
MAGNETIC TAPE SORTING: OTHER

Sorting Nonredundant Files--Techniques Used in
the FACT Compiler*

John B. G l o r e
Minneapolis-Honeywell Regulator Company,~ Wellesley Hills, Mass.

Some typical file structures, including some called "non-
redundant," are examined, and the methods used in FACT to
sort such files are discussed.

The n o n r e d u n d a n t file s t ruc ture discussed in this paper
was designed for the FACT compiler jo in t ly by Compu te r
Sciences Corpora t ion and Minneapol is -Honeywel l . Tech-
niques were also developed to sort such files. This work was
revised and extended to an in tegra ted and workable sort ing
system by several members of the Honeywel l staff, includ-
ing the writer.

l . F i l e s a n d F i l e S t r u c t u r e s

Let us consider certain concepts associated with conven-
t ional computer files. Such files are collections of items.
Each i tem is a well-defined collection of fields; an i tem is
the smallest un i t normal ly man ipu la t ed by a program's
i n p u t - o u t p u t system. We shall regard a field as an elemen-
t a ry un i t of informat ion. Thus , a f undamen ta l relat ionship
between a file and its items, and be tween an i t em and its
fields is t ha t of class it~clusion. For this reason a file ma y
be called an hierarchical in fo rmat ion s t ructure . Such
s t ructures conta in informat ion, explicitly or implici t ly, a t
several levels. For a simple file (e.g. a file con ta in ing b u t
one type of i tem) there are three in format ion levels: (1) a t
the highest (file) level there is usual ly label da ta plus file
bounda ry marks such as beginning-of-file and end-of-file
indicators; (2) a t the i tem level there m a y be i tem delim-
iters (if i tem size is no t implici t in the programs tha t read
or write the file); (3) a t the lowest level are each i tem's

fields.
While recognizing the hierarchical propert ies of the sim-

plest files we shall restr ict here the mean ing of hierarchical.
I t will be applied to a different k ind of f i le- -one con ta in ing
more t h a n one type of i t em and in which i tems of one kind
carry in format ion common to one or more i tems of other
kinds.

Label-checking, end-of-file checking and other opera-
t ions on the file itself are cus tomar i ly handled at a different
level of logic t h a n i tem processing. Also, m a n i p u l a t i n g an
i tem's fields is qui te different f rom ob ta in ing and ident i fy-
ing the i tems themselves. For example, sort ing is concerned
with rear ranging a file's i tems, never with changing their

* Presented at an ACM Sort Symposium November 29, 30, 1962.
j' EDP Division.

in te rna l a r r a n g e m e n t - - t h i s is an edi t ing funct ion. For
these reasons we exclude the file and the field when count -
ing levels; by this cr i ter ion a simple file has bu t one level. I

1.1 Simple Files. A simple file na me d F1 of i tems each
named I T E M and compris ing fields called AF, BF, C F
and DF, would be described to FACT as follows:

F1
. ITEM

AF
BF
CF
DF

The asterisk (*) preceding the i t em name is used to dis t in-
guish i tems from fields. Other in fo rmat ion abou t fields,
such as length and mode, required by FACT, is omi t ted
here for clarity. To be consis tent with FACT terminology
"group" will be used hereafter in the same sense as " i t em" ,
except t ha t "g roup" will sometimes also mean the file itself.
Because the file has bu t one instance, no asterisk precedes
its n a m e ? Similarly, each field ma y have bu t one ins tance
in each group. ~ The asterisk indicates a group can occur an

1 An item may itself have a complex internal hierarchical infor-
mation structure. For example, a COBOL record may be described
as containing nested sets of information at several levels. (A
COBOL record is equivalent to an item here.) These subsets are
called primary groups. The items themselves are called secondary
groups. Primary groups must ultimately contain fields. For in-
stance, a 6 X 10 X 4 array contained in an item would be handled
by FACT aS a 3-level nested structure of primary groups, each
ultimate group containing a field. Each of the 240 elements would
be assessed by appropriate subscripting of the group names.

Because the types of problems for which FACT was designed
involve little or no sorting of arrays and because FACT handles
primary and secondary groups quite differently, the FACT sorts
were designed to ignore an item's internal groupings. Logically,
however, the techniques discussed in this paper are applicable to
both the external and internal rearrangement of items.

When a program needs different versions of a file, as an up-
dating routine would read an input master file and write an output
master file, the two versions must be described to FACT by two
different file names.

3 In FACT, fields or sets of fields that occur with fixed frequency
(>1) within a type of item must be described as components of
primary groups ; fields or sets of fields that can occur with variable
frequency must be described as components of one or more types
of secondary groups (items) subordinate to the original group
type. These rules must be applied repeatedly to the resulting
groupings until all multiple occurrences disappear.

Volume 6 / Number 5 / May, 1963 C o m m u n i c a t i o n s of the ACM 231

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366552.366574&domain=pdf&date_stamp=1963-05-01

indefinite number of times. Identation indicates class
inclusion. Thus the diagram represents any file named F1,
containing groups of one type called ITEM, each of which
has the four fields AF, BF, CF and DF. The order of these
groups is not relevant to the file's structure.

FACT constructs a definite item format from the infor-
mation normally supplied in the diagram. Thus, every
group in a simple file has the same internal structure.
FACT requires separate descriptions of groups having
different structures, and assigns them different type-codes. 4
To FACT, tWO groups have the same structure if and only
if: (1) both contain the same number of fields, and (2) every
field of one group has exactly one counterpart in the other
such that both members of each pair have the same inten-
tion (meaning), and (3) the location of every field in one
group is the same as the location of its counterpart in the
other. ~

Other criteria are possible, of course, but these are con-
venient and fairly standard, and they serve to illustrate
basic principles as well as any others.

1.2. Complex Single-Level Files. Any difference in group
structure requires definition of different group-types. For
example, suppose a file named F2 contains some groups
with the above structure, others containing fields called
AF, EF, and FF, and still others containing the fields AF,
EF, GF and HF. Three group-types must be described, as
follows:

F2
.ITEM1

AF
BF
CF
DF

.ITEM2
AF
EF
FF

.ITEM3
AF
EF
GF
HF

ITEM1, ITEM2, and ITEM3 are assumed to be the three
group-type names. Each group-type's field names must be

4 A unique type code is created for each group-type of the file.
The appropriate code is inserted into a small (8-bit) common field
of every group issued. When the object program obtains a group
from an input file its type code is used to enter tables containing
information pertinent to its hierarchical position and internal
structure.

These definitions presuppose that a field can always be located
without ambiguity: (a) at a fixed distance in bits from the group
base (first bit), or (b) at a possibly variable distance from the
group base, by counting a fixed number of fields from the group
base, or (c) by a combination of methods (a) and (b). Methods
(b) and (e) in turn require that the object program be able to
determine a variable field's length with reference to a character
count or by recognizing a delimiter. The criteria are broad enough
so that two groups with different variable field lengths are con-
sidered to have the same structure if they satisfy the other defi-
nitions stated in the text.

stated in full, even though AF is common to all the group-
types and EF is common to the last two. The equal inden-
ration of the three group-type names specifies to FACT
that there is no hierarchical relationship among any groups
in the file. We may say that all have a conunon father, the
file, and hence all may be called brothers. The different
group-types are brother group-types.

Unlike F1, F2 cannot be called simple, as it contains
three group-types. I t remains a single-level file, however, as
all its groups (except the file itself) are brothers. The file
description implies no restriction on the order or relative
frequency of brother groups. In particular, it does not
specify that all groups of ITEM1 precede all groups of
ITEM2, nor that all groups of I T E M 2 precede all groups
of ITEM3. Because there is no implied connection among
brother groups, all groups of a single-level file may be
rearranged freely without distorting the file's information
content. Logically, a single-level file may contain any
definite number of group-types, provided the object
program can distinguish them unambiguously.

1.3. Simple Hierarchical Files. A different kind of file
structure exists when information in groups of different
type has an implied connection. Suppose that each group
of F1, above, were broken into two parts, the first contain-
ing its AF and BF fields, and the second its CF and DF
fields. Let the two group types be called PART1 and
PART2 respectively. Procedures that used F1 would now
require groups of both these types. Further, they would
need a specific PART2 for each PART1. We would nor-
mally regard each pair as an inclusive set containing a
PART1 and a PART2 as subsets on the same level
("peers"). Alternatively, we could consider the PART1 as
the more inclusive set containing the PART2 as a subset.
Equally well, the PART2 could be considered more inclu-
sive, and the PART1 its subset. The last two structures
would be described to FACT as follows:

F3 F4
• PART1 ,PART2

AF CF
BF DF

• PART2 .PARTI
CF AF
DF BF

As before, indentation represents inclusiveness. Both
structures are deemed hierarchical because they depict
different levels of group. In such a file each nonterminating
group (i.e. PART1 of F3) is associated with one or more
lowest level groups (i.e. PART2 of F3). These are called
terminating groups. All groups in a single-level file are ter-
minating; F2 contains three types of terminating groups.

The fields of each nonterminating group are implicitly
associated with each and every terminating group belong-
ing to the containing nonterminating group. Thus, every
terminating group of an hierarchical file, together with its
father, contains information equivalent to a single-level
file item that states explicitly both the nonterminating and
the terminating group fields. These fields together comprise

232 Communications of the ACM Volume 6 / Number 5 / May, 1963

a terminating group's single level i tem equivalent (abbre-
viated SLIE) . There is one SLIE for each terminat ing
group in the file.

For the situation supposed above, neither F3 nor F4
appears to have an advantage over the "peer pair" struc-
ture and all three seem inferior to the simple file structure
of F1 because they would entail extra housekeeping. If,
however, F1 were sorted into groupings of items with
identical AF-BF value, the following procedure would
t ransform F1 to F3: (1) for each grouping, issue a single
PART1 containing the grouping's AF-BF; (2) for every
group in this grouping, issue a P A R T 2 belonging to this
PART1 ; repeat step (2) for every grouping.

The resulting file, F3, would contain one PART1 for
every different AF-BF (i.e. AF and BF) value plus one
PART2 for every F1 item. Neglecting possible waste in
packing fields into words, the new file would require less
space than the old--exactly the amount needed in F1 to
store repeated instances of identical AF-BF values. In
this sense an hierarchical file may be called nonredundant.
Similarly, if F1 were sorted into groupings of identical
CF-DF value, a nonredundant file of structure F4 could
be constructed. Whether F3 or F4 would be more compact
would depend entirely on the distribution of data in the
original f i le-- that is, on whether there were more different
AF-BF values or more different CF-DF values.

So far we have assumed random access to all groups of a
file and have not stated how one can discern the connection
between a specific nonterminating group and its terminat-
ing groups. As keying would eliminate most or all space
saving, a positional relationship is probably implied even
for random stores. In serial-access storage media such as
FacT's magnetic tape files, each nonterminating group is
issued immediately before the string comprising its in-
cluded terminating groups. For this reason nonterminating
groups are commonly called headers and terminating
groups trailers. Their relative position is the only fact tha t
establishes which header is any trailer 's father. As the file
is read forward, the first header is stored in core. I ts one or
nmre trailers succeed it. These are read one at a time.
Because its header is stored, each trailer 's SLIE is avail-
able when the trailer is read. These may be used to create
the equivalent single-level file, if desired. The end of each
string except the last is marked by the header tha t begins
the next string. This header is stored, etc., until the end-of-
file signals the last string's end.

Each header must precede its trailers for another reason:
each string's length is variable, depending as it does on
change in header field value. A string may be quite long- -
in extreme eases comprising all groups in the file. Thus,
only if it occurs before its trailers can we guarantee the

proper header 's availabili ty to all of its trailers. For this
reason the file must be read forward, unless special
provision is made. ~

6An hierarchical file can be made reversible (readable either
forward or backward) if an ender is issued at the end of every

Creating a serial hierarchical file may yield a somewhat
different result than the "grouping" operation discussed
above. A header, and then a trailer, are issued from the first
simple file item. The header information is also stored. The
next simple file i tem is obtained. I f (any of) its header
fields differ from those stored another header and a trailer
are issued and the new header information is stored.
Otherwise only a trailer is issued; the previously stored
header information is left unchanged.

This procedure creates an hierarchical file consisting of
a header followed by one or more trailers, followed by
another header, etc., until the original file ends, as before.
But the number of headers equals the number of changes
(+ 1) in header field value rather than the number of differ-
ent header field values .7 The former will equal the later only
if the simple file was in order by header field values; other-
wise the number of changes will usually exceed greatly the
number of different valuesJ Such results could be expected
if F3 were created f rom F1 sorted by CF-DF or if' F4 were
created from F1 sorted by AF-BF. So hierarchical files
need not be nonredundant; they may be just as redundant
as single-level files in extreme cases. As a rule of thumb,
the more file structure and file order correspond, the more
nonredundant an hierarchical file can be. This principle has
important implications for file designers. I t also affects the
design of FACT sort programs, in tha t the sorts must allow
for usually unpredictable changes in a file's volume as it is
rearranged.

1.4. Hierarchical Files of More than Two Levels. Hier-
archical files of more levels than two can be created revers-
ibly from a simple file by rather simple extension of the
preceding rules. In general, the number of levels can be
extended up to the number of fields in the equivalent
single-level file group. For example, consider the file F5
diagrammed below:

F5
.A

AF
.B

BF
.C

CF
.D

DF

F5 contains four types of group at four levels. Their
assumed group names are A, B, C and D, respectively. Each
F1 i tem field has been assigned to one of the four group-

string of trailers. Each ender must contain the same data as the
string's header.

Programs that read reversible files forward must store headers
and ignore enders. Programs that read reversible files backward
must store enders and ignore headers. The presence of enders
doubles the amount of tape storage devoted to headers. Conse-
quently, a reversible file's value should be weighed carefully
against its cost. Sometimes an equivalent single-level file would
require less tape space.

7 To illustrate: the sequence 1,1,2,1,2,1, comprises four changes
in value but only two different values.

Volume 6 / Number 5 / May, 1963 C o m m u n i c a t i o n s of the ACM 233

t ypes in F5. I n F5, each A " c o n t a i n s " one or more B ' s ;
each B "con t a in s " one or more C 's ; each C "contains"

one or more D ' s , where "con ta ins" means " represen ts a logi-
cal set inclusive of ." There fore each D p a r t i c i p a t e s in the
C F of the C con ta in ing it, in the B F of the B con ta in ing it,
and in the A F of the A con ta in ing it. These th ree fields,
p lus the D ' s D F , compr ise i ts S L I E - - a l l a re essent ial .

L ike F3, F5 has one t y p e of t e r m i n a t i n g group or t ra i le r ,
i . e . D . B u t now each t ra i l e r has th ree headers , a C, a B
and an A. Le t us call a n y group t h a t " c o n t a i n s " ano the r
i ts ancestor. A group has exac t ly one ances to r a t eve ry level
above it. A g roup ' s i m m e d i a t e ances to r is i t s fa ther . I n F5,
eve ry D ' s f a the r is a specific C; eve ry D has th ree ances to rs
(not count ing the file i tself) while eve ry B has one ances tor .

The groups "con ta ined i n " a specific group are i ts
descendents. Le t a g roup ' s i m m e d i a t e descenden ts be
cal led i ts sons. A t ra i l e r m a y have no son. E v e r y heade r
m u s t have a t leas t one son, and m a y have m a n y sons. Sons
of the same fa the r are t e r m e d brothers. All b ro the r s a re a t
t he same level in the file. (For file F2 , above , and for cer ta in
files to be in t roduced la te r , some b ro the r s m a y be of differ-
en t g roup- type .)

The fol lowing rules are i nvoked to c rea te an h ie rarch ica l
file and are used to de t e rmine a g roup ' s ances to rs as the
file is r ead : (1) e v e r y f a the r m u s t precede (i.e. be issued
before) i t s sons, and (2) b ro the r s can occur in a n y order
wi th in the s t r ing begun b y the i r fa ther , and (3) a s t r ing of
f a the r and sons is ended when a n y ances to r of a son is
issued, or b y the end of file.

A p rocedure to c rea te F5 f rom F1 will i l lus t ra te the
process. Assmne t h a t t he th'st F1 i t em has been ob ta ined .
T h e n :

(1) Issue an A, a B, a C, and then a D containing the current
ITEM'S AF, BF, CF, and DF fields respectively; store the
current AF, BF, and CF; to to (2).

(2) Obtain the next ITEM; go to (3).
(3) If the current ITEM's AF differs from the stored AF, go to

(1); otherwise go to (4).
(4) If the current ITEM's BF differs from the stored BF, issue

a B, a C, and then a D, containing respectively the current
item's BF, CF, and DF; preserve the stored AF; store the
new BF and CF, erasing the previous stored values; go to
(2). If the current BF and stored BF are equal, however, go
to (5).

(5) If the current ITEM's CF differs from the stored CF, issue
a C and then a D containing, respectively, the current item's
CF and DF fields; preserve the stored AF and BF; store the
new CF, erasing its previous value; go to (2). If the current
and stored CFs are equal, however, go to (6).

(6) Issue a D containing the current item's DF; to to (2).

Con t inue un t i l the end of F1 is de tec ted .
As a resul t of th is p rocedure an in i t i a l A, B, C and D are

issued. The rea f t e r a new A is issued for each change 7 in
A F , a new B for each change in B F or A F , a new C for each
change in C F or B F or A F , and a new D for eve ry I T E M .
Ex tens ion of the p rocedure to 3-level, 5-level and higher-
level files is obvious .

W h e n F5 is r ead s the fields of each A are p u t in to an A
s torage, e ras ing i ts p rev ious conten ts . The fields of each B

234 C o m m u n i c a t i o n s of the ACM

and of each C are s imi la r ly s tored. Thus , when each t e rmi -
na t i ng (D) g roup is ob t a ined a comple te and correct S L I E
is ava i lab le . I f desired, each S L I E can be issued, r ec rea t ing
F1.

F igu re 1 i l lus t ra tes these t r a n s f o r m a t i o n s for a hypo-
the t i ca l d a t a set. Co lumn 1 shows a series of F5 groups ;
co lumn 2 dep ic t s the i r S L I E s . Co lume 3 m a y be t h o u g h t
of as a series of F1 i t ems ; co lumn 4 r ep resen t s the F5 file
p roduced f rom them.

J u s t as F3 and F 4 are different h ie ra rch ica l a r r a n g e m e n t s
of the g r o u p - t y p e s P A R T 1 and P A R T 2 , so a l t e r n a t e
h ie ra rch ica l a r r a n g e m e n t s of the g r o u p - t y p e s A, B, C, and
D are possible. F o r example , F6 below could be c r ea t ed
f rom F1.

F6
*C

CF
.A

AF
.D

DF
.B

BF

M a n y th ree- leve l a r r a n g e m e n t s a re also possible, if two
of the g r o u p - t y p e s are co l lapsed in to one. The bes t des ign
is usua l ly the mos t n o n r e d u n d a n t for the file's usua l order .

1.5. Complex Hierarchical Files. Complex h ie ra rch ica l
files can be c rea ted f rom complex s ingle- level files accord ing
to the rules s t a t e d above . F o r example , FV, be low can be
c rea ted f rom F2, above .

F7
.A

AF
.B

BF
.C

CF
.D

DF
.E

EF
.F

FF
,G

GF
.H

HF

I n F7 the re is one t y p e of group, A, a t the h ighes t level.
A n A m a y con ta in e i ther B ' s or E ' s or bo th as s o n s - - i n

s Again, the file must be read forward unless reversible. Hier-
archical files of more than two levels must, if reversible, have an
ender corresponding to every header. These must be distinguish-
able by type. Each ender must contain the same information as
the corresponding header. They are issued in order opposite to the
corresponding headers. For instance, for F5, if a new C is to be
issued, an ender (C ~) containing the last CF must be issued just
before the new C. If a new B is to be issued, a C' and a B' must
first be issued, etc. As before, programs that read reversible files
forward ignore all enders while programs reading them backward
must ignore M1 headers.

Volume 6 / Number 5 / May, 1963

a n y order and wi th a n y re la t ive f r e q u e n c y - - B and E are
b ro the r g roup- types , as the i n d e n t a t i o n shows. Simi lar ly ,
F and G are b ro the r g r o u p - t y p e s - - a n E m a y con ta in F ' s
or G ' s or bo th as sons. C is not a b ro the r g roup - type of F
and G, a l though t hey are a t the same level, since t hey are
sons of different fathers . I t would be illegM to move a C
into the immed ia t e ne ighborhood of an F or a G. F7 has
three t y p e s of t e rmina t i ng group: D, F and H. No te t h a t
D and H are at the same level but that F is at a higher

level. This is l eg i t ima te in FACT files. E a c h t e rmina t i ng
g roup - type and i ts ances tor g roup- types are said to com-
prise an hierarchy. F7 conta ins the following hierarchies :
A, B, C, D; A, E, F ; and A, E, G, H. No te t h a t A is
common to all th ree hierarchies and t h a t E is common to
the las t two. The hierarchies of o ther complex hierarchica l
files m a y or m a y not have such common groups. If, how-
ever, a g roup - type is c o m m o n to more t h a n one h ie rarchy ,
i t n m s t be a t the same level in every h i e ra rchy conta in ing
it. (Levels are counted beginning wi th the mos t inclusive.)
Thus the s t ruc tu re :

F8
,A

AF
,B

BF
,C

CF
,A

AF

is i l legal in a FACT file because A is a t different levels in
two hierarchies . Also, a g r o u p - t y p e m a y no t be the son of
different fa thers in different hierarchies . W i t h i n the l imi ts
of these res t r ic t ions the g roup - types of each h i e r a rchy can
be a r r anged i n d e p e n d e n t l y of one ano ther . S imi lar ly , the
n u m b e r of levels in each can be es tab l i shed independen t ly .

The rules s t a t ed in Sect ion 1.4. also govern the re la t ive
pos i t ions of a complex h ierarchica l file's groups, since
groups of b ro the r g roup - types are bro thers . B y appl ica-
t ion of these rules equ iva len t complex h ie rarch ica l files
can be fo rmed f rom complex single-level files. I n each such
t r a n s f o r m a t i o n the h ierarchica l file mus t con ta in a differ-
en t h i e r a rchy cor responding to each single-level file group-
type . F o r F7 and F2, h i e r a rchy A , B , C , D cor responds to
I T E M 1 ; h i e ra rchy A , E , F cor responds to I T E M 2 , and
A , E , G , H cor responds to I T E M 3 . A different t y p e of S L I E
exists for each h ie ra rchy . F igure 5, eo lunms 7 and 8 (first
pa r t) , i l lus t ra tes S L I E cons t ruc t ion for a h y p o t h e t i c a l
file of s t ruc ture FT.

2. F A C T S o r t i n g M e t h o d s

FACT will genera te , f rom sui tab le key specif icat ions and
a file descr ipt ion, a sor t ing rou t ine able to rea r range any
of the file t ypes discussed above. Cons iderab le f lexibi l i ty is
p e r m i t t e d in key specificat ion. The following rules mos t
affect the sor t s ' design:

(1) A group may never be separated from its father except
by its brothers (as only their relative position identifies a group's
father).

F5, a 4-level hierarchical file discussed in the text, consists of
the data shown in column 1. For clarity only group name and
field value are shown. Thus, "A2" means an A for which AF = 2.
Column 2 depicts the sort items constructed from F5 for a sort by
AF, BF, CF, DF. Each item is equivalent to a SL1E. Column 3
depicts the sort items rearranged by the sort. Colunm 4 represents
the output file, returned to F5 form.

(I) (2) (3) (4)
Input Raw Items ,Sorted Items Output*

A1 A1B1C1D1 AI
B1 A1B1C1D2 B1
C2 A1B1C21)I C1
D1 A1BiC2D1 A1B1C21)3 1)1
A2 AiB2C2D1 1)2
B2 A1B2C2D2 C2
C2 A2B2C2D1 1)1
D1 A2B2C2D1 A2B2C21)2 1)3
D2 A2B2C2D2 B2
A1 C2
B1 D1
Cl 11)2
D1 A1B1C1D1 A2
D2 A1B1C1D2 B2
C2 C2
D3 AiBIC2D3 D1
B2 D2
C2
D1 AiB2C2D1
D2 A1B2C2D2

* A dash between entries indicates that one or more redundant
groups are eliminated between two groups.

Fig. 1

(2) Brothers, regardless of group-type, lnay be rearranged
freely within the string begun by their father.

(3) Unless fields equivalent to type codes are specified as keys,
the order of brothers is a function of their key values only; auto-
marie segregation of brothers by type is not done.

(4) The relative positions of brothers having equal key values
is indeterminate; if important, enough keys must be specified to
break all ties.

(5) A sort 's input file and its output file must have the same
structure2

The sor t ing me thods app l i ed to each t y p e of file are now

discussed.

2.1. Sorting Simple Files. N o pa r t i cu l a r p rob lems occur
here, as each group is a comple te S L I E , and all groups are
to be r ea r r anged freely wi th in the file as a whole on the
basis of the key or keys specified. A n y one or more of the
g r o u p - t y p e ' s fields m a y be specified as a key of a n y level of

significance.
A p r e l i m i n a r y ed i t ing phase cal led the pre-edit crea tes

a file of sort items f rom the i npu t file's groups. The label and
d a t a b lock fo rma t s differ somewhat . A sort i t em is c rea ted
f rom each inpu t file g roup; the i r fo rma t s are s imilar , ex-

~The FACT sorts provide optional "last pass own coding"
called postsort procedures. Via such a procedure the user can access
each SLIE of the output file before it is filed. If he wishes the
user can inhibit writing of the sort output file and call for con-
struction of a differently structured file provided this is derivable
from the SLIE.

Volume 6 / Number 5 / May, 1963 Communicat ions of the ACM 235

cept for key arrangement. This procedure packs the group's
key fields, from major to lninor, into consecutive-item bit
positions start ing with the group base, and puts the data
originally located in this "key area" into the "holes" from
which the keys were drawn. I f necessary it may also trans-
late key values to assure proper sorting sequence2 ° Be-
cause the key and nonkey positions are exchanged the
i tem's overall size remains unchanged, n Key arrangement
allows the sorting phases to use standardized comparison
coding; it thus simplifies greatly their generation. Also, if
key fields are small, packing may permit decisions to be
made in fewer comparisons than would be possible with un-
packed keys.

The sort i tem file comprises one or more reels, depending
on total input volume; the input may be drawn from a file
of one or more reels. For a simple file structure the input
and sort i tem files usually have about the same physical
volume, as each sort i tem is about the same size as an input
group. Differences in tape block size m a y affect physical
volume, however.

Each reel of the sort i tem file is sorted separately by a
slightly modified Honeywell 800 Ai~GIIS sort routine. This
consists of two phases: a presort tha t builds strings of
ordered sort items on 2-5 work tapes, and a cascade merge-
sort tha t progressively reduces the number of strings.

I f there is more than one reel of sorted items a collate
phase is entered. This merges the separately sorted reels of
sort items into a single file. If there is but one reel of sorted
items the collate phase is bypassed.

Finally, a postedit phase returns each sort i tem to
group form. The main task here is to reverse the key ar-
rangement done in the pre-edit; a FACT file results.

2.2. Sorting Complex Single-Level Files. The group-
types of a complex file have different internal structures;
also, FACT lets the user specify a different sequence of
keys for each group-type. Consequently the pre-edit must
construct a different type of sort i tem for each type of
group. Different pre-edit and postedit key arrangement
routines are in general required for each i tem type. Other-
wise the sort phases are the same as for simple files.

No a t t empt is made to segregate items by type during
sorting. Thus prcsort mergesort and collate phases ar-
range the items of all types strictly according to the rela-
t ive value of their packed keys. In general the user must
insure the congruence of the packed keys of the different
i tem types. He must also insure tha t the comparisons make
sense. 12

~0 For example, in Honeywell 800 FACT, signed decimal fields
are packed as a leading sign and a string of 4-bit digits. So that
such fields will always sort in true algebraic sequence, the key
arrangement generates the bit complement of each negative signed
decimal field.

11 Two minor restrictions follow from the one-for-one exchange
procedure : (a) no field may be used as a key more than once per
item, and (b) no variable-length field may be used as a key.

12 For example, if a two-digit field is specified as the major key
for one group-type, and a three-digit field for another group-
type, the two-digit field will be compared against the high-order

2.3. Sorting Single-Hierarchy Files. File F5 is typical
of such structures. Since a sort may not separate a group
from its ancestors, keys may not be specified independently
for the group-types of all hierarchy. Instead, all keys spec-
ified comprise a single sequence tha t applies to the hier-
archy as a whole. 0, 1, or more fields of each group-type
may be specified as keys• The major key may be drawn
freely from any group-type in the hierarchy• Then the next
most significant key specified (if any) may belong to the
same group-type or to a different group-type, as the user
wishes 11, etc. Hence a file may be sorted into an order
different from its most nonredundant order if desired• The
sorting methods vary somewhat depending on how keys
were selected.

2.3.1. When Keys are Drawn from Every Group-Type.
This is the simplest case. If every group-type in the hier-
archy contains at least one key field, the pre-edit constructs
a sort i tem from each SLIE. In this way it guarantees tha t
the sorting phases will not separate father and son, be-
cause every SLIE includes a terminat ing group and a
copy of all its ancestors. The fields of the SLIE ' s most in-
clusive group (i.e. A of F5) are put at the top of the item.
I t ' s son's fields (i.e. BF of B of F5) are put just below them,
etc., so tha t the SLIE 'S terminat ing group fields are put
at the sort i tem's end. The sort i tem as a whole then under-
goes key arrangement as discussed above•

Presort, mergesort, and (if necessary) collate phases take
place as described above. I t should be noted tha t sort i tem
construction usually swells the file's physical volume by an
amount often hard to predict.

In the postedit each sort i tem undergoes key rearrange-
ment, after which it effectively comprises a SLIE. Using
the rules stated in Section 1.4. an hierarchical FACT file
is created f rom these SLIEs. I t s structure is the same as
the input file's?

The relative physical volumes of input and output file
depend on which is more redundant• This m a y be hard to
predict. Thus, provision is made independently for multi-
ple input reels and multiple output reels. The output file
is almost always more compact than the file of sort items.
Figure 1 traces i tem construction, i tem rearrangement,
and i tem decomposition for a possible F5, if AF, BF, CF,
and DF are stated as keys in tha t order.

2.3.2. When Keys are Missing From Intermediate
Levels. Omitt ing all fields of one or more intermediate
group-types from the list of keys specified affects the pro-
cedure described in Section 2.3.1 only slightly, provided
tha t at least one key field is drawn from the terminat ing
group-type and at least one key field is drawn from the

most inclusive group-type. As before, an i tem is con-

two digits of the three-digit field, and any lower-order keys
specified for the group-types will be mismatched when compared.
Again, a field called APPLES of one group may be compared as
requested against a field called ORANGES of another; their
comparison is mechanically correct, but the result is probably
meaningless.

236 C o m m u n i c a t i o n s o f the ACM Volume 6 / Number 5 / May, 1963

When F5 is sorted by AF, DF only, raw sort items are con-
structed from the same data as those of Figure 1. Thus, columns
1 and 2 are the same for these figures. Column 3 and colmnn 4
show the different arrangement of items and consequently differ-
ent output file. Note that it contains more groups than the first
sort's output.

(1) (2) (3) *~ (4)
Inp~tt Raw Items Sorted Items Output*

A1 AIB1C1D1 A1
B1 A1B1C2D1 B1
C2 A1B2C2D1 C1
D1 A1B1C2D1 A1B1C1D2 D1
A2 A1B2C2D2 C2
B2 A1B1C2D3 D1
C2 A2B2C2D1 B2
D1 A2B2C2D1 A2B2C2D2 C2
D2 A2B2C2D2 D1
A1 B1
B1 C1
C1 D2
D1 AiB1C1D1 B2
D2 AiB1CiD2 C2
C2 D2
D3 A1BiC2D3 B1
B2 C2
C2 D3
D 1 A1B2C2D1 A2
D2 A1B2C2D2 B2

C2
D1
D2

* A dash between entries indicates that one or more redundant
groups are eliminated between two groups.

** Ties among items have been resolved arbitrarily.

Fig. 2

s t ructed from each SLIE. The key a r r angemen t differs,
bu t only because a different series of key fields was speci-
fied. Figure 2 traces the pe r t inen t operat ions if F5 is sorted
on AF, D F only.

2.3.3. When Keys are Missing From the Lowest Level(s).
A fairly radical change in sor t - i tem cons t ruc t ion takes

place when the lowest level key-con ta in ing group type is
not t e rmina t ing . I n this case an i tem is issued, not for each
SLIE, bu t for each lowest level key-conta in ing group. The
i tem conta ins the fields of this group and its ancestors. To
it are a t tached, as trailers, the one or more groups belong-
ing to its lowest level member . If F5 were sorted on the

fields of A, B, and C, an i t em per C would be created. Each

such i tem would have one or more D trailers. See Figure 3.

Key a r r angemen t follows the usual rules; the trailers are

ignored by this process.

Since a n y such i tem may have an indefini tely long str ing

of trailers it m u s t be broken into subsections of convenien t

length for the sort ing phases. After key a r r angemen t the

first subsect ion is prepared as follows: (1) a serial n u m b e r is

inserted after the last word of packed key and before the

nonkey por t ion (if any) of the i tem; (2) as m a n y trai lers

as possible of the i t em are pu t after its nonkey port ion,

When F5 is sorted by AF, BF, CF, each sort item contains
only A, B and C groups; the D's are attached as trailers to these
items. The original order of a sort item's trailers is preserved
through the sort. Column 1 shows the same data distribution as
the previous two figures. Column 2 depicts the items. As would
be expected, there are fewer items than in the previous figures.
Column 3 depicts these rearranged by the sort. Column 4 repre-
sents the final output, of form F5.

(1) (2) (3)** (4)
Input Raw Items Sorted Items Ottlpltt*

A1 A1B1C1 A1
B1 D1 B1
C2 A1B1C2 D2 C1
D1 D1 AiBIC2 D1
A2 1)3 D2
B2 AiB1C2 C2
C2 A2B2C2 D1 D3
D1 D1 AiB2C2 D1
D2 D2 D1 B2
A1 D2 C2
B1 A2B2C2 D1
C1 A1B1C1 D1 D2
D1 D1 D2 A2
D2 D2 B2
C2 A1BiC2 C2
D3 D3 D1
B2 D2
C2 A1B2C2
D1 D1
1)2 D2

* A dash between entries indicates that one or more redundant
groups are eliminated between two groups.

** Ties among items have been resolved arbitrarily.

Fig. 3

provided the convenien t length is not exceeded; (3) an end

of i t em mark is laid down.
If all trailers fit into the first subsection, the i t em's con-

s t ruc t ion is finished. Otherwise, one or more subsequent
subsections are issued, prepared as follows: (1) the packed
key of the first subsect ion is laid down, followed immedi-
a te ly by the augmented serial n u m b e r ; (2) as m a n y trailers
as possible or necessary are laid down; (3) an end of i t em

mark is laid down.
Presort , mergesort, and collate (if needed) phases are

executed as before. To these sort ing phases each i tem sub-
section is a d is t inc t sort i tem. Since all subsections of the
same i tem have equal key, and since the serial n u m b e r s
increase monoton ica l ly for all subsections of all i tems, the
order of an i tem's subsections is preserved by the sort.
(The serial numbe r s correctly break ties among an i tem's

subsections.)
The postedi t reverses the processes of i t em cons t ruc t ion

and creates a FACT file f rom each i tem and its trailers. I t
should be noted t ha t these processes effectively preserve

the relat ive order of each i t em 's trailers.

2.3.4. When Keys are Missing From the Highest Level(s).
Unless a key is specified for the file's most inclusive group

(e.g. A of F5) all groups above the highest level key-con-

t a in ing group are t rea ted very specially. Such groups are

Volume 6 / Number 5 / May, 1963 Communica t ions of t i le ACM 237

When F5 is sorted by DF, CF, BF, all A's are treated as higher-
level groups and divide the file into batches. The order of batches
is preserved by the sort. Rearrangement is done only within each
batch. Each item is equivalent to a SLIE, except that higher-
level groups :tre excluded. Cohmm 1 shows the same input file
as the previous figures. Column 2 depicts the items before sorting,
and column 3 the items after sorting. The higher-level groups are
listed here for clarity; during actual sorting they are temporarily
removed from the file. Column 4 shows the fimfl output, in F5
form.

(1) (2) (3) (4)
Input Raw Items Sorted Items Outp~lt*

A1 A1 A1 A1
B1 B1C2D1 B1
C2 C2
D1 B1C2DI D1
A2 A2 A2 A2
B2 B2C21)1 B2
C2 B2C2D2 C2
D1 B2C2D1 D1
D2 B2C2D2 D2
A1 A1 A1 A1
B1 B1C1])i B1
C1 B2C2D1 C1
D1 BiC1D1 B1C1D2 D1
D2 B1C1D2 B2C2D2 B2
C2 B1C2D3 C2
])3 B1C2D3 DI
B2 B1
C2 C1
D1 B2C2DI])2
])2 B2C2D2 B2

C2
D2
B1
C2
D3

* A dash between entries indicates that one or more redund~mt
groups are eliminated between two groups.

Fig. 4

cal led higher-level groups. T h e y are never inc luded in sor t
i tems. In s t ead , t h e y d iv ide the file in to batches. T h e con-
t en t s of each b a t c h is a r r anged s e p a r a t e l y and the order of
ba tches is p reserved . W h e n a file con ta ins two or more
levels of h igher level groups two or more such groups can
occur in a sequence be tween groups f rom which keys will
be drawn. F o r example , if A and B held no keys b u t C and
D did, each b a t c h would begin wi th a sequence A, B or
else a single group, B. T h e re l a t ive pos i t ion of the groups
in a sequence m u s t no t be changed b y the sort . These
p rob lems are hand l ed as follows:

(1) T h e p re -ed i t ass igns each b a t c h a mono ton ieMly in-
creasing b a t c h number .

(2) E a c h higher- level g roup is m a r k e d wi th the cu r r en t

b a t c h n u m b e r ; the h igher level g roups are copied to a work

t ape in the order r ead to get t h e m ou t of the so r t ' s way ;

this t a p e is called the higher level group tape.
(3) Sor t i t ems are cons t ruc ted f rom the o the r g roups in

accordance wi th one of t he m e t h o d s discussed above , ex-

cept t h a t no i t em conta ins h igher- leve l g roup in fo rma t ion ;

also, the a p p r o p r i a t e b a t c h n u m b e r becomes the high order
po r t i on of each i t em ' s key.

(4) A t the p re -ed i t ' s end a h igher- level g roup file and a
sor t i t em file have been created. Presor t , mergesor t , and
col la te phases hand le the l a t t e r as usual . Because the ma-
jor key of al l i t ems was the i r b a t c h number , b a t c h order is
preserved .

(5) D u r i n g the pos t ed i t the h igher- leve l g roup file and
the r ea r r anged file of sor t i t ems are col la ted and the i t ems
rea r ranged . The expec ted o u t p u t file resul ts .
F igu re 4 i l lus t ra tes these processes for F5.

2.4. Sorting Complex Itierarchical Files. N o new
principles are requi red to sort complex h ie rarch ica l files.
W i t h a few extensions and res t r i c t ions those p rev ious ly
s t a t ed app ly .

F i r s t , a s epa ra t e t y p e of sor t i t e m is n o r m a l l y con-
s t ruc t ed for each file h ie ra rchy . 13 F o r file F7, s epa ra t e t y p e s
of i t em are m a d e f rom the th ree h ierarchies A , B , C , D ; A,E,
F ; and A , E , G , H .

Second, a s epa ra t e key list mus t be specified for each
t y p e of i tem. E a c h k e y l ist m u s t be d r a w n f rom fields of
the g roup - types in the h i e r a rchy f rom which the corre-
sponding i t ems will be made . I f a g r o u p - t y p e is c o m m o n to
more t h a n one h i e r a r chy i t m a y be a key source for al l
i tems, or for none, as the user wishes. I f a c o m m o n source,
the same field(s) m a y or m a y no t be d r a w n f rom i t for the
different i tems. I f a c o m m o n field is s t a ted , i t m a y or m a y
no t have the same re la t ive significance in the k e y l ists of
the different i tems. These possibi l i t ies a re r e s t r i c t ed some-
what , below.

T h e p re -ed i t code requires t h a t a g r o u p - t y p e be classi-
fied cons i s ten t ly for all i t em t y p e s as e i ther (1) a h igher-
level group, (2) a sor t i t em m e m b e r or (3) a sor t
i t em t ra i ler . Thus , if A conta ins a key for one i t e m t y p e i t
mus t con ta in a key for all. S imi la r ly , E mus t be a sort i t em
m e m b e r for bo th of the las t two i t em t y p e s or for nei ther .

Again , the h ighes t - level key -con t a in ing groups for all
i t e m t y p e s m u s t be a t the same level in the file. I n F7, if
no A, B, or E keys were s ta ted , b u t a k e y of C were s t a ted ,
keys of F and G would also need to be s t a ted . Th is rule is
unnecessar i ly res t r i c t ive in ce r ta in cases, b u t r e l a t ive ly
harmless ; i t s use simplifies analysis .

The p re -ed i t for a complex h ie ra rch ica l file sor t depends
as usual on ob ta in ing a S L I E per i t em issued. (As above , if
ce r ta in ances tors are h igher- level g roups t h e y are o m i t t e d
f rom the i t ems cons t ruc ted ; s imi lar ly , i t ems hav ing t ra i le r s
omi t these f rom i t em cons t ruc t ion .) As the p re -ed i t ob t a in s
each group f rom the i n p u t file i t s tores the group. The
g roup ' s t ype -code is used to en te r a t ab le t h a t te l ls whe the r
an i t em is to be issued (or cont inued , if the g roup is an i t e m

~3 But in applying this rule, branching below the level of the
lowest-level key containing group along any path is ignored.
Consider these examples for different sorts of file F7: (a) if AF
is the sole key, only one type of item is made; (b) if AF, BF, and
EF are the keys, two types are needed, corresponding respectively
to the first hierarchy and to the last two hierarchies as a group;
(c) if Ml fields are keys, three types are needed.

2 3 8 C o m n m n : i c a t i o n s o f t h e ACM Volume 6 / Number 5 / May, 1963

F7 has the s t ructure:
F7

*A
AF

*B
BF

*C
CF

,D
DF

*E
EF

,F
FF

*G
GF

*H
HF

undergoes four successive sorts, as follows:

(a) Sort ~ 1 reads File ~ 1 and creates File # 2 (column 3). AF

is the sole key. A single type of item, consisting of A groups, is

created. All other group-types form trailers. Column 2 shows item

formation and rearrangement.

(b) Sort ~2 reads File g2 and creates File ~3 (column 5). BF,

AF; and EF, AF are the keys of the first and second i tem types

formed. Type 1 items contain A and B fields; they have C and D

trailers. Type 2 items contain A and E fields; they have F, G, and

H trailers. Column 4 shows the items.

(c) Sort ~3 reads File %3 and creates File #4 (column 7). BF,

CF; EF, FF; and EF, GF, HF are the respective key lists of the

three i tem types former. Type 1 items contain]3 and C groups;

they have D trailers. Type 2 items contain E and F groups; they

have no trailers. Type 3 items contain E, G, and t t groups; they

and the initial distr ibution of File g I shown in column 1. This file

(1) (2) (3)* (4) (5)*
File Sort No. 1 File Sort No. 2 File

No. Raw Sorted No. Raw Items Sorted No.
1 Items Items 2 Items 3

A2 A2 A1 A1 A2B1 A2
B2 B2]~4 E4 AlE4 C1 B1
C2 C2 G1 G1 G1 D2 C1
D2 D2 H2 H2 H2 D2

D1 D1 H1 H1 H1 A2E1 E1
D3 D3 A2 A2 F2 F2
C1 C1 B2 B2 A2B2 F1 F1
D1 D1 C2 C2 C2 G3 G3

D4 D4 D2 D2 D2 H1 H1

B1 B1 D1 D1 D1 H2 H2
C1 C1 D3 D3 D3 G1 G1
D2 D2 C1 C1 C1 H2 H2

E1 E1 D1 D1 D1 H1 H1
F2 F2 D4 D4 D4 F3 F3

F1 F1 B1 B1 A2B1 B1

G3 G3 C1 C1 C1 A2B1 C1

H1 H1 D2 D2 D2 C1 D1

H2 H2 E1 E1 A2E1 D1 D4

G1 G1 F2 F2 F2 D4]92

H2 H2 F1 F1 F1 D2 D3

g l g l G3 G3 G3 D3 B2
F3 F3 H1 H1 H1 C2

A1 A1 H2 H2 It2 A2B2 D2

E4 E4 G1 G1 G1 C2 D1
G1 G1 H2 H2 It2 D2 D3

H2 I-I2 H1 H1 H1 D1 C1
H1 H1 F3 F3 F3 D3 D1

A2 A2 A2 C1 D4
B1 B1 B1 B1 A2B1 D1 A1

C1 C1 C1 C1 C1 D4 E4

D1 D1 D1 D1 D1 G1

D4 D4 D4 D4 D4 AlE4 H2
D2 D2 D2 D2 D2 G1 H1
D3 D3 D3 D3 D3 H2

II1

have no trailers. The A groups are higher-level groups and divide

(6) (7)* (8) (9)*
Sort No. 3 File Sort No. 4 File

H H
L Raw Items L Sorted No. Raw Items Sorted Items No,
G G Items 4 5

A2 A2 A2 A1E4G1H1 AI
E1G1H1 E1 E4

B1C1 G1 A1E4G1H2 G1
D2 E1G1H2 H1 A2E1G1H1 H1

H2 A2E1G1H2 A2B1C1D1 H2
ElF2 B1C1 B1 A2
ElF1 D2 C1 A2E1G1H1 B1

D2 A2B1C1D2 C1

E1G3H1 B1C1 D1 A2B1C1D1 A2B1C1D2 D1

E1G3H2 D1 D4 A2B1C1D4 E1
D4 D2 A2B1C1D2 A2B1C1D2 G1

E1G1H2 D2 D3 A2B1C1D3 H1

E1G1H1 D3 E1 A2E1G3H1 B1
ElF3 F1 A2E1F1 C1

ElF1 F2 A2E1F2 A2B1C1D3 D2

B1C1 G3 D2

D1 ElF2 H1 A2E1G3H1 A2B1C1D4 E1

D4 H2 A2E1G3H2 G3

D2 E1G3H1 F3 A2E1F3 A2E1F1 H1

D3 B2 B1

E1G3H2 C1 A2E1G1H2 C1
B2C2 D1 A2B2C1D1 D3

D2 ElF3 D4 A2B2C1D4 A2E1G3H2 D4

D1 C2 E1
D3 B2C1 D2 A2B2C2D2 A2E1F2 F1

B2C1 D1 D1 A2B2C2D1 G1
D1 D4 D3 A2B2C2D3 A2E1F3 H2

D4 A1 G3
A1 B2C2 E4 A2B2C1D1 H2

D2 G1 F2

D1 H1 A1E4G1H1 A2B2CiD4 F3

E4G1H2 D3 H2 A1E4G1H2 B2
E4G1H1 A1 A2B2C2D1 C1

E4G1H1 D1

A2B2C2D2 D4

E4G1H2 C2
A2B2C2D3 D1

D2

D3
* A dash between entries indicates tha t one or more redundant groups are el iminated between two groups. The relative position of

sorted items of equal key has been established arbitrari ly.

Fig. 5

Vn lume 6 / N u m b e r 5 / May, 1963 C o m m u n i c a t i o n s o f t h e ACM 239

the file into batches. Sort item construction and arrangement is
shown in column 6.

(d) Sort #4 reads File g4 and creates File #5 (column 9). AF,
BF, CF, DF; AF, EF, FF; and AF, EF, HF are the respective key
lists of the three item types formed. Type 1 items contain A, B, C,
and D groups. Type 2 items A, E, and F groups, and type 3 items
A, E, G, and H groups. There are no trailers.

trailer); if not, the next group is obtained and stored;
when an i tem is to be issued the table specifies its type and
the location of the key arrangement routine to be used.
Thus, items of different structure are created. The pre-edit

puts them into a single file. If necessary, it also creates a
higher-level group file.

After presort, mergesort, and collate phases, the post-
edit reverses the pre-edit 's operations and recreates the
complex hierarchical file. If indicated the sort i tem file and
the higher-level group file are collated. As each sort i tem is
obtained its i tem type code, created in the pre-edit, is used
to select the proper subroutine to rearrange it.

Figure 5 shows the changes effected when F7 is sorted
successively according to four different sets of key specifica-
tions.

DISK SORTING

Sorting with Large Volume, Random Access,
Drum Storage

Joel Falkin and Sal Savas tano , Jr.
Teleregister Corporation, Stamford, Conn.

An approach to sorting records is described using random
access drum memory. The Sort program described is designed
to be a generalized, self-generating sort, applicable to a
variety of record statements. This description is divided into
three parts. The first part presents the operating environment;
the second defines the general solution; the third part describes
the internal sort-merge technique.

1. Operat ing E n v i r o n m e n t

The Teleregister Telefile data processor includes drum
storage whose capacity is far in excess of the requirements
for sorting. This storage is randomly addressable and
includes an automatic program interrupt feature which
allows data transfers to occur simultaneously with process-
ing. This feature is available for all peripheral data trans-
fers, including tape and automatic typewriter functions.
The peripheral transfer, once initiated, is autonomously
governed by the slower peripheral device. The main
program processing is interrupted only for the relatively
short t ime required by a peripheral device to access one
memory position.

The Telefile data processor provides 16,000 positions
in memory, each position storing one binary coded decimal
character. A floating accumulator arrangement allows
the accumulator to contain any field in memory from 1
to 100 characters in length. All indexing is accomplished
programmatically. Inpu t and output tape blocking is
fixed a t 300 characters per block. For this reason, per-

* Presented at an ACM Sort Symposium, November 29, 30, 1962.

missible record lengths are restricted to integral sub-
multiples of 300.

2. General Descr ip t ion o f S o l u t i o n (Fig. 1)

The string length in records (N) is given by the formula
N = 13000/(25 + M) where: 13000 is the number of
available core memory positions for storing source records
and the code required to sequence them; M specifies the
record length in characters. The constant 25 allows for 3
sequencing instructions at 8 characters per instruction plus
a safety factor of 1. The max imum order of the merge is
given by the formula b0 = 12000/(30 + 2Y) where: 12000
is the number of available core memory positions for stor-
ing the merge bin and the merge instructions, and Y is the
key length in characters. The constant 30 includes the
following: three merge instructions at 8 characters per
instruction, and 6 characters for a drum address. The
value b0 is the only limiting facter in calculating the num-
ber of sequenced strings allowed per program pass; i.e., the
capaci ty per program pass. Note tha t b0 is a function of the
sorting criteria Y, not the record length M. A 300-way
merge can occur at Y = 5.

3. De t a i l ed D e s c r i p t i o n o f P r o g r a m T e c h n i q u e (Fig. 5)

The general program flow is illustrated in the Block
Diagram. The Sort program is designed to function as
par t of a l ibrary of utility routines controlled by an execu-
tive system called the Locator. One of the functions of the
Locator is to search and transfer control to the programs
requested by an operator. This request is made by

240 Communications of the ACM Volume 6 / Number 5 / May, 1963

