2: begin
if ¢ = 0 then
3:begin
e:=aXe;f:=bXd;gote8
end 3;
e:=Db X c;
ifd 2 O then
4: begin
f:=bXd; gote8
ALGORITHM 61 end 4;

f:= H o to
PROCEDURES FOR RANGE ARITHMETIC 5 ond 2;“‘1’ goto8

ALLaN GisB* ifb > 0then

University of Alberta, Calgary, Alberta, Canada 6: begin
ifd > 0then

Check for
Updates

begin

procedure RANGESUM (a, b, ¢, d, e, f);
real a,b,c,d, e,f;
comment The term ‘“‘range number’’ was used by P. S. Dwyer,

begin
e:= MIN(a X d,b X ¢);
f:= MAX(a X ¢,b X d); goto8

Linear Computaizons (Wiley, 1951). Machine procedures for 6?56{) S fimaXe: 10 8
range arithmetic were developed about 1958 by Ramon Moore, ed.; XKoo bi=axe goto
“Automatic Error Analysis in Digital Computation,”” LMSD FI,I= a’X o

Report 48421, 28 Jan. 1959, Lockheed Missiles and Space Divi- if:d < Oth,en

sion, Palo Alto, California, 59 pp. If a £ x £ bande¢ £y £ d, 7 b e

then RANGESUM yields an interval [e, f]such thate < (x + y) L b d cotesd

=< f. Because of machine operation (truncation or rounding) the ed. ; X di goto

machine sums a + ¢ and b 4+ d may not provide safe end-points :n, _ ; % d:

of the output interval. Thus RANGESUM requires a non-local
real procedure ADJUSTSUM which will compensate for the
machine arithmetic. The body of ADJUSTSUM will be de-
pendent upon the type of machine for which it is written and so
is not given here. (An example, however, appears below.) It
is assumed that ADJUSTSUM has as parameters real v and w,
and integer 1, and is accompanied by a non-local real procedure
CORRECTION which gives an upper bound to the magnitude
of the error involved in the machine representation of a number.
The output ADJUSTSUM provides the left end-point of the

8: e := ADJUSTPROD (e, —1);
f := ADJUSTPROD (, 1)

end RANGEMPY;
procedure RANGEDVD (a, b, c,d, e, f);

real a, b, ¢, d, e, f;
comment If the range divisor includes zero the program
exists to a non-local label ‘“‘zerodvsr”’. RANGEDVD assumes a
non-local real procedure ADJUSTQUOT which is analogous
(possibly identical) to ADJUSTPROD;

i : begin

output interval of RANGESUM when ADJUSTSUM is called . .
with i = —1, and the right end-point when called with i = 1. ff c= Ol:\ d 2 0 then go to zerodvsr,
The procedures RANGESUB, RANGEMPY, and RANGEDVD _ ifo <Othen
provide for the remaining fundamental operations in range 1: be_gflt': ;
arithmetic. RANGESQR gives an interval within which the . ! .>0t hen
square of a range number must lie. RNGSUMC, RNGSUBC, 2 begl.n
RNGMPYC and RNGDVDC provide for range arithmetic with € = b/d; go to3
complex range arguments, i.e. the real and imaginary parts :l'“i%)’/c-
;fgifnge numbers, 3: ifa = 0then

e 1= ADJUSTSUM (a, ¢, —1); 4 begin

f := ADJUSTSUM (b, d, 1) f:= a/c; go to8
end RANGESUM; end 4;
procedure RANGESUB (a, b, ¢, d, e, f); f:=a/d;gote8

real a,b,c,d,e,f; ?nd 1;
comment RANGESUM is a non-local procedure; 5 Lizi: 0 then
begin :

RANGESUM (a, b, —d, —¢, ¢, f) e:=afc; gotof
end RANGESUB; end 5;
procedure RANGEMPY (a, b, ¢, d, e, f); ? i= a/d;

. 6: if b > 0 then

real a, b, c, d, e, f; : .
comment ADJUSTPROD, which appears at the end of this 7: begin
procedure, is analogous to ADJUSTSUM above and is a non- f:=Db/c; goto$§
local real procedure. MAX and MIN find the maximum and end 7;
minimum of a set of real numbers and are non-local; f:=b/d;

begin
real v, w;
if a<O0OAcz 0then

8: e := ADJUSTQUOT (e, —1); f:= ADJUSTQUOT (f,1)
end RANGEDVD;
procedure RANGESQR (a, b, e, f);

1: begin real a, b, e, {;
vi=e¢; ci=a; ai=v; wi=d; d:=b; bi=w comment ADJUSTPROD is a non-local procedure;
end 1; begin
if a20 then if a < 0 then

Communications of the ACM 319

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366622.366639&domain=pdf&date_stamp=1961-07-01

1: begin

if b < 0 then
2: begin
e:=hXb; f:=aXa; goto3
end 2; .
e:=0; m:=MAX (-a,h); f:=mXm; goto3
end 1;
e:=aXa; f:=bXb;

3: ADJUSTPROD (e, —1);
ADJUSTPROD (1, 1)

end RANGESQR;
procedure RNGSUMC (al,, aR, bL, bU, ¢l,, ¢R, dL, dU, eL,
eR, fL, {U);

real al,, aR, bL, bU, cL, ¢R, dL, dU, eL,, eR, fL, {U;
comment Rangesum is a non-local procedure;
begin

RANGESUM (al, aR, cL, cR, el,, eR);

RANGESUM (bL, bU, dL, dU, fL, fU)
end RNGSUMC;
procedure RNGSUBC (aL, aR, bL, bU, cL, cR, dL, dU, e,
eR, L, {U);

real aLi, aR, bL, bU, cL, ¢R, dL, dU, eL,, eR, fL, {U;
comment RNGSUMC is a non-local procedure;
begin

RNGSUMC (aL, aR, bl, bR, —cR, —cL, —dU, —dL, €L, eR,

fL, fU)
end RNGSUBC;
procedure RNGMPYC (al, aR, bL, bU, cL, ¢cR, dL, dU, e,
eR, fL, fU);

real ali, aR, bL, bU, ¢L, ¢R, dL, dU, eL, eR, fL, {U;
comment RANGEMPY, RANGESUB, and RANGESUM are
non-local procedures;
begin

real L1, R1, L2, R2, 13, R3, L4, R4;

RANGEMPY (al, aR, cl,, cR, L1, R1);

RANGEMPY (bL, bU, dl,, dU, L2, R2);

RANGESUB (L1, Rl, 1.2, R2, e, eR);

RANGEMPY (al,, aR, dL, dU, L3, R3);

RANGEMPY (bL, bU, cL, cR, L4, R4);

RANGESUM (1.3, R3, 14, R4, {L, {U);
end RNGMPYC;
procedure RNGDVDC (aL, aR, bL, bU, c¢L, cR, dL, dU, eL,
eR, fL, {U);

real al, aR, bL, bU, c¢L, ¢R, dL, dU, eL, eR, L, {U;
comment RNGMPYC, RANGESQR, RANGESUM, and
RANGEDVD are non-local procedures;
begin

real L1, R1, 12, R2, L3, R3, L4, R4, L5, R35;

RNGMPYC (aL, aR, bL,, bU, cL, ¢R, —dU, —dL, L1, R1, L2,

R2);

RANGESQR (cL, cR, L3, R3);

RANGESQR (dL, dU, 14, R4);

RANGESUM (L3, R3, L4, R4, L5, R5);

RANGEDVD (L1, Rl, L5, R5, eL, eR);

RANGEDVD (L2, R2, L5, R5, fL, {U)
end RNGDVDC

end

EXAMPLE

real procedure CORRECTION (p); real p;

comment CORRECTION and the procedures below are in-
tended for use with single-precision ‘normalized floating-point
arithmetic for machines in which the mantissa of a floating-point
number is expressible to s significant figures, base b. Limitations
of the machine or requirements of the user will limit the range of
p to bm £ | p| < br*! for some integers m and n. Appropriate
integers must replace s, b, m and n below. Signal is a non-local
label. The procedures of the example would be included in the
same block as the range procedures above;

320 Communications of the ACM

begin

integer w;

for w : = m step 1 until n do
11 begin

if (b Tw<=abs (p)) A @bs(p) <bT(w+41)) then
2: begin
CORRECTION :=b 7 (w+1—s);
end 2
end 1;
go to signal;
exit: end CORRECTION;
real procedure ADJUSTSUM (w, v,i); integer i;
real w, v;
comment ADJUSTSUM exemplifies a possible procedure for use
with machines which, when operating in floating point addition,
simply shift out any lower order digits that may not be used. No
attempt is made here to examine the possibility that every digit
that is dropped is zero. CORRECTION is a non-local real pro-
cedure which gives an upper bound to the magnitude of the error
involved in the machine representation of a number;
begin
real r, cw, ¢v, cr;
ri=w 4 v;
itw =0\ v =0 then go to 1;
cw 1= CORRECTION (w);
¢v := CORRECTION (v);
cr := CORRECTION (r);
ifcw = ¢v A cr £ cw then go to 1;
if sign (i X sign (w) X sign (v) X sign (r)) = —1 then go to 1;
ADJUSTSUM : = r + i X MAX (ew, cv, cr); go to exit;
1: ADJUSTSUM := r;
exit: end ADJUSTSUM,;
real procedure ADJUSTPROD (p,i); real p; integeri;
comment ADJUSTPROD is for machines which truncate when
lower order digits are dropped. CORRECTION is a non-local real
procedure;

go to exit

begin
if p X1 £ 0 then
1: begin
ADJUSTPROD := p; go to out
end 1;

ADJUSTPROD := p + i X CORRECTION (p);
out: end ADJUSTPROD;
comment Although ordinarily rounded arithmetic is preferable
to truncated (chopped) arithmetic, for these range procedures
truncated arithmetic leads to closer bounds than rounding does.

* These procedures were written and tested in the Burroughs
290 version of the ALGOL language in the summer of 1960 at
Stanford University. The typing and editorial work were done
under Office of Naval Research Contract Nonr-225(37). The author
wishes to thank Professor George E. Forsythe for encouraging
this work and for assistance with the syntax of ALGOL 69.

ALGORITHM 62

A SET OF ASSOCIATE LEGENDRE POLYNOMIALS
OF THE SECOND KIND*

Joux R. HErNDON

Stanford Research Institute, Menlo Park, California

comment This procedure places a set of values of Qa™(x) in the
array Q[] for values of n from 0 to nmax for a particular value
of m and a value of x which is real if ri is 0 and is purely imaginary,
ix, ortherwise. R[] will contain the set of ratios of successive
values of Q. These ratios may be especially valuable when the
Q. (x) of the smallest size is so small as to underflow the machine
representation (e.g. 107 if 1075 were the smallest representable

number). 9.9 X 10% is used to represent infinity. Imaginary
values of x may not be negative and real values of x may not be
smaller than 1.

Values of Qa™(x) may be calculated easily by hypergeometric
series if x is not too small nor (n — m) too large. Qu.™(x) can be
computed from an appropriate set of values of Py™(x) if x is near
1.0 or ix is near 0. Loss of significant digits occurs for x as small as
1.1 if n is larger than 10. Loss of significant digits is a major diffi-
culty in using finite polynomial representations also if n is larger
than m. However, QLEG has been tested in regions of x and n
both large and small;
procedure QLEG(m, nmax, x, 11, R, Q);

real m, nmax, x, ri;

value m, nmax, x, ri;
real array R, Q;

begin real t, i, n, q0, s;
n := 20;
if nmax > 13 then
n := nmax + 7;
if ri = 0 then
begin if m = 0 then
Q0] := 0.5 X log((x + 1)/(x — 1))
else
begin t := —1.0/sqrt(x X x — 1);
q0 1= 0;
Q0] : = ¢t;
fori:= 1 step 1 until m do
begin s = (x+x)X{I-1)Xt
X QIO+ (B31—1Xi—2)X q0;
q0 : = Q[0};
Q0] := s end end;
if x = 1 then
Q0] : = 9.9 1 45;
Rn 4+ 1):= x — sqrt(x X x — 1);
for i:= nstep —1 until 1 do

Rf]:= (i +m)/(G+i+1) X x
+@m—1i-—1) X Rii + 1});
go to the end;
if m = 0 then
begin if x < 0.5 then
Q0] : = arctan(x) — 1.5707963 else
Q] := — arctan(l/x)end else

begin t := 1/sqrt(x X x + 1);
q0 1= 0;
Q[0] : = ¢,
for i:= 2step 1 until m do
begins := (x + x) X (i — 1) X t X Q[0]

+@i+1X1—2) X q0;
q0 : = Q[o];
Q[0] : = s end end;
Rn+4+1]:=x — sqrt(x X x + 1);
for i:=nstep — 1 untill do
Rfi] := (G + m)/(G — m + 1) X R[i + 1]
it X N);

for 1:=1step 2 until nmax do
R[] : = — Rlil;
the: fori:= 1 step 1 until nmax do
Qli] := Q[— 1] X Rl]
end QLEG;

* This procedure was developed in part under the sponsorship
of the Air Force Cambridge Research Center.

ALGORITHM 63
PARTITION
C. A. R. Hoare
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
procedure partition (A M,N,1.J); value M,N;
array A; integer M N,I1.J;

comment I andJ are output variables, and A is the array (with
subseript bounds M:N) which is operated upon by this procedure.
Partition takes the value X of a random element of the array A,
and rearranges the values of the elements of the array in such a
way that there exist integers [and J with the following properties:

M <=£J<IZ=ZNprovided M < N

AR = XforM =R =1J

AR]=XforJ <R <I
AR] 2 XforIZE RN
The procedure uses an integer procedure random (M,N) which
chooses equiprobably a random integer F between M and N, and
also a procedure exchange, which exchanges the values of its two
parameters;
real X; integer I';
F := random (M,N);
I:=M; J:=N;
up: for I : = Istep 1 until N do

if X < A [I] then go to down;

begin
X := A[F];

I:=N;
down: forJ:=J step —1 until M do
if A[J]<X then go to change;
J:=M;
change: if I < J then begin exchange (A[I], A[J]);
I:=1+1;J:=J =1,
go to up
end .
else if I < F then begin exchange (A[I], A[F]);
I:=T1T+41
end
else if F < Jthen begin exchange (A[F], AlJ]);
‘ Ji=J -1
end;
end partition

ALGORITHM 64

QUICKSORT

C. A. R. Hoare

Tlliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A M,N); value M,N;
array A; integer M,N;

comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;

begin integer 1,J;
if M < N then begin partition (A,M,N,1,J);
quicksort (A,M,J);
quicksort (A, I, N)
end
end quicksort

ALGORITHM 65

FIND

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Fng.

procedure find (A,M,NX); value M,NK;

array A; integer M,N K;
comment Find will assign to A [K] the value which it would
have if the array A [M:N] had been sorted. The array A will be
partly sorted, and subsequent entries will be faster than the first;

Communications of the ACM 321

begin integer [,J;

if M < N then begin partition (A, M, N, I, J);
if K=1 then find (AM,[K)
else if JXXK then find (A,J,N,K)
end

end find

ALGORITHM 66

INVRS

JoHN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure Invrs (t) size : (n); valuen; real arrayt; inte-
ger n;
comment Inverts a positive definite symmetric matrix t, of
order n, by a simplified variant of the square root method. Re-
places the n(n+1)/2 diagonal and superdiagonal elements of t
with elements of t, leaving subdiagonal elements unchanged.
Advantages: only n temporary storage registers are required, no
identity matrix is used, no square roots are computed, only n
divisions are performed, and, as n becomes large, the number of
multiplications approaches n3/2;
begin integer i, j, s; real array vil:n—1}; veal y, pivot;
for s : = 0 step 1 until n—1 do
begin pivot := 1.0/t[1,1];
begin pivot : = 1.0/t[1,1];
comment If t{1,1] £ 0, t is not positive defi-
nite;
for i := 2 step 1 until n do v[i—1] := t{1,i];
fori:= 1step 1 until n—1 do
begin tli,n] := y : = —v[i] X pivot;
for] : = istep 1 untiln—1do

tli, 1 :=th + 1, i +1 + vljl Xy

end;
tln,n] : = —pivot

end;
comment At this point, elements of t™! occupy
the original array space but with signs reversed,
and the following statements effect a simple re-
flection;

fori:= 1step 1 until n do

for j : = istep 1 until n do ti,j] := —t{i,j]

end Invrs

ALGORITHM 67

CRAM

JouN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure CRAM (n, r, a) Result: (f); value n, r; integer
n, r; real array a, f;

comment CRAM stores, via an unspecified input procedure
READ, the diagonal and superdiagonal elements of a square sym-
metric matrix e, of order n, as a pseudo-array of dimension
1:n(n 4 1)/2. READ (u) puts one number into u. Elements eli, j]
are addressable as afe + j], wherec = (2n — i)(i — 1)/2and ¢[i + 1]
may be found as cli] + n — i. Since ¢[1] = 0, it is simpler to develop
a table of the ¢[i] by recursion, as shown in the sequence labelled
“table”’. Further manipulation of the elements so stored is illus-
trated by premultiplying a rectangular matrix f, of order n, r, by
the matrix e, replacing the elements of { with the new values, re-
quiring a temporary storage array v of dimension 1:n;

322 Communications of the ACM

begin integer i, j, k, m; real array v[lin]; reals;
integer array c[l:n];
table: j:= —n; k:=n+1; fori
begin
j:=j+k—1; ecli]:=] end;
load: fori:= 1stepluntilndo
begin for j : = i step 1 until n do READ (v[j]); m :=

:= 1 step 1 until n do

clil;
for k : = i step 1 until n do ajm + k] : = vik] end;
premult: forj :=1step 1l untilrdo
begin for i := 1 step 1 until n do
begin s : = 0.0;
for k := 1step 1l untili do
begin m := c[k]; s := 8 + a[m + i]
Xflk, j] end;
fork := i+ 1step1until ndo
s:=s+ alm + k] X flk, jl; viil=s
end;
for k : = 1 step 1 until n do f[k, j] = v[k]
end
end CRAM

REMARK ON ALGORITHM 53

Nth ROOTS OF A COMPLEX NUMBER (John R.
Herndon, Comm. ACM 4, Apr. 1961)

C. W. NEsror, Jr.

Oak Ridge National Laboratory, Oak Ridge, Tennessee

A considerable saving of machine time for N = 3 would result
from the use of the recursion formulas for the sine and cosine in
place of an entry into a sine-cosine subroutine in the do loop
associated with the Nth roots of a complex number. That is, one
could use

sin (n + 1) = sin ng cosf + cos nd sinf
cos (n 4 1)8 = cos nd cos® — sin nd sind,
at the cost of some additional storage.
We have found this procedure to be very efficient in problems
dealing with Fourier analysis, as suggested by G. Goerzel in
chapter 24 of Mathematical Methods for Digital Computers.

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May, 1960).
Contributions should be sent in duplicate to J. H.
Wegstein, Computation Laboratory, National Bureau of
Standards, Washington 25, D. C. Algorithms should be in
the Publication form of ALGOL 60 and written in a style
patterned after the most recent algorithms appearing in this
department.

Although each algorithm has been tested by its con-
tributor, no warranty, express or implied, is made by the
contributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this de-
partment is explicitly permitted without any charge. When
reproduction is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

