based”” machines) has a machine-language instruction named
(MovE and Epirt, which permits a considerable variety of editing
features at hardware speeds. This suggests that a moderate pro-
gramming modification could enable the full power of the EpIT
instruction to be added to the ForTrAN language for such a com-
puter. The author has, in fact, done this for Version 4 of 1410
ForTrAN. From the user’s standpoint, the extension takes the
form of a new specification type in the rorMAT statement, allow-
ing a “pictorial”’, reminiscent of the Cosow “‘picture.”” This pic-
torial (which is practically identical with the corresponding
1410 machine language specification) is effective only with the
“F? and “I’’ output modes.

As an example, we can write in a 1410 FORTRAN program:

WRITE OUTPUT TAPE 6, 100, A, B, K
100 FORMAT (F(XX$0.XX), F6.2, I(XX.XX))
This results in the following 1410 treatment:

Internal Specification 1410 Edit Word Output
A 100.0 F(XX$0.XX) bb$0.bb $100.00
B 100.0 F6.2 None 100.00
K 100 I(XX.XX) bb.bb 1.00

where the b’s represent blanks. We have substituted X’s for the
blanks in the source format as a documentation aid. For further
examples of 1410 hardware editing see page 38 of the IBM 1410
Reference Manual, Form No. A22-1407-2.

To ecreate this feature in the 1410 ForTRAN all formats are ex-
amined at execution time for edit-type specifications. When an
edit-type specification is encountered, it is converted to a stand-
ard edit word and placed in the I/O buffer. After the data word
has been arranged for printing it is edited into this standard edit
word. All checking features of the 1410 10 COMMON package
are utilized. Fixed-point variables are edited directly from loca-
tion 0500. Converted f-fields are moved to a new area by the
standard I0 COMMON package from which they are edited. The
standard features of the original 1410 I0 Common package are
not disturbed.

This editing ability in 1410 ForTrAN allows business data
processing problems to be compiled without losing either the facil-
ities of the hardware edit feature or the programming advantages
of ForTraN. The author will be glad to supply the listing of this
modification upon request.

Thanks are due F. J. Balint and E. B. Weinberger for sugges-
tions leading to this work and to Dr. Weinberger for a number of
programming suggestions.

Joun E. FEpaKO
Gulf Research & Development Company
Pittsburgh, Pennsylvania

LETTER TO THE EDITOR

On the Communications Index

Dear Editor:

I have found the “Index to the Communications of the ACM,
Volumes 1-5" the March issue of Communications extremely
useful. I am sure that other members have found the index
equally useful and I would like to add my appreciation to Mr.
Youden of NBS for a job well done.

Perhaps all ACM members have not noticed that the index
may be easily detached from the issue by simply removing the
binding staples. Because of the method of binding the index
into the issue this results in a conveniently folded section which
carries its own staples.

C. L. McCarry, Jr.
Editor, Technigues Department
Communications of the ACM

Volume 6 / Number 6 / June, 1963

J. WEGSTEIN, Editor

ALGORITHM 173

ASSIGN

Oromar HAJEK

Research Institute of Mathematical Machines, Prague,
Czechoslovakia

procedure assign (a) the value of : (b) with dimension : (dim)
indices : (ind) bounds : (low, up) tracer : (5);

value dim; integer dim, ind, low, up, 7;

comment This procedure uses Jensen’s device (cf. AraoLn
Report, procedure Innerproduct) twice: the @, b may depend on

ind and also ind, low, up may depend on 7;

begin
j 1= dim;
for ind : = low step 1 until up do
if dim > 1
then
begin
assign (a, b, dim—1, ind, low, up, j);
ji=dim
end
elsea :=b

end assign;

comment The obvious use of “‘assign’’ is in assigning the value
of one array to another. The point here is that one procedure
declaration serves for all the dimensions used. In fact, the
dimension may even be a variable: thus a procedure essentially
identical with “‘assign’’ was used by the author in implementing
the recursive own process in an ALGoL compiler.

However, in addition to this, “assign’’ can have further
functions, as illustrated below. The activation assign (a, (f
i=1 then false else a) V b;.;, 1, 7, 1, n, j) will ealculate the
join-trace of a Boolean 2-dimensional array b.
assign (.4, Gf 4,=1 then 0 else @i.i) + bini; X Cisen

3,7;,1,if j = 1 then 7 else if ;7 = 2 then m else p, j)
will assign to @ the matrix product of b, ¢. It may be noticed that,
more generally, “assign’ will perform all the tensor operations,
e.g. tensor multiplication, alternation, ete.

ALGORITHM 174

A POSTERIORI BOUNDS ON A
ZERO OF A POLYNOMIAL*

ArraN GiBB

University of Alberta, Calgary, Alberta, Canada

comment The procedures below make use of Algorithm 61,
Procedures for Range Arithmetic [Comm. ACM 4 (1961)]. Tt is
assumed that the procedures below and the range arithmetic
procedures are contained in an outer block and, therefore, that

the procedures are available as required. Together the proce-
dures make possible an attempt to determine absolute bounds

* These procedures were developed under Office of Naval
Research Contract Nonr-225(37) at Stanford University. The
author wishes to thank Professor George . Forsythe for assistance
with this work.

Communications of the ACM 311

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366604.366627&domain=pdf&date_stamp=1963-06-01

on a zero of a polynomial given an initial estimate of the zero.
The procedures below are given for the complex case but may
readily be adapted for the real case;

procedure RngPlyC (N, A, Z, P);

comment RngPlyC finds bounds [P1, P2]+ i[P3, P4] on the
value of an nth degree polynomial oo {[aury1, Gerye]
+ ilasss, ausa]}2® with complex range coefficients for a com-
plex range argument z = [Z1, Z2] 4 i[Z3, Z4];

integer N; array A, Z, P;

begin integer K, J; array X, Y[l : 4];

Pl1]:= P[2]:= P[3] := P[4] : = 0;

for K := 4 X N step —4 until 0 do
begin for J : = 1 step 1 until 4 do X[J] := A[K+J];
RNGMPYC (P1], P2], P[3], P[4), Z[1], Z[2), Z[3], Z[4], Y[1],

Y[2], Y[3], Y[4]);
RNGSUMC (Y[1], Y[2], Y[3], Y|4], X(1], X[2], X[3], X[4],
P[1], P[2], P[3], P14])

end

end;

procedure RngAbsC (A, C);

comment RngAbsC produces the range absolute value [C1, C2]
of the complex range number [A1, A2] + i[A3, A4];

array A, C;

begin array B[l : 4];

RANGESQR (A[l], A[2], B[1], B[2));

RANGESQR (A[3], Al4], B[3], B[4]);

RANGESUM (B][1], B[2], B[3], B[4], C[1}, CI2]);

C[1] : = sqri(C1]);

C[2] : = sqre(C[2]);

comment It is assumed that the acecuracy of the sqr¢ routine
used is known and that the maximum error in sgrt(C) is = K
X CORRECTION (C). K is to be replaced below by its appro-
priate numerical value;

C[1] := C[1] — K X CORRECTION (C[1]);

Cl2] : = C[2] + K X CORRECTION (C[2])

end;

procedure BndZrPlyC (N, ZOR, ZOJ, A, W,);

integer N; real ZOR, ZOJ; array A, W;

comment BnrdZrPlyC attempts to determine bounds [W1, W2]
+ i[W3, W4] on a zero of an N-th degree polynomial in 2z with
complex range coefficients. It is assumed that an estimate
Z0 = ZOR + iZOJ of the zero is available. The following
theorem is used. Assume f is regular at 2, with f/(zo) # 0. Let
ho = —f(z0)/f'(z0), let A be the region [z — 2o | = r | he |, and
assume that f is regular in A. If, for some r > 0, | f'(z) | = (1/7).
| f'(z0) | for all z € A then A contains a zero of f(see [1], pp. 29-31);

begin integer I, J; array B[l1:4XN], E, F, FP, D[1:4), AF,
AFP, G1:2];

real RH, RHS, NL, NR, R, RNL, RNR;

for I : =1 step 1 until N do
begin J :=4 X [;
RANGEMPY (1,1, AlJ+1}, AlJ+2], BlJ—3], B[J-2]):
RANGEMPY (1,1, A[J+3], A[J+4], BlJ—11, BlJ])
end;

E[l]) := E[2) : = ZOR;

RngPlyC(N, A, E, F);

RngAbsC(F, AF);

RngPlyC(N—1, B, E, FP);

RngAbsC(FP, AFP);

RANGEDVD(AF(1], AF(2], AFP[1], AFP[2], NL, NR);

R:=2;

1: RANGEMPY(R,R, NR, NR, RNL, RNR);

RANGESUM (ZOR, ZOR, —RNR, RNR, W[1], W[2]);

RANGESUM(ZOJ, ZOJ, —RNE, RNR, W[3], W[4]);

comment We have replaced the disk of the theorem by a square;

RngRlyC(N—1, B, W, D);

RngAbsC(D, G);

if G[1] = 0 then go to fatlurel;

I

E(3) := E[4]) : = Z0OJ;

312 Communications of the ACM

comment failurel and failure2 are non-local labels;
RANGEDVD(AFP2], AFP[2]), R, R, RH, RHS);
if G[1] < RHS then
begin R := 2 X R;
if B > 1024 then go to failure2;
gotol
end
end

comment The following procedure may replace BndZrPlyC
above;

procedure BndZrPlyC2 (N, ZOR, ZOJ, A, W);

integer N; array A, W; real ZOR, ZOJ;

comment BndZrPlyC2 is similar to BndZrPlyC above. The
theorem used here follows. If, in the disk |z — 2o | £ 2 | ho | we
have [f7(2) | £ | f'(z0) |/(2 | ko |), then there is a unique zero in
the disk (see [2, pp. 43-50];

begin integer I, J; array B[l1:4XN]|, C[1:4XN—-4}, F, D, P,
S[1:4], X, T, Q, Y[1:2]; real V, VP, R, RL;

for I : =1 step 1 until N do
beginJ :=4 X I;
RANGEMPY (I, 1, AlJ+1], AlJ+2), B[J-3], BlJ—2));
RANGEMPY(, 1, A[J+3], A[J+4], B[J—1], BlJ])
end;

for I :=1step l until N — 1 do
beginJ :=4 X [;
RANGEMPY (I, I, BlJ+1], BlJ+2], ClJ—-3), ClJ-2]);
RANGEMPY(I, I, BlJ+3}, BlJ+4], ClJ—1], CJ])
end; ‘

D[1} := D|[2] : = ZOR;

DI[3] := D[4] : = Z0OJ;

RngPlyC(N, A, D, F);

RngPlyC(N—-1, B, D, P);

RngAbsC(F, T);

RngAbsC(P, X);

if X[1] = 0 then go to failurel;

comment failurel and failure2 are non-loeal labels;

RANGEDVD(T[1], T(2], XI1], X[2], Q[1], Q[2]);

RANGEMPY (2, 2, Q[2], Q{2], RL, R);

RNGSUMC(—R, R, —R, R, ZOR, ZOR, ZOJ, ZOJ, W[1], W[2],
W3], WiaD;

RngPlyC(N — 2, C, W, 8);

RngAbsC(S, Y);

RANGEDVD(X[1], X1}, R, R, V, VP);

if Y[2] > V then go to failure2

end

References:

1. GiBB, ALvaN. ALGOL procedures for range arithmetic. Tech.
Report No. 15, Appl. Math. and Statistics Laboratories,
Stanford University (1961).

2. OsrrowskI, A. M. Solution of equations and systems of equations.
Academic Press, New York, 1960.

ALGORITHM 175

SHUTTLE SORT

C. J. Suaw anp T. N. TriMBLE

System Development Corporation, Santa Monica, Calif.

procedure shutile sort (m, Temporary, N);

value m; integer m; array N([l:m];

comment This procedure sorts the list of numbers N[1] through
N[m] into numerie order, by exchanging out-of-order number
pairs. The procedure is simple, requires only Temporary as
extra storage, and is quite fast for short lists (say 25 numbers)
and fairly fast for slightly longer lists (say 100 numbers). For

Volume 6 / Number 6 / June, 1963

still longer lists, though, other methods are much swifter. The
actual parameters for Temporary and N should, of course, be
similar in type;

begin integer 7, j;

for 2 := 1 step 1 until m — 1 do

begin
for j := 7 step —1 until 1 do
begin
if N[j] € N[j+1)] then go to Test;
Ezchange: Temporary := NI[jl; N[} := N[j+1L
N{j+1] := Temporary; end of j loop;
Test: end of ¢ loop

end shuttle sort

ALGORITHM 176

LEAST SQUARES SURFACE FIT

T. D. ARTHURS

The Boeing Company, Transport Division, Renton, Wash.

procedure SURFIT (F, z, W, m, n) answers: (a, e, rms);
integer m, n; real rms; array F, z, W, ¢;
procedure Invert, sqrt;
comment Given a set of m ordinates and the corresponding
values of n prescribed general functions, (f;), of one or more
linearly independent variables, this procedure fits the points,
in the least squares sense, with a function of the form a,f1 + asf.
4+ . ..+ a.fn where a; are the unknown coefficients. Also com-
puted are the vectors of residuals (e;) and their lengths (rms).
Provision is made for weighting the data points. Essentially, the
matrix equation F~ WFa = F~ Wz is solved, where ¢ is the vector
of unknowns, W is an m X m diagonal matrix of data point
weights, z is the vector of ordinate values and F is the
m.. X n matrix of corresponding function values. The availa-
bility of a procedure Invert, which replaces a real matrix with
its inverse, is assumed;
begin integer ¢, j, k; real sgsum, g; array G[l:n, 1:n];
comment G is working space for the inversion procedure;
sqgsum 1= 0;
for ¢ := 1 step 1 until n» do
for j := 1 step 1 until n» do
begin G[Z, j] := 0;
for I := 1 step 1 until m do
Gli, j] 1= Gz, 51 + Flk, il X Flk, j]1 X W[k]
end j;
Invert (@, n);
for 7 := 1 step 1 until n do
begin ali] := 0;
for j := 1 step 1 until m do
begin g : = 0;
for k := 1 step 1 until n do
g:i=g+ Gl k] X F[j, kI;
ali] 1= alt] + g X 2[j] X W[j]
end j
end 7;
for 7 := 1 step 1 until m do
begin ¢[t] = y[i];
for j := 1 step 1 until n» do
eld] := el¢] — ali]l X F[2, j1;
sqsum := sgsum + e[i] 1 2
end 7;
rms 1= sqré (sqgsum/m)
end SURFIT

Volume 6 / Number 6 / June, 1963

ALGORITHM 177
LEAST SQUARES SOLUTION WITH CONSTRAINTS
M. J. SYNGE

The Boeing Company, Transport Division, Renton, Wash.

procedure CONLSQ (A, y, w, n, m, r) results: (z) residuals:
(e, rms);
real rms; integer n, m, 7;
abs, SURFIT;
comment This procedure solves an overdetermined set of n
simultaneous linear equations in m unknowns, Az = y. The
first 7 equations (r<m) are satisfied exactly and the remaining
n — r are satisfied as well as possible by the method of least
squares. Each equation is assigned a weight from the vector w,
although the first » weights have no relevance. This procedure
may be used for curve or surface fitting when the approximating
function or its derivatives are required to have fixed values at a
number of points;
begin integer 7, j, k, ©¢, ick; integer array ic[l:m];
array B[lin—r, 1:m—r]; real Amaz;
for 2 := 1 step 1 until r do
begin k :=1; for j:= 2 step 1 until m do
begin if abs (AlZ, j1) > abs (Alz, k]) thenk := j; end;
wli] i=k; Amazx := Az, k]; for j:= 1 step 1 until m do
Ali, 51 1= AlE, j)/Amaz; yli] == ylil/ Amaz;
for 72 : = 1 step 1 until r do
begin if iz = 7 then go to skip;
for j := 1 step 1 until m do
Alit, j] 1= Alwi, 71 — Alz, j] X Amaz;
ylie] 1 = ylit] — yl[i] X Amaz;

array A, y, w, z, ¢; procedure

Amaz 1= Al k];

skip: end 4
end ¢;
ick :=71+4+1; forj:=1stepl until m do
begink := 1;

repeat: if j = iclk] then go to next;
k:=k+41; if r Z k then go to repeat;

ielick] 1= 7; ick :=ick + 1;
next: end k;
for i :=r 4 1 step 1 until » do
begin for k : = 1 step 1 until r do
ylil := yle] — ylk] X Az, <clk]];
for j :=r 4 1 step 1 until m do
begin B[i, j] : = Ali, ic[ill;
for k := 1 step 1 until 7 do
B[, j] := Bli, j] — AlL, telk]l X Ak, deljll
end j
end 7;
SURFIT (B, ylr+1:n], wir+1l:n], n —r, m —
elr+1:n], rms);
comment The procedure SURFIT is called to solve the reduced
set of n — r simultaneous linear equations in m — = unknowns,
Bz, = y’, which have no constraints;
for j:=r + 1 step 1 until m do z[ic[j]] : = z[j];
for j:= 1 step 1 until » do
begin z[ic[s]] : = yi;
fori:=17r -+ 1 step 1 until m do
zliclf]] : = zlicy]] — Al4, ielz]] X zlec[e]]
end j
end CONLSQ

r, zlr+lim],

ALGORITHM 178

DIRECT SEARCH

Artaur F. Kavupn, Jr.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure direct search (psi, X, DELT A rho, delta, S);

Communications of the ACM 313

value K, DELTA, rho, delia; integer K;
real DELTA, rho, della; real procedure S;
comment This procedure may be used to locate the minimum
of the function 8 of K variables. A discussion of the use of this
procedure may be found in: Robert Hooke and T. A. Jeeves,
‘Direct Search’ Solution of Numerical and Statistical Problems
/. ACM 8, 2 (1961), 212-229]. The notation is essentially that
used in Appendix B of the cited paper. The exceptions being the
spelling of the Greek letters and the introduction of notation to
distinguish between the process of calculating a value of S and
the value itself-—thus S(ph¢) and Sphi. A modified version of this
procedure acceptable to the BAC compiler for the Burroughs
205 and 220 computers has been prepared and run successfully;
begin real 8S, Spst, Sphi, theta; array phi [1:K]; integer K, k:
procedure E; for k : = 1 step 1 until K do
begin phi [k] : = phi [k] + DELTA; Sphi
if Sphi < SS then 88 : = Sphi else
begin phi (k] : = phi [k] — 2 X DELTA; Sphi := S(phi):
if Sphi < SS then 88 : = Sphi else phi [k] : = phi [k] 4+ DELTA
end E;
Start: Spst 1= S(psi);
1: S8 := Spse;
for t := 1 step 1 until K do phi [k] : = psi [k]; E;
if SS < Spst then begin
2: fork := 1 step 1 until K do begin
theta : = psi [kl
psi [k] 1= phi [k];
phi k] : = 2 X phi [k] — theta end;
Spsi :=88; 88 := Sphi := S(phi); E;
if S8 < Spsi then go to 2 else go to 1 end;
3: if DELTA > delta then begin DELTA 1= rho X DELTA;
goto 1l end end

array pst;

1= S(pha);

ALGORITHM 179

INCOMPLETE BETA RATIO*

Oriver G. Lupwic

Mathematical Laboratory and Department of Theoret-

ical Chemistry, University of Cambridge, England

* Based in part on work done at Carnegie Institute of Tech-
nology, Pittsburgh, Pennsylvania and supported by the Petroleum
Research Fund of the American Chemical Society and by the
National Science Foundation.

real procedure incompletebeta (x, p, q, epsilon);

value z, p, ¢; real z, p, q, epsilon;

begin real finsum, infsum, temp, temp 1, term, term 1, qrecur, indez;
Boolean alier;

comment This procedure evaluates the ratio B.(p, ¢)/Bi(p, q),
where B,(p, ¢) = ["1 —t)a df, with0 < z < 1 and p, ¢ > 0,
but not necessarily integers. It assumes the existence of a non-
local label, alarm, to which control is transferred upon entry to
the procedure with lnvalid arguments. Also assumed is a proce-
dure to evaluate fu tPe~t dt which is called factorial(p), (cf. e.g.
Algorithm 80, March, 1962);

ifz>1Vz<0Vp=20Vqg=Z0then go to alarm;

ifz = 0V z = 1 then begin incompletebeta : = z; goto Endend;

comment This part interchanges arguments if necessary to ob-
tain better convergence in the power series below;

if z £ 0.5 then alter : = false else
begin alter : = true; lemp :=p; p:=g¢

1 — z end;

comment This part recurs on the (effective) g until the power

series below does not alternate;

qg .= tlemp;, x =

314 Communications of the ACM

Jinsum 1= 0; term :=1; lemp:=1—x; grecur := index := g;
for index : = index — 1 while index > 0 do
begin gqrecur : = index;
term = term X (grecur41)/(tempX (p+qrecur));
finsum = finsum ~+ term
end;

comment This part sums a power series for non-integral effec-
tive ¢ and yields unity for integer g;

infsum = term 1= 1; index := 0;

comment In the following statement the convergence criterion
might well be altered to term > epsilon, since infsum > 1 al-
ways, thus saving one divide per cycle at the cost, perhaps, of a
few more cycles;

for index := index 4+ 1 while (term/infsum) > epsilon do
begin term := term X z X (index-qrecur) X (p+index—1)/

(indexX (p+1index)); infsum : = infsum + term

end;

comment This part evaluates most of the necessary factorial
functions, minimizing the number of entries into the factorial
procedure;

temp := temp 1 := factorial (qrecur—1);
term := term 1 : = factorial (qgrecur4-p—1);
for <indexr := gqrecur step 1 until (g—0.5) do

begin temp 1 : = temp 1 X indezx;
term 1 := term 1 X (index+p)
end;
comment This part combines the partial results into the final
one;
temp 1=z T p X (infsumXterm/(pXtemp)+finsumXterm 1X
(1-2) T ¢/ (gXtemp 1))/factorial (p—1);
incompletebeta : = if alter then 1—temp else temp;
end: end incompletebeta

ALGORITHM 180
ERROR FUNCTION—LARGE X
Henry C. THACHER, JR.*
Argonne National Laboratory, Argonne, Il
* Work supported by the U. S. Atomic Energy Commission.

real procedure erfL(z); value z; real z;
comment This procedure evaluates the error function of real

&
argument, erf(z) = (2/\/7;)./. e® du by the Laplace continued
[}

fraction for the complementary error funetion: erf(z) = 1 —
A/ 4o/ A+20/A430/A+- -))))/(V 7z ¢) where v = 1/
(22?). Successive even convergents of the continued fraction are
evaluated, using an algorithm suggested by Maehly, until the
full accuracy of the arithmetic being used is attained.

The continued fraction converges for all z > 0. For small z,
however, convergence may be excessively slow, and overflow
may occur. In this region, the Taylor series converges satis-
factorily, and algorithms such as No. 123 are suitable.

For & = 0, the procedure calls the global procedure alarm.

The body of this procedure has been checked on the LGP-30
computer, using the Dartmouth Self Contained Algol Processor.
The program was used to tabulate erf(z) from 0.9(.1)5.0. The
maximum error was 2 X 107%, which is explainable by roundoff
errors. The number of convergents calculated ranged from 36
forz = 0.9 to 2 for z = 3.3. Overflow occurred for z = 0.87;

begin integer m; real Bmin 2, Bmin 3, P,R, T, v, v2;
if £ < 0 then alarm;

vi=a Xz
T 1= —0.56418958/x/exp (v);
comment The constant 0.56418958 --- = #2 and should

be given to the full accuracy required of the procedure;
v := 0.5/v;

Volume 6 / Number 6 / June, 1963

P=yXT;

2 :1=9v X v;

T:=T+1;

m = 0

R:=Bmin3:=Bmin2:=1;

form := m + 1 while 7 # R do
begin R := T}
Bmin3 :=vX (m—1) X Bmin3 + Bmin 2
T := B min 2;
Bmin2:=vX mX Bmin2+ Bmin3;
T:=R — P/Bmin2/T;
P:=mX (m+1) X 2 X P
end while;
erfl, := T

end

ALGORITHM 181

COMPLEMENTARY ERROR FUNCTION—
LARGE X

Hexry C. THACHER, Jr.*

Argonne National Laboratory, Argonne, TIll.
* Work supported by the U. S. Atomic Energy Commission.

real procedure erfcL(z); value z; real z;

comment This procedure evaluates the complementary error
function, erfe(z) = 1 — erf(x) = (2/\/7r) fzezp(—uz)du by

ALGORITHM 182

NONRECURSIVE ADAPTIVE INTEGRATION
W. M. McKeeMAN AND LaArRrRY TESLER

Stanford University, Stanford, Calif.

real procedure Simpson(F) limits : (a, b) tolerance : (eps);
real procedure F; reala,b, eps; valuea, b, eps;

begin comment A nonrecursive translation of Algorithm 145.
Note that the device used here can be used to simulate recursion

for a wide class of algorithms;

integer lvl;

switch return := rl, r2, r3;

real array dx, epsp, 22, 23, F2, F3, F4, Fmp, Fbp,

est2, est3 [1:30], pval[1:30, 1:3];

integer array rirn [1:30];

real absarea, est, Fa, Fm, Fb, da, sz, estl, sum, F1;

comment the parameter setup for the initial call;

Il := absarea :=est :=0; do:=b — g

Fa := F(a); Fm := 4.0 X F((¢+b)/2.0); Fb:= F(b);

recur:
Wl = Wl +1; dz[lvl] : = da/3.0;
sz 1= dz[lwl]/6.0; Fl:= 4.0 X F(a+dz[lvl]/2.0);
22[Wl) 1= a + dz[lvl]; F2[l) := F(x2[lvl]);
z3[ll] 1= x22[ll] + dx[lvl]; F3[Wl] : = F(23[ll]);
epspllvl] 1= eps; F4[lvl] 1= 4.0 X F(z3[lvl]+dz[lvl]);
Fmp[ll] := Fm; estl := (Fa+F1+F2[vl]) X sz;
Fopllvl] : = Fb; est2[lvl] := (F2[Wl]+F3[Wwl]+Fm) X sz;

est3[lvl] 1= (F3[Wwl]+FA[lwl]+Fb) X sz;

sum := estl + est2[lvl] + est3[lvl];

the Laplace continued fraction:

erfe(@) = (1/Q+v/A+20/A430/A+- -)N/ (V 7z &)
where v = 1/(22?). Successive even convergents of the continued
fraction are evaluated, using an algorithm suggested by Maehly,
until the full accuracy of the arithmetic being used is attained.

The continued fraction converges for all z > 0. For small z,
however, convergence may be excessively slow, and overflow
and round-off accumulation may occur. In this region, the

absarea 1= absarea — abs(est) + abs(estl) -+ abs(est2[lvl]) +
abs (est3[lvl]);
if (abs(est—sum) < epspllvl] X absarea) \V (Iwl>30) then

begin comment done on this level;
up Wl 1= Wl — 1,

pval[lvl, rtrn(lvl]] 1= sum;
go to return [rirn[lvl]]
end;

Taylor series converges satisfactorily.
For x £ 0, the procedure calls the global procedure alarm.

The body of this procedure has been checked on the LGP-30
Computer, using the Dartmouth Self Contained Algol Processor,
for 2 = 1.2(0.1)5.0. Results were generally correct to 1 in the
6th significant digit, although a few errors were as large as 6
in that digit. The errors are believed to be due to round-off
only. The number of convergents calculated ranged from 46

forz = 1.2 to 10 forz = 5.0.
Overflow occurred for z = 1.183;
begin integer m; real Bmin 2, Bmin 3, P, R, T, v, v2;
if z < 0 then alarm;
vi=x Xz
T := 0.56418958/x/exp(v);

comment The constant 0.56418958 --- = =712 and should be
given to the full accuracy required of the procedure;

v 1= 0.5/v;

v2:=1v X v

P:=sXT;

m:=R:1=0;

Bmin3d:=Bmin2:=1;
for m :=m + 2 while R # T do

begin B := T}
Bmin3d:=vX (m—1) X Bmin 3 + B min 2;
T := B min 2;

Bmin2:=0vX mX Bmin2+ Bmin3;
T:=R — P/Bmin2/T,
P:=mxX (m+1) X2 X P
end while;
erfe L := T
end

Volume 6 / Number 6 / June, 1963

rirn{lvl] 1= 1; da 1= dzx[lvl]; Fm := F1I;
Fb := F2[lvl]; eps := epsp[lvl]/1.7; est := estl;
go to recur; rl:
rirn[ll] 1= 2; da := dz[ll]; Fa := F2[l];
Fm := Fmp[lvl]; Fb := F3[ll]; eps := epsp[lvl]/1.7;
est 1= est2[lvl]; a := x2[lwl]; go to recur; r2:
rirn{lvl] 1= 3; da 1= dz[lvl); Fa := F3[ll];
Fm 1= F4[ll]; Fb := Fbpl[ll]l; eps := epspllvl]/1.7;
est 1= est3[ll]; a := 23[lwll; go to recur; r3:
sum = pval[lvl, 1] + pual(lvl, 2] + pval[lvl, 3];
if Il > 1 then go to up;
Simpson 1= sum
end Simpson

ALGORITHM 183

REDUCTION OF A SYMMETRIC BANDMATRIX

TO TRIPLE DIAGONAL FORM
H. R. Scawarz

Swiss Federal Institute of Technology, Ziirich, Switzer-

land

procedure bandred(a, n, m);
value n, m; integer n, m; array @;

comment bandred reduces a real and symmetric matrix of band

type (order n, alz, k]=0 for |{—k|>m) by a sequence of orthog-
onal similarity transformations to triple diagonal form. The
procedure represents a generalization of the algorithm m21 by
H. Rutishauser. Due to symmetry only the upper part of the
band matrix must be given and these elements are denoted for

Communications of the ACM 315

convenience in the following way: «[¢, 0] ¢=1, 2, .-+, n) repre-
sents the diagonal element in the ¢th row, and al¢, k] (=1, 2,
-+-,n—kand k=1, 2, ---, m) represents the generally nonzero
element in the 7th row and the kth position to the right of the
diagonal. After completion of the reduction, the elements of the
symmetric triple diagonal matrix are given by a7, 0] (=1, 2,
--+yn)andalt, 1] (=1,2, ---,n—1);
begin integerr k 7,5, p,rr; real b,g, c,s,c2,s2 ¢cs,u,;

for r:= mstep —1 until 2do

begin
for k : = 1 step 1 until n—r do
begin
for j : = k step r until n—r do
begin

comment This compound statement describes the rota-
tion involving the 7th and (+1)st rows and eolumns
in order to reduce either alj, 7] or the off-band element
g to zero, respectively. This rotation produces a new
off-band element g (in general different from zero) pro-
vided 7 + r < n;

if j = k then

begin if alj, r] = 0 then go to endk;

b := —alj, r—1l/als, 7]

end

else

begin if ¢ = 0 then go to endk;
b= —alj-1,rl/g

end;

s i= 1/sqrt(l + bXb); ¢ := b X s;
2i=cX¢ 2:=sXs¢es:=cXs;
Ti=j54+7r—1;
cross elements:
ui=c2Xal,0 —2Xes Xaltg, 1]+ 2 X alz + 1, 0];
vi=82Xal,0] 4+ 2 X es X ali, 1] + ¢2 X ali+1, 0];
alz, 1] := ¢s X (al?, 0] — ali+1, 0) + (c2—s2) Xali, 1];
ali, 0] := w; a[i+1,0] := v;
column rotation:
for p := jstep l until7z — 1 do
begin
ui=c¢ X a[p,1—p] — s X a[p, i—p+1];
alp, i~p+1] := s X alp, i—p] + ¢ X alp, i—v+1};
alp, i—pl 1= u
end p;
if 7 # k then
alj—1,r]:=¢ X alj—=1,7r] — s X g¢;
row rotation:

rri=ifr < n — 7 then r else n — 3
for p := 2 step 1 until do
begin

u = ¢ X alZ, p] — s X ali+1, p—1];
ali+1, p—1] := s X al?, p] + ¢ X ali+1, p—1}J;

alt, p] 1= u
end p;
if 7+ r < n then
new ¢g: begin ¢ := —s X ali+1, r];
ali+1, 7] := ¢ X ali+1, r]
end
end 7j;
endk: end k

end r
end bandred

316 Communications of the ACM

CERTIFICATION OF ALGORITHM 74

CURVE FITTING WITH CONSTRAINTS [J. E.
Peck, Comm. ACM, Jan. 62]

Kazvo Isopa

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan

Algorithm 74 was hand-compiled into SOAP IIa for the IBM
650 and run successfully with no corrections except the case in
which the origin (0, 0) are given as both a constraint and a sample.

CERTIFICATION OF ALGORITHM 123

REAL ERROR FUNCTION, ERF (x) [Martin Craw-
ford and Robert Techo, Comm. ACM, Sept. 1962]

Hexry C. THACHER, JR.*

Argonne National Laboratory, Argonne, I11.
* Work supported by the U. 8. Atomic Energy Commission,

The body of Erf(z) was tested using the Dartmouth SCALP
compiler for the LGP-30. For 2 = 0(0.01)0.3, the results agreed
with tabulated values to 8 in the 7th decimal place, and for z =
0.4(0.2)1.6 the error was less than 1 in the 6th decimal. These
results are compatible with the roundoff error in the arithmetic
used. The computing time inereased rapidly (by a factor of more
than 10) as z increased from 0.01 to 1.6.

The following comments should be considered by users of the
algorithm:

1. The parameter should be ealled by value, both to allow the
use of expressions, and also to avoid destruetion of the actual
parameter.

2. The constant 10—10 in statement 2 determines the accuracy of
the computation. Its value should be adjusted to the arithmetic
being used, and the accuracy required. A machine-independent
test could be made by substituting if ¥ — 7" = Y then --- .

3. For large z, the error function is more efficiently calculated
from the Laplace continued fraction for erfe(z). Algorithm 180
is based on this method.

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ArcoL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

Volume 6 / Number 6 / June, 1963

