;

17

WHILE x < 1.0 DO

WRITE (x); WRITE (" ** 2 = "); WRITE (x * x); WRITE ("nn");

step: x := x + step

END ;

GOTO step ;

step:

END ;

BEGIN (* main program *)

i := 0;

WHILE i < 0 DO

WRITE("Enter number greater than 0");

READ(i);

END;

square(n)

END.

After changing constants to their abstract values, the main program will look as follows:

BEGIN

i := INTEGER;

WHILE i < INTEGER DO

WRITE("Enter number greater than 0");

READ(i);

END;

square (n)

END.

Note that integer constants are represented by their abstract values. However, since strings are not �rst
class TYPEs in CLaX (there are no operations de�ned over strings), they do not have an abstract value, and
hence are not a�ected in this step.

Next, the type environment for checking the statements is constructed. This is done by a recursive
function collect in module Tc, which collects the declarations in a set of nested scopes into a combined
type environment (sort TENV-LIST), as was discussed in Section 5.3. Function collect has two arguments:
a TENV-LIST of type environments constructed so far, and a BLOCK that needs to be processed. For instance,
before entering the type checking of the statements in procedure square, a snap-shot might look as follows:

collect([i : INTEGER;

square : PROC (INTEGER);

n : INTEGER;

x : REAL;

step : LABEL

],

DECLARE

BEGIN

x := INTEGER;

step := n;

step := step * REAL; � � �

END)

&

collect([n : REAL;

i : INTEGER;

square : PROC (INTEGER)

],

DECLARE

BEGIN

18

i := INTEGER; � � �

END

)

Next, some checks are performed on the local type environment and the consistency of GOTO statements
is checked before checking the individual statements in a BLOCK. For instance, before distributing the type
environment over the statements in procedure square, a label error

unique(step step)

is produced (for the fact that label step is de�ned twice). This subterm will later be transformed into a
human-readable error message indicating that more than one statement has label step associated with it.

unique(step step)

&

distribute([i : INTEGER;

square : PROC (INTEGER);

n : INTEGER;

x : REAL;

step : LABEL],

BEGIN x := INTEGER;

step := n;

step := step * REAL; � � �

END) � � �

After distribution of the type environment, evaluation of the expressions over the abstract domain of
types, and rewriting type-correct statements to true the situation looks as follows:

unique(step step)

true &

REAL := INTEGER &

LABEL-TYPE := INTEGER &

LABEL-TYPE := LABEL-TYPE * REAL &

� � �

Note that the assignment REAL := INTEGER was rewritten to true because CLaX allows assignments of
integer-typed expressions to real-typed variables.

Finally, human-readable error messages are generated by distributing function errors of module TcErrors
over the previous term. The resulting normal form is:

multiply-defined-label step ;

cannot-assign-to-label ;

cannot-assign-to-label ;

label-used-as-operand ;

in-call expected-arg INTEGER found-arg REAL

The translator has converted LABEL-TYPE := LABEL-TYPE � REAL into the error-message
cannot-assign-to-label. There are two occurrences of the same error-message. Note that the gener-
ated error messages do not contain information regarding the positions where the errors occurred. Section 4
discusses how such information can be obtained automatically using dynamic dependence tracking.

5.7 Lessons learned

We will now summarize a number of changes we made to the speci�cation in order to improve the accuracy
of the computed slices. In addition to the changes discussed below, we e�ectively \undid" the changes that
were made to the speci�cation in order get reasonable error locations using origin tracking, as was discussed
earlier in Section 2. As it turns out, almost all of the issues discussed below have the
avor of eliminating
\redundant determinism" or \over-speci�cation".

19

Over-speci�cation: unnecessarily speci�c matching

In a number of places, the type checker speci�cation of [12] was matching unnecessarily speci�c subterms,
which gave rise to spurious symbols in the slice. For example, the original speci�cation contained an
equation:

[NA1] nonemptyarray([_Id : LABEL]) = true

which expressed the fact that any declaration of the form Id : LABEL is not a declaration of an array with
0 elements. Since the `LABEL' subterm of the declaration is explicitly matched in the equation, `<?> : LABEL'
subterms inadvertently showed up in the slices reported by the tool. It turned out that using the following,
slightly more general equation instead:

[NA1] nonemptyarray([_LabelDecl]) = true

had the desired e�ect of omitting the entire label declaration from the slice.

Flattening of control-
ow structures

Control-
ow structures have little to do with the type checking of program constructs. Ignoring issues
related to the scopes of variables, the type checking of a statement does not depend on the position of that
statement in the program. This observation can be used to simplify the description of the type checker, by
\
attening" the control
ow constructs: All statements that occur inside an IF or WHILE construct can be
hoisted outside that construct without a�ecting the type checking process. This has the pleasant property
that the rules for type checking statements need only be concerned with straight-line code.

This approach to specifying the
attening process has a drawback. The dynamic dependence relations
create a dependency of each statement in a \
attened list" on the surrounding DECLARE--BEGIN--END or
BEGIN--END symbol(s).

We eliminated this spurious dependency by restating the
attening operation non-deterministically, as
is shown below:

[flat1] _StatSeq1*; WHILE _Expr DO _StatSeq2 END; _StatSeq3* =

_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3*

[flat2] _StatSeq1*; IF _Expr THEN _StatSeq2 END; _StatSeq3* =

_StatSeq1*; TEST _Expr END; _StatSeq2; _StatSeq3*

[flat3] _StatSeq1*;

IF _Expr THEN _StatSeq2 ELSE _StatSeq3 END; _StatSeq4* =

_StatSeq1*;

TEST _Expr END; _StatSeq2; _StatSeq3; _StatSeq4*

Each of these equations apply implicitly to any statement list, i.e., there is no explicit call to a
attening
function. Equation flat1 transforms a statement list containing a WHILE statement by hoisting its body and
transforming the WHILE into a TEST statement. Equations flat2 and flat3 perform similar transformations
on IF--THEN and IF--THEN--ELSE constructs. The generated TEST statement is a \generic" conditional
statement whose control predicate must be of a boolean type (the original speci�cation contained distinct,
similar checks for control predicates in IF and WHILE constructs). Using this approach, the speci�cation can
now assume all statement lists to be free of IF and WHILE constructs.

Elimination of correct program constructs

In the original version of module TcBooleans, the following equation was used for the simpli�cation of
conjunctions:

[Bool1] _Bool & true = _Bool

20

This equation served to eliminate the true constants that originated from type-correct program constructs.
Although this equation had the desired e�ect of removing the redundant true constants, it over-speci�ed
our intention in a subtle way. Instead of expressing the fact that a program is correct if it contains no
incorrect statements, it speci�es that the correctness of a list of statements depends on the correctness of
all the elements contained in the list. The locations produced by dependence tracking re
ected this: Since
the boolean simpli�cation took place before the distribution of the errors function of module TcErrors,
the locations of an error message e contained adjacent type correct constructs. The solution to this problem
was to do the elimination of type-correct constructs after distribution of the errors function. In the current
situation, true subterms remain until distribution of the errors function. Then, errors(true) is reduced
to \no-errors" by the following equation:

[E0] errors(true) = no-errors

Subsequently, the list-match equation below eliminates no-errors subterms, when the rest of the list is not
empty. This causes the list symbol to depend on correct statements, but this is no problem since we are
only interested in slices w.r.t. individual statements.

[M0] _MsgList ; no-errors ; _MsgList' = _MsgList ; _MsgList'

when _MsgList ; _MsgList' = _MsgList'' ; _Msg

Elimination of determinism: duplicate elements in lists

Overspeci�cation is undesirable because it may result in overly large slices. Unfortunately, over-speci�cation
can occur in subtle ways and very hard to control. To illustrate this point, the original version of the function
unique (module TcLabel) is shown below (in this speci�cation, & denotes boolean conjunction). Function
unique takes a LABEL-LIST, and returns true if the list contains no duplicate elements. Originally, unique
was de�ned in the following manner, using an auxiliary function no-dups for determining if a list contains
duplicate elements.

[xU1] unique(_LabelList) = no-dups(_LabelList)

[xN0] no-dups() = true

[xN1] no-dups(_Id) = true

[xN2] no-dups(_Id _Id') = true when_Id != _Id'

[xN3] no-dups(_Id _Id' _Label+) = no-dups(_Id _Id') &

no-dups(_Id _Label+) & no-dups(_Id' _Label+)

Hence, the speci�cation states that a list is unique if it is true that there are no duplicates5. Consider the
result of this approach: When a list is not unique, the locations of the duplicate elements in the resulting
term become dependent on those of the other elements in the list. This will lead to undesirably large error
locations.

Instead, we use the following de�nition of unique.

[U1] unique(_LabelList) = true when no-dups(_LabelList) != false

[N1] no-dups(_Id* _Id _Id*' _Id _Id*'') = false

In this variation of unique, a list is de�ned to be unique only if it is not the case that it has duplicate
elements. Thus, when a list is not unique, the function no-dups does not match. Consequently, the locations
obtained with dependence tracking for duplicate elements will not be \polluted" with other elements.

5Note that equation no-dups(Id Id) = false is deliberately not de�ned because we were already trying to avoid some

over-speci�cation in the original version. We are only interested in the case where unique is not true because we want to be

able to post-process the resulting irreducible term into a human-readable error message.

21

6 Conclusions

We have presented a slicing-based approach for determining locations of type errors. Our work assumes a
framework in which type checkers are speci�ed algebraically, and executed by way of term rewriting [26]. In
this model, a type check function rewrites a program's abstract syntax tree to a list of type errors. Dynamic
dependence tracking [17, 18] is used to associate a slice [37, 31] of the program with each error message.
Unlike previous approaches for automatic determination of error locations [12, 10, 11, 33, 32, 7, 6, 8], ours
does not rely on a speci�c speci�cation style, nor does it require additional speci�cation-level information
for tracking locations. The computed slices have an interesting semantic property: The slice Pe associated
with error message e is a projection of the original program P that, when type checked, is guaranteed to
produce the same type error e.

We have implemented this work in the context of the ASF+SDF Meta-environment [25, 34] for a sub-
stantial subset of Pascal. Experimentation with CLaX revealed that the computed slices provide highly
insightful information regarding the nature of type violations. We have observed that the amount of deter-
minism in a speci�cation is an important factor that determines the accuracy of the computed slices, and we
consider this to be a topic that requires further study. As another direction for future work, one would study
the applicability of slicing-based error location in the related area of type inference [9], in particular for
object-oriented languages [28] and for ML [27]. Providing accurate positional information for type inference
errors in ML is a di�cult problem. Several proposals that rely on adapting or extending the underlying
type system or inference algorithm have been presented (see, e.g., [5, 36]). In contrast, applying dependence
tracking to a rewriting-based implementation of an ML type inferencer might require no changes to the type
inference algorithm. Although a slice can be computed for each reported type inference error, it is unclear
how accurate such slices will be in practice.

References

[1] Alt, M., Assmann, U., and van Someren, H. Cosy compiler phase embedding with the cosy
compiler model. In Compiler Construction '94 (1994), P. A. Fritzson, Ed., vol. 786 of LNCS, Springer-
Verlag, pp. 278{293.

[2] Bergstra, J., Heering, J., and Klint, P., Eds. Algebraic Speci�cation. ACM Press Frontier
Series. The ACM Press in co-operation with Addison-Wesley, 1989.

[3] Bergstra, J., and Klop, J. Conditional rewrite rules: con
uence and termination. Journal of

Computer and System Sciences 32, 3 (1986), 323{362.

[4] Bergstra, J. A., Dinesh, T. B., Field, J., and Heering, J. Toward a complete transformational
toolkit for compilers. ACM Transactions on Programming Languages and Systems 19, 5 (September
1997), 639{684.

[5] Bernstein, K. L., and Stark, E. W. Debugging type errors (full version). Tech. rep., State
University of New York at Stony Brook, Computer Science Department, 1995.

[6] Bertot, Y. Occurrences in debugger speci�cations. In Proceedings of the ACM SIGPLAN'91 Confer-

ence on Programming Language Design and Implementation (1991), pp. 327{337. SIGPLAN Notices

26(6).

[7] Bertot, Y. Une Automatisation du Calcul des R�esidus en S�emantique Naturelle. PhD thesis, INRIA,
Sophia-Antipolis, 1991. In French.

[8] Bertot, Y. Origin functions in lambda-calculus and term rewriting systems. In Proceedings of the

17th Colloquium on Trees in Algebra and Programming (CAAP '92) (1992), J.-C. Raoult, Ed., vol. 581
of LNCS, Springer-Verlag.

[9] Cl�ement, D., Despeyroux, J., Despeyroux, T., and Kahn, G. A simple applicative language:
Mini-ml. In Proc. 1986 ACM Symposium on Lisp and Functional Programming (1986), pp. 13{27.

22

[10] Dinesh, T. B. Type checking revisited: Modular error handling. In Semantics of Speci�cation

Languages (1994), D. J. Andrews, J. F. Groote, and C. A. Middelburg, Eds., Workshops in Computing,
Springer-Verlag, pp. 216{231. Utrecht 1993.

[11] Dinesh, T. B. Typechecking with modular error handling. In Language Prototyping: An Algebraic

Speci�cation Approach, A. van Deursen, J. Heering, and P. Klint, Eds. World Scienti�c Publishing Co.,
1996, pp. 85{104.

[12] Dinesh, T. B., and Tip, F. Animators and error reporters for generated programming environments.
Report CS-R9253, Centrum voor Wiskunde en Informatica (CWI), 1992.

[13] Dinesh, T. B., and Tip, F. A case-study of a slicing-based approach for locating type errors. In
Proceedings of the 2nd International Workshop on the Theory and Practice of Algebraic Speci�ca-

tions (ASF+SDF'97) (Amsterdam, The Netherlands, September 1997), eWIC, electronic Workshops
in Computing, p. 36 pages.

[14] Dinesh, T. B., and Tip, F. A slicing-based approach for locating type errors. In Proceedings of the

USENIX Conference on Domain-Speci�c Languages (DSL'97) (Santa Barbara, CA, October 1997),
pp. 77{88.

[15] Field, J. A simple rewriting semantics for realistic imperative programs and its application to pro-
gram analysis. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-

Based Program Manipulation (1992), pp. 98{107. Published as Yale University Technical Report
YALEU/DCS/RR{909.

[16] Field, J., Ramalingam, G., and Tip, F. Parametric program slicing. In Conference Record of the

Twenty-Second ACM Symposium on Principles of Programming Languages (San Francisco, CA, 1995),
pp. 379{392.

[17] Field, J., and Tip, F. Dynamic dependence in term rewriting systems and its application to program
slicing. In Proceedings of the Sixth International Symposium on Programming Language Implementation

and Logic Programming (1994), M. Hermenegildo and J. Penjam, Eds., vol. 844, Springer-Verlag,
pp. 415{431.

[18] Field, J., and Tip, F. Dynamic dependence in term rewriting systems and its application to program
slicing. Tech. Rep. RC 21117, IBM T.J. Watson Research Center, February 1998. To appear in
Information and Software Technology.

[19] Flanagan, C., Flatt, M., Krishnamuthi, S., Weirich, S., and Felleisen, M. Catching bugs in
the web of program invariants. In Proceedings of the 1996 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI) (Philadelphia, PA, 1996), pp. 23{32.

[20] Fraer, R. Tracing the origins of veri�cation conditions. In Proceedings of AMAST'96 (Munich,
Germany, July 1996), vol. 1101, Springer-Verlag LNCS.

[21] Heering, J. Second-order term rewriting speci�cation of static semantics. In Language Prototyping:

An Algebraic Speci�cation Approach, A. van Deursen, J. Heering, and P. Klint, Eds. World Scienti�c
Publishing Co., 1996, pp. 295{306.

[22] Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. The syntax de�nition formalism
SDF | Reference manual. SIGPLAN Notices 24, 11 (1989), 43{75.

[23] Kamperman, J. Compilation of Term Rewriting Systems. PhD thesis, University of Amsterdam,
1996.

[24] Kamperman, J., and Walters, H. Minimal term rewriting systems. In Recent trends in data type

speci�cation : 11th workshop on speci�cation of abstract data types joint with the 8th COMPASS work-

shop: Oslo, Norway, 19-23.09.1995 : selected papers (1996), vol. 1130 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 274{290.

23

[25] Klint, P. A meta-environment for generating programming environments. ACM Transactions on

Software Engineering and Methodology 2, 2 (1993), 176{201.

[26] Klop, J. Term rewriting systems. In Handbook of Logic in Computer Science, Volume 2. Background:

Computational Structures, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Oxford University Press,
1992, pp. 1{116.

[27] Milner, R., Tofte, M., and Harper, R. The De�nition of Standard ML. The MIT Press,
Cambridge, MA, 1990.

[28] Palsberg, J., and Schwartzbach, M. Object-Oriented Type Systems. John Wiley & Sons, 1993.

[29] The Compare Consortium. Description of the cosy-prototype. Tech. rep., GMD, 1991. unpublished.

[30] Tip, F. Generic techniques for source-level debugging and dynamic program slicing. In Proceedings

of the Sixth International Joint Conference on Theory and Practice of Software Development (Aarhus,
Denmark, May 1995), P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, Eds., vol. 915 of LNCS,
Springer-Verlag, pp. 516{530.

[31] Tip, F. A survey of program slicing techniques. Journal of Programming Languages 3, 3 (1995),
121{189.

[32] van Deursen, A. Executable Language De�nitions|Case Studies and Origin Tracking Techniques.
PhD thesis, University of Amsterdam, 1994.

[33] van Deursen, A. Origin tracking in primitive recursive schemes. Report CS-R9401, Centrum voor
Wiskunde en Informatica (CWI), 1994.

[34] van Deursen, A., Heering, J., and Klint, P., Eds. Language Prototyping|An Algebraic Speci�-

cation Approach, vol. 5 of AMAST Series in Computing. World Scienti�c, 1996.

[35] van Deursen, A., Klint, P., and Tip, F. Origin tracking. Journal of Symbolic Computation 15

(1993), 523{545.

[36] Wand, M. Finding the source of type errors. In Conference Record of the Thirteenth ACM Symposium

on Principles of Programming Languages (St. Petersburg, FL, 1986), pp. 38{43.

[37] Weiser, M. Program slices: formal, psychological, and practical investigations of an automatic pro-

gram abstraction method. PhD thesis, University of Michigan, Ann Arbor, 1979.

[38] Weiser, M. Program slicing. IEEE Transactions on Software Engineering 10, 4 (1984), 352{357.

24

