
Disk File Sorting*

THOMAS SCHICK
International Business Machines Corp., Endicott, N. Y.

Sorting techniques using an IBM 1401 with a random access
storage device are evaluated.

Presently there are two methods used to sort a file of
records. One of them is referred to as record sorting, and
the other is called tag sorting or key sorting. Record sorting
is a sorting technique in which the entire record is proc-
essed throughout the sort. Tag sorting on the other hand
is a method whereby only the tag which consists of the
control data and the address of the record is processed
throughout most of the sort. Both are similar in that the
number of times the control data of each record must be
processed in sorting a given file is approximately the same.
This holds true only if G, the number of records sorted
internally, and the order of merge are held constant. Thus
the advantage in using the tag sort is that the record being
processed in the sort is usually smaller than it would be in
a record sort. I f the tag is equal in length to the record,
then the tag sort can become a record sort. The major
problem in using the tag appi'oach is that an additional
phase is required in which each record must be individually
retrieved. This additional phase usually proves to be the
most t ime consuming.

Tag Sort

The tag sort may be divided into three phases. Phase 1
performs the following functions. A record is read into
memory, its control data is extracted, and a control word
or tag is formed consisting of this control data and the
address of the record. An :internal sort is performed on
each successive G records so processed. This is done for
the entire file. I t should be noted that the value of G
m a y be larger in a tag sort than a record sort because the
control word is usually a small fraction of the record. The
output , then, of this phase is a set of strings each G in
length.

Phase 2 consisting of several passes performs the
function of merging these strings into one sequence. The
tag sort may require fewer passes than the record sort
because the strings developed in phase 1 may be longer.
In the last pass of phase 2 the control data is dropped from
the control word. The output of the phase is a string of
addresses referring to records which when placed in the
same order that the addresses appear will themselves be in
order; i.e., the first address refers to tha t record in the
file which contains the lowest control data, the second
address refers to that record in the file which contains the
second lowest control data, etc.

* Presented at an ACM Sort Symposiura, November 29, 30, 1962.

Phase 3, the final phase, retrieves the records and
places them in the output area as desired. One manner by
which this can be accomplished would be to seek each
record as its address appears in the string of addresses.
This requires a random seek for each record and therefore
tends to be quite time-consuming. Another method is to
reorder a set of the addresses so tha t this set can be
retrieved relatively sequentially. The size of this set, call
it C, controls the speed of the retrieval of the records. I t is
therefore of great importance tha t it be as large as possible.
The size of C is determined by the area Mlowed for the
rearranging of the records in memory. If the memory
capacity is inadequate, a cylinder on the file could be set
aside to function as additional memory.

One serious problem in the various phases but especially
in phase 3 is the possible loss of t ime because of "rotat ional
delay." This problem can exist in nearly all disk file
operations. If one reads a block of records and then
processes it, one cannot read the next sequential block
immediately because the disk will have rotated past the
desired point. I t is necessary to wait until the disk has
completed an entire revolution. This delay can be mini-
mized by the following technique: if it is known tha t a
certain amount of process t ime is required between reads
or writes, one would read or write the next block at tha t
point to where the disk has rotated after the processing
has been completed. Thus, for example, on the 1401 with a
1311 a t tachment if one were to write a block of one sector
and the process trine were less than 2 msec, one would read
or write on every third sector as follows:

0, 3, 6, 9, 12, 15, 18, 1, 4, 7, 10, 13, 16, 19, 2, 5, 8,

11, 17, 0, 3, . . .

The t ime lost because of the rotational delay t ime is thus
reduced by approximately 90 percent. Note in the above
series that when the sector number exceeds 20 (the num-
ber of blocks on a track), 20 is subtracted from the last
number and the series continues. I t is important to note
also that in this case the entire t rack will be fully packed.

The op t immn intervals have the following restrictions.
Depending on the requirements, they are prime numbers
or multiples of prime numbers tha t do not contain any
factors tha t are also a factor of the number of blocks on
the t rack or cylinder. To insure tha t the resultant addresses
refer to the first sector of the block, said number must be
multiplied by the number of sectors in the block. For
example, depending on the process t ime required when
writing a sector at a t ime using the I B M 1401 with a 1311
at tachment , the op t imum intervals m a y be 3, 7 or 9.
Different number schemes must be developed for other
blocking configurations.

Record Sort

The record sort can be divided into two phases. The
first phase performs an internal sort on strings of G records.
The second phase performs a series of merge passes to

330 Communications of the ACN', Volume 6 / Number 6 / June, 1963

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366604.366656&domain=pdf&date_stamp=1963-06-01

order these strings. The internal sort is not dependent on
the input-output device. Therefore, we will not discuss it
here.

The speed of a record sort is a function of three major
factors: (1) the number of access mechanisms available,
(2) the maximum blocking factor possible (the maximum
number of records contained in a block), and (3) the speed
at which sequential operations can be performed. Clearly,
these factors are interrelated.

To insure minimum seek times in the merging phase,
there must be at least M-l-1 access mechanisms, where M
is the order of merge. An approximation of the number of
random seeks, S, required per' block in each merging pass
may be formulated as follows:

M + I - - A + X
S =

M

where M = order of merge

A = number of access mechanisms available

r if A = 1

X = if 1 < A =< M

IA -- M -- 1, otherwise.

If there is only one access mechanism, there is need for a
seek for nearly every read and write. If there are two
access mechanisms, the output is sequential and therefore
seek time for output is minimal. Only input requires a seek
for nearly every read.

Thus, as the number of access mechanisms increases, the
see];: time decreases. The above formula assumes a random
file.

The second factor which influences the speed of the
record sort is the blocking factor. The higher the blocking
factor becomes, the less significant the rotational delay and
seek time become per record. The formula below indicates
the interrelation between seek time, rotational delay time
and the blocking factor. I t also indicates the importance of
the rate of the transfer of data from the random access
device to memory.

The average time required to read a record Call be
formulated as follows:

A + C . B . L + T
T =

B

where L ~ number of characters contained within a
record

B ~ the blocking factor

A =-- average rotational delay

C =- character time

T -~ seek time (msec).

From the above formula it becomes clear that rotational
delay and seek time are significant only if the blocking
factor is small.

For example, on the 1401 with the 1311 attachment,

the above formula would appear approximately as:

20 + . 0 2 B . L + 150 170
T = - A- .02L.

B B

If L = 100 and B = 10, then T = 17-4-2 = 19 msec.
If L = 100 and B = 100, then T = 1.7 A- 2 = 3.7 msee.

C o m p a r i s o n o f T a g S o r t a n d R e c o r d S o r t

To compare the tag and record approaches, the follow-
ing observations should be made. The time required to
read the input in phase 1 is equal for both approaches.
Furthermore, the input-output time required in phase 2
of both sorts is directly related to the value Y, where:

W y -
L

W ~ length of control word or key in the tag sort

L ~ record length.

This becomes evident when one realizes that in phase
2 of the tag sort, W is the size of the record processed and
L is its counterpart in the record sort. I t should be men-
tioned here that this holds true only if the block size,
order of merge and G are held constant (G is actually equal
for both sorts only if W = L).

Therefore, only the difference between phase 2 of the
record sort and phases 2 and 3 of the tag sort need be
compared. We have then the comparison:

F2(1-- Y) :F~

where F2 = input-output time for phase 2 of the
record sort

F~ = phase 3 time of the tag sort.
Clearly, if Y = 1, or the control word is equal in length

to the record, then the record sort is far superior. However,
if Y = 0.1, which might be an average case, the tag sort
may be preferable.

I t should be noted that the comparison is not nearly as
straightforward as it appears. If W = 10, L = 100 and
block length = 300, then for the record sort on the
1401-1311,

20 + 6 + 150
T1 = = 59 msec,

3

and for the tag sort on the 1401-1311,

2 0 + 6 - 4 - 150
T2 = = 5.9 msec.

30

If W = 10, L = 100, and block length = 10,000, then
as above for the record sort on the 1401-1311:

2 0 + 2 0 0 + 1 5 0
T3 = = 3.7 msec

100

and for the tag sort on the 1401-1311:

2 0 + 2 0 0 + 150
T4 = = .37 msec.

1000

Continued on page 339

Volume 6 / Number 6 / June, 1963 Communications of the ACM 331

12. TI-IETA = (CZ - BZ) / (CY -- BY)
THETA = ATANF(TTtIETA)

13. ALPHA = ATANF(TALPHA)
BETA = ATANF(TBETA)

Write-out statements complete the program]
The principal feature of the foregoing subroutines and

their usefulness is that of revolving the configuration about
an axis parallel to the x-, y-, or z-axis of the reference
system. It is clear that rotation about an axis parallel to
the z-axis will not alter the z-coordinate of points, nor about
the x-axis alter the x-coordinates nor the y-axis the y-
coordinates. The revolution of a configuration about any
axis will change only the coordinates relative to the axes
perpendicular to the axis of rotation.

The fifteen (15) subroutines comprise DESCRIPTRAN
and are more than essential, but allow for variations in the
programmer's choices. Together they facilitate the solu-
tion of three-dimensional problems with a digital computer
and in a way analogous to that of descriptive geometry.
Thus they constitute automated descriptive geometry.

SCHICK--continued from page 331

Thus as the block size becomes larger and the seek time
and rotational delay time become less significant, the
difference between the merge phase of the tag sort and
record sort becomes much smaller.

T1 - T2 = 53.1 msec, T3 -- T4 = 3.33 msec.

With a smaller blocking factor (occasioned by smaller
core capacity) the difference between phases 2 of the
record and tag sorts is substantial and offsets the time
needed for phase 3 of the tag sort. In larger machines the
blocking factor may be increased. Hence, the difference
between phase 2 of the record and tag sort diminishes
greatly while phase 3 does not decrease appreciably. For
this reason more than any other, the record sort is faster
than the tag sort on a larger machine.

Considerations of importance not discussed here are the
order of merge and the processing time. In a large machine
the order of merge can be increased considerably as long as
tile blocking factor does not decrease to a point where the
seek time and rotational delay time become significant.
Processing time consumes a greater percentage of the
total time in a larger machine, whereas in a small machine,
input-output time is the major factor. On a large machine,
where the blocking factor is large, the process time be-
eolnes relatively more significant.

Thus it appears that on a machine with a small memory
capacity the tag sort should prove to be more efficient.
The record sort becomes increasingly more efficient as the
machine size increases.

Vohune 6 / Number 6 / June, 1.963

ACM Institutional Members

The American University
Aerospace Corporation
Auburn University

Bank of America
Bendix Computer Division
Burroughs Corporation

California Institute of Technology
C-E-I-R, Inc.
Computer Usage Company, Inc.
Control Data Corporation

Florida State University

General Motors Corporation

International Business Machines, Inc.
Institute fiir Angewandte Mathematik de

Bergakademie Clausthal (Germany)

Johns Hopkins University

Litton Systems, Inc.

Massachusetts General Hospital
Massachusetts Institute of Technology
Miami University
Michigan State University

North Carolina State College

The Ohio State University
Oregon State University

Philco, a subsidiary of Ford Motor Company

Radio Corporation of America
The RAND Corporation
Republic Aviation Corporation

Southern Illinois University
Stanford University
System Development Corporation

Texas A & M College
Texas Christian University

Union Carbide Corporation
University of California
University of Chicago
University of Denver
University of Kentucky
University of Missouri
University of North Carolina
University of Southern California
The University of Texas

Washington State University
Wayne State University
Wolf Research and Development Corporation

Yale University

C o m m u n i c a t i o n s o f t h e ACM 339

