
ALGOL: Pleasure thro ug h Pain

Dear Editor:
After working through the description of ALGOL 60 and also

through your special issue on compiler techniques, I feel impelled
to bring to the attention of your readers a word which they may
find quite useful in the next few ,rears. As defined by Webster's
New International Dictionary, it is

Algolagnia: The finding of pleasure in inflicting or suffering
pain.

G. M. WEINBERG
I B M Systems Research Institute
787 United Nations Plaza
New York 17, N. Y.

S H A R E C o m m i t t e e

Dear Editor:
The March issue of the Communications summarized the work

of the SHARE UNCOL Committee. The report failed to show
that this work was the joint contribution of the entire SHARE
Committee.

As most of the readers of the Communications are aware, the
current members of the SHARE Committee are:

PHILIP BAGLEYt
MORT BERNSTEIN,
ELAINE BOEHM~

WILLIAM DOBRUSKY,
THOMAS B. STEEL, JR.,
FRANCIS V. WAGNER,

The Mitre Corporation
The RAND Corporation
International Business Machines Cor-

poration
System Development Corporation
System Development Corporation
North American Aviation, Inc.

M1 of them have made important contributions to UNCOL. I
apologize for the oversight which resulted in the omission of
their names.

T. B. STEEL, Jr., Chairman
SHARE UNCOL Committee

Negat ive B i n o m i a l Probabi l i ty Di s tr ibut ion Tables

Dear Editor:

A FORTRAN program to compute Negative Binomial Prob-
ability Distribution Tables is now available.

The program operates in two modes: (1) input of a single
mean and variance to output a single table, and (2) input of a
single mean and initial, incremental, and final variances to out-
put a series of tables. Unlimited input in a chosen mode is re-
stricted to one card (record) per input.

Output tables include a heading, page number, associated
mean and variance, the numerical value of the variables Q, K,
1 - ~ i P~, P0, and four successive probabilities across each
line. Each supplementary page of a table has its own page number
and a modified beading. Up to 1,000 probabilities can be com-
puted and printed in floating-point mode, from P0 to P999,
with a numerical threshold chosen by the user.

Copies of the program, with operating instructions, will be
provided upon request. All inquiries should be addressed to:

Logistics Research Project
The George Washington University
707 22nd Street, N. W.
Washington 7, D. C.
Attn: M. Hershkowitz

~ . HERSttKOWITZ

Concern ing Ferguson's Paper on F ibonaec ian Searching

Dear Editor:
Concerning the paper "Fibonaccian Searching" by David E.

Ferguson which appeared in the December issue of the Com-
munications, some readers may be interested to know that the
algorithm given is optimal not only as n ~ co but also for any
finite n. See J. Kiefer, "Sequential Minimax Search for a Maxi-
mum," Proe. Am. Math. Soc. 4 (1953), 502-6, and Selmer
Johnson, RAND Corp. Paper P-856 (1956), where a simpler
proof of the same result is given. Further discussion appears in
the text Dynamic Programming by Richard Bellman, p. 34
(Princeton (1957)).

M. L. JUNCOSA
RAND Corporation

On Grau's Recursive Processes and On Compi l ing Expres-
s ions in ALGOL

Dear Editor:

I have found the January, 1961 issue of the Communications
very interesting and helpful. In particular, I have carefully
studied the article by A. A. Grau, "Recursive Processes an
ALGOL Translation". There seem to be a few errors in this
article, but I have figured out changes that will make Grau's
method work properly (see below).

However, in checking over this method, I discovered some-
thing about ALGOL which seems to increase the difificulty of
compiling expressions. Consider, for example, the following
expression:

i f B then x else y < 0 (1)

This is obviously a boolean expression because the relational
operator < appears. Also, y is evidently an "ari thmetic" variable
(real or integer), and B is evidently a boolean variable. But, it is
not possible to tell from the context whether x is boolean or
arithmetic. Furthermore, this expression cannot b~ compiled
properly without knowing what type of variable x is. If x is
boolean, then the expression is equivalent to:

i f B t h e n x else (y < 0) (2)

On the other hand, if x is real or integer, then the expression is
equivalent to:

(if B t h e n x else y) < 0 (3)

In the latter case, the expression in parentheses is a conditional
arithmetic expression.

Grau's method handles expression (1) as though x were a
boolean variable. I t is possible that other ALGOL compilers would
have trouble with this type of expression.

One can, of course, design a compiler to handle such expres-
sions. Grau's method can do it if one increases the number of
control states, and separates the arithmetic operators and the
boolean and relational operators into different classes, instead of
lumping them all together.

252 Communicat ions of the ACM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366573.366912&domain=pdf&date_stamp=1961-06-01

Another solution to the difficulty would be to make a change
in ALGOL. All that is needed is to change the definition of "rela-
tion" (Section 3.4.l) to:

(relation) :: = {simple arithmetic expression) {relational operator)
{simple arithmetic expression)

With this change, expression (1) would be treated as in (2), whereas
to get the meaning of (3) it would be necessary to use parentheses,
or a form such as:

i f B t h e n x < 0 e l s e y < 0

I do not think this restriction of ALGOL would impose undue
hardships, and it would certainly simplify the translation
problem.

Corrections to Grau's process:
Procedures COMPEX, IF, and THEN should be changed

to the following forms:

COMPEX if prec(.r[g]) N prec (oo) t h e n b e g i n EXB; rep
e n d

e l s e b e g i n Ent(E2, 7[g]); Ent(0) end; go to
next.

IF {if -~ C(a[a]) t h e n go to - - } -~ 7r;
if a[a] = qT[h]' t h e n h := h - 1;
a[a] := address of this instruction.

THEN Set address in C(o~[a]) to next larger instruction
add ress;

a : = a - - 1 .

In the translation matrix, the entry in column El opposite ~o
should be Ent(E2,o0) lEnt(0).

GILBERT A. BACIIELOR
Oregon State University
Corvallis, Oregon

A P r o g r a m R a c k

Dear Editor:
The unexpected discovery that additional instructions must

be sandwiched in between lines of a sequence, presumed com-
plete, is not an infrequent experience. The contrivance pictured
here was constructed in an experimental attempt to expand the
pages of a program, that is, to impart flexibility to them. I t
provides for manual rearrangement of the sequence of instruc-
tions and for the insertion or removal of part of them. I t may
be used either during coding or debugging.

Each element within the rack can contain one line of instruc-
tion, that is, one code word. (In this case the elements are scribed
for basic IBM 650 coding.) The white plastic surface accepts
handwriting with an ordinary pencil. Marks can be erased as
quickly and easily as those on paper. The under side of each
element is tapered near its outer edge so that depression at this
point will cause the opposite end to kick up and separate itself
from the others.

Three small cylindrical magnets are built into the body of
each element. The ends of two of these can be seen in the photo-
graph.

Grouped upon a desk the elements--as many as needed--can
be positioned to show the path of the computation. Thus, they
serve in the dual role of program and flow chart and, in effect,
constitute a combination of the two. This combination is par-

ticularly helpful for those of us who like to write the program
first and construct the flow chart in finished form afterward. If
photographic equipment, practicable for the purpose, is avail-
able, the completed program can be recorded and then wiped
away to ready the devices for re-use.

Actually this system aids in programming problems from the
inside out, that is, in coding the elementary routines before
attending to their linkage with the main program. It may serve,
also, as a training device for students of programming. Replace-
ment of instructions by their modified form can be performed in
analogy to the varying paths taken within a computer during
the course of a computation.

For practical use the pilot model illustrated here proved to be
a little heavy and somewhat cumbersome in handling. The
thickness, 0.3 inches, of the elements is excessive. Writing upon
them when the hand is resting upon their plane of support is
comparable to writing upon the last line of a full pad. All these
difficulties can be eliminated, of course, with further words on
design.

Among other possible improvements is the inclusion of co-
lumnar headings in the rack. The magnets could have been
positioned symmetrically about the center of the long dimension
in order to utilize their repelling forces when an element is
unintentionally inverted.

The principle of the system can be economically applied by
perforating along the horizontal lines of program sheets. Use of
heavy paper stock for the purpose would eliminate much of
vulnerability to window blasts or to persons breezing by the
desk. The elements of the completed program could be placed
upon a sheet with a surface treated for adherence.

GEORGE E. REYNOLDS
Air Force Cambridge Research Laboratories
Cambridge, Mass.

(Letters Continued on Page 284)

C o m m u n i c a t i o n s o f t h e ACM 2 5 3

ON THE APPROXIMATION OF
CURVES BY LINE SEGMENTS
USING DYNAMIC
PROGRAMMING

The R A N D Corp., S a n t a Monica , C J i f o r n i a
RICHARD BELLMAN

I n t r o d u c t i o n

I n a recent paper [l], Stone considered the problem of
de te rmin ing the 2N A- 2 constants , a~:, b~, i = l, 2, • • • ,
N -4- 1 and the N poin ts of subdivis ion u~, u2, ." • , ux
so as to minimize the func t ion

F (a l , a2 , . . . , aN+l ;

bl , b2 , "'" , DN+I ; Ul , U2 , " ' " , UN) (1)

N~-I f u i
= ~ (g (x) - - a i - - bi x) 2 dx,

ui--1

where u0 = a, u~+~ = b and a =< u~ ~ u2 =< " "
UN ~ b. For the case where g (x) is quadrat ic , one can
look forward only to a simple computa t iona l a lgor i thm
for the solution. I n this note we wish to show how dynamic
p rogramming provides a solution in these terms.

B a s i c R e c u r r e n c e R e l a t i o n

Let us write, for fixed a and b ~ a,

fly(b) = rain
[al,bi,ui]

F(a~ , . . . , a N ;

bl , " ' ' , bN ; Ui , " ' ' , U~). (1)

T h e n

IF f t (b) = rain (g (x) -- at -- bl x) 2 dx

(2)
f q- - - (g (z) -- a2 -- ,

1

where the m i n i m u m over - - m < al, a2, bi, b2 < m,
a _-< u~ =< b. This funct ion is readily de termined since we

can compute the m i n i m a over the a~ and b~ and then
minimize over u] by means of a discrete search.

I t is easy to see tha t for N => 2 we have

r j: fN(b) = rain rain (g (x) -- a N - - bNx) 2 dx
O~N~b L t~N.@l N (3)

"4- f ~ - l (u ~)] •

This is a par t icu lar appl ica t ion of the principle of opti-
ma l i ty [2, 3]. Since the m i n i m u m over ae¢, bN can be
calculated explicitly, we can write (3) in the form:

f ~ (b) = min [h(uN, b) q- ftc--~(UN)] (4)
a~tN=<b

A computa t iona l solution along these lines requires a few
seconds per stage, where N is the n u m b e r of stages; see
[3].

E x t e n s i o n s

I t requires very li t t le addi t ional effort to approximate
to g (x) b y quadra t ic polynomials , or by polynomials of
any fixed degree. Similarly, we can compute the m i n i m u m

of

N-{-I_ f u j
(g (x) -- h (x , a j , b j))2 dx, (1}

j=l u i _ l

provided tha t we know how to minimize the funct ion

b

f (g (z) -- h(X, aN, b~)) 2 dx (2}
uN

over aN and b~, or the m i n i m u m of

hr+l

max l g (x) - h (x , a j , b j) l . (3}
j ~ l Ui_l~X~U j

REFERENCES

1. STONE, H. Approximation of curves by line segments. Math.
Comput. 15 (1961), 40-47.

2. BELLMAN, Pt.. Dynamic Programming. Princeton University
Press, Princeton, N. J., 1957.

3. BELLMAN, R., ANn])REYFUS, S. Computational Aspects of
Dynamic Programming. Princeton University Press, Prince-
ton, N. J.; to appear.

Letters (Continued from page 253)
Irons' Procedure DIAGRAM

Dear Editor:

I would like to make some comments on the excellent and
stimulating article, "A Syntax Directed Compiler," by Edgar T.
Irons in the Comm. A C M issue of Jan. 1961, a preprint of which
has been used here in the design of an ALGOL 60 translator for
GIER, a new Danish computer.

I think that the ALGOL formulation of the procedure
DIAGRAM given at the end of the article should have the
following corrections:

(1) line 17 should begin if i # 0 .
(2) line 19 should begin if STAB [i -4- 1]
(3) line 27 should begin if i # 0 .
(4) OTCEL should be assigned some "unconfusing" value

before the statement labelled START is obeyed, as otherwise it
will be undefined in the statement labelled FOUND in the case
when STAB [i] = INPUT [j] and STAB [i + 1] # LEFTBRACE.

It must be common to many languages that could bc trans-
lated with the aid of this procedure that SUCCR [INPUT [j],
INPUT [j]] is always false and so lines 10-15 of DIAGRAM can
be greatly simplified.

B. H. MAYoK
Regnecentralen
Gl. Carlsbergvej 2
Copenhagen Valby, Denmark

284 Communica t ions of the ACM

