Check for
Updates

ALGORITHM 194

ZERSOL

Carros DoMingo

Universidad Central, Caracas, Venezuela

procedure ZERSOL (h, YI, m, epsi, F, f, Z); real h, epsi, f;
array YI, Z; integer m; procedure F;

comment ZERSOL finds the simple zeros of the solution Y1(Y0)
of the set of m first order differential equations Y; = Fj(Y0,
Y1, ---, Ym). b is the step of integration, epsi the error with
which the zeros are to be determined (assuming no error in the
process of integration). F(YS, j, v) is a procedure which calcu-
lates the functions Fj, taking the arguments from the array
YS and leaving the results in ». The search for zeros stops
when Y0 > f. The zeros are stored as elements of the array Z.
MR is a 4 X 4 matrix with the coefficients of a Runge-Kutta
method. For example MR may be row-wise 0.5,1,0.5,0,1 — a,
1—a,1—4a,0514+a,14+4a,1+a,0,4%, % 05,0.5, where
a = sqrt(2);

begin real v, r, d; integer j, s, n, k; array Q[l:m}], YS[0:m],
YAL [0:m], YT[1:m], MR[1:4,1:4]; switch S := NOZ, ZER;

n = 1;
for d := h while YI[0] £ fdo
begin s := 1;

Rl: for j := 1 step 1 until m do
begin Q[j] :=0.0; YS[j] := YI[j]; YT[5] := YI[j] end;
YS[0] := YI[0];
R2: for k := 1 step 1 until 4 do
begin YS[0] := YS[0] + MRk, 4] X d;
for j := 1 step 1 until m do
begin F(YS,jv); v :=v X d;
r = MR[k,1] X v — MR[k,2]X Q[jl;
YT[j] := YTU] + r;
QL] == QU1 + 30X r — MR[k,3] X v

end;

for j := 1 step 1 until m do YS[j] := YTj]
end;

go to S(s);

NOZ: if sign(YI[1]) = sign(YS[1]) then go to IT;
TR: forj:= 0step luntilmdo YI[j] := YS[5]; gotoR2;
IT: s:= 2
for j := 0 step 1 until m do YAL[;] :=Y8[/];
ZER: d := d/2;
if d < epst then go to 8STZ;
if sign(YI[1]) = sign(YS[1]) then go to TR else go to Rl;
STZ: Zn] := YI[0] := YI0] +d; n:==n+41;
for j := C step 1 until m do YI[j] := YAL[j]
end;
end

ALGORITHM 195
BANDSOLVE

DoxaLp H. THURNAU

Marathon Oil Co., Littleton, Colo.

procedure BANDSOLVE (C,N,M,V); value N,M; integer
N,M; real array C,V;

comment BANDSOLVE is effective in solving the matrix equa-
tion AX = B when the matrix 4 is of large order and sparse
such that a narrow band centered on the main diagonal includes
all the non-zero elements. Parameter N is the order of 4,and M
is the width of the band, necessarily an odd number of elements.

Volume 6 / Number 8§ / August, 1963

J. H. WEGSTEIN, Editor

BANDSOLVE is very efficient because it operates only on the
band portion of the matrix A, given in the N by M array C. The
band elements of a given row of A appear in the same row of C
but shifted such that element A4 [¢,5] becomes Clz,;—i+ (M+1) /2L
All band elements whether zero or non-zero must be given. The
values of undefined elements of C, such as C[1,1] or C[N,M], are
irrelevant. The array V initially contains the vector B. After
solution, the array V contains the answer vector X. The con-
tents of array C are destroyed during solution which is done by
Gauss elimination with row interchanges, followed by back sub-
stitution;

begin integer JM ,LR I,PIV.RJ; real T;

LR := (M+1) + 2;
for R := 1step l until LR — 1do
for I := 1step 1 until LR — R do
begin for J := 2 step 1 until M do
CIRJ—1] := C[RJ];
CIR,M] := CIN+1-RM+1-1] :=0
end of row shifting and zero placement;
for I := 1 step l until N — 1 do
begin PIV :=I;
for B := I 4+ 1 step 1 until LE do
if abs(C{R,1])>abs(C[PIV 1]) then
PIV := R;
if PIV # I then
begin 7' := V[I];
VIl := V[PIV];
VIPIV] := T,
for J := 1 step 1 until M do
begin T := C[I,J];
C[IJ] := C[PIV J];
CIPIVJ] :=T
end J
end of row interchange;
Vil == VUI/CIL1];
for J := 2 step 1 until M do
ClIJ] = ClIJ/CII]
for B := I + 1 step 1 until LE do
begin T := C[R,1]
VIR] := VIR] — T X VI[I];
for J := 2 step 1 until M do
CIRJ—1] :=C[RJ] — T X C[IJ};
CIR,M] :=0
end B;
if LR % N then LR := LR + 1
end of triangularization;
VIN] := VI[N]/CIN,1];
JIM = 2;
for B := N — 1 step —1 until 1 do
begin for J := 2 step 1 until JM do
VIR] := VIR] — C[R,J] X VIR—-14J];
if JMU # M then JM :=JM + 1
end of back solution
end BANDSOLVE

Communications of the ACM 441

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366707.367556&domain=pdf&date_stamp=1963-08-01

ALGORITHM 196

MULLER’S METHOD FOR TFINDING ROOTS OF
AN ARBITRARY FUNCTION

RoBERT D. RODMAN

Burroughs Corp., Pasadena, Calif.

procedure MULLER (pl, p2, p3, mxm, nris, epl, ep2, swl, sw2,
sw3, swr, rri, irl);
value pl, p2, p3, mam, nris, epl, ep2, swl, sw2, sw3, swr;
integer maxm, nrts; boolean swl, sw2, sw3, swr;
real pl, p2, p3, epl, ep2; array rre, irt;
begin comment procedure MULLER finds real and complex
roots of an arbitrary function. pl, p2, and p3 are starting values.
Roots nearest these points are found first. mzm is the maximum
number of iterations to be made in finding any one root. epl and
ep2 are specified as tolerance parameters. If ABS((Xin—X;)/
Xiy1) < epl or if the function value and modified function value
are both less than ep2, a root has been found. If swl is true,
then each iterant of each root is printed. If sw2 is true, the
value of each root found is printed. If sw3 is true, then, when
applicable, the complex conjugate of each root found is admitted
as a root. If swr is true, only real roots are found. rrt and <t
contain the real, and imaginary parts of each root found. Proce-
dure function is the function generator and procedure com-
plex performs necessary complex operations;
boolean bool; integer cl, ric, ¢, ilc; real rzl, rz2, rx3, izl,
122, %3, rroot, iroot, rdnr, idnr, €1, itl, frroot, firoot, rfxl, rfx2,
rfz3, tfzl, ifx2, ifx3, rh, ih, rlam, ilam, rdel, idel, {2, it2, 3, it3, t4,
14, rg, ig, rden, iden, rfunc, tfunc;
switch j := m2, m3, m4, m7, mll;
procedure function (reale, imag, reval, ieval);
. value reale, tmag; real reale, tmag, reval, ieval;
begin comment Coding for this procedure must be inserted at
compile time. reale and imag are the real and imaginary parts
of the dependent variable. reval and teval, the real and imaginary
parts of the function;
end function;
procedure complex (a, ia, b, b, k, ¢, 1¢);
value q, ia, b, ib, k; integer k;
real a, ia, b, b, ¢, ic;
begin real temp; switch j := mpy, dvd, sqt;
go to jlk];
mpy: c¢:=aXb—iaX1ib; ic:=a X b+ ia X b; go to exil;
dvd: if (ib=0) A\ (b=0) then begin ic := 0;c := 1;
go to exit end; temp :=b 1 2+ ib | 2;
¢ = (aXb+iaXib)/temp; ic = (iaXb—aXib)/temp;
go to exit;
sgt: if (7a=0) A (a<0) then
begin ¢ := 0; ic := sgrt (—a) end
else if <¢ = 0 then
begin ¢ := sqrt(@); ic := 0 end
else begin temp := sgrt (aT2+iaT2);
¢ = sgrt ((temp + a)/2);
ic 1= if (lemp — a) < 0 then 0
else sgrt ((temp — a)/2) end;
if ((0+c) T 2+ (b+ic)] 2) < ((b—e)T 2+ (Gb—ic) T 2)
then begin ¢ := b —¢; dc := b — icend
else begin¢ := b + ¢; <c := ib + ic end;
exil: end of complex;
start: for i := 1 step 1 until nrts do rrt [¢] := irt [¢] := 0; rtc := 0;
m0: izl := 422 := 123 := cl, := iroot := ilc := 0;
rroot := pl;
ml: ¢l; := ¢l + 1; idnr 1= 0;
for ¢ := 1 step 1 until ric do

bool := false;
rdnr 1= 1;

begin
complex (rdnr, idnr, rroot-rrt [}, iroot-irt [2], 1, t1, 4t1);
rdnr = {l; tdnr = 4tl
end;

442 Communications of the ACM

function (rroot, iroot, tl, itl);
complex ({1, itl, rdnr, idnr, 2, frroot, firoot);

go to jlcl];

m2: rfzl := frroot; ifzl := firoot; rroot := p2;
go to ml;

m3: rfr2 = frroot; ifx2 := firoot; rroot := p3;
go to ml;

m4: rfxd := frroot; ifz3 := firoot; rxl ;= pl;
rx2 1= p2; rx3 1= p3; rh = re3 — ra;

th 1= 123 — 122,

complex (rh, ith, ra2— rzl, i2— ixl, 2, rlam, ilam);

rdel := rlam 4 1; didel := ilam;

m9: if (rfxl=rfx2) A\ (fr2=rfz3) N\ (fzl=1fx2) N\ (fz2=1ifx3)

then begin rlam := 1; ilam := 0; go tom8 end;

complex (rfxl, ijzl, rlam, ilam, 1, 11, itl);

complex (rfx2, ifs2, rdel, idel, 1, 2, 112);

0=t — 2+ rfx3; il = il — 42 - ifal;

complex (rdel, idel, rlam, tlam, 1, 12, it2);

complex (t1, it 12, 412, 1, 13, it3);

complex (rfz3, ifx3, 13, it3, 1, 11, @tl);

il := —4 X t1; 4l := —4 X itl; :

complex (rfx3, ijx3, rlam~+rdel, ilam-+idel, 1, 12, it2);

complex (rdel T 2—idel T 2, 2X rdel X idel, rfx2, ifx2, 1, 13, it3);

complex (rlam T 2—1ilam 12, 2XrlamXilam, vfxl, ifzl, 1,
t4, it4);

rg 1= t4 — 13+ 12; 19 1= itd — i3 + 12;

if swr N\ ((rgT2+11)<0) then
begin rden := rg; iden := ig := 0 end

else compler (rgT2—1ig712411, 2XrgXig+itl, rg, 29, 3,
rden, iden);

complex (—2Xrfz3, —2Xfx3, rdel, idel, 1, t1, it1);

complex (i1, itl, rden, iden, 2, rlam, ilam);

m8: itc 1= itc + 1;

rxl 1= ra2; ra2 = rx3; rfzl 1= 1f22; rfa2 1= rfa3;
ixl = 4x2; 122 := a3; ifxl = if22; fz2 := ifx3;
complex (rlam, ilam, rh, th, 1, {1, 141);
rh = tl; th = 4tl;

mb: rdel := rlam -+ 1; idel := ilam; 7rz3 = rz2 + rh;
3 = 122 + h; cl :=3; rroot := rx3;

iroot := 1x3; go to ml;
m7: rfxd = frroot; ifx3 := firoot;
function (rz3, i3, rfunc, ifunc);
complex (rfx3, ifx3, rf22, ifx2, 2, t1, ©11);
if (117 244t1172) > 100 then }
begin rlam := rlam/2; vh = rh/2; dlam := ilam/2;
th = th/2; go to mb end;
if swl then . . .
comment option to output iterant and associated function
values;
tl = r23 — rx2; il := 123 — 122;
complex (1, itl, r22, ix2, 2, 12, 1t2);
if sqrt (121244127 2) = epl then go to finl;
if (sgrt (rfz312+fz312)<ep2) N
(sqrt (rfunc T 2+ifunc? 2)Zep2) then go to fin 2;
go to if itc = mam then fin3 else m9;
finl: if sw2 then . ..
comment option to output root;
fin2: if sw2 then . . .
comment option to output root;
fin3: if sw2 then ...
comment no convergence, option to output last iterant;
bool := true;
ml2: rtc := ric + 1; rrifric] := ra3;
if rtc 2 nris then go to exit;
if (ABS(ix3)>epl) A sw3 /A — bool then

go to ml2;

go to ml2;

irt[rte] 1= 123;

begin 23 := —iz3; funclion (ra3, iz3, rfunc, ifunc);
rroot = rx3; iroot := iz3; cl = 4;
go to ml;

mll: if sw2 then . ..

Volume 6 / Number 8 / August, 1963

comment the complex conjugate of the last root found is accept-
able. Option to output this root;
ric 1= ric + 1; rri[ric] := rx3; irtlric] ;= 123
end else go to m0;
if ric < nris then go to m0;
exit: end of procedure MULLER

ALGORITHM 197

MATRIX DIVISION

M. WeLLs

University of Leeds, Leeds, England

procedure Pos Div (b, ¢, m, n, solve);
value m, n, solve; array b, ¢; integer m, n; Boolean solve;
comment The matrix ¢, with m rows and n columns, is divided
by the positive definite matrix b, of order m, by the square root
method (see Fadeeva, V. N., Computational Methods of Linear
Algebra, Chap 2, §10). The upper triangle of b is replaced by
an upper triangular matrix N such that N*N = b. The other
elements of b are undisturbed. The matrix ¢ is replaced by b~lc.
The Boolean solve is used as a switch. If its value is true, then
it is assumed that an earlier entry to Pos Div has left the matrix
N in place, and a further division of ¢ by b takes place;
begin integer 2, 7, k;
real procedure dot (a, b, p, @);
value ¢; real a, b; integer p, ¢;
comment This is innerproduct, modified to define a function
designator;
begin real s; s := 0;
for p := 1l step luntil gdo s := s +a X b;
dot := s end dol;
Start of program: if solve then go to back substitution;
for 7 := step 1 until m do
begin b [¢, 7] := sqrt (b[¢, 1] — dot (b[7,7]172,1,7,7 —1));
for j := i+ 1step 1 until m do
bli,5] = (bli,5] — dot (blk,d], blk,5], k, 1—1))/b[i 7]
end formation of upper triangular matrix;
back substituton: for i := 1 step 1 until n do
begin for ;7 := 1 step 1 until m do
cli,g] := (cld,i] — dot (blk,g], cli k], &, 7—1))/bl7,];
for j := m step —1 until 1 do
¢li,g] = (eld,7] — dot (blim+1~kl, cli,;m+1-kl, k, m—3))/
b[7,7}
end of double back substitution
end of Pos Div

ALGORITHM 198

ADAPTIVE INTEGRATION AND MULTIPLE
INTEGRATION

WiLLiAM MARSHALL McKEEMAN

Stanford University, Stanford, Calif.

begin comment This program illustrates the declaration and
call of a procedure used to numerically approximate definite
integrals and multiple integrals. The integrand is an expression
substituted for the first formal parameter and must be a func-
tion of the simple variable replacing the second formal pa-
rameter. Multiple integration is accomplished by substituting
a complete call of Integral for the first formal parameter. Note
that in this case that the limits of integration on the inside ealls
may be functions of the variable of integration on the outer
call. The parameter rule selects a Newton-Cotes formula which
matches a polynomial of degree = rule to the function in the
interval of integration. (See Hamming, Numerical Methods for

Volume 6 / Number 8 / August, 1963

Scientists and Engineers, Sec. 12.2). In any case, the procedure
integral adapts its step size to the function in seeking to mini-
mize the number of funetion evaluations. The program has been
tested and run on a variety of funetions using the ArngoL com-
piler on the Burroughs B-5000.;
real procedure Integral (F) a function of the real variables: (x)
between limits: (a,b) polynomial degree: (rule) tolerance: (eps);
value a, b, rule, eps; integer rule;
real F, x, a, b, eps;
begin comment set up the parameters for the recursion before
calling the procedure NC;
switch nct := R1, R2, R3, R4, R5, R6, R7;
real array cf, fn [l:rule+1];
integer k; real da, abd;
real procedure NC(F z.a,da,fnk,cf,rule,eps,es,ab,lvl);
value a, da, rule, eps, es, 1vl; real array cf;
integer k, rule, 1vl; real F, z, a, da, fn, eps, es, ab;
begin comment NC is the adaptive heart of Integral;
real array fc[l:rule+1,1:rule41), est, zz[l:rule+1];
integer ¢, j; real dz, int, ep;
real procedure SUM (lerm, index, upperlimit);
real iterm; integer index, upperlimit;
begin real ¢; ¢ := 0;
for inder := 1 step 1 until upperlimit do
t := t + term;
SUM :=¢
end of SUM;
comment begin the integration by evaluating F on the mesh
points;
for k := 1 step 1 until rule 4 1 do fclk k] := fn;
dzx = da/(ruleX (rule+1));
z = q;
for: := 1 step 1 until rule + 1 do
for j := 1 step 1 until rule do
begin
if j = 1 then zz[7] 1= z;
if 7 # j then fc[i,j] =
z =z + dx;
end having done all necessary function evaluations;
for 7 := 1 step 1 until rule do
feli, rule+1] := fe[e+1,1];
ep = eps/sqri(rule+1);
comment eps/(rule + 1) is the value to give an absolute
error bound of eps in the final answer. It proves too strict in
practice;
dr := dx X rule;
comment compute the integrals of the subintervals;
for 7 := 1 step 1 until rule + 1 do
est[t] := SUM (fcli,51,7,rule+1) Xdz;
ab = ab — abs(es) + SUM (abs(est[z]),i,rule+1);
comment ab is the area under abs(F). It is used in computing
the relative error upon which to terminate;
int 1= SUM (est[¢]i,rule+1);
if 1v1 = 100/(rule+1) then go to error;
NC := if abs(es—int) < eps X ab A es # 1.0 then int
else SUM (NC(F .x,zz[t] dz,fcli,j],7,¢f ,rule,ep estli], ab,lv1+1),
1,rule+1);
go to relurn;
error; NC := int;
comment abs(es — int) is the approximate error caused by
terminating the recursion. In most cases, termination at
this level will not adversely affect the accuracy of the result;
return:
end of NC;
comment now initialize the Newton-Cotes coefficients;

of 51 X F;

go to nct [rule];
R1: ¢f[1] := ¢f[2] := 1.0/2.0; go to compute;
R2: cf[1] := ¢f[3] := 1.0/6.0; cf[2] := 4.0/6.0;

I

Communications of the ACM 443

comment Rl is trapezoidal rule, B2 is Simpson’s rule;
go to compule;
R3: c¢f(1] := ¢f[4] := 1.0/8.0;
cf[2] := ¢f[3] := 3.0/8.0; go to compute;
R4a: cf[1] := ¢ff5] := 7.0/90.0;
cff2] := cf[4] := 32.0/90.0;
cf(3] := 12.0/90.0; go to compute;
B5: cf[1] := ¢f[6] := 19.0/288.0;
cf[2] := cf[5] := 75.0/288.0;

cf[3] := ¢f[4] := 50.0/288.0; go to compule;

R6: cf(1] := ¢f[7] := 41.0/840.0;

ef[2] 1= cf[6) := 216.0/840.0;

cf3] := ¢f[5] := 27.0/840.0;

cf[4] := 272.0/840.0; go to compute;
R7: c¢f[1] := ¢f[8] := 75.1/1728.0;

cf[2] 1= cf[7] := 357.7/1728.0;
cf(3] = ¢f(6] := 134.3/1728.0;
cf[4] := ¢f[5] := 298.9/1728.0;
compute: da := b — a;
for k := 0 step 1 until rule do
begin
z :=a 4+ k X da/rule;
flk+1] := F X ¢flk+1];
end;
ab 1= 1.0;
Integral := NC(F z.a,da,fnlk)k,cf rule,eps,1.0,ab,0);
end of Integral;
comment Now evaluate the integral of 1.0/sqrt(abs(z+y))
on the unit disk in the z,y-plane;
real z, y, answer;
answer := Iniegral(Integral (1.0/sqrt(abs(z+y)), z,
—sqri(1.0—y 12), sgre(1.0~y 1 2), 7, 0.001) ,y,—1.0,1.0,3,0.001);
end of program;

ALGORITHM 199
CONVERSIONS BETWEEN
AND JULIAN DAY NUMBER
RoBERT G. TANTZEN

Air Foree Missile Development Center, Holloman AFB,
New Mex.

procedure JDAY (dm,y,j);

integer d,my,;;

comment JDAY converts a calendar date, Gregorian calendar,
to the corresponding Julian day number j. From the given day
d, month m, and year y, the Julian day number ; is computed
without using tables. The procedure is valid for any valid
Gregorian calendar date. When transeribing JDAY for other
compilers, be sure that integers of size 3 X 10% can be handled;

begin integer ¢, ya;
ifm > 2thenm :i=m — 3

elsebeginm :=m -+ 9; y:=y — 1end;

¢:=y +100; ya:=1y —100 X c;
J 1= (146097X ¢) +4-+ (1461 X ya) + 4+ (153X m+2) =+ 5+d+1721119

end JDAY

procedure JDATE (5d,my);

integer j.d,m,y;

comment JDATE converts a Julian day number 5 to the corre-
sponding calendar date, Gregorian calendar. Since 7 is an integer
for this procedure, it is correct astronomically for noon of the
day. JDATE computes the day d, month m, and year y, without
using tables. The procedure is valid for any valid Gregorian
calendar date. When transcribing JDATE for other compilers,
be sure that integers of size 3 X 108 can be handled;

CALENDAR DATE

444 Communications of the ACM

begin j := j — 1721119;

y = (a4X5—1) + 146097; j:=4Xj — 1 — 146097 X y;
d:= j+ 4

ji= (4Xd+3) + 1461; d:=4Xd+ 3 — 1461 X j;
d:=({d+4)+4;

m = (5Xd—3) + 153; d:=5Xd — 3 — 153 X m;
d :=(d+5) + 5;

y:=100X y+ 7; ifm <10thenm :=m + 3
else beginm :=m — 9; y :=y -+ 1end;
end JDATE

procedure KDAY (d,myak);

integer d,myak;

comment KDAY converts a calendar date, Gregorian calendar,
to the corresponding serial day number k. From the given day
d, month m, and the last two decimals of the year, ya, the serial
day number & is computed without using tables. The procedure
is valid from 1 March 1900 (k=1) to 31 December 1999
(k = 36465). To obtain the Julian day number 5 (valid at noon)
use j = k 4+ 2415079;

begin if m > 2 thenm :=m — 3

else beginm := m + 9; ya :=ya — 1 end;

k= (1461Xya) + 4+ (153Xm+2) + 5+ d

end

procedure KDATE (k,d,mya);
integer k,d,mya;
comment KDATE converts a serial day number % to the corre-
sponding calendar date, Gregorian ealendar. It computes day d,
month m, and the last two decimals of the year, ya, without
using tables. The procedure is valid from £ = 1 (1 March 00) to
k = 36465 (31 December 99) for any one century. For the 20th
Century the relation between %k and theulian day number j
(at noon) is 5 = k + 2415079;
begin ya := (4Xk—1) + 1461; d := 4Xk — 1 — 1461 X ya;
d:= (d+4) ~ 4; m:= (5Xd-3) + 153;
d = 5Xd — 3 — 153X m;
d := (d+5) + 5;
if m < 10 then m := m + 3
else beginm := m — 9; ya := ya + 1 end;
end KDATE

ALGORITHM 200

NORMAL RANDOM

Ricaarp GEORGE*

Argonne National Laboratory, Argonne, Ill.

* Work supported by United States Atomic Energy Commission.

real procedure NORMAL RANDOM (Mean, Sigma n);

procedure Random;

real Mean, Sigma;

integer n;

comment Random is assumed to be a real procedure which
generates a random number uniform on the interval (-1, 41).
The value of n should be greater than 10, in order to approxi-
mate the normal distribution with accuracy. However, very
large values of n will increase the running time. The use of
Mean and Sigma should be obvious. Reference: R. W. Ham-
ming, Numerical Methods for Scientists and Engineers;

begin
integer 7; real sum;
sum = 0;
for i := step 1 until n do
sum = sum -+ Random;

NORMAL RANDOM := Mean + Sigma X sum X sqrt (3.0/n)
end NORM AL RANDOM

Volume 6 / Number 8 / August, 1963

ALGORITHM 201

SHELLSORT

J. Booraroyp

English Electric-Leo Computers,
England

Kidsgrove, Staffs,

procedure Shellsort (a, n); valuen; real arraya; integer n;
comment ¢[l] through aln] of a[l1:n] are rearranged in ascending

order. The method is that of D. A. Shell, (A high-speed sorting

procedure, Comm. ACM 2 (1959), 30-32) with subsequences

chosen as suggested by T. N. Hibberd (An empirical study of

minimal storage sorting, SDC Report SP-982). Subsequences

depend on m; the first operative value of m. Here m; = 28 — 1

for 2 < n < 2¥*1. To implement Shell’s original choice of m; =

[n/2] change the first statement to m := n;
begin integer ¢, j, k, m; real w;

fori := 1stepiuntilndom := 2 X ¢ — 1;

for m := m + 2 whilem > 0 do

begin k := n — m;
for j := 1 step 1 until k do
begin for 7 := jstep —m until 1 do
begin if a[i4-m] = a[:] then go to 1;
w = alt]; al[i] := a[i+m]; ali+m] := w;
end 7;
1:end j
end m

end Shellsort;

CERTIFICATION OF ALGORITHM 37
TELESCOPE 1 [K. A. Brons, Comm. ACM, Mar. 1961]
James If. BrIDGES

Michigan State University, Fast Lansing, Mich.

This procedure was tested on the CDC 160A, using 160A For-
TRAN. The 10th degree polynomial obtained by trunecating the
series exp (—z) was telescoped using L = 1 and lim = 0.001. The
result was N = 3, eps = 0.21061862;p — 3 and coefficients
+0.99978965, —0.99307236, +0.46364955, —0.10267767. The error
curve was computed for x = 0(0.02)1.0 and no error exceeded eps,
the worst error being 29, of eps less than eps.

Thisresult is in close agreement with that of Henry C. Thatcher,
Jr. in his Certification (Comm. ACM, Aug. 1962). Mr. Thatcher
has pointed out that he inadvertantly referred to the series for
exp (—z) as the ““exponential series’’ thereby inferring the posi-
tive series exp (+z). Thereisalso a typographical error inhis eps.
It should be +0.2103505,0 — 3.

CERTIFICATION OF ALGORITHM 38
TELESCOPE 2 [K. A. Brons, Comm. ACM, Mar., 1961]
James F. BRIDGES

Michigan State University, Kast Lansing, Mich.

This procedure was tested on the CDC 160A using 160A For-
TrRAN. The 10th degree polynomial obtained by truncating the
series expansion of exp (4z) was telescoped using L. = 1.0 and
Iim = 0.001. The result was N = 4, eps = 0.59159949,, — 3 and
coefficients +1.0000447, +0.99730758, +0.49919675, +0.17734729,

+0.043793910. Errors were calculated for z = —1.0(0.02)1.0. The
only error to exceed cps was at x = 1.0 and was within 0.69, of eps.

Volume 6 / Number 8 / August, 1963

CORRECTION TO EARLIER REMARKS ON AL-
GORITHM 42 INVERT, ALG. 107 GAUSS’S METHOD,
ALG. 120 INVERSION II, AND gjr [P. Naur, Comm.
ACM, Jan. 1963, 38-40.]

P. Naur

Regnecentralen, Copenhagen, Denmark

George Forsythe, Stanford University, in a private communi-
cation has informed me of two major weaknesses in my remarks on
the above algorithms:

1) The computed inverses of rounded Hilbert matrices are com-
pared with the exact inverses of unrounded Hilbert matrices, in-
stead of with very accurate inverses of the rounded Hilbert
matrices.

2) In criticizing matrix inversion procedures for not searching
for pivot, the errors in inverting positive definite matrices cannot
be used since pivot searching seems to make little difference with
such matrices.

It is therefore clear that although the figures quoted in the
earlier certification are correct as they stand, they do not sub-
stantiate the claims I have made for them.

To obtain a more valid eriterion, without going into the con-
siderable trouble of obtaining the very accurate inverses of the
rounded Hilbert matrices, I have multiplied the calculated in-
verses by the original rounded matrices and compared the results
with the unit matrix. The largest deviation was found as follows:

Maximum deviation from elemenis of the unit matrix

Order INVERSION II gir Ratic
2 —1.49,0—8 —1.49:,—8 1.0
3 —4.7710—7 —8.34,,—7 0.57
4 —9.54;0—6 —3.4310—-5 0.28
5 —7.321—4 —4.5810—4 1.6
6 —1.61,0—2 —1.42,,—2 1.1
7 —5.78;0—1 —5.47,0—1 1.1
8 —1.200—2 —1.38501 8.7
9 —4.91,01 —2.22;0 2.2

This criterion supports Forsythe’s eriticism. In fact, on the
basis of this criterion no preference of INVERSION IT or gjr can
be made.

The calculations were made in the Gier ALGoL system, which
has floating numbers of 29 significant bits.

CERTIFICATION OF ALGORITHM 43

CROUT 11 [Henry Thacher, Jr., Comm. ACM (1960),
176]

C. Dominco anp F. Ropricurz-GiL

Universidad Central, Caracas, Venezuela

CROUT II was coded in PUC-R2 and tested in the IBM-1620.
Two types of INNERPRODUCT subroutines were used. The first
one finds the sealar product in fixed-point arithmetic to increase
accuracy, using an accumulator of 32 digits. The second one uses
ordinary floating-point with eight significative figures.

Using a unit matrix as right-hand side, a 6 X 6 segment of Hil-
bert matrix was inverted. The inverse was inverted again.

The maximum difference between this result and the original
segment of Hilbert matrix was:

Using fixed-point INNERPRODUC. 8.2426 X 1074
(Value of determinant..................... 4.7737088 X 10718)

Using floating-point INNERPRODUC. 3.014016 X 1072
(Value of determinant. 4.4950721 X 107'%)

Two typographical errors were observed in the algorithm:

Communications of the ACM 445

The statement:

blk] := glk] — INNERPRODUCT (4 [k,p], blpl, p,i,k—1)
should be:

blk] := blk] — INNERPRODUCT (A4lk,p], blp], 1,k—1)
The statement:
ylk] := (blk] — INNERPRODUCT (A [k,p],ypl, p.k+1,n)/Alk K]
should be:
y[k] := (b[k] — INNERPRODUCT (A[k,pl, yp], p,k+1,n))/ Ak k]

Storage may be saved eliminating the array y and using instead
the array b, in whieh the solution is formed.
A previous certification of this algorithm [Comm. ACM 4,
4 (Apr. 1961), 182] was tested again with the same results. Two
errors were detected in the certification: The row that must re-
place thelast row of A in order to obtain a singular matrix must be:
19,1927 33.4409 -—251298 —5.2811

CERTIFICATION OI' ALGORITHM 47
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY ARGU-
MENTS [John R. Herndon, Comm. ACM, Apr. 1961}
RicEaARD GEORGE™

Argonne National Laboratory, Argonne, Tll.
* Work supported by United States Atomic Energy Commission.

This procedure was programmed in ForTrAM for the IBM 1620
and was tested with a number of real arguments. A few errors were
detected:

1. In the following sequence the end must be removed:

begin if (n — m 4+ 2)/2 < 7 then go to last end;
2. In these, the lower bound of 1 is needed:

for 7 := step 1 until n do
for ¢ := step 1 until j do

3. There are four places where integer arithmetic is elearly in-
tended and we must substitute the symbol + for the symbol /.
In addition, it might be mentioned that the statement

if n = m then go to main;
could be omitted from the ALcoL program without harm, though
the FoRTRAN version requires it. Here, and elsewhere in the pro-

cedure, one might make an equivalent but more succinet state-
ment. With change in style, the variable j could be eliminated.

ADDITIONAL REMARKS ON ALGORITHM 52
A SET OF TEST MATRICES [J. R. Herndon, Comm.
ACM (Apr. 1961), 180]

P. Naur

Regnecentralen, Copenhagen, Denmark

From an inspection of the results of eigenvalue-finding algo-
rithms I conclude that all but two of the eigenvalues of TEST-
MATRIX are unity while the two remaining are given by the ex-
pressions 6/(pX (n+1)) and p/(nX (5—2Xn)) where

p =3 4+ sqrt (4Xn—3) X (n—1) X 3/(n+1)).
These expressions have been used for the determination of ab-
solute errors of the eigenvalues caleulated by JACOBI, Algorithm
85, and Householder Tridiagonalisation, ete. as reported below.
They were also used to caleculate the following table (using GIER

446 Communications of the ACM

ALGOL, with 29 significant bits):

n Determinant Eigenvalues Differing from unity

3 —.500 000 00 .224 744 87 —2.224 744 9

4 —.100 000 00 .153 112 89 —.653 112 89
5 —.040 000 000 .113 238 08 —.353 238 08
6 —.020 408 163 .088 290 570 —.231 147 71
7 —.011 904 762 .071 428 571 —.166 666 67
8 —.007 575 757 6 .059 386 081 —.127 567 90
9 —.005 128 205 2 .050 422 549 —.101 704 60
10 —.003 636 363 6 .043 532 383 —.083 532 383
11 —.002 673 796 8 .038 097 478 —.070 183 039
12 —.002 024 291 5 .033 718 770 —.060 034 559
13 —.001 569 858 7 .030 128 103 —.052 106 125
14 —.001 242 236 0 .027 139 206 —.045 772 747
15 —.001 000 000 O .024 619 013 —.040 619 013
16 —.000 816 993 47 .022 470 157 —.036 359 046
17 —.000 676 132 52 .020 619 902 —.032 790 288
18 —.000 565 930 96 .019 012 916 —.029 765 605
19 —.000 478 468 90 .017 606 429 —.027 175 807
20 —.000 408 163 27 .016 366 903 —.024 938 332

The figures for n = 20 agree very well with the results quoted by
H. E. Gilbert in his certification [Comm. ACM 4 (Aug. 1961),339].

CERTIFICATION OFF ALGORITHMS 63, 64 AND 65,
PARTITION, QUICKSORT, AND FIND, [Comm. ACM,
July 1961]

B. RanpeLn anp L. J. RusseELL

The English Electric Company Ltd., Whetstone, England

Algorithms 63, 64, and 65 have been tested using the Pegasus
Avrgor 60 Compiler developed at the De Havilland Aircraft Com-
pany Ltd., Hatfield, England.

No changes were necessary to Algorithms 63 and 64 (Partition
and Quicksort) which worked satisfactorily. However, the com-
ment that Quicksort will sort an array without the need for any
extra storage space is incorrect, as space is needed for the organi-
zation of the sequence of recursive procedure activations, or, if
implemented without using recursive procedures, for storing in-
formation which records the progress of the partitioning and
sorting.

A misprint (‘if’ for ‘if’ on the line starting ‘else if J/ < K then
--+’) was corrected in Algorithm 65 (Find), but it was found that
in certain cases the sequence of recursive activations of Find
would not terminate successfully. Since Partition produces as
output two integers J and I such that elements of the array
A[M:N] which lie between A[J] and A[I] are in the positions that
they will occupy when the sorting of the array is completed, Find
should cease to make further recursive activations of itself if K
fulfills the condition J < K < I.

Therefore the conditional statement in the body of Find was
changed to read

if K £ J theun find (4,M,J K)
else if I £ K then find (4,I,NV,K)

With this change the procedure worked satisfactorily.

REMARK ON ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION [P. E. Hennion, Comm. ACM, Feb., 1962]
P. E. HexniON

Giannini Controls Corp., Berwyn, Penn,

It was brought to my attention through the CERTIFICATION
OF ALGORITHM 77 AVINT [V. E. Whittier, Comm. ACM, June,

Volume 6 / Number 8 / August, 1963

1962] that restrictions on the upper and lower limits of integration
(2) zup = =za(nop). To remove
these restrictions the following two changes should be made.

1. Before line L16: and after the statement ib := 2; place the

existed, i.e., (1) 10 < xa (1),

following code:

for ia := 1 step 1 until nop do begin

b i=1b + 1;
for ia := 1 step 1 until nop do begin
ifza(jul) > zupend;jul := jul — 1;

if za(ia) 2 z10 then go to L17;
jul = nop + 1;
Jul = jul —1;
2. Change line L13: to read:

117:

208]
P. Naur

end;

CERTIFICATION O ALGORITHM 85
JACOBI [Thomas G. Evans, Comm. ACM (Apr. 1962),

Regnecentralen, Copenhagen, Denmark

We have first run this algorithm in the GIER ALGoL system with
the following eorrections included:

1. The change given by J. 8. Hillmore [Comm. ACM § (Aug.

L13: if jim £ ib then go to L14; 1962), 440] with capital V changed to v.
TABLE 1
HBH TESTMATRIX
Range of true errors of eigenvalues Range zg d_evlf,ffﬁgz ::r():morelation Raige_()f(g%‘),iitj\(i\}is]g%?\msria(t)ion
Order j error[;] 7 error(7) giiz_t Vecior Error 55;1; Vecior Error 55,;} Vector Error ﬁ‘i:t Vector Error
rho = 1.019—3
5 1 —1.110—6 3 5.2,—8 1 1 —1.7,0—4 1 3 2.0,0—4 1 1 —2.5,0—4 5 5 1.010—4
10 9 ~7.9—5 8 3.510—5| 7 2 —3.310—3 6 6 3.010—3 1 1 —4.210—3 6 7 3.210—3
15 15 —9.2,—5 12 3.70—5| 6 3 —1.710—3 11 13 1.7,—3] 9 15 —1.510—3 8 9 1.810—3
rho = 1.03p—5
5 1 —1.1,,—6 3 6.010—8 2 5 —1.3:10—7 5 2 4.1,0—8 1 2 —1.610—7 4 5 4.5,,—8
10 1 ~1.210-5 2 2.2,—7 7 3 —2.710—5 2 8 2.210—5 7 7 —2.410—5 2 8 2.310—5
15 1 —3.510—5 4 3.910—7 | 11 9 —6.410—6 7 2 4.816—6 ; 11 12 —5.310—6 12 12 4.716—6
rho = 1.0;,—8
5 1 —1.1,4—6 3 6.0,0—8 2 5 —1.310—~7 4 2 6.510-9 2 2 —1.3,0—7 4 4 3.0:0—8
10 1 —1.2y0—5 2 2.20—7 1 10 —1.1,0—6 4 2 6.4,0—8 1 2 —b5.T10—7 9 9 8.210—8
15 1 —3.510—-5 4 3.910—7 1 14 —3.410—6 4 2 3.910—7 2 2 —1.3:10—6 15 15 8.91,—8
TESTMATRIX, Algorithm 52
Range of true errors of eigenvalues Range;;’i df"ff,ffﬁg; ;r0=m0relation Rarzge_of(g%v)'iit[i\cj\?%fDr%ereiagion
Order 7 error(j] 7 errar[j] 55;"[Vector Error rféfz-t Vector Lrrer 55;} Vector Error me‘;'t Vector Error
rho = 1.01p—5
5 4 —1.01—8 1 .0 5 5 —3.310—8 5 4 4.3,,-8| 5 5 —5.1,,—8 4 4 3.910—8
10 8 —1.10—8 3 .0 7 7 —1.210—8 9 6 1.3,0—8 7 8 —5.110—9 6 6 2.0;0—8
15 13 —1.1,,—8 0 .0 14 14 —9.310—9 10 10 9.4y,—9 8 9 —1.914—9 10 10 1.310—8
tho = 1.0;p—8
3 3 —=T7.5,0—9 1 3.7,4—9 3 1 —2.810—9 2 2 9.310—9 1 3 0 1 2 1.9,0—8
4 4 —5.6,0—9 3 .0 2 2 —4.510—9 3 4 3.310—9| 2 2 .0 2 3 9.310—9
5 4 —1.0,,—8 1 .0 5 4 —4.910—-9 4 4 5.8,0—9 1 1 —7.510—9 3 4 7.510—9 -
6 4 —4.7,,—9 4 .0 4 3 —2.810—9 5 4 3.610—9 1 6 —2.3:0—10 4 5 9.310—9
7 4 —=5.1,,—9 5 .0 6 6 —2.810—9 4 4 3.410—9 5 7 —1.2,0—10 5 6 7.510—9
8 7 —=7.510—9 5 .0 5 5 —6.010—9 5 6 3.210—9 | 8 8 —1.2,0—10 7 7 9.310—9
9 6 —4.4,—9 7 .0 6 5 —5.110—9 7 6 3.20-9| 5 5 —7.510—9 8 8 1.5,0—8
10 8 —1.5,—8 8 .0 8 9 —9.310—9 9 7 7.210—9 | 6 7 —2.310—9 9 9 2.010—8
11 10 —7.5,—9 1 .0 9 10 —6.5:;0—9 g8 11 3.010—9 1 1 —3.110—9 8 8 7.510—9
12 8 —5.0,0—9 11 .0 10 6 —7.616—9 10 8 2.410—9 | 6 6 —1.710—8 4 4 1.3;0—8
13 12 —1.1,,—8 10 .0 10 11 —6.910—9 1210 9.1,0—9 | 7 7 —3.010—8 12 12 3.210—8
14 10 —1.5,0—8 4 .0 13 13 —1.110—8 10 10 6.710—9 9 10 —3.510—9 6 6 1.7,0—8
15 13 —1.1,,—8 6 .0 14 14 —1.1,0-8 11 10 3.510—9 8 9 —3.010—9 6 11 7.510—9
Volume 6 / Number 8 / August, 1963 Communications of the ACM 447

2. The 4th for clause corrected to read:
for j := 1 step 1 until ¢ — 1 do
3. The last for clause corrected to read:
for ¢ := 1 step 1 until n do

On closer examination we have found, however, that a signifi-
cant number of superfluous operations could be eliminated in the
innermost loop by rewriting the two for statements at the center
of the algorithm as a single for statement, to read as follows:

cost := sqrt (1—sint T 2);
for i := 1 step 1 until » do
begin if i p A 75 ¢ then
begin intl 1= A[i,p]; mu := Al{,q¢];
Alg,i] := Ali,q] := infl X sint + mu X cost;
Alp,i] := A[Z,p] := intl X cost — mu + sint
end;
mtl = Sli,pl; mu = S[,ql;
SlZ,q] := intl X sint + mu X cost;
S[i,p] = intl X cost — mu X sint
end;
Alppl i=v1 X cost 1 2+v3 X sint T2 —2 X v2 X sint X cost;

This revision is particularly advantageous in systems having a
comparatively slow subseript mechanism, such as Gier ALcor,
because it eliminates more than 3 out of 8 references to subseripted
variables. .

JACOBI has been tried with two different sets of matrices hav-
ing known eigenvalues. In both cases a test program was set up to
find the range of errors of the eigenvalues computed by JACOBI.
In addition, the relations Av — v = 0 (A4 is the given matrix, v
an eigenvector, and X the corresponding eigenvalue) and A — (S7')
LAMBDA 8 = 0 (S is the matrix having the eigenvectors as col-
umns and ST its transpose, and LAMBDA is the diagonal matrix
of the eigenvalues) were used as checks. The test matrices were
TESTMATRIX calculated by the revised algorithm 52 given in
Comm. ACM 6 (Jan. 1963), 39, and the following matrix suggested
by Mr. H. B. Hansen:

HBH TESTMATRIX [ji] = HBH TESTMATRIX [4,j]
=n-+1-7 =)
having the eigenvalues 0.5/(1 — ecos ((2X71—1)Xpi/(2Xn+1))).
The results were as shown in Table 1 (GiEr ALGoL works with
floating numbers of 29 significant bits).
The compile time for the program which produced one of these
tables was about 40 seconds. Run times were as follows:

Original algorithm Revised algo-

TESTMATRIX ALG. 52 HBH rithm HBH
TESTMATRIX TESTMATRIX
Rho n (seconds) (seconds)
10—3 5 3
10 22
15 70
10—5 5 3 5
10 5 41 29
15 13 148 99
10—8 5 4 7 6
6 5 12
7 5 18
8 5 25
10 13 38
15 22 116
448 Communications of the ACM

From these figures it looks as if TESTMATRIX, Algorithm 52,
is atypical as far as solution by means of JACORBI is concerned.
The much higher aceuracy obtained for this matrix as compared
with the HBH matrix points in the same direction.

For further comparison it may be mentioned that the algo-
rithms published by J. H. Wilkinson [Num. Math. 4 (1962), 354-
376] also have been tested successfully with Gier Arcor. Wilkin-
son’s algorithms reduce the matrix to tridiagonal form by means
of Householder’s method and use Sturm sequences to find the
eigenvalues and inverse iteration to find the eigenvectors. In GIer
ALcoL this method is about 1.3 times as fast as JACOBI for the
range of matrices considered here. JACOBI has the advantage
that the eigenvectors are properly orthogonal, even in the case of
multiple eigenvalues, and also has a much simpler logic. On the
other hand if only some of the eigenvalues and/or eigenvectors are
sought Wilkinson’s algorithms will often offer much higher speed
than JACOBI, which always finds them all.

CERTITFICATION OF ALGORITHM 140

MATRIX INVERSION [P. Z. Ingerman, Comm. ACM,
Nov. 1962]

Ricuarp Groree*

Argonne National Laboratory, Argonne, Il

* Work supported by the United States Atomic Energy Commission.

Algorithm 140 was tested on the LGP-30, using Scavp, a load-
and-go compiler from the Dartmouth College Computation
Center, and it was shown to be syntactically correct.

It is indeed a simple procedure. It is so simple because the
author has eliminated the very necessary search for largest ele-
ments and the row interchanges. As a result, this procedure will
fail to invert many non-singular matrices. To be invertable by this
procedure, a matrix must be such that all of its leading diagonal
submatrices will have non-zero determinants.

One would do well to avoid this algorithm and use one (such
as 120) which employs the pivoting process.

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ALGoL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

Volume 6 / Number 8 / August, 1963

CERTIFICATION OF ALGORITHM 153
GOMORY [F. L. Bauer, Comm. ACM 6, Feb. 1963
B. Lerrowrrz anp D. A. I’Esopo*

Stanford Research Institute, Menlo Park, California

* Work supported by Office of Naval Research.

GOMORY was hand-coded in BaLcoL for the Burroughs 220
and in ForTrAN for the CDC 1604. The following eorrections should
be made:

The statement

lambda := abs(alr,1]/11]);
should read

lambda := abs(al[r,1}/11]);
The statement

for j := 2 step 1 until n—1 do if a[r,j] < 0 then
should read

for j := 1 step 1 until n—1 do if afr,;] < 0 then

The following changes to Bauer’s program were made to in-
crease its efficiency and reduce storage requirements.

Change the statement

begin integer .k, 5,1, r;
to read

begin integer 7,%,7,1,7,¢,¢;
Change the statement

real lambda;
to read

real lambda, lambd;
Delete the statement

integer array i[1: n—1], ¢[l1: n];
Before the statement

for j := 1 step 1 until n—1 do if alr,5] < 0 then
insert, the statement

lambda := 1.0;
Change the statement

begin if a0,l] # 0 then ilj] := entier(al0,1/al0,1])
to read

begin if al0,{] # 0 then ¢ := entier(al0,51/al0,1])
Change the statement

else 5] := 1
to read
elset =1
After the statement
else (5] := 1
insert the statements
lambd = —alr jl/t;

lambda = if lambda < lambd then lambd else lambda;
Delete the statements starting with

lambda := abs(alr,1]/{1]);
up to and including

lambda := abs(alr,j]/t;]) end;
Change the statement

begin clj] := entier (alr, jl/lambda);
to read

begin ¢ := entier(alr,s]/lambda) ;
Change the statement

if c[5] # 0 then
to read

if ¢ # 0 then
Change the statement

for 7 := 0 step 1 until m do al7,5] := ali,;] + clj] X
to read

for i := 0 step 1 until m do ali,j] := ali,j] + ¢ X
The “‘tie-breaking” procedure embodied in the three state-

ments beginning at

3:if ale,j] < ali,l] then | ;= j else
will fail if the two columns being compared are identical. Although

this cannot happen on the first iteration, it may occur later. To

Volume 6 / Number 8 / August, 1963

test for this condition change the two statements beginning with

begin ¢ := 7 4+ 1; go to 3 end

to read
begin ¢ := 7 + 1;
31: end;

The revised algorithm yielded satisfactory answers on a ten
equation-seven variable problem in 159 iterations and a 35-equa-
tion 14-variable problem in 447 iterations.

The following comments may be helpful for preparing a problem
for GOMORY. The problem constraints must be stated in the
form:

if © > m then go to 31 else go to 3 end;

205 @i+ s = b;

where the s; are slack variables. The columns representing these
slack variables need not appear in the initial tableau-matrix a.

Since the only variables in the solution that will necessarily be
non-negative are the s; , any non-negativity constraints on the
other variables must be among the above equations (e.g. the con-
straint z; = 0 is represented by —z; + sx = 0).

The size of the integers in the b vector substantially affects the
number of iterations.

The requirement that all but the last tableau-columns be lexi-
cographically positive means that the first nonzero element in
these columns must be positive.

Epiror’s NoTe: Prof. Bauer wishes to indicate that for the
Algorithm 153, GOMORY, credit is due to Ch. Witzgall, who
wrote the draft.

CERTIFICATION OF ALGORITHM 154
COMBINATION IN LEXICOGRAPHICAL ORDER
[Charles J. Mifsund, Comm. ACM, Mar. 1963]

K. M. BoswortH

1.C.T. Ltd., Hayes, Middlesex, England

This procedure was tested
for 7 := 1 step 1 until n withn = 6

with correct results.

CERTIFICATION OF ALGORITHM 155
COMBINATION IN ANY ORDER [Charles J. Mifsud,
Comm. ACM, Mar. 1963]

K. M. BoswortH

I.C.T. Ltd., Hayes, Middlesex, Iingland

This procedure was tested using
ml3] = 2
M3l =9 MH4] =16

m{l] =4 m[2] =3 mld] = 2

MUl =4 M[2]=7

and for r := 1 step 1 until s

It is correctly generated for r = 1 the four combinations4, 7,9,
16, as well as the ten combinations for r = 2, the eighteen com-
binations for r = 3, and the twenty-six combinations for r = 4.

Changes made due to compiler limitations were (i) systematic
changes of upper case letters where there was conflict due to having
only one case of letters, (ii) transfer of own declared variables to
non-local variables, and (iii) integer labels to identifiers.

Communications of the ACM 449

CERTIFICATION OF ALGORITHM 156
ALGEBRA OI SETS [Charles J. Mifsud, Comm. ACM,
Mar. 1963]
K. M. BoswortH
LC.T. Ltd., Hayes, Middlesex, England
One correction required in this procedure is the systematic
change of label A to avoid confliet with the formal parameter
array A.
The procedure was then tested for n = 9 and Ai = 7, 1=1,
-, n, producing the correct answer SUM = 1.

Two other tests with arbitrary values of A7 and n = 4 were also
correct.

CERTITFICATION OF ALGORITHM 160
COMBINATORIAL OF M THINGS TAKEN N AT
A TIME [M. L. Wolfson and H. V. Wright, Comm. ACM,
Apr. 1963}
Dyitrr THORO
San Jose State College, San Jose, Calif.

Algorithm 160 was translated into Forrran II and Forco for

the IBM 1620. Correct results were obtained for values of m up to
20.

CERTIFICATION OF ALGORITHM 161
COMBINATORIAL OFF M THINGS TAKEN ONE AT
A TIME, TWO AT A TIME, UP TO N AT A TIME
(H. V. Wright and M. L. Wolfson, Comm. ACM, Apr.
1963]
Dwitrr THORO
San Jose State College, San Jose, Calif.

Algorithm 161 was translated into Forrran IT and Forago for

the IBM 1620. Correct results were obtained for values of m up
to 20.

CERTIFICATION OF ALGORITHM 162
XYMOVE PLOTTING [Fred G. Stockton, Comm. ACM,
Apr. 1963}
WiLniam E. FLercHER
Bolt, Beranek and Newman Inc., Los Angeles, Calif.
The line in the body of the procedure which read:
if Dz then [:=171 + 2;
was corrected to read:
if D=0then] =171+ 2;

With this one change the body of the procedure was trans-
literated into DECAL-BBN and successfully run on a PDP-1
computer utilizing the cathode ray tube output to display the
path of a simulated digital ineremental plotter.

450 Communications of the ACM

CERTIFICATION OF ALGORITHM 164
ORTHOGONAL POLYNOMIAL LEAST SQUARES
SURFACE FIT [R. E. Clark, R. N. Kubik, L. P. Phillips,
Comm. ACM, April 1963]

C. V. BITTERLI

Johns Hopkins Univ. Applied Physics Lab., Silver Spring,
Md.

The SURFACEFIT algorithm was translated into FoOrRTRAN
and successfully run on an IBM 7094. It was necessary to make the
following corrections:

(a) 12th line after

comment evaluate orthogonal polynomials;
should read
numa = numae + ulz] X zl7] X pln—1,4] T 2;

(b) 2nd line after

comment evaluation of orthogonal polynomial coefficients;
should read

peln,n] = 1.0;

(e) 12th line after

comment evaluation of orthogonal polynomial coefficients;
should read

if ¢t # 1 then gdm,t] := gelm,t] + qclm—1,1—1];
(d) 8th line after
comment evaluation of dependent variables using the approxi-
mating polynominal
should read
for ¢ := mmax —1 step —1 until 1 do

The following function was used to generate data for checking

this algorithm:
z2=1—zx+y—ay+ 22—y

for z=20,1,234
and y=20,1,234

The resulting polynomial was:

z=a — by —ay + x® — y?

which is correct for the normalized variables.

It should be pointed out in the comment for this procedure

that the resulting polynomial is in the normalized variables and
not the original variables.

REMARK ON ALGORITHM 170

REDUCTION OF A MATRIX CONTAINING POLY-

NOMIAL ELEMENTS [P. E. Hennion, Comm. ACM,

Apr. 1963]

P. E. HEnNION

Giannini Controls Corp., Berwyn, Penn,

Four typographical errors were found upon reviewing the

procedure. The following corrections should be made:

(1) The increment for the for statement of line start :, should be 1.

(2) The colon at the end of the third line after line start:, should
be replaced by a semicolon.

(3) The semicolon at the end of the first line after line LO:, may
be removed.

(4) The last statement of the first column should read:

MAT[Z,7] := k; end end;

Volume 6 / Number 8 / August, 1963.

