MAGNETIC TAPE SORTING: OTHER

Check for
Updates

Sorting Nonredundant Files—Techniques Used in
the FACT Compiler’

John B. Glore

Minneapolis-Honeywell Regulator Company,t Wellesley Hills, Mass.

Some typical file structures, including some called *non-
redundant,” are examined, and the methods used in FACT to
sort such files are discussed.

The nonredundant file structure discussed in this paper
was designed for the Facr compiler jointly by Computer
Sciences Corporation and Minneapolis-Honeywell. Tech-
niques were also developed to sort such files. This work was
revised and extended to an integrated and workable sorting
system by several members of the Honeywell staff, includ-
ing the writer.

1. Files and File Structures

Let us consider certain concepts associated with conven-
tional computer files. Such files are collections of tems.
Tach item is a well-defined collection of fields; an item is
the smallest unit normally manipulated by a program’s
input-output system. We shall regard a field as an elemen-
tary unit of information. Thus, a fundamental relationship
between a file and its items, and between an item and its
fields is that of class inclusion. For this reason a file may
be called an hierarchical information structure. Such
structures contain information, explicitly or implicitly, at
several levels. For a simple file (e.g. a file containing but
one type of item) there are three information levels: (1) at
the highest (file) level there is usually label data plus file
boundary marks such as beginning-of-file and end-of-file
indicators; (2) at the item level there may be item delim-
iters (if item size is not implicit in the programs that read
or write the file); (3) at the lowest level are each item’s
fields.

While recognizing the hierarchical properties of the sim-
plest files we shall restrict here the meaning of hierarchical.
It will be applied to a different kind of file—one containing
more than one type of item and in which items of one kind
carry information common to one or more items of other
kinds.

Label-checking, end-of-file checking and other opera-
tions on the file itself are customarily handled at a different
level of logic than item processing. Also, manipulating an
item’s fields is quite different from obtaining and identify-
ing the items themselves. For example, sorting is concerned
with rearranging a file’s items, never with changing their

* Presented at an ACM Sort Symposium November 29, 30, 1962.

t EDP Division.

Volume 6 / Number 5 / May, 1963

internal arrangement—this is an editing function. For
these reasons we exclude the file and the field when count-
ing levels; by this criterion a simple file has but one level.!

1.1 Simple Files. A simple file named I'1 of items each
named ITEM and comprising fields called AF, BF, CIF
and DF, would be described to Fact as follows:

F1
*ITEM
AF
BF
CF
DF

The asterisk (*) preceding the item name is used to distin-
guish items from fields. Other information about fields,
such as length and mode, required by Facr, is omitted
here for clarity. To be consistent with Fact terminology
“group’” will be used hereafter in the same sense as ‘“item”’,
except that “group”” will sometimes also mean the file itself.
Because the file has but one instance, no asterisk precedes
its name.? Similarly, each field may have but one instance
in each group.? The asterisk indicates a group can occur an

1 An item may itself have a complex internal hierarchical infor-
mation structure. For example, a CoBoL record may be described
as containing nested sets of information at several levels. (A
CosoL record is equivalent to an item here.) These subsets are
called primary groups. The items themselves are called secondary
groups. Primary groups must ultimately contain fields. For in-
stance, a 6 X 10 X 4 array contained in an item would be handled
by Facr as a 3-level nested structure of primary groups, each
ultimate group containing a field. Each of the 240 elements would
be assessed by appropriate subscripting of the group names.

Because the types of problems for which Facr was designed
involve little or no sorting of arrays and because Fact handles
primary and secondary groups quite differently, the Fact sorts
were designed to ignore an item’s internal groupings. Logically,
however, the techniques discussed in this paper are applicable to
both the external and internal rearrangement of items.

2 When a program needs different versions of a file, as an up-
dating routine would read an input master file and write an output
master file, the two versions must be described to Facr by two
different file names.

3 In Facr, fields or sets of fields that occur with fixed frequency
(>1) within a type of item must be described as components of
primary groups; fields or sets of fields that can occur with variable
frequency must be described as ecomponents of one or more types
of secondary groups (items) subordinate to the original group
type. These rules must be applied repeatedly to the resulting
groupings until all multiple occurrences disappear.

Communications of the ACM 231

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366552.366574&domain=pdf&date_stamp=1963-05-01

indefinite number of times. Identation indicates class
inclusion. Thus the diagram represents any file named K1,
containing groups of one type called I'TEM, each of which
has the four fields AF, BIf, CF and DF. The order of these
groups 1s not relevant to the file’s structure.

Facor eonstruets a definite item format from the infor-
mation normally supplied in the diagram. Thus, every
group in a simple file has the same internal structure.
Facr requires separate descriptions of groups having
different structures, and assigns them ditferent type-codes.
To Fact, two groups have the same structure if and only
if : (1) both contain the same number of fields, and (2) every
field of one group has exactly one counterpart in the other
such that bath members of each pair have the same inten-
tion (meaning), and (3) the location of cvery ficld in one
group is the same as the loeation of its eounterpart in the
other.?

Other criteria are possible, of course, but these are con-
venient and fairly standard, and they serve to illustrate
basic principles as well ag any others.

1.2. Complex Single-Level Files. Any difference in group
structure requires definition of dilferent group-types. For
example, suppose a file named F2 contains some groups
with the above structure, others containing fields called
AT, ET, and FT, and still others containing the fields AF,
EF, G and HF. Three group-types must be deseribed, as
follows:

F2

*ITEM1
AT
BF
CF
DF

+ITEM2
AR
ER
FF

+ITEM3
AF
EF
GF
HEF

ITEML, ITEMZ2, and ITTEM3 are assumed to be the three
group-type names. Fach group-type’s field names must be

¢ A ynigue type eode is ercated for each group-type of the file.
"The appropriate code is inserted into a small (8-bit) common field
of every group issued. When the objeet program obtains a group
from an input file its type code is used to enter tables containing
information pertinent to itz hicrarchical position and interna!
strucbure.

* These definitions presuppose that a field can always be located
without ambiguity: (a) at a fixed distanee in bits from the group
base (first bit), or (b) at a possibly variable distance from the
group hase, by counting a fixed numbcr of fields from the group
base, or (e) by a combination of methods (a) and (b). Methods
(b) and (e} in turn require that the object pregram be able to
determine a variable field’s length with reference to a chargeter
count or by recognizing a delimiter. The eriteria are broad enough
so that two groups with different variable field lengths are con-
sidered to have the same structure if they satisfy the other defi-
nitions stated in the text.

232 Communicalions of the ACM

stated in full, even though AF is common to all the group-
types and EF is comumon to the last two. The equal inden-
tation of the three group-type namcs specifies to Fact
that there is no hicrarchical relationship among any groups
in the file. We may say that all have a common father, the
file, and hence all may be called brothers. The dilferent
group-types are brother group-types.

Unlike F1, ¥2 cannot be called simple, as it containg
three group-types. It remains a single-level file, however, as
all its groups (except the file itself) are brothers. The file
deseription implies no restriction on the order or relative
frequency of brother groups. In particular, it does not
speeify that all groups of I'TEMI1 precede all groups of
ITEM2, nor that all groups of ITEM2 precede all groups
of ITEM3. Because there is no implied connection among
brother groups, all groups of a single-level file may be
rearranged freely without distorting the file’s information
content, Logieally, a single-level file may contain any
definite number of group-types, provided the objcet
program can distinguish them unambiguously.

1.3. Simple Hierarchical Files. A different kind of file
strueture exists when information in groups of different
type has an implied connection. Suppose that each group
of F1, above, were broken into two parts, the first contain-
ing its AF and BI® fields, and the second its CF and DF
fields. Let the two group types be called PART1 and
PART?2 respectively. Procedures that used F1 would now
require groups of both these types. Further, they would
need a specific PART?2 for each PART1. We would nor-
mally regard each pair as an inclusive set containing a
PART1 and a PART2 as subsets on the same level
(“peers™). Alternatively, we could consider the PAIRT1 as
the more inclusive set containing the PARTZ as a subset.
LEqually well, the PARTZ could be considercd more inclu-
sive, and the PART]1 its subset. The last two structures
would be described to Facr as follows:

3 T4
»PART1 *PART2
AT CF
Br DF
*PART2 +*PARTI
CF AF
DF BF

As before, indentation represents inclusiveness. Both
structures are deemed hierarchicel because they depict
different levels of group. In such a file each nonlerminating
group (Le. PART1 of F3) is associated with one or more
lowest level groups (i.c. PART2 of F3). These are called
termanating groups. All groups in a single-level file arc ter-
minating; I'2 contains three types of terminating groups.
The fields of each nonterminating group are implicitly
associated with each and every terminating group belong-
ing to the containing nonterminating group. Thus, every
terminating group of an hierarchieal file, together with its
father, contains information equivalent to a single-level
file itern that states explicitly both the nonterminating and
the terminating group fields. These fields together comprise

Volume 6 / Number 3 / May, 1963

a terminating group’s single level item equivalent (abbre-
viated SLIF). There is one SLIE for each terminating
group in the file.

Tor the situation supposed above, neither F3 nor F4
appears to have an advantage over the “peer pair’ struc-
ture and all three seem inferior to the simple file structure
of I'l because they would entail extra housekeeping. If,
however, ¥1 were sorted into groupings of items with
identical AF-BE value, the following procedure would
transform F1 to ¥3: (1) for each grouping, issue a single
PART1 containing the grouping’s AF-BI'; (2) for every
group in this grouping, issue a PART 2 belonging to this
PART1; repeat step (2) for every grouping.

The resulting file, 13, would contain one PARTI1 for
every different AI-BF (i.e. AT and BI') value plus one
PART?2 for every F1 item. Neglecting possible waste in
packing fields into words, the new file would require less
space than the old—exactly the amount needed in I'1 to
store repeated instances ol identical AI-BL' values. In
thig sense an hierarchical file may be called nonredundant.
Similarly, if T'1 were sorted into groupings of identical
CI*-DF value, a nonredundant file of structure F4 could
be constructed. Whether F3 or F4 would be more compact
would depend entirely on the distribution of data in the
original file——that is, on whether there were more different
AF-BF values or more different CI'-DI" values.

So far we have assumed random access to all groups of a
file and have not stated how one can discern the conncetion
between a specific nonterminating group and its terminat-
ing groups. As keying would eliminate most or all space
saving, a positional relationship is probably implied even
for random stores. In serial-access storage media such as
TFacr’s magnetic tape files, each nonterminating group is
issued immediately before the string comprising its in-
cluded terminating groups. Tor this reason nonterminating
groups are commonly called headers and terminating
groups {raziers. "Their relative position is the only fact that
establishes which header is any trailer’s father. As the file
is read forward, the first header is stored in core. Its onc or
more trailers succeed it. These are read one at a time.
Because its header is stored, each trailer’s SLIIE is avail-
able when the trailer is read. These may be used to create
the equivalent single-level file, il desired. The end of each
string cxcept the last is marked by the header that begins
the next string. This header is stored, ete., until the end-of-
file signals the last string’s end.

Each header must precede its trailers for another reason:
each string’s length is variable, depending as it does on
change in header [ield value. A string may be quite long—
in extreme cases comprising all groups in the file. Thus,
only if it occurs before its trailers can we guarantee the
proper header’s availability to all of its trailers. For this
reason the file must be read forward, unless special
provision is made.®

¢ An hierarchical file can be made reversible (readable either
forward or backward) if an ender is issued at the end of cvery

Yolume 6 / Number 5 / May, 1963

Creating a serial hierarchical [ile may yield a somewhat
dilferent resull than the “grouping” operation diseussed
above. A header, and then a trailer, are issued from the first
gimple file item. The header information is also stored. The
next simple file item is obtained. Tf {(any of) its header
fields differ from those stored another header and a trailer
are issued and the new header information is stored.
Otherwise only a trailer is issued; the previously stored
header information is left unchanged.

This procedure creates an hierurchical file consisting of
a header followed by one or more trailers, followed by
another header, ete., until the original file ends, as before.
But the number of headers equals the number of changes
{+1) in header field value rather than the number of differ-
ent header field values.” The former will equal the later only
if the simple file was in order by header field values; other-
wise the numbcr of changes will usually exceed greatly the
number of different values.” Such results could be expected
it ¥'3 were created from Il sorted by CIF-DF or if F'4 were
created from I'l sorted by AF-BF. So hierarchical files
need not be nonredundant; they may be just as redundant
as single-level files in extreme cases. As a rule of thumb,
the more file structure and file order correspond, the more
nonredundant an hierarchicai file can be. This principle has
important implications for file designers. It also affcets the
design of FacT sort programs, in that the sorts must allow
for usually unpredictable changes in a file’s volume as it is
rearranged.

1.4. Hierarchical Files of More than Two Levels. Hier-
archieal files of morc levels than two can be created revers-
ibly from a simple file by rather simple exlension of the
preceding rules. In general, the number of levels can be
extended up to the number of fields in the equivalent
single-level file group. For example, consider the file I'5
diagrammed helow:

5
*A
AR
+3
BF
+C
CF
=)
DF

F5 contains four types of group at four levels. Their
assumed group names are A, B, C and D, respectively. Each
Il item feld has been assigned to onc of the four group-

string of trailers. Each ender must contain the same data as the
string’s header,

Programs that read reversible files forward must store headers
and ignore enders. Programs that read reversible files backward
must store enders and ignore headers. The presence of enders
doubles the amount of tape storage devoted to headers. Conse-
quently, a reversible file’s value should be weighed carefully
against ibs cost. Sometimes an equivalent single-level file would
require less tape space.

? To illustrate: the sequence 1,1,2,1,2,1, comprises four changes
in value but only two different valucs.

Communications of the ACM 233

types in I'5. In F5, each A “contains” one or more B’s;
each B “contains” one or more C’s; each C “contains”
one or more D’s, where “contains’”’ means “represents a logi-
cal set inclusive of.” Therefore each D participates in the
CF of the C containing it, in the BF of the B containing it,
and in the AF of the A containing it. These three fields,
plus the D’s DF, comprise its SLIE—all are essential.

Like I'3, F'5 has one type of terminating group or trailer,
i.e. D. But now each trailer has three headers, a C, a B
and an A. Let us call any group that ‘“contains’ another
its ancestor. A group has exactly one ancestor at every level
above it. A group’s immediate ancestor is its father. In F5,
every D’s father is a specific C; every D has three ancestors
(not counting the file itself) while every B has one ancestor.

The groups “contained in” a specific group are its
descendents. Let a group’s immediate descendents be
called its sons. A trailer may have no son. Every header
must have at least one son, and may have many sons. Sons
of the same father are termed brothers. All brothers are at
the same level in the file. (For file ¥2, above, and for certain
files to be introduced later, some brothers may be of differ-
ent group-type.)

The following rules are invoked to create an hierarchical
file and are used to determine a group’s ancestors as the
file is read: (1) every father must precede (i.e. be issued
before) its sons, and (2) brothers can occur in any order
within the string begun by their father, and (3) a string of
father and sons is ended when any ancestor of a son is
issued, or by the end of file.

A procedure to create I'5 from F1 will illustrate the
process. Assume that the first F1 item has been obtained.
Then:

(1) Issue an A, a B, a C, and then a D containing the current
ITEM’S AF, BF, CF, and DF fields respectively; store the
current AF, BF, and CF; to to (2).

(2) Obtain the next ITEM; go to (3).

(3) If the current ITEM’s AT differs from the stored AF, go to
(1); otherwise go to (4).

(4) If the current ITEM’s BT differs from the stored BF, issue
a B, a C, and then a D, containing respectively the current
item’s BF, CF, and DF; preserve the stored AF; store the
new BF and CF, erasing the previous stored values; go to
(2). If the current BF and stored BF are equal, however, go
to (5).

(5) If the current ITEM’s CF differs from the stored CF, issue
a C and then a D containing, respectively, the current item’s
CF and DF fields; preserve the stored AF and BF; store the
new CF, erasing its previous value; go to (2). If the current
and stored CFs are equal, however, go to (6).

(6) Issue a D containing the current item’s DF; to to (2).

Continue until the end of F1 is detected.

As a result of this procedure an initial A, B, C and D are
issued. Thereafter a new A is issued for each change’ in
AT, a new B for each change in BF or AF, a new C for each
change in CF or BF or AT, and a new D for every ITEM.
Extension of the procedure to 3-level, 5-level and higher-
level files is obvious.

When F5 is read® the fields of each A are put into an A
storage, erasing its previous contents. The fields of each B

234 Communications of the ACM

and of each C are similarly stored. Thus, when each termi-
nating (D) group is obtained a complete and correct SLIE
is available. If desired, each SLIE can be issued, recreating
1.

Figure 1 illustrates these transformations for a hypo-
thetical data set. Column 1 shows a series of I'5 groups;
column 2 depicts their SLIEs. Colume 3 may be thought
of as a series of F1 items; column 4 represents the I'5 file
produced from them.

Just as '3 and 4 are different hierarchical arrangements
of the group-types PART1 and PART2, so alternate
hierarchical arrangements of the group-types A, B, C, and
D are possible. For example, I'6 below could be created
from F1.

F6
*C
CF
*A
AT
*D
DF
*B
BF

Many three-level arrangements are also possible, if two
of the group-types are collapsed into one. The best design
is usually the most nonredundant for the file’s usual order.

1.5. Complex Hierarchical Files. Complex hierarchical
files can be created from complex single-level files according
to the rules stated above. For example, I'7, below can be
created from F2, above.

¥7
*A
AF
*B
BF
*C
CF

*H
HF

In 7 there is one type of group, A, at the highest level.
An A may contain either B’s or E’s or both as sons—in

8 Again, the file must be read forward unless reversible. Hier-
archical files of more than two levels must, if reversible, have an
ender corresponding to every header. These must be distinguish-
able by type. Each ender must contain the same information as
the corresponding header. They are issued in order opposite to the
corresponding headers. For instance, for F5, if a new C is to be
issued, an ender (C’) containing the last CF must be issued just
before the new C. If a new B is to be issued, a C’ and a B’ must
first be issued, etc. As before, programs that read reversible files
forward ignore all enders while programs reading them backward
must ignore all headers.

Volume 6 / Number 5 / May, 1963

any order and with any relative frequency—B and E are
brother group-types, as the indentation shows. Similarly,
I and G are brother group-types—an K may contain F’s
or Gi’s or both as sons. C is not a brother group-type of F
and G, although they are at the same level, since they are
sons of different fathers. It would be illegal to move a C
into the immediate neighborhood of an I or a G. I'7 has
three types of terminating group: D, I and H. Note that
D and H are at the same level but that If is at a higher
level. This is legitimate in Fact files. ach terminating
group-type and its ancestor group-types are said to com-
prise an hierarchy. F7 contains the following hierarchies:
A, B, C D; A E F;and A, IE, G, H. Note that A is
common to all three hierarchies and that E is common to
the last two. The hierarchies of other complex hierarchical
files may or may not have such common groups. If, how-
ever, a group-type is common to more than one hierarchy,
it must be at the same level in every hierarchy containing
it. (Levels are counted beginning with the most inclusive.)
Thus the structure:
F8
*A
AF
«B
BF
*C
CF
*A
AF

is illegal in a Facr file because A is at different levels in
two hierarchies. Also, a group-type may not be the son of
different fathers in different hierarchies. Within the limits
of these restrictions the group-types of each hierarchy can
be arranged independently of one another. Similarly, the
number of levels in each can be established independently.

The rules stated in Section 1.4. also govern the relative
positions of a complex hierarchical file’s groups, since
groups of brother group-types are brothers. By applica-
tion of these rules equivalent complex hierarchical files
can be formed from complex single-level files. In each such
transformation the hierarchical file must contain a differ-
ent hierarchy corresponding to each single-level file group-
type. For I'7 and F2, hierarchy A B,C,D corresponds to
ITEM1; hierarchy AE T corresponds to ITEMZ2, and
AE,G,H corresponds to ITEM3. A different type of SLIE
exists for each hierarchy. Iigure 5, columns 7 and 8 (first
part), illustrates SLIE construction for a hypothetical
file of structure I'7.

2. FACT Sorting Methods

Fact will generate, from suitable key specifications and
a file description, a sorting routine able to rearrange any
of the file types discussed above. Considerable flexibility is
permitted in key specification. The following rules most
affect the sorts’ design:

(1) A group may never be separated from its father except

by its brothers (as only their relative position identifies a group’s
father).

Volume 6 / Number 5 / May, 1963

T'5, a 4-level hierarchical file discussed in the text, consists of
the data shown in column 1. For clarity only group name and
field value are shown. Thus, ““A2”” means an A for which AF = 2.
Column 2 depicts the sort items constructed from F5 for a sort by
AF, BF, CF, DF. Bach item is equivalent to a SL1E. Column 3
depicts the sort items rearranged by the sort. Column 4 represents
the output file, returned to F5 form.

ey @) @) 4)
Input Raw Items Sorted Iems Oulput*
Al ' A1BICID1 Al
B1 A1B1C1D2 Bl
C2 A1B1C2D1 C1
D1 A1BI1C2D1 A1B1C2D3 D_l
A2 A1B2C2D1 D2
B2 A1B2C2D2 C2
C2 A2B2C2D1 21
D1 A2B2C2D1 A2B2C2D2 .D_3
D2 A2B2C2D2 B2
Al C2
B1 D1
C1 D2
D1 A1BIC1D1 A2
D2 A1B1C1D2 B2
C2 C2
D3 A1B1C2D3 _lﬂ
B2 D2

C2
D1 A1B2C2D1
D2 A1B2C2D2

* A dash between entries indicates that one or more redundant
groups are eliminated between two groups.

Fig. 1

(2) Brothers, regardless of group-type, may be rearranged
freely within the string begun by their father.

(3) Unless fields equivalent to type codes are specified as keys,
the order of brothers is a funetion of their key values only; auto-
matic segregation of brothers by type is not done.

(4) The relative positions of brothers having equal key values
is indeterminate; if important, enough keys must be specified to
break all ties.

(3) A sort’s input file and its output file must have the same
structure.®

The sorting methods applied to each type of file are now
discussed.

2.1. Sorting Simple Files. No particular problems occur
here, as each group is a complete SLIE, and all groups are
to be rearranged freely within the file as a whole on the
basis of the key or keys specified. Any one or more of the
group-type’s fields may be specified as a key of any level of
significance.

A preliminary editing phase called the pre-edit creates
a file of sort items from the input file’s groups. The label and
data block formats differ somewhat. A sort item is created
from each input file group; their formats are similar, ex-

9 The Facr sorts provide optional “last pass own coding”
called postsort procedures. Via such a procedure the user can access
each SLIE of the output file before it is filed. If he wishes the
user can inhibit writing of the sort output file and call for con-
struetion of a differently structured file provided this is derivable
from the SLIE.

Communications of the ACM 235

cept for key arrangement. This procedure packs the group’s
key fields, from major to minor, into consecutive-item bit
positions starting with the group base, and puts the data
originally located in this “key area’ into the ‘“holes” from
which the keys were drawn. If necessary it may also trans-
late key values to assure proper sorting sequence.”® Be-
cause the key and nonkey positions are exchanged the
item’s overall size remains unchanged.”! Key arrangement
allows the sorting phases to use standardized comparison
coding; it thus simplifies greatly their generation. Also, if
key fields are small, packing may permit decisions to be
made in fewer comparisons than would be possible with un-
packed keys. .

The sort item file comprises one or more reels, depending
on total input volume; the input may be drawn from a file
of one or more reels. For a simple file structure the input
and sort item files usually have about the same physical
volume, as each sort item is about the same size as an input
group. Differences in tape block size may affect physical
volume, however.

Each reel of the sort item file is sorted separately by a
slightly modified Honeywell 800 ArGus sort routine. This
consists of two phases: a presort that builds strings of
ordered sort items on 2-5 work tapes, and a cascade merge-
sort that progressively reduces the number of strings.

If there is more than one reel of sorted items a collate
phase is entered. This merges the separately sorted reels of
sort items into a single file. If there is but one reel of sorted
items the collate phase is bypassed.

Finally, a postedit phase returns each sort item to
group form. The main task here is to reverse the key ar-
rangement done in the pre-edit; a Facr file results.

2.2. Sorting Complex Single-Level Files. The group-
types of a complex file have different internal structures;
also, Facr lets the user specify a different sequence of
keys for each group-type. Consequently the pre-edit must
construct a different type of sort item for each type of
group. Different pre-edit and postedit key arrangement
routines are in general required for each item type. Other-
wise the sort phases are the same as for simple files.

No attempt is made to segregate items by type during
sorting. Thus presort mergesort and collate phases ar-
range the items of all types strictly according to the rela-
tive value of their packed keys. In general the user must
insure the congruence of the packed keys of the different
item types. He must also insure that the comparisons make
sense.!?

10 For example, in Honeywell 800 Facr, signed decimal fields
are packed as a leading sign and a string of 4-bit digits. So that
such fields will always sort in true algebraic sequence, the key
arrangement generates the bit complement of each negative signed
decimal field.

11 Two minor restrictions follow from the one-for-one exchange
procedure: (a) no field may be used as a key more than once per
item, and (b) no variable-length field may be used as a key.

12 For example, if a two-digit field is specified as the major key
for one group-type, and a three-digit field for another group-
type, the two-digit field will be compared against the high-order

236 Communications of the ACM

2.3. Sorting Single-Hierarchy Files. Tile 5 is typical
of such structures. Since a sort may not separate a group
from its ancestors, keys may not be specified independently
for the group-types of an hierarchy. Instead, all keys spec-
ified comprise a single sequence that applies to the hier-
archy as a whole. 0, 1, or more fields of each group-type
may be specified as keys. The major key may be drawn
freely from any group-type in the hierarchy. Then the next
most significant key specified (if any) may belong to the
same group-type or to a different group-type, as the user
wishes!, etc. Hence a file may be sorted into an order
different from its most nonredundant order if desired. The
sorting methods vary somewhat depending on how keys
were selected.

2.3.1. When Keys are Drawn from Every Group-Type.
This is the simplest case. If every group-type in the hier-
archy contains at least one key field, the pre-edit constructs
a sort item from each SLIE. In this way it guarantees that
the sorting phases will not separate father and son, be-
cause every SLIE includes a terminating group and a
copy of all its ancestors. The fields of the SLIE’s most in-
clusive group (i.e. A of F5) are put at the top of the item.
It’s son’s fields (i.e. BF of B of F5) are put just below them,
ete., so that the SLIE’S terminating group fields are put
at the sort item’s end. The sort item as a whole then under-
goes key arrangement as discussed above.

Presort, mergesort, and (if necessary) collate phases take
place as described above. It should be noted that sort item
construction usually swells the file’s physical volume by an
amount often hard to predict.

In the postedit each sort item undergoes key rearrange-
ment, after which it effectively comprises a SLIE. Using
the rules stated in Section 1.4. an hierarchical FACT file
is created from these SLIEs. Its structure is the same as
the input file’s.?

The relative physical volumes of input and output file
depend on which is more redundant. This may be hard to
predict. Thus, provision is made independently for multi-
ple input reels and multiple output reels. The output file
is almost always more compact than the file of sort items.
Figure 1 traces item construction, item rearrangement,
and item decomposition for a possible F5, if AF, B, CT,
and DT are stated as keys in that order.

2.3.2. When Keys are Missing From Intermediate
Levels. Omitting all fields of one or more intermediate
group-types from the list of keys specified affects the pro-
cedure described in Section 2.3.1 only slightly, provided
that at least one key field is drawn from the terminating
group-type and at least one key field is drawn from the
most inclusive group-type. As before, an item is con-

two digits of the three-digit field, and any lower-order keys
specified for the group-types will be mismatched when compared.
Again, a field called APPLES of one group may be compared as
requested against a field called ORANGES of another; their
comparison is mechanieally correct, but the result is probably
meaningless.

Volume 6 / Number 5 / May, 1963

When F5 is sorted by AF, DF only, raw sort items are con-
structed from the same data as those of Figure 1. Thus, columns
1 and 2 are the same for these figures. Column 3 and column 4
show the different arrangement of items and consequently differ-
ent output file. Note thutl it contains more groups than the first
sort’s output.

)])] @*)
Input Raw Items Sorted Items Output*
Al A1BICID1 Al
Bl A1B1C2D1 Bl
Cc2 A1B2C2D1 C1
D1 A1BIC2D1 Al1B1C1D2 Rl
A2 A1B2C2D2 C2
B2 AIBIC2D3 DI
C2 A2B2C2D1 B2
D1 A2B2C2D1 A2B2C2D2 C2
D2 A2B2C2D2]_3_1
Al Bl
Bl C1
C1 _D_Z
D1 Al1Bi1CID1 B2
D2 AIBI1C1D2 C2
C2 .22
D3 A1B1C2D3 B1
B2 C2
C2 D3
D1 A1B2C2D1 A2
D2 A1B2C2D2 B2
C2
.Rl
D2

* A dash between entries indicates that one or more redundant
groups are eliminated between two groups.
** Ties among items have been resolved arbitrarily.

Fig. 2

structed from each SLIE. The key arrangement differs,
but only because a different series of key fields was speci-
fied. Figure 2 traces the pertinent operations if I'5 is sorted
on AT, DF only.

2.3.3. When Keys are Missing From the Lowest Level(s).
A fairly radical change in sort-item construetion takes
place when the lowest level key-containing group type is
not terminating. In this case an item is issued, not for each
SLIE, but for each lowest level key-containing group. The
item contains the fields of this group and its ancestors. To
it are attached, as trailers, the one or more groups belong-
ing to its lowest level member. If 5 were sorted on the
fields of A, B, and C, an item per C would be created. Each
such item would have one or more D trailers. See IFigure 3.
Key arrangement follows the usual rules; the trailers are
ignored by this process.

Since any such item may have an indefinitely long string
of trailers it must be broken into subsections of convenient
length for the sorting phases. After key arrangement the
first subsection is prepared as follows: (1) a serial number is
inserted after the last word of packed key and before the
nonkey portion (if any) of the item; (2) as many trailers
as possible of the item are put after its nonkey portion,

Volume 6 / Number 5 / May, 1963

When F5 is sorted by AF, BF, CF, each sort item contains
only A, B and C groups; the D’s are attached as trailers to these
items. The original order of a sort item’s trailers is preserved
through the sort. Column 1 shows the same data distribution as
the previous two figures. Column 2 depiets the items. As would
be expected, there are fewer items than in the previous figures.
Column 3 depicts these rearranged by the sort. Column 4 repre-
sents the final output, of form F5.

0] @ @ @
Input Raw Items Soried Ttems Ouiput*

Al A1B1C1 A1l
B1 D1 Bl
C2 Al1B1C2 D2 C1
D1 D1 Al1B1C2 D1
A2 D3 .112
B2 A1BI1C2 C2
C2 A2B2C2 D1 ._]E
D1 D1 A1B2C2 2_1
D2 D2 D1 B2
Al D2 C2
B1 A2B2C2 D1
C1 AlIBIC1 D1 D2
D1 D1 D2 A2
D2 D2 B2
C2 Al1BI1C2 c2
D3 D3 D1
B2 D2
C2 Al1B2C2

D1 D1

D2 D2

* A dash between entries indicates that one or more redundant
groups are eliminated between two groups.
** Ties among items have been resolved arbitrarily.

Fig. 3

provided the convenient length is not exceeded; (3) an end
of item mark is laid down.

If all trailers fit into the first subsection, the item’s con-
struction is finished. Otherwise, one or more subsequent
subsections are issued, prepared as follows: (1) the packed
key of the first subsection is laid down, followed immedi-
ately by the augmented serial number; (2) as many trailers
as possible or necessary are laid down; (3) an end of item
mark is laid down.

Presort, mergesort, and collate (if needed) phases are
executed as before. To these sorting phases each item sub-
section is a distinet sort item. Since all subsections of the
same item have equal key, and since the serial numbers
increase monotonically for all subsections of all items, the
order of an item’s subsections is preserved by the sort.
(The serial numbers correctly break ties among an item’s
subsections.)

The postedit reverses the processes of item construction
and creates a FFacr file from each item and its trailers. It
should be noted that these processes effectively preserve
the relative order of each item’s trailers.

2.3.4. When Keys are Missing From the Highest Level(s).
Unless a key is specified for the file’s most inclusive group
(e.g. A of I5) all groups above the highest level key-con-
taining group are treated very specially. Such groups are

Communications of the ACM 237

When F5 is sorted by DF, CF, BF, all A’s are treated as higher-
level groups and divide the file into batches. The order of batches
is preserved by the sort. Rearrangement is done only within each
batch. Each item is equivalent to a SLIE, except that higher-
level groups are excluded. Column 1 shows the same input file
as the previous figures. Column 2 depicts the items before sorting,
and column 3 the items after sorting. The higher-level groups are
listed here for clarity; during actual sorting they are temporarily
removed from the file. Column 4 shows the final output, in F5
form.

{1 @ 3) 4
Input Raw ltems Sorted Items Outpui*
Al Al Al Al
B1 B1C2D1 Bl
C2 C2
D1 B1C2D1 D1
A2 A2 A2 A2
B2 B2C2D1 B2
C2 B2C2D2 C2
DI B2C2D1 D1
D2 B2C2D2 D2
Al Al Al Al
B1 B1C1D1 B1
C1 B2C2D1 C1
D1 B1C1D1 B1C1D2 D1
D2 Bi1CiD2 B2C2D2 B2
C2 B1C2D3 C2
D3 B1C2D3 D1
B2 B1
C2 C1
D1 B2C2D1 D2
D2 B2C2D2 B2
C2
D2
B1
C2
D3

* A dash between entries indicates that one or more redundant
groups are eliminated between two groups.

Fig. 4

called higher-level groups. They are never included in sort
items. Instead, they divide the file into baiches. The con-
tents of each batch is arranged separately and the order of
batches is preserved. When a file contains two or more
levels of higher level groups two or more such groups can
oceur in a sequence between groups from which keys will
be drawn. For example, if A and B held no keys but C and
D did, each batch would begin with a sequence A, B or
else a single group, B. The relative position of the groups
in a sequence must not be changed by the sort. These
problems are handled as follows:

(1) The pre-edit assigns each batch a monotonically in-
creasing batch number.

(2) Each higher-level group is marked with the current
batch number; the higher level groups are copied to a work
tape in the order read to get them out of the sort’s way;
this tape is called the higher level group tape.

(3) Sort items are constructed from the other groups in
accordance with one of the methods discussed above, ex-
cept that no item contains higher-level group information;

238 Communications of the ACM

also, the appropriate batch number becomes the high order
portion of each item’s key.

(4) At the pre-edit’s end a higher-level group file and a
sort item file have been created. Presort, mergesort, and
collate phases handle the latter as usual. Because the ma-
jor key of all items was their batch number, batch order is
preserved.

(5) During the postedit the higher-level group file and
the rearranged file of sort items are collated and the items
rearranged. The expected output file results.

Figure 4 illustrates these processes for I'5.

24. Sorting Complex Hierarchical Files. No new
principles are required to sort complex hierarchical files.
With a few extensions and restrictions those previously
stated apply.

First, a separate type of sort item is normally con-
structed for each file hierarchy.” For file I'7, separate types
of item are made from the three hierarchies A,B,C,D; A E,
F; and AE,G,H.

Second, a separate key list must be specified for each
type of item. Each key list must be drawn from fields of
the group-types in the hierarchy from which the corre-
sponding items will be made. If a group-type is common to
more than one hierarchy it may be a key source for all
items, or for none, as the user wishes. If a common source,
the same field(s) may or may not be drawn from it for the
different items. If a common field is stated, it may or may
not have the same relative significance in the key lists of
the different items. These possibilities are restricted some-
what, below.

The pre-edit code requires that a group-type be classi-
fied consistently for all item types as either (1) a higher-
level group, (2) a sort item member or (3) a sort
item trailer. Thus, if A contains a key for one item type it
must contain a key for all. Similarly, E must be a sort item
member for both of the last two item types or for neither.

Again, the highest-level key-containing groups for all
item types must be at the same level in the file. In I'7, if
no A, B, or E keys were stated, but a key of C were stated,
keys of I and G would also need to be stated. This rule is
unnecessarily restrictive in certain cases, but relatively
harmless; its use simplifies analysis.

The pre-edit for a complex hierarchical file sort depends
as usual on obtaining a SLIE per item issued. (As above, if
certain ancestors are higher-level groups they are omitted
from the items constructed ; similarly, items having trailers
omit these from item construction.) As the pre-edit obtains
each group from the input file it stores the group. The
group’s type-code is used to enter a table that tells whether
an item is to be issued (or continued, if the group is an item

13 But in applying this rule, branching below the level of the
lowest-level key containing group along any path is ignored.
Consider these examples for different sorts of file F7: (a) if AF
is the sole key, only one type of item is made; (b) if AF, BF, and
EF are the keys, two types are needed, corresponding respectively
to the first hierarchy and to the last two hierarchies as a group;
(c¢) if all fields are keys, three types are needed.

Volume 6 / Number 5 / May, 1963

F7 has the structure:
F7
*A
AF
*B
BF
*C
CF
*D)
DF
*«1
EF
*F
FF
*G
GF
«H
HF
and the initial distribution of File #1 shown in column 1. This file

n @)
Sort No. 1

3)* (C)]
Sort No. 2

(O

undergoes four successive sorts, as follows:

(a) Sort #1 reads File %1 and creates File #2 (column 3). AF
is the sole key. A single type of item, consisting of A groups, is
created. All other group-types form trailers. Column 2 shows item
formation and rearrangement.

(b) Sort #2 reads File %2 and creates File #3 (column 5). BF,
AF; and EF, AF are the keys of the first and second item types
formed. Type 1 items contain A and B fields; they have C and D
trailers. Type 2 items contain A and E fields; they have F, G, and
H trailers. Column 4 shows the items.

(c) Sort %3 reads File %3 and creates File #4 (column 7). BF,
CF; EF, FF; and EF, GF, HF are the respective key lists of the
three item types former. Type 1 items contain B and C groups;
they have D trailers. Type 2 items contain E and F groups; they
have no trailers. Type 3 items contain E, G, and H groups; they
have no trailers. The A groups are higher-level groups and divide

Fjle File File
N faw Serted Y Rewltems Serted Ny
A2 A2 Al Al A2B1 A2
B2 B2 E4 E4 AlE4 Cl1 Bl
c2 2 a1 a1 a1 D2 C1
D2 D2 H2 H2 H2 D2
DI D1 H1 H1 H1 A2E1 E1l
D3 D3 A2 A2 F2 F2
c1 C1 B2 B2 A2B2 F1 F1
DI D1 C2 c2 c2 G3 G3
D4 D4 D2 D2 D2 HI M1
Bl Bl D1 D1 D1 H2 H2
Ct C1 D3 D3 D3 Gl Gl
D2 D2 C1 C1 C1 H2 H2
El Bl D1 D1 D1 HI M1
F2 F2 D4 D4 D4 F3 F3
FI F1 Bl Bl A2B1 Bl
G3 G3 C1 Ct Cl A2B1 C1
HI HI1 D2 D2 D2 c1 D1
H2 H2 E1 El A2EI DI D4
Gl Gl F2 F2 F2 Di D2
H2 H2 F1 F1 Fl D2 D3
H1 Hl G3 G3 G3 D3 B2
F3 F3 Hi HI H1 c2
Al Al H2 H2 H2 A2B2 D2
F4 B4 G1 Gl G1 c2 D1
Gl Gl H2 H2 H2 D2 D3
H2 H2 H1 H1 H1 DI Ci
HI H1 F3 F3 F3 D3 D1
A2 A2 A2 - Cl D4
Bl Bl B1 Bl A2BI DI Al
1 C1 C1 C1 D4 E4
DI DI D1 D1 D1 Gl
Di D4 D4 D4 D4 AlE4 H2
D2 D2 D2 D2 D2 Gl H1
D3 D3 D3 D3 D3 H2
H1

®) " ® Ok

Sort No. 3 File Sort No. 4 File

i]Raw Items IZ Sorted No. Raw Items Sorted Iiems N-O'
G G ITtems 4 3
A2 A2 A2 AIE4GIHI Al
EIGIHl Ei1 E4

BIC1 Gl A1E4GIH2 Gl
D2 EIGIH2 H1 A2EIGIHI1 H1

H2 A2EIGIH2 A2BICIDI H2

ELF2 BIC!I Bl A2
EIF1 D2 1 A2EIGIHI BIL
D2 A2BICID2 C1

EIG3HI BICI DI A2BICID1 A2BICIDZ D1
E1G3H2 DI D4 A2BICID4 El
D4 D2 A2BICID2 A2BICID2 Gl

E1G1H2 D2 D3 A2BICID3 H1
EI1GIH1 D3 El A2EIG3H1I Bl
E1F3 F1 A2EIFI C1
E1F1 F2 A2EIF? A2BICID3 D2

BIC1 G3 D2
DI EIF2 Hl A2EI1G3H1 A2BICID4 EI

D4 H2 A2E1G3H2 G3

D2 EIG3HI F3 A2EIF3 A2E1FI H1
D3 B2 B1
E1G3H2 CI A2EIGIHZ CI

B2C2 D1 A2B2C1D1 D3
D2 EIF3 D4 A2B2C1D4 A2EIG3H2 D4

D1 c2 El

D3 B2C1 D2 A2B2C2D2 A2EIF2 F1
B2C1 DI D1 A2B202D1 G1
D1 D4 D3 A2B202D3 A2E1F3 H2

D4 Al G3

Al B2C2 Ed A2B2CID1 H2
D2 Gl F2

Dl Hl AIE4G1H! A2B2CID4 F3

B4G1H2 D3 H2 AlE4GIH2 B2
FAGIH1 Al A2B2C2D1 Cl
FAG1H1 D1

A2B202D2 D4

B4G1H2 Ccz

A2B2C2D3 D1

D2

D3

* A dash between entries indicates that one or more redundant groups are eliminated between two groups. The relative position of

sorted items of equal key has been established arbitrarily.

Volume 6 / Number 5 / May, 1963

Fig. 5

Communications of the ACM

239

the file into batches. Sort item construction and arrangement is
shown in column 6,

(d) Sort %4 reads File %4 and creates File #5 (column 9). AF,
BF, CF, DF; AF, EF, FF; and AF, EF, HF are the respective key
lists of the three item types formed. Type 1 items contain A, B, C,
and D groups. Type 2 items A, E, and F groups, and type 3 items
A, E, G, and H groups. There are no trailers.

trailer); if not, the next group is obtained and stored;
when an item is to be issued the table specifies its type and
the location of the key arrangement routine to be used.
Thus, items of different structure are created. The pre-edit

DISK SORTING

puts them into a single file. If necessary, it also creates a
higher-level group file.

After presort, mergesort, and collate phases, the post-
edit reverses the pre-edit’s operations and recreates the
complex hierarchical file. If indicated the sort item file and
the higher-level group file are collated. As each sort item is
obtained its item type code, created in the pre-edit, is used
to select the proper subroutine to rearrange it.

Figure 5 shows the changes effected when F7 is sorted
successively according to four different sets of key specifica-
tions.

Sorting with Large Volume, Random Access,
Drum Storage’

Joel Falkin and Sal Savastano, Jr.
Teleregister Corporation, Stamford, Conn.

An approach to sorting records is described using random
access drum memory. The Sort program described is designed
to be a generalized, self-generating sort, applicable to a
variety of record statements. This description is divided into
three parts. The first part presents the operating environment;
the second defines the general solution; the third part describes
the internal sort-merge technique.

1. Operating Environment

The Teleregister Telefile data processor includes drum
storage whose capacity is far in excess of the requirements
for sorting. This storage is randomly addressable and
includes an automatic program interrupt feature which
allows data transfers to occur simultaneously with process-
ing. This feature is available for all peripheral data trans-
fers, including tape and automatic typewriter functions.
The peripheral transfer, once initiated, is autonomously
governed by the slower peripheral device. The main
program processing is interrupted only for the relatively
short time required by a peripheral device to access one
memory position.

The Telefile data processor provides 16,000 positions
in memory, each position storing one binary coded decimal
character. A floating accumulator arrangement allows
the accumulator to contain any field in memory from 1
to 100 characters in length. All indexing is accomplished
programmatically. Input and output tape blocking is
fixed at 300 characters per block. For this reason, per-

* Presented at an ACM Sort Symposium, November 29, 30, 1962.

240 Communications of the ACM

missible record lengths are restricted to integral sub-
multiples of 300.

2. General Description of Solution (Fig. 1)

The string length in records (N) is given by the formula
N = 13000/(25 + M) where: 13000 is the number of
available core memory positions for storing source records
and the code required to sequence them; M specifies the
record length in characters. The constant 25 allows for 3
sequencing instructions at 8 characters per instruction plus
a safety factor of 1. The maximum order of the merge is
given by the formula b, = 12000/(30 + 2Y) where: 12000
is the number of available core memory positions for stor-
ing the merge bin and the merge instructions, and Y is the
key length in characters. The constant 30 includes the
following: three merge instructions at 8 characters per
instruction, and 6 characters for a drum address. The
value by is the only limiting facter in ealculating the num-
ber of sequenced strings allowed per program pass; i.e., the
capacity per program pass. Note that by is a function of the
sorting criteria ¥, not the record length M. A 300-way
merge can occur at ¥ = 5.

3. Detailed Description of Program Technique (Fig. 5)

The general program flow is illustrated in the Block
Diagram. The Sort program is designed to function as
part of a library of utility routines controlled by an execu-
tive system called the Locator. One of the functions of the
Locator is to search and transfer control to the programs
requested by an operator. This request is made by

Volume 6 / Number 5 / May, 1963

