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Abstract: This paper proposes a framework for the handling of spatio-temporal queries with inexact 
matches, using the concept of relation similarity. We initially describe a binary string encoding for 1D 
relations that permits the automatic derivation of similarity measures. We then extend this model to various 
granularity levels and many dimensions, and show that reasoning on spatio-temporal structure is 
significantly facilitated in the new framework. Finally, we provide algorithms and optimization methods 
for four types of queries: (i) object retrieval based on some spatio-temporal relations with respect to a 
reference object, (ii) spatial joins, i.e., retrieval of object pairs that satisfy some input relation, (iii) 
structural queries, that retrieve configurations matching a particular spatio-temporal structure and (iv) 
special cases of motion queries. Considering the current large availability of multi-dimensional data and 
the increasing need for flexible query answering mechanisms, our techniques can be used as the core of 
spatio-temporal query processors. 
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1. INTRODUCTION 

The general theme of this work is the design and implementation of efficient retrieval mechanisms for spatio-

temporal databases. Adopting a relational view, such databases are collections of entities which have either 

spatial attributes (e.g. geographic databases) or temporal attributes (e.g. medical databases) or combinations 
thereof (e.g. multimedia databases). Spatial attributes can be viewed as 0D, 1D, 2D or 3D positions1 in a 

"space", either the physical one (e.g. map objects) or an artificial one such as a computer screen (e.g. 

multimedia objects). Temporal attributes capture the temporal existence of entities and in the general case can 

be represented as time points or time intervals. Continuing the relational analogue, such attributes should be 
allowed in the expression of user queries related through appropriate operators such as contains, north-east, 

near, during, after, etc.   

Retrieval mechanisms able to handle queries of the above type could also be beneficial even for 

unstructured or semi-structured collections of spatio-temporal entities. The prohibitively large volumes and 
the heterogeneity of the widespread multimedia information (like maps, satellite imagery, multimedia 

presentations, images, etc.) render purely textual searching ineffective and raise the need for "intelligent" 

query processing, focusing on content [NY96]. As a result, there has already been significant progress on 

image and video content retrieval research ([F+94], [OS95], [SC96], [SK97], [M98], [C+98]). Most of these 
techniques, however, address retrieval of visual content, i.e. properties like colour, shape, texture, etc. A 

rather neglected type of content is spatio-temporal structure, which refers to the spatial and temporal 

arrangement of a collection of objects. Used in conjunction with visual content retrieval, spatio-temporal 

retrieval could allow for the processing of powerful similarity queries like "find all multimedia presentations 
depicting a sunset image, which is followed by a slide show on its left, synchronised with a narration". 

Handling spatio-temporal queries requires a breakthrough in structure description, as well as, retrieval 

mechanisms. This is even more stressed considering a salient characteristic of such queries, the requirement 

for inexact matches and approximation scores to rank the query output, which can be attributed to two main 
reasons: First, if a user asks for a specific spatio-temporal configuration he/she may be interested in receiving 

matching configurations, possibly at a defined tolerance (degree of approximation). Second, spatio-temporal 

predicates like far, northeast, during, etc. do not always have crisp definitions, so users may typically accept 

answers similar although not identical to their query, as these could correspond to conceptually valid 
representations. The need for approximation constitutes a serious impediment if traditional query processing 

techniques are to be employed.  

In this work we deal effectively with the above issues. In particular, we (i) propose a powerful framework 

for representing and reasoning on spatio-temporal relations at various resolution levels and arbitrary 
dimensions, (ii) demonstrate how the framework can be employed in database systems that use multi-

dimensional data structures, (iii) develop algorithms for several types of approximate retrieval (iv) evaluate 

the efficiency of our methods with extensive experiments involving real data.  

                                                           
1 In GIS literature a position is often defined as a tuple <location, size, shape, orientation>. 
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The rest of the paper is organized as follows: Section 2 describes a binary string encoding for the 

representation of spatio-temporal structure in multiple resolutions and dimensions. Section 3 illustrates how 

the framework is used for retrieval of objects that have certain structural characteristics within a repository of 
spatio-temporal information. Section 4 deals with spatial joins, i.e., retrieval of object pairs that satisfy some 

spatio-temporal constraint. Section 5 studies the most complex, and probably most interesting problem, that of 

configuration similarity between spatio-temporal scenes (object collections). Section 6 illustrates the 

application of our framework to motion queries, viewed as temporal sequences of spatial events. Finally, 
Section 7 concludes the paper with a discussion about further continuation of this work. 

2.  A FRAMEWORK FOR SIMILARITY 

Several types of relations such as topological (e.g., inside, overlaps), direction (north, southeast) and distance 

(e.g., near, far) have been applied to express spatial queries. Even for a single type of constraint, definitions 
may vary [H94]; for instance direction relations can be defined by angles between object centroids  (e.g., 

north  may correspond to an angle of 90 degrees) or by projections (an object is north of another if all its 

points are higher than any point of the second one). For the temporal domain there is a widely acceptable set 

of 13 mutually exclusive relations (proposed by Allen [83]) which describe the relative locations between 1D 
(time) intervals. Sample configurations of intervals that satisfy each of these relations are shown in Figure 2.1. 

Relation R1, for instance, corresponds to the situation where all points of the upper interval are before the 

lower one. Multi-dimensional extensions of Allen’s relations have also been applied for spatial queries.    

R9

R1
R2 R

3

R4

R5

R6

R7

R
8

R10

R11
R12 R13

 
Figure 2.1 Conceptual neighborhood for relations between intervals in 1D space 

The concept of conceptual neighborhood [F92] provides the means for defining similarity measures for a set 

of relations. A conceptual neighborhood is represented as a graph whose nodes denote relations that are linked 

through an edge, if they can be directly transformed to each other by continuous interval deformations. In 
such a graph, similar relations are closer to each other than non-similar ones. Depending on the allowed 

deformation (e.g., movement, enlargement), several graphs may be obtained. The one in Figure 2.1, 

corresponds to what Freksa called A-neighbors (three fixed endpoints, while the fourth is allowed to move). 

Starting from relation R1 and extending the upper interval to the right, we derive relation R2. With a similar 
extension we can produce the transition from R2 to R3 and so on. R1 and R3 are called 1st degree neighbors of 



 4

R2. The distance d between two relations is equal to the length of the shortest path relating them in the 

neighborhood graph.  

Related work on conceptual neighborhoods has been carried out for direction [NNS96], topological 
relations  [EA92] and for classes of both topological and direction relations [BE96]. According to all these 

approaches there is a pre-defined set of relations for which conceptual neighborhoods are pre-computed and 

encoded in look-up tables. Subsequent queries use the look-up tables to retrieve similar matches.  

However, assuming a predefined set of relations and similarity measures is a serious restriction for most 
applications. Different users may impose different kinds of spatio-temporal constraints, or even if the 

constraints are similar they may refer to different granularities. An effective system for spatio-temporal 

retrieval should provide flexibility in the definition of constraints and the means for the automatic calculation 

of similarity measures depending on the query. In this section we describe a framework for spatio-temporal 
relations that supports dynamic (i.e., not pre-defined) constraints and similarity measures. The proposed 

framework is easily adjustable to different user needs and may have a wide range of applications in spatio-

temporal query processing. 

2.1 A Binary String Encoding of Relations 

Let [a,b] a closed and continuous 1D (time) interval with endpoints a and b, -∞<a<b<∞. We identify 5 distinct 

regions of interest (which can be points or open intervals) with respect to [a,b]: 1.(-∞,a) 2.[a,a] 3.(a,b) 4.[b,b] 
5.(b,+∞) (see Figure 2.2a). The relationship between a primary interval [z,y], and [a,b] can be uniquely 

determined by considering the 5 empty or non-empty intersections of [z,y] with each of the 5 aforementioned 

regions, modelled by the 5 binary variables t, u, v, w, x, respectively, with the obvious semantics ("0" 

corresponds to an empty intersection while "1" corresponds to a non-empty one). Therefore, we can define 
relations in 1D to be binary 5-tuples (Rtuvwx : t, u, v, w, x ∈ {0,1}). For example, R00011 (t=0, u=0, v=0, w=1, 

x=1) corresponds to the relation of Figure 2.2b (R12 in Figure 2.1). Not any 5-tuple of  "1"s and "0"s 

represents a valid spatial relation between 1D intervals. If we deal with continuous intervals with non-zero 

duration, the underlying constraints are: 
• at least one "1" must exist. If it is unique, it should not correspond to u or w (because in this case [z,y] 

collapses to a single point). 

• all the "1"s must be consecutive (otherwise we refer to disconnected intervals). 

• the intervals of interest must be a consecutive partition of (-∞,+∞). 

a b

t u v w x

-∞ ∞
1 2 3 4 5

 a b

R00011 z y

 
(a) Interval and regions of interest (b) Example of relation R00011 

Figure 2.2 Encoding of spatio-temporal relations 

The binary encoding can be extended in order to handle relations at varying resolution levels. We will initially 

illustrate its applicability to a coarse resolution level where only a few relations can be distinguished. In the 
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example of Figure 2.3a, the 1D regions of interest are (-∞,a), [a,b] and (b,+∞), respectively. The 

corresponding relations are of the form Rtuv, t,u,v ∈ {0,1}. This allows for the definition of only 6 relations 

since information content concerning the endpoints of [a,b] is reduced: R100 (before), R010 (during), R001 (after), 
R110 (before_overlap), R011 (after_overlap), R111 (includes). Figure 2.3b illustrates four configurations that 

correspond to R010 and cannot be distinguished in this resolution. 

a b

t u v

-∞ ∞  a b

R010

a b a b a b  
(a) Interval and regions of interest (b) Examples of relation R010 

Figure 2.3 Encoding at a coarse resolution level 

Increasing the resolution of relations can be achieved simply by increasing the number of regions of interest. 
For instance, we can capture distance by refining disjoint relations, i.e., by splitting 

(-∞,a), (b,+∞) to several intervals. Figure 2.4 illustrates a simple partitioning that uses 9 bits and allows the 

distinction between far and near relations (near defined as being in a distance up to δ and far otherwise). An 

arbitrary number of distance refinements can be defined (for example a distance grid), according to the 
application needs. We call such consecutive partitionings of space resolution schemes. 

The feasible relations at a particular resolution scheme are called primitive relations. In general, the fewer 

the binary variables, the coarser the resolution, and vice versa. If b is the number of bits, the number of 

primitive relations in 1D is b(b+1)/2 - k, where k is the number of point variables, i.e. intervals of the form 
[a,a]. If we fix the starting point at some bit then we can put the ending point at the same or some subsequent 

bit. There are b choices if we fix the first point to the leftmost bit, b-1 if we fix it to the second from the left, 

and so on. The total number is b(b+1)/2 from which we subtract the k single-point intervals. For b=9, k=4 we 

get the 41 relations of Figure 2.4, while for b=5, k=2, there exist 13 (Allen's) relations.  
R100000000 R110000000 R111000000

R011000000

R001000000

R111100000

R011100000
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R001100000
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R001110000 R001111000
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R001111111R001111110
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a b
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Figure 2.4 1D Conceptual neighborhood including distances (41 relations) 
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The new notation permits the automatic calculation of relation distances and, consequently, of similarity 

measures. Consider the neighborhood graph of Figure 2.4 where edges are arranged horizontally and 

vertically. The semantics of traversing the graph in either direction are captured by the following "pump and 
prune" rule of thumb: Given a relation Rx, there are 4 potential neighboring relations, denoted right(Rx), 

left(Rx), up(Rx), down(Rx), respectively, with the obvious topological arrangement in the graph. Right(Rx) can 

be derived from Rx by "pumping" an "1" from the right, i.e., finding the first "0" after the rightmost "1" and 

replacing it by a "1". Left(Rx) can be derived from Rx, by "pruning" an '1" from the right, i.e. replacing the 
rightmost "1" by a "0". Similarly, up(Rx) can be derived from Rx by pumping an "1" from the left while 

down(Rx) can be derived by pruning the leftmost "1". Notice that not all neighboring relations are always 

legal: the relation up(R110000000), for example, is not defined because the leftmost digit is a "1".  
Since movement in the neighborhood graph is restricted to horizontal and vertical directions, the distance 

between two nodes is the sum of their vertical and horizontal distances. Equivalently, the distance between 

any two relations can be calculated by counting how many elementary movements we have to perform on an 

interval in order for the two relations to become identical. The larger the number of simple movements, the 

less similar the relations. The binary string representation enables automatic calculation of distances using the 
pseudo-code of Figure 2.5, which counts the minimal number of “0”s that have to be replaced with "1"s in 

order to make the two strings identical (leftmost_1(R) returns the position of the leftmost bit that contains 1). 

For example d(R000110000, R010000000) = 5 and d(R000110000, R110000000) = 6 (the underlined 0s are the ones counted 

during the calculation of distance). The distance between a relation R and a relation set {R1,…,Ri} equals the 
minimum distance between R and any of R1,…,Ri (e.g., d(R000110000, {R010000000, R110000000})= 5). 

INT distance(relation R1, relation R2)  
R = R1 OR R2;  /*bitwise OR */ 
d = 0; 
FOR i:= leftmost_1(R) to rightmost_1(R) DO  

IF R1[i]=0 THEN d++; 
IF R2[i]=0 THEN d++; 

RETURN (d); 
Figure 2.5 Distance calculation 

This method does not need look-up information for computing similarity, and at the same time is very 

efficient since it is based on simple binary operations. Thus, users are not restricted to a predefined resolution 

but are free to employ different sets of constraints depending on their needs. The framework permits the 
uniform representation of several types of spatio-temporal relations (e.g., topological, directional, distance) 

and, as we show in the next section, the encoding and distance calculation can be extended accordingly to 

multi-dimensional spaces. 

2.2 Multi-dimensional Extensions 

A D-dimensional relation is defined as a D-tuple of 1D projections. We denote with R↓p the projection of R 

on p, e.g. R000001100-100000000↓x = R000001100. For axis x we assume a west-east direction, while for y north-south 
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(according to the co-ordinate system used for the computer screenshots). In order to derive a neighboring 

relation we have to replace one of the constituent 1D projections with its neighbors. As a result, computing D-

relation distances is reduced to the already solved problem of computing 1D distances. In this paper we 
calculate the distance between two multi-dimensional relations by summing up the distances on each 

dimension (other metrics, such as Euclidean [NNS96], can also be applied). Figure 2.6 shows the 2D 

neighborhood for the distance-enhanced resolution scheme of Figure 2.4. In this "fractal" graph, 41 

conceptual neighborhoods corresponding to one dimension are linked, forming a higher level conceptual 
neighborhood for the other dimension (each node in the big neighborhood graph is a small neighborhood 

graph). As illustrated in the magnified portion of the graph, each line corresponds to a complete set of 41 

connections between 2D relationships.  

 
 Figure 2.6 2D neighborhood graph for the distance-enhanced scheme 

The framework can be easily applied for approximate retrieval of spatio-temporal queries. As a 2-dimensional 
example consider that a user is looking for all configurations of four objects that match the  query of Figure 

2.7(a) (this type of queries will be discussed in Section 5). The prototype configuration is drawn using a 

query-by-sketch language where the distance of the grid is set to δ. δ can be tuned to match application and 

user needs; for instance, a user may specify δ as 5% of the global extent per axis, while another may specify 
multiple δ's of possibly different lengths. The same retrieval mechanisms are applied for both cases since the 

underlying data are stored using absolute co-ordinates from which the relations between stored objects are 

computed on-the-fly depending on the resolution scheme for a particular query. For simplicity, in the 

following examples we use the distance-enhanced resolution of Figures 2.4 and 2.6.    
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(a) Query (b) Binary constraints 

Figure 2.7 An example 2D application 

Figure 2.7(b) illustrates the set of binary constraints between all pairs of objects for the query of Figure 2.7(a). 

For instance, given that the direction of y axis is from north to south, the relation between query objects 0 and 

2 is R000001100-100000000 (the first object (0) is the primary object, while the second one (2) is the reference). If 

there does not exist a configuration of four objects identical to the input in some stored image, then the system 
should retrieve the ones that match the query constraints closely. The output should have an associated 

"score" to indicate its similarity to the query, which by adoption, is inversely proportional to the degree of 

neighborhood. Similarly the framework can be extended to capture 2D objects + 1D time (e.g., motion queries 

in Section 6) or 3D objects + 1D time. Depending on the application needs some dimensions (e.g., time) may 
be tuned at different resolution without affecting the applicability of the proposed methods.  

In the rest of the paper we show how the framework can be employed for various types of spatio-temporal 

retrieval. We assume databases indexed by R-trees which store the minimum bounding rectangles (MBRs) of 

the actual objects (an assumption which is true for many commercial systems). Since MBRs are projection-
based approximations, the above projection-based definitions of relations and similarity measures are 

particularly suitable for implementation in real systems.  

3.  OBJECT RETRIEVAL  

The predominant access method for multi-dimensional data is R-trees [G84] and their variations, which are 

currently used in many commercial DBMSs, like Illustra, Postgress, Mapinfo etc. The R-tree data structure is 

a height-balanced tree that consists of intermediate and leaf nodes (R-trees are direct extensions of B-trees in 

many dimensions). The MBRs of the actual data objects are stored in the leaf nodes and intermediate nodes 
are built by grouping rectangles at the lower level. Figure 3.1 illustrates an image containing objects a, b,.., l 

and the corresponding R-tree. MBRs a, b and f are grouped together in a node A, which is pointed by 

intermediate node 1. In the rest of the paper, we make the distinction between an R-tree node N[i] and its 

entries Nk, which correspond to MBRs included in N[i]. Nk.ref points to the corresponding node N[k] at the 
next (lower) level. A leaf entry is an object MBR rk. For instance, at level 1, the entries of node 1 are A, B, 
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which point to nodes at level 0. Nk,l (rk,l) and Nk,u (rk,u) represent the lower left point and the upper right 

point of Nk (rk), respectively. 
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2
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D

a
b

c

e
d
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g

i

jk
l

δ

W

 

A B

a b f c d e
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k j g i

1 2

C

llevel 0

level 1

level 2

node 1 node 2

root

node A node B node D node C

 

(a) Image (b) R-tree 

Figure 3.1 A set of objects and the corresponding R-tree 

3.1 Exact Retrieval - Window Queries  

Traditionally R-trees have been used for window queries, which ask for a set of objects that intersect a 

window W (the reference object). The processing of a window query (e.g., light grey window in Figure 
3.1(a)) in R-trees involves the following procedures: Starting from the top node, exclude the nodes that are 

disjoint with W, and recursively search the remaining ones (grey nodes in the tree of Figure 3.1(b)). Among 

the entries of the leaf nodes retrieved, select the ones that overlap W. Notice that even though the MBR of 

entry D intersects W, there is no solution MBR inside node D.  
The fact that R-trees permit overlap among node entries at the same level, sometimes leads to redundant 

search in the tree structure. The R+-tree [SRF87] and the R*-tree [BKSS90] were proposed to address the 

problem of performance degradation caused by the overlapping regions and excessive dead-space. The R+-

tree achieves zero overlap among intermediate node entries by allowing partitioning of the leaf objects, 
whereas, the R*-tree permits overlap among nodes, but tries to minimise it by organising rectangles into nodes 

using a more complex insertion algorithm than the original R-tree. 

When the MBRs of two objects are disjoint we can conclude that the objects that they represent are also 

disjoint. If the MBRs however share common points, no conclusion can be drawn about the spatial relation 
between the objects. For this reason, spatial queries involve the following two step strategy [O86]: 

1. Filter step: The tree is used to rapidly eliminate objects that could not possibly satisfy the query. The 

result of this step is a set of candidates which includes all the results and possibly some false hits. 

2. Refinement step: The actual representation of each candidate (e.g., a set of points describing a polygonal 
shape) is retrieved from the database and tested for the satisfaction of the query using computational 

geometry techniques2.  

                                                           
2The refinement step is performed by plane-sweep algorithms which identify whether two arbitrary polygons intersect in O(nlogn) 
time, where n is the total number of edges in both polygons. Thus, it is more expensive than the filter step since finding whether two 
MBRs intersect requires only two comparisons per dimension. Notice that there is a trade-off between the two steps in the sense that 
by using finer approximations (e.g., convex hulls instead of MBRs) one can decrease the number of candidates (and the cost of the 
refinement step) at the expense of the filter step (which becomes more complicated) and storage (finer approximations require more 
than two points per object) [BKSS94]. Since MBRs are the most commonly used approximation, we follow this approach.  
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The two-step processing method has been extended to handle several types of queries: [PTSE95] applied R-

trees for the retrieval of topological relations, [PT97] of direction relations, and [RVK95] of nearest neighbor 

queries. All the above methods deal with exact retrieval of objects that satisfy some spatial predicate (e.g. 
inside, north, near), with respect to some reference object. However, due to the fuzzy nature of some spatial 

predicates, the solution set is not always uniquely defined. For example, consider the following query: "find 

all objects northeast of a in Figure 3.1(a)". Depending on the user and the application, the answer may vary: 

object g is definitely northeast of a, but also k, or even b may be considered as a solution. This uncertainty 
raises the need for approximate retrieval, which would retrieve similar, in addition to exact, matches. 

3.2 Approximate Object Retrieval  

The problem of approximate object retrieval can be stated as follows: Given a reference object r, a spatio-

temporal constraint C (which can be a primitive relation or a disjunction), and a maximum distance τ, "find all 

(primary) objects V, whose relation R with r is such that d(C,R(V,r))≤τ". That is, in addition to the reference 

object and the desired relation, the user inputs the maximum allowed distance τ from the input constraint.  
Initially, we will deal with exact object retrieval, using the aforementioned framework, and limit our 

discussion to the case where τ=0 and C is a primitive relation. The goal, given such a query, is to identify a 

minimal query window to guide search. Consider, for example, that r = a and C = R000001100 (which could be 

interpreted as right-near). The objects V to be retrieved should intersect the regions [a.u, a.u] and (a.u, 
a.u+δ), shown in Figure 3.2.  

a-∞ ∞δ δ

000001100R 012345678

 
Figure 3.2 Correspondence between 1-bits and regions 

It is enough to search according to one of these regions, in order to retrieve all solution objects, plus possibly 

some false hits. Hence, we can answer the query in two steps: 

1. Set as minimal window Wmin, the smallest region defined by the 1s in C. The smallest regions are points 

which correspond to odd bits in C, e.g. for R000001100 the minimal window is [r.u, r.u] which corresponds to 
the 5th bit. If there exist more than one odd bits, any of the corresponding points can be chosen as Wmin. 

The non-existence of an odd bit implies that there is a single even bit which becomes Wmin. 

2. Apply a window query using Wmin and filter out the results that do not satisfy C with respect to r. 

We call the bit in C that identifies Wmin, the minimal intersection bit, IB(C). As a 2-D example consider the 
image of Figure 3.3(a) and let r=a and C=R000001100-100000000 (the constraint between query objects 0 and 2 in 

Figure 2.7(a)). As shown in the previous example, Wmin↓x corresponds to [a.u, a.u]. On the y-axis the only 1 

is at position 8, thus IBy(C)=8 and Wmin↓y is set to (ay.u + δ, +∞]. The thick line over a corresponds to Wmin 

for the 2D query. Assuming that the objects are organized in the R-tree of Figure 3.1(b), 3.3(b) shows the 
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search path if we apply the 2D Wmin window query. The query returns the candidates {c,d}, from which only 

d satisfies R000001100-100000000 with respect to a. 

a

δ

b

c

e
d

f

g

i

jk
l

Wmin

 

A B

a b f c d e

D

k j g i

1 2

C

l  

(a) Image and window queries (b) R-tree search path when applying Wmin query 

Figure 3.3 Example query  (r=a, and C= R000001100-100000000) 

Now let τ>0. A naive approach to solve the problem is to find all neighbor relations {Ri | d(Ri, C)≤ τ}, 

transform them to Wmin queries, and take the union of the results. This method is expensive, since we have to 

apply as many tree searches as the number of τ-neighbors. An improved method (containmentWin) computes 

a single window W, extending C by τ 1’s to the left and right, and applies a containment query. Some objects 
inside the window are false hits; a refinement step keeps the objects whose relation with r is similar to C 

within the input tolerance τ. However, the containment window in some cases (e.g., high tolerance) can be as 

large as the whole space rendering this method inefficient. Therefore, next we propose a more sophisticated 

algorithm (getBits) that avoids the disadvantages of the above techniques. 
The goal of getBits (Figure 3.4) is to find the smallest single window Wmin that intersects all potential 

solution objects, given τ≥0. An equivalent problem is to find a minimal set of bits, that cannot be all 0 in a τ-

neighbour of C. All solution objects will intersect at least one of the regions defined by this set of bits, thus 

their union is the corresponding Wmin. For every projection p, getBits returns a pair of bits (bL, bR) that 
determine the bounds of Wmin↓p (the p-projection of Wmin) with respect to the p-projection of r (r↓p).  

Let len1(C) be the number of 1s in C, and bC be the central 1 in the sequence of len1(C) bits. For instance, 

len1(R000111110)= 5 and bC = 5. The algorithm tests four cases: 

i. τ < len1(C)/2. In this case, there can be no τ-neighbour of C having bC=0. Thus we can set bL = bR = bC, 
and the minimal intersection window will correspond to the area defined by bC and r. For instance, for 

R000111110 and τ=1, we choose bL = bR = 5, and Wmin = [r.u, r.u]. 

ii. τ=len1(C)/2. Here, if len1(C) is odd, we can use the central bit bC as above (it will be 1 in all τ-neighbors 

of C). However, if len1(C) is even, all 1s in C, can be 0 in some τ-neighbour of C; e.g., for R000111100 and 
τ=2, the 2-neighbor R000110000 has b5=b6=0 and R000001100 has b3=b4=0. In this case, we consider as Wmin the 

region defined by both central bits, as both cannot be zero, i.e. bL = b4, bR = b5 and Wmin =(r.l, r.u]. 

iii. len1(C)/2<τ<len1(C). As in the even length case above, all 1-bits can be 0 in τ-neighbours of C. 

Furthermore, τ-len1(C)/2 determines to what extent we have to “pull” Wmin limits from the central bit bC. 
For instance, for R000111110, and τ=3: bL = bC - (τ-len1(C)/2) = 4, bR = bC + (τ-len1(C)/2) = 6, and Wmin = 

(r.l, r.u+δ). 
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iv. τ≥len1(C). In this case, all 1s in C can become 0 in a τ-neighbour of C. Positions bL and bR are decided by 

extending both leftmost and rightmost 1s of C by τ-len1(C). E.g., for R000111110, and τ=6, bL = leftmost1(C) 

- (τ-len1(C)) = 2, bR = rightmost1(C) + (τ-len1(C)) = 8, and Wmin = (r.l-δ, +∞). 
In the pseudo-code of Figure 3.4 cases ii and iii above have been combined in one. ObjectRetrieval (Figure 

3.5) calls getBits to calculate the limits of Wmin and performs a window query using Wmin. Then it filters the 

result according to the input constraint and the tolerance τ.  
 
(2-tuple) getBits (Constraint C, int τ)  
   bC = (leftmost_1(C) + rightmost_1(C))/2; /* position of (leftmost) central 1 in C */ 
   IF τ< len1(C)/2 THEN /* case i */ 
  IF even(len1(C)) AND even(bC) /* even number of 1's and bC is even */ 
                    THEN bL = bR = bC+1; /* minimal intersection window is set to the odd bit right of bC */ 

      ELSE  bL = bR = bC; /* minimal intersection window is set to bC */ 
   ELSE IF (len1(C)/2 ≤ τ < len1(C)) THEN /* cases ii,iii */  

bL = bC - (τ- len1(C)/2 ); 
IF even(len1(C))  
       THEN bR = bC+(τ- len1(C)/2)+1; 
       ELSE bR = bC+(τ- len1(C)/2); 

   ELSE  /*case iv*/ 
bL = max(0, leftmost_1(C) -(τ-len1(C))); 
bR = min(8, rightmost_1(C) +(τ-len1(C))); 

   RETURN (bL, bR); 
Figure 3.4 getBits function 

objectRetrieval(R-tree R, rectangle r, Constraint C, int τ)  
   FOR each projection p DO 
 (bL, bR) = getBits(C↓p, τ); 
 Wmin↓p = Calculate_Window(bL, bR, r↓p); /* calculate minimal intersection window using bL, bR*/ 
   rectangleSet rset = R.windowQuery(Wmin); /* apply window query using Wmin*/ 
   FOR each V ∈ rset DO 
 IF d(C, R(V,r))≤ τ THEN output V; 

Figure 3.5 objectRetrieval  

As an example, consider again that r=a, C= R000001100-100000000, while τ=2. The grey window Wmin in Figure 3.6 

corresponds to the query window calculated by the algorithm. For both dimensions the fourth case applies 
(τ≥len1(C)). The tuple (bL, bR) is (5,6) and (0,1) for the x- and y-dimension, respectively, e.g., for the y axis 

the first two bits cannot be 0 at the same time in any 2nd degree neighbour of R100000000. Thus, the 

corresponding x- and y- projections of Wmin are [a.u, a.u+δ) and (-∞, a.l-δ). The window query retrieves 

{c,d,e,g}. From these rectangles, c and g do not constitute solutions (d(C, R(c,a)) = 7 and d(C,R(g,a)) = 3), 
whereas d and e are solutions with distances 0 and 1, respectively. Constraints involving disjunctions of 

primitive relations, can be processed  using the above method after finding the leftmost and rightmost 1's in all 

constituent relations. 
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Figure 3.6 Example of approximate retrieval (r=a, C= R000001100-100000000 and τ=2) 

We evaluated the efficiency of getBits by comparing it with the other two methods that can be applied for 

approximate object retrieval using our framework. For the following experiment we used the LB data-file 
[T94] which contains 53,145 rectangles representing road segments of Long Beach county. The maximum 

distance of the rectangles on each axis is 10000, and the data density 0.15. We inserted these rectangles to an 

R*-tree of 4K page size. For each value of tolerance τ from 0 to 6 we generated a set of 50 queries, where r 

had a random position on the map and random length between 20 and 200 at each projection. Figure 3.7 
shows the average number of page accesses caused by each method (no buffer scheme was used) as a function 

of τ. Clearly, getBits outperforms the other alternatives, in all cases. The number of window queries explodes 

with τ, and so does the complexity of the naive method. Moreover, the containment window used by the 

second method increases significantly with τ, and the whole dataset is traversed for large values of τ. On the 
other hand, getBits facilitates efficiency by minimizing the size of the single search window. 
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Figure 3.7 Performance comparison of three retrieval methods 

Summarising, this section constitutes the first approach on retrieval under uncertainty using the framework of 
Section 2. In particular we develop a projection-based technique, extensible to arbitrary dimensions, that 

determines some minimum intersection windows based on the input constraint and the tolerance τ. Retrieval is 

then performed in a traditional window query manner using the minimum windows and the output is ranked 

according to its distance from the input constraint. In the next section we discuss another important type of 
queries for spatio-temporal databases: spatial joins. 
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4. SPATIAL JOINS 

The spatial join operation selects from two object sets, the pairs that satisfy some spatial predicate, usually 

intersect (e.g., “find all cities that are crossed by a river”). Previous work on pair-wise spatial joins, can be 

classified in two categories. The first one includes approaches which assume that the relations to be joined are 
indexed on the spatial attributes, an assumption which is true for most modern spatial databases because 

spatial indexing facilitates fast execution of selection queries. The dominant technique in this category 

[BKS93] presupposes the existence of R-trees for both relations and synchronously traverses the trees to 

report the join results. An alternative approach [R91] maintains a special index for spatial joins analogous to 
the relational join index [V87]. 

Methods in the second category do not presume spatial indexes for both relations. Some partition the space 

either regularly [PD96],[KS97], or irregularly [LR96], and distribute the relation objects into buckets defined 

by these partitions. The spatial join is then performed in a relational hash join fashion. Although, the above 
methods work well for uniform distributed inputs, they cannot guarantee good worst case performance. 

Another method [A+98], first applies external sorting to both files and then uses an adaptable plane sweep 

algorithm, considering that in most cases the “horizon” of the sweep line will fit in main memory. Finally, 

[LR94] join two inputs for which there exists only one R-tree index, by building a second R-tree using the 
existing one as a skeleton and then applying the method of [BKS93] to join them.  

The methods of the second category are applicable when there do not exist indexes for both sets to be 

joined or when there is another operation (e.g., a selection) before join. However, when both sets are indexed 

by R-trees they have a disadvantage compared to the methods in the first category which utilise R-trees for 
efficient query processing. In this section we extend traditional R-tree based techniques for multi-relation 

approximation joins, by proposing algorithms and appropriate optimization methods.    

4.1  Intersection Joins Using R-trees 

The most influential algorithm for efficiently computing pair-wise, intersection joins using R-trees is 

presented in [BKS93]. SpatialJoin is based on the R-tree enclosure property: if two intermediate nodes do not 
intersect, there can be no MBRs below them that intersect. The algorithm (Figure 4.1) first joins the high level 

nodes and then follows the links in order to find qualifying pairs below them. 
spatialJoin(Rtree_Node N[i], N[j])  
FOR all Nl ∈ N[j] DO 
  FOR all Nk ∈ N[i] with Nk ∩ Nl ≠ ∅ DO 
           IF N[i] is a leaf page THEN  output (Nk, Nl) 
           ELSE   /* intermediate nodes */ 
                       ReadPage(Nk.ref); ReadPage(Nl.ref); 
                       spatialJoin(N[k], N[l]) 

Figure 4.1  R-tree spatialJoin 

Suppose that we want to join the level-1 subtrees 1 and 2 of the R-tree in Figure 3.1(b). SpatialJoin(1,2) will 

be recursively called for A and D at the next level, and finally will output the solution (f,l). Although the 
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version of Figure 4.1, assumes that the nodes to be joined are of equal height, the extension to different 

heights is straightforward [BKS93]. 

Two local optimization techniques are used to improve the CPU speed of the above algorithm. The first, 
search space restriction, reduces the quadratic number of pairs to be evaluated when two nodes N[i], N[j] are 

joined. If an entry Nk ∈ N[i] does not intersect the MBR of N[j] (that is the MBR of all entries contained in 

N[j]), then there can be no entry Nl ∈ N[j], such that Nk and Nl overlap. In the above example, entry B of node 

1, does not intersect node 2, so it cannot intersect any entry inside 2. Using this observation, space restriction 
performs two linear scans in the entries of both nodes before starting the spatialJoin procedure, and prunes 

out from each node the entries that do not intersect the MBR of the other node. The second technique, based 

on the plane sweep paradigm [PS88], applies sorting in one dimension in order to reduce the overhead of 

computing overlapping pairs between the nodes to be joined.  
In addition, [BKS93] employ a technique that uses pinning (or page fixing), a well known I/O buffer 

management method, to force page fetching according to the optimal order. In [HJR97], spatialJoin was 

extended by introducing an on-the-fly indexing mechanism to optimize the execution order of matchings at 

intermediate levels. [BKS94] study the multi-step processing of spatial joins using several approximations, 
while [BKS96] employ parallel execution.  

4.2  Multi-relation Approximate Joins 

The general problem of multi-relation approximate spatial joins is: Given two sets of objects (potentially 

indexed by two R-trees Ri, Rj), a spatial constraint Cij, and a maximum distance τ: find all pairs of objects 

(Vi,Vj), Vi ∈ Ri, Vj ∈ Rj, such that d(Cij, R(Vi, Vj)) ≤ τ. SpatialJoin is not directly applicable for the 

processing of this general type of spatial joins, because intermediate nodes that may contain solutions do not 
necessarily overlap. We study two alternative techniques to process joins using the framework of Section 2. 

A first approach to process multi-relational spatial joins is to apply the indexed nested loop join algorithm 

[ME92], which is originally used for relational joins. In this adapted version of INLJ, all MBRs r in the outer 

object set Rj are scanned sequentially, and for each r an object retrieval query is applied to find all objects Vi 
in the inner object set Ri, such that d(Cij, R(Vi, r)) ≤ τ. INLJ uses the objectRetrieval algorithm presented in 

section 3. 
 
INLJ(Rtree Ri, Rj, Constraint Cij, int τ) 
FOR each leaf MBR r ∈ Rj DO 

objectRetrieval(Ri, r, Cij, τ); 

Figure 4.2  R-tree indexed nested-loop join  

The second algorithm extends the techniques proposed in [BKS93] to handle multiple relations. In order to 
use an arbitrary constraint as the join condition in spatialJoin, we need a mapping from relations, to bounding 

conditions between intermediate node entries that should be recursively joined. Figure 4.3 shows the 

bounding condition BCij for Ni given Nj. This condition is based solely on the positions of the leftmost and 
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rightmost 1's in Cij. In particular, the leftmost 1, determines the position of Ni.l with respect to Nj.u, while the 

rightmost 1 of Ni.u with respect to Nj.l. Entries that do not satisfy these conditions can be excluded during 

search. 
R1XXXXXXXX

R01XXXXXXX

R001XXXXXX

R0001XXXXX

R00001XXXX

R000001XXX

R0000001XX

R00000001X

R000000001

Ni.l < Nj.u - δ
Ni.l ≤ Nj.u - δ

Ni.l < Nj.u
Ni.l ≤ Nj.u
Ni.l ≤ Nj.u
Ni.l ≤ Nj.u

Ni.l < Nj.u + δ
Ni.l ≤ Nj.u + δ
Ni.l unlimited  

RXXXXXXXX1

RXXXXXXX10 δ
RXXXXXX100

RXXXXX1000

RXXXX10000

RXXX100000

RXX1000000

RX10000000

R100000000

Ni.u > Nj.l + δ
Ni.u ≥ Nj.l + 

Ni.u > Nj.l
Ni.u ≥ Nj.l
Ni.u ≥ Nj.l
Ni.u ≥ Nj.l

Ni.u > Nj.l - δ
Ni.u ≥ Nj.l - δ
Ni.u unlimited  

(a) leftmost bit (b) rightmost bit 
Figure 4.3 Bounding condition BCij for Ni 

Assume, for instance, the query "find all objects Vi and Vj related by R000000001" (i.e., Vi is to the right and far 

of Vj). An entry Ni is bounded with respect to Nj by the following condition: (Ni.u > Nj.l + δ). This bounding 
condition corresponds to the first row of Figure 4.3(b); the position of the leftmost bit (last row of Figure 

4.3(a)) does not constrain Ni.l. Figure 4.4 illustrates an example: if Nj is the intermediate node entry 

containing an object Vj, then the upper point of candidate entries for Ni (Ni.u) should lie in the grey area. 

Entries like N'i, not satisfying this constraint, cannot contain objects Vi. For approximate retrieval, bounding 
conditions are easily adapted to include τ. 

Vj
δ

Vi

Nj

Ni

δ

bounding condition for Ni .u

N'i

 
Figure 4.4 Example of bounding condition for intermediate nodes 

Using the above transformation, spatialJoin can be extended to handle multiple relations. Figure 4.5 

illustrates the pseudo-code for multi-relation spatial join (MSJ). In this case, the desired relation Cij, as well as 
τ, are passed as parameters. Each BCij is computed using Cij and Figure 4.3 (inverse conditions are also 

computed, but omitted here for simplicity). Leaf nodes constitute solutions, if they are related by a relation 

whose distance from Cij is ≤ τ. Intermediate nodes are recursively searched if they satisfy BCij. Initially MSJ 

is called with parameters the roots of the trees Ri and Rj to be joined. 

MSJ(Rtree_Node N[i], N[j], Constraint Cij, int τ)  
FOR all Nl ∈ N[j] DO 
  FOR all Nk ∈ N[i] DO 
           IF N[i] is a leaf page THEN 
                        IF d(Cij,R(rk, rl)) ≤ τ THEN output (rk, rl, d) 
           ELSE /* intermediate nodes */ 
           IF BCij(Nk, Nl , Cij, τ) THEN  

                 ReadPage(Nk.ref); ReadPage(Nl.ref); 
                                MSJ(N[k], N[l], Cij, τ) 

Figure 4.5 Multi-relation spatial join 
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4.3 Optimization Methods 

In order to enhance the performance of MSJ we have implemented a multi-relation version of the space 

restriction heuristic. The following spaceRestriction routine takes the entries N[i] one by one and tests them 
against N[j], eliminating the ones that do not satisfy the corresponding bounding conditions. 

spaceRestriction(Rtree_Node N[i], N[j], Constraint Cij, int τ)  
IF N[i] is a leaf page THEN  
          FOR all rk ∈ N[i] DO 

IF NOT (LBCij(rk, N[j], Cij, τ))  
                      THEN exclude rk from N[i]; 
ELSE    /* N[i] is a intermediate node */ 
          FOR all Nk ∈ N[i] DO 

IF NOT (BCij(Nk, N[j], Cij, τ))  
                      THEN exclude Nk from N[i]; 

Figure 4.6 Multi-relation space restriction 

The bounding conditions of Figure 4.3 are used when N[i] is at an intermediate level. On the other hand, when 

N[i] is a leaf node (its entries are object MBRs) a more restrictive bounding condition can be applied. 

Consider that in Figure 4.7 we want to join objects in N[i] with all objects in N[j] with respect to R000000001 (in 
Figure 4.4 we showed that N[0] satisfies the corresponding BC). Once we know the locations of each MBR in 

N[i] we can determine that some objects, such as r'i, can be excluded - r'i cannot be related by R000000001 with 

any MBR in N[j] because r'i.l < N[j].l+δ. If only the bounding conditions of Figure 4.3 were used, r'i would 

pass the space restriction test. 

rj
δ

ri

N[j]
δ

bounding condition for N
i .l

r'i

N[i]

 
Figure  4.7 Example of leaf bounding conditions 

Figure 4.8 illustrates the complete set of leaf bounding conditions LBCij between object MBRs and 
intermediate nodes. The bounding condition for the previous example is at the bottom row of the first table 

(the corresponding condition was unlimited in Figure 4.3). 

R1XXXXXXXX ri.l < N[j].u - δ
R01XXXXXXX ri.l < N[j].u - δ, ri.l ≥ N[j].l - δ
R001XXXXXX ri.l < N[j].u, ri.l > N[j].l - δ
R0001XXXXX ri.l < N[j].u, ri.l > N[j].l
R00001XXXX ri.l < N[j].u, ri.l > N[j].l
R000001XXX ri.l < N[j].u, ri.l > N[j].l
R0000001XX ri.l < N[j].u + δ, ri.l > N[j].l
R00000001X ri.l ≤ N[j].u + δ, ri.l > N[j].l + δ
R000000001 ri.l > N[j].l + δ  

RXXXXXXXX1 ri.u > N[j].l + δ
RXXXXXXX10 ri.u > N[j].l + δ, ri.u ≤ N[j].u + δ
RXXXXXX100 ri.u > N[j].l, ri.u < N[j].u + δ
RXXXXX1000 ri.u > N[j].l, ri.u < N[j].u
RXXXX10000 ri.u > N[j].l, ri.u < N[j].u
RXXX100000 ri.u > N[j].l, ri.u < N[j].u
RXX1000000 ri.u > N[j].l - δ, ri.u < N[j].u
RX10000000 ri.u ≥ N[j].l - δ, ri.u < N[j].u - δ
R100000000 ri.u < N[j].u - δ  

(a) leftmost bit (b) rightmost bit 

Figure 4.8 LBC that MBR Nk  must satisfy to pass space restriction 
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In addition, we apply a multi-relation plane sweep (MPS), which can deal with the whole set of relations of 

the current resolution scheme. MPS finds intersections of rectangles belonging to nodes N[i], N[j] in two 

steps: 
1. first transforms the x-projection of each rectangle Nl ∈N[j] to a new one N'l, according to C↓x. This 

transformation is done so that: if N'l↓x does not intersect on the x-axis with some entry Nk↓x ∈ N[i], then 

the original rectangles Nl and Nk cannot not be related by Cij. 

2. then it applies spatial sorting and plane-sweep to find all pairs (Nk↓x, N'l↓x) that intersect. For each such 
pair it checks whether the corresponding pair (Nk,Nl) satisfies Cij and Cji. 

In order to perform the transformation, MPS chooses a bit, whose value is 1 on Cij↓x. This bit is the minimal 

intersection bit IB(Cij↓x), described in section 3. For instance, consider that Cij↓x = R000000011. We transform 

the reference interval Nl∈N[j] to N'l as shown in Figure 4.9. If N'l (which is a single point) does not intersect 
some Nk then the original intervals cannot satisfy R000000011.  

a bδ δ

Nk

Nl

R000000011

N'l  
Figure 4.9 An example transformation 

The transformation differs for intermediate and leaf-level entries. The x-projection of each leaf level-entry Nl 
is transformed to the area defined by IB(Cij↓x) and Nl (see Figure 4.10a). For intermediate node entries the 

transformation relies on different bounding criteria presented in Figure 4.10b. The first column of the tables 

correspond to IB(Cij↓x) and the second to the transformed rectangle. 

 

0 N'l.l=-∞, N'l.u=Nl.l-δ
1 N'l.l=N'l.u=Nl.l-δ
2 N'l.l=Nl.l-δ, N'l.u=Nl.l
3 N'l.l=N'l.u=Nl.l
4 N'l.l=Nl.l, N'l.u=Nl.u
5 N'l.l=N'l.u=Nl.u
6 N'l.l=Nl.u, N'l.u=Nl.u+δ
7 N'l.l=N'l.u=Nl.u+δ
8 N'l.l=Nl.u+δ, N'l.u=+∞  

 

0 N'l.l=-∞, N'l.u=Nl.u
1 N'l.l=Nl.l-δ, N'l.u=Nl.u-δ
2 N'l.l=Nl.l-δ, N'l.u=Nl.u

3,4,5 N'l.l=Nl.l, N'l.u=Nl.u
6 N'l.l=Nl.l, N'l.u=Nl.u+δ
7 N'l.l=Nl.l+δ, N'l.u=Nl.u+δ
8 N'l.l=Nl.l, N'l.u=+∞  

(a) leaf nodes (b) Intermediate nodes 
Figure 4.10 Transformation of x-axis projections  

4.4  Experimental Evaluation 

We have implemented and tested INLJ and MSJ in order to compare their performance. For the following 
experiments we used the LB data-file [T94] (described in Section 3.2). Figure 4.11 illustrates the data-set and 

two sample results of multi-relational self joins in magnified portions of the map. The left result corresponds 

to a join condition R000111100-000111100 (light grey, dark grey rectangle), while the right one to R000011100-000111000.  
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000111100-000111100R

000011100-000111000R

 
Figure 4.11 LB dataset and sample retrieval results for multi-relational spatial self-joins 

From LB we built several R*-trees of different block sizes, i.e. 512 bytes, 1K, 2K, and 4K. The LRU buffer 

size of the R*-trees was set to 128. An artificial set of 20 constraints was constructed. Then the self-join of the 
data set was computed using these constraints and the two algorithms. In order to avoid trivial queries, we 

excluded constraints with far-disjoint (R100000000 and R000000001). The distance limit δ, was set to 100. In all 

queries τ was set to 0. The implementation language was C++, and the experiments were run on a SUN 

UltraSparc2 (200MHz) workstation with 256 MB of RAM. 
Figure 4.12 illustrates the performance of the algorithms for various R-tree page sizes. MSJ outperforms 

INLJ by means of both CPU-time (a) and number of I/O page accesses (b). The high cost of INLJ is due to the 

linear scanning of the outer file. The CPU-cost of both algorithms increases with page size. For INLJ this is 

due to the degeneration of the tree (the higher the level of the tree, the faster the search in terms of CPU-time). 
For MSJ, the slight increase of cost is due to the increase of the number of pairs that have to be joined for 2-

specific nodes (this cost is in the worst case C2, where C is the capacity of the node).  
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Figure 4.12 Performance of INLJ and MSJ for various block sizes 

On the other hand the decrease of I/O page accesses pays off this computation cost and the overall efficiency 

of MSJ increases with the page size, as shown in Figure 4.12(c). Here, the overall cost of the algorithms has 
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been calculated by charging 10ms for each page access (a typical value [HJR97]). Observe that a page size 

equal to 2KB is the best for INLJ, while the performance of MSJ tends to stabilize for large page sizes.  

Despite its inferior performance, INLJ can be very useful when there exists a multidimensional index only 
for the one of the two data sets to be joined. In this case, MSJ cannot be applied and INLJ remains the only 

alternative. Furthermore, as we show in the next section, algorithms based on a similar idea can be very 

efficient for structural query processing. 

5. CONFIGURATION QUERIES 

This section examines an alternative form of spatio-temporal information processing, namely, queries 

involving the retrieval of n-tuples (n>2) of objects that satisfy some structure. This type of retrieval pre-

supposes that pre-processing techniques have been applied to extract information about the objects in a spatial 

scene and their locations. As an example consider the query of Figure 2.7a that asks for all configurations of 
four objects that match the input drawing. Alternatively the query could be expressed by an extended SQL 

language: select V0, V1, V2, V3, from Map, where R001111000-001111100(V0,V1) and R000001100-100000000(V0,V2) ..etc. 

Linguistic terms may be used instead of bitstrings e.g., covers(V0,V1) instead of R001111000-001111000. Although 

the particular query specifies relations between all pairs of variables, in some cases queries may be incomplete 
(some constraints may be left unspecified) or indefinite (constraints may be disjunctions of relations). 

Furthermore, in real applications some additional unary constraints may appear; these may specify object 

properties at the feature (e.g., V0 is red) or semantic level (e.g., V0 is a building). Although such constraints 

are easy to handle (provided that the corresponding properties have been extracted), for generality we omit 
them here and deal only with binary spatio-temporal ones. 

Formally, a configuration (or otherwise, structural) query can be described as a binary constraint 

satisfaction problem [N89] (CSP) which consists of: 

• A set of n variables, V0,V1,…,Vn-1 that appear in the query. 
• For each variable Vi a finite domain Di ={r0,…, rN-1} of N object MBRs. We assume that all domains are 

identical, i.e., each variable can be instantiated to any object. 

• For each pair of variables Vi,Vj a binary spatio-temporal constraint Cij.  

Figure 5.1 illustrates a solution where variable V0 is instantiated to object 143, V1 to object 207 and so on 
(the length of the grid is δ). A binary instantiation {Vi←rk, Vj←rl} is consistent, if R(rk,rl) ⊆ Cij. For instance, 

the constraint between V0 and V3 is R100000000-111000000, which is also the relation between their corresponding 

instantiations (143,42) in Figure 5.1; therefore, {V0←143, V3←42} is consistent. On the other hand, although 

the constraint between V0 and V1 is R001111000-001111100, the relation between objects 143 and 207 is R001111000-

001111000; therefore the particular solution is approximate. The total distance of a solution {V0← rp, …, Vn-1 ← 

rr} is the sum of all binary distances:  

∑
<≤∀ njiij

lkij rrRCd
,0,

)),(,( where {Vi ← rk, Vj ← rl} 
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Figure 5.1 A solution (to the query of Figure 2.7) 

The maximum allowed total and pair-wise distances, T and τ, are submitted with a query in order to adjust the 

trade-off between the level of approximation and the cost of query processing. For instance, if T=6 and τ=2, 

only solutions that produce total relation distance ≤ 6 and pair-wise distance ≤ 2 will be retrieved. Obviously 
as T and τ increase, so does the number of solutions, but also the cost of query processing. 

5.1 Forward Checking  

Since configuration queries can be viewed as CSP problems, they can be processed by a variety of CSP 

algorithms. One of the most effective ones, is forward checking (FC) [HE80] which has been shown to 

perform very well in a wide range of problems involving "crisp" constraints [BG95]. FC must be modified for 

configuration queries in order to handle soft constraint processing using T and τ.  
A "branch and bound" version of FC for the current problem works as follows: when a variable Vi is 

assigned a value rk, the domain of each future (un-instantiated) variable Vj is pruned according to rk and the 

constraint Cij, for all j>i. That is, all MBRs rl that produce a distance d(Cij,R(rk,rl))> τ are removed from the 

domain of Vj. The same happens for MBRs that produce global distance > T, taking into account the 
constraints between Vj and all instantiated variables3. Consequently, when we reach instantiation level i 

(variables up to Vi have been instantiated), the values of variables V0,…,Vi will constitute a partial solution, 

and the domains of future variables will contain only values that may lead to a (complete) solution given the 

instantiations so far.  
The procedure of pruning the domains of the future variables is called check forward. If, after a check 

forward the whole domain of a future variable is eliminated, the algorithm un-assigns the current variable’s 

value, and restores the values of future variables, which were eliminated due to the current instantiation. 

When the domain of the current variable is exhausted the algorithm backtracks to the previous one and 
assigns a new value to it. FC outputs a solution whenever the last variable is given a value, and terminates 

when it backtracks from the first variable. 

                                                           
3 The inverse constraints Cji are also considered but, for the sake of simplicity, we omit these tests in the rest of the paper. 
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 In order to keep track of the allowable values for each variable at every instantiation level, FC uses a 

nxnxN domain table, where n is the number of variables and N the domain size. Each element of domain[i][j] 

is an array of N values that Vj can take at different levels. Before FC starts, domain[0][j] is initialized to D for 
all variables. When V0 is assigned an object rp, domain[1][j] is computed for each remaining Vj, by including 

only objects rl ∈ domain[0][j] such that d(C0j,R(rp,rl))≤ τ. In general if rk is the current instantiation of Vi, 

domain[i+1][j] is the subset of domain[i][j] which is valid w.r.t. Cij and rk. In this way, at each instantiation 

level the domain[i][j] of Vj continuously shrinks; when we reach level j, Vj gets instantiated from domain[j][j] 
which contains only MBRs compatible with the instantiations of all previous variables. If a value of Vi results 

in the domain of some Vj to become empty, a new value is chosen and domain[i+1][j] is re-initialized to 

domain[i][j]. The pseudo-code of a non-recursive version of FC which can be applied for configuration query 

processing is given in Figure 5.2. 

FC-DVO(Query q, int τ,T )  
FOR j = 0 TO n-1 DO domain[0,j] = D /*initialize all domains to D */ 
i = 0; /* index to the current variable */ 
WHILE (TRUE) { 
      new_value := chooseNextValue(domain[i][i]);  
      IF new_value = NULL THEN /* empty domain */ 
       IF i=0 THEN RETURN; 
            ELSE i:=i-1; CONTINUE;  /*Backtrack*/ 
      ELSE  /* not empty domain */ 
  instantiations[i] := new_value; /*store instantiation*/ 
              IF i = n-1 THEN  /*last variable instantiated*/ 
                        output_solution(instantiations);  
       ELSE /* intermediate variable instantiated */ 
                        IF checkForward(i) THEN /* successful instantiation*/ 
                DVO(i+1,n-1); /*var. with the smallest domain as next*/ 
                i := i+1; /* successful instantiation: go forward */ 
   } 

BOOLEAN checkForward(int i)  
   FOR j = i+1 TO n-1 DO /*for all uninstantiated variables*/ 
      domain[i+1][j]= domain[i][j]; 
       FOR all MBRs rl ∈ domain[i+1][j] DO 
                  IF d(Cij,R(instantiations[i],rl)) > τ OR  T exceeded THEN /* value rl is illegal for variable Vj */ 
                                  domain[i+1][j]= domain[i+1][j]-{rl}; /*rl is removed from the domain of Vj */ 
              IF domain[i+1][j]=∅ THEN RETURN FALSE; /* the domain of Vj  becomes empty */ 
   RETURN TRUE; 

Figure 5.2 Branch and bound forward checking with dynamic variable ordering 

Dynamic variable ordering (DVO) [BvR95] is a technique employed by several CSP algorithms to improve 

efficiency. The key idea behind FC-DVO is to reorder the future variables according to their domain size after 
“checking forward” at the current instantiation level. The variable with the minimum domain size becomes the 

next variable to be tested. In this way the number of search paths is minimized, because the variable with the 

smallest domain is the most likely to be pruned out; the algorithm will backtrack faster in the case that there is 
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no valid assignment after the current partial solution. DVO is responsible for changing the order of V1 and V2 

in Figure 5.1.  

FC-DVO has two drawbacks for the current application. First it is inapplicable for large spatial databases, 
because the 3D domain table cannot fit in main memory. The second drawback is the fact that it does not 

utilize the spatial indices which may exist for spatial relations. The incorporation of R-trees and appropriate 

query processing techniques can solve both these problems. 

5.2  Window-Reduction Algorithms 

Window reduction techniques combine the concepts of indexed nested loop join (section 4.2) and forward 

checking. The algorithms after instantiating a variable will use its value as a query window to restrict the 
possible values of subsequent variables. For instance, after assigning V0 ← 143 (Figure 5.1), object 143 

becomes the query window for values that will constitute the domain of V1, avoiding unnecessary consistency 

checks. The pseudo-code of window reduction (WR) algorithm is presented in Figure 5.3. 

WR(Query q, int τ,T )  
FOR j=0 TO n-1 DO domainWindow[0][j] = U;  /*Universal Space*/ 
i=0; /* index to the current variable */ 
WHILE (TRUE) { 
      new_value := getNextValue(domainWindow[i][i]);  
      IF new_value = NULL THEN /* empty domain */ 
       IF i=0 THEN RETURN;  
            ELSE i:=i-1; CONTINUE;  /*Backtrack*/ 
      ELSE /* not empty domain */ 

IF d(Cij,R(instantiations[i],rl)) > τ OR  T exceeded THEN 
                        CONTINUE /* invalid value inside domain window */ 
            ELSE  /* valid instantiation */ 
                          instantiations[i] := new_value; /*store instantiation*/ 
                   IF i = n-1 THEN  output_solution(instantiations); /* last variable instantiated */ 
                          ELSE /* intermediate variable instantiated */ 
              IF windowReduction(i) THEN /* successful instantiation*/ 
                                                       Window_DVO(i+1,n-1); /*var. with smallest window next*/ 
                                                        i := i+1; /* successful instantiation: go forward */ 
   } 
 
BOOLEAN windowReduction(int i) 
   FOR j = i+1 TO n-1 DO /*for all uninstantiated variables*/ 
       Wj = computeWindow(instantiations[i],Cji,τ); 
        domainWindow[i+1][j]= domainWindow[i][j]∩Wj;  
       IF domain[i+1][j]=∅ THEN RETURN FALSE; 
   RETURN TRUE; 

Figure 5.3 Window-reduction algorithm  

In order to avoid the 3D domain set used by FC, WR maintains a nxn domain window that encloses all 
potential objects for each variable (and possibly some false hits). When Vi takes a new value rk, a new 
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window Wj is computed for every un-instantiated variable Vj taking into account rk and Cji. The intersection 

of Wj with (existing) domainWindow[i][j] is stored at domainWindow[i+1][j]. Figure 5.4(a) illustrates the 

domain windows for V2 and V3, assuming that the first two variables of the example query have been 
instantiated to d and e respectively. When V2 is instantiated to a (Figure 5.4b), the constraint C32 specifies that 

valid instantiations for V3 should lie in W3. The new domainWindow[3][3] for V3 is the intersection of 

domainWindow[2][3] and W3, i.e., it corresponds to the only area that may contain values consistent with both  

{V0←d, V1←e} and V2←a. The domain windows are computed in a way similar to objectRetrieval. 
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(a) {V0←d, V1←e} (b) {V0←d, V1←e, V2←a} 

Figure  5.4 Example of WR 

If some domain window becomes null (empty intersection), the current instantiation is invalid and the 

algorithm proceeds to the next value for Vi. WR can be thought of as a "lazy" version of forward checking 

because the domain windows are calculated but no objects are retrieved until the variable gets instantiated. A 
drawback of this method is the fact that a possibly empty domain of Vj (i.e., a window not containing any 

objects) cannot be detected until WR reaches instantiation level j and performs the window search. However, 

this disadvantage is counterbalanced by the smaller number of R-tree searches.  

The next value for a variable Vi is retrieved via getNextValue(), which uses domainWindow[i][i] as the 
query window for Vi. GetNextValue() does not perform a window query every time it is invoked, but the 

whole search path for each variable is maintained in memory. The overhead for this path-holding technique is 

pinning at most n⋅h pages - a small number for most applications. After a value is retrieved for Vi, the 

algorithm checks whether it is consistent with the previous instantiations since not all values that fall inside 
the domain window of Vi are necessarily legal. 

In addition to domain windows and path maintenance techniques, WR uses DVO: when the domain 

windows of the future variables are calculated after an instantiation, the variable with the smallest domain 

window becomes the next to be examined. This is led by the intuition that a small window is more likely to 
contain the least number of instantiations and minimize redundant consistency checks. 

WR essentially searches the whole space in order to instantiate the first variable, but after doing so it 

performs only window queries which are cheap operations in R-trees (in this sense it is similar to INLJ). The 

disadvantage of blindly instantiating the first variable in the whole universe could be avoided by an algorithm 
that combines properties of multi-relation spatial join and window reduction. Join Window Reduction (JWR) 

first applies a pairwise spatial join to retrieve instantiations for the first pair of variables and then uses window 
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reduction to instantiate the rest of the variables. The subsequent variables are instantiated in the same way as 

WR: 

JWR(Query q, int τ,T )  
FOR j=1 TO n-1 DO domainWindow[1][j] = U; /*Universal Space*/ 
i=1; /* index to the current variable. Initially set to 1*/ 
WHILE (TRUE) { 
   IF i=1  THEN /* values for first pair of variables (0,1)*/ 
      IF getNextPair(instantiations,q)=NULL THEN RETURN   /* termination */; 
   ELSE    /* values of subsequent variables */   
       new_value := getNextValue(domainWindow[i][i]);  
       IF new_value = NULL THEN /* end of domain */ 
                 i:=i-1; CONTINUE;  /*Backtrack*/ 
       IF d(Cij,R(instantiations[i],rl)) > τ OR  T exceeded 
                                         THEN CONTINUE /* invalid value inside domain window */ 
              ELSE instantiations[i] := new_value; /*store instantiation*/ 
   IF i = n-1 THEN  output_solution(instantiations);  
   ELSE /* intermediate variable instantiated */ 
        IF windowReduction(i) THEN /* successful instantiation*/ 
                Window_DVO(i+1,n-1); /*var. with smallest window next*/ 
        i := i+1; /* successful instantiation: go forward */ 
   } 

Figure 5.5 Join window-reduction algorithm 

Function getNextPair() assigns the next pair that satisfies the relations between the first two variables using 
MSJ. For calculating the first pair of variables to be joined we use statistical information about the number of 

occurrences of each relation in the data files. Relations that occur rarely prune search space more effectively 

than frequent ones. For instance, the constraint R001111000-001111100 between V0 and V1 is more restrictive than 

the other relations, because only a few pairs of objects satisfy it in normal data distributions. 

5.3 Multilevel Forward Checking 

Multilevel forward checking (MFC), is another variation of FC that extends MSJ to deal with n-tuples instead 
of pairs. MFC finds all n-combinations of intermediate nodes (at each level of the R-tree) that may contain 

some solution objects and follows the references to the next level, until it reaches the leaves, where it outputs 

solutions. As an example consider the tree of Figure 3.1. The path to solution (d,e,a,k) of the example query 

is: (1,1,1,2) at the top, (B,B,A,D) at level 1 and (d,e,a,k) at level 0.  
The calculation of combinations of the qualifying nodes at each level (e.g., (1,1,1,1), (1,1,1,2), …., 

(2,2,2,2) for the top) is expensive, as their number can be as high as Cn, where C is the capacity of an R-tree 

node. Although the search space is not prohibitively large (usually n≤10 and C≤200), the computational 

burden is due to numerous appearances of the problem during query processing. Finding the subset of node 
combinations which is consistent with the input query can be treated as a local CSP at each level. In particular 

the problem consists of: 

• A set of n variables, V0,V1,…,Vn-1. 
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• For each variable Vi a domain Di={N0,…,NI-1} of I (I≤C) potential values which correspond to entries in R-

tree node N[i]. 

• For each pair of variables Vi,Vj a binary constraint which: i] for intermediate nodes is a bounding condition 
BCij derived from Figure 4.2 using the corresponding Cij and τ, ii] for leaf nodes is a constraint Cij 

(disjunction of primitive relations). 

The CSP in the case of the top level of the tree in Figure 3.1 has four variables V0,V1,V2,V3, which can be 

instantiated to entries 1 or 2 of the root. Consider the constraint R000000001-001100000 between V3 and V2 (Figure 
2.7). The bounding condition on the x dimension for R000000001(V3,V2) is BC32: (N3.u > N2.l + δ) (example of 

Figure 4.4). The binary instantiation {V2←2, V3←1} cannot lead to a solution at the lower levels because (1.u 

< 2.l + δ). Therefore, all combinations (x,x,2,1) can be pruned out during search. The pseudo-code for MFC is 

shown in Figure 5.6. 

MFC(Query q, Rtree_Nodes N[], int τ,T )  
FOR j = 0 TO n-1 DO 
      domain[0][j] = {Nl| Nl ∈ N[j]} /*Nl is an entry of Nj*/ 
i = 0; /* index to the current variable */ 
WHILE (TRUE) { 
      new_value := chooseNextValue(domain[i][i]);  
      IF new_value = NULL THEN /* end of domain */ 
            IF i=0 THEN RETURN; 
            ELSE i:=i-1; CONTINUE;  /*Backtrack*/ 
      ELSE  instantiations[i] := new_value; /*store instantiation*/ 
      IF i = n-1 THEN  /*last variable instantiated*/ 
            IF (N[i] is a leaf page) THEN output_solution(instantiations);  
            ELSE MFC(q, instantiations.ref, τ, T ) /*go to lower tree level */ 
      ELSE /* intermediate variable instantiated */ 
             IF checkForward(N[i].level,i) THEN /*valid instantiation*/ 
                     DVO(i+1,n-1); /*var. with the smallest domain as next*/ 
                      i := i+1; /*go to the next variable */ 
 } 

BOOLEAN checkForward(int level, int i) 
FOR j = i+1 TO n-1 DO /*for all uninstantiated variables*/ 
     domain[i+1][j]= domain[i][j]; 
      FOR all objects rl ∈ domain[i+1][j] 
          IF (level = 0) THEN  /*leaf nodes*/ 

IF d(Cij,R(instantiations[i],ul)) > τ OR T exceeded 
                    THEN domain[i+1][j]= domain[i+1][j]-{rl};  
       ELSE /*intermediate nodes*/ 
                IF NOT (BCij(instantiations[i],rl))  

THEN domain[i+1][j]= domain[i+1][j]-{rl}; 
      IF domain[i+1][j]=∅ THEN RETURN FALSE; 
   RETURN TRUE; 

Figure 5.6 Multilevel FC 
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MFC applies forward checking to solve the CSP at each R-tree level: every time a variable Vi is instantiated to 

an entry Nk, the algorithm eliminates all Nl that do not satisfy BCij(Nk,Nl) from the domains of each un-

instantiated variable Vj. Initially N[] is set to an n-tuple that points to the tree root for all variables, i.e. 
N[i]=root, for i=0…n-1. A solution for the current tree level is found when the last variable is instantiated. 

The algorithm is then recursively invoked for the lower level, taking as parameter the n-tuple of the solution's 

references. Solutions are output if they refer to actual objects. MFC returns to the previous tree level when it 

backtracks from the first variable at the current level.  
In the example of Figure 3.1, when the first valid combination (1,1,1,1) is found at the top, MFC will be 

called for the next level, trying to find a combination of nodes inside node 1 that satisfy all BCij (the domain 

of all variables is now D={A,B}). If such a combination does not exist, as is the case here, it will backtrack to 

the top level and attempt to find another solution - assume (1,1,1,2). The new domains for the next call of 
MFC become: D0=D1=D2={A,B} and D3={C,D}. A solution at this level is {V0←B, V1←B, V2←A, V3←D}. 

At the next call of MFC for level 0, the domains become D0=D1={c,d,e}, D2={a,b,f}, D3={l,k,j} and the 

solution (d,e,a,k) is found.  

5.4 Experiments 

In order to compare the performance of the three algorithms (WR, JWR, MFC), we used the experimental set-

up of the previous sections. We constructed 5 artificial sets of 30 queries: the number of variables in the 
queries of each set was fixed to 3, 4, …, 7. The distance between two variables on each axis did not exceed δ, 

which was set to 100.  

Figure 5.7(a) shows the mean CPU-time and 5.7(b) the I/O page accesses averaged over all query-sets on 

the R*-tree with 1KB block size. WR and JWR clearly outperform MFC by orders of magnitude in terms of 
CPU-time. The performance gap widens with the query size because the domain windows in WR and JWR 

are continuously decreasing as new variables are instantiated. Moreover, empty window domains of the latter 

variables are detected early using the window reduction policy. On the other hand, the relaxed constraints 

between intermediate nodes do not permit MFC to prune the search space at the higher levels of the tree; thus, 
MFC cannot avoid the combinatorial explosion of possible instantiations as the number of variables increases. 

It is interesting to notice that MFC is better than WR in terms of page faults and this is due to the fact that WR 

instantiates the first variable in the whole space.  
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Figure 5.7 Experimental evaluation 1 
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Figure 5.7(c) illustrates the relative CPU-time performance of WR and JWR (also for block size of 1K). JWR 

maintains a significant performance gain over WR. The performance gap is not affected by query size, 

because the only difference of the algorithms is the instantiation method for the first pair of variables. 
In order to evaluate the algorithms for various block sizes we executed the 4-variable query set using R*-

trees of 512, 1K, 2K, and 4K bucket sizes. CPU-time and page accesses are shown in Figure 5.8(a) and (b), 

respectively. Figure 5.8(c) shows the overall cost for WR and JWR, which was estimated by charging 10ms 

for each page access. The algorithms perform better for page size of 2K, while for larger sizes (4K) the 
degeneration of the tree affects the speed of the search. 
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Figure 5.8 Experimental evaluation 2 

Another important observation from our experiments (not obvious in these diagrams) was the expected 

behaviour of MFC for almost all queries; the CPU-time was at the same levels depending only on the query 
size. On the other hand, the performance of WR and JWR was unpredictable: for instance the CPU time of 

WR may differ an order of magnitude for two different queries of the same size. This unstable behaviour is 

due to the fact that the resolution scheme may facilitate large reduction of the domain windows for some 

queries (e.g. inside), and not for others (e.g. disjoint). 
Finally, we tested the performance of JWR over queries with non-zero degrees of inconsistency. In all 

experiments the T was set to 10. Figure 5.9 illustrates the overall cost of JWR for the 2K page size R*-tree. 

Each line corresponds to a different value of local tolerance τ. Because approximate retrieval is equivalent to 

exact retrieval using a larger window, the domain windows of JWR get larger as τ increases. Larger windows 
imply more potential legal values and more consistency checks. 
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Figure 5.9 Overall cost of JWR for partial retrieval 

5.5 Discussion 

Although the previous descriptions refer to retrieval from a single image, the extension to multiple images is 

straightforward: repeat the same process in each selected image. Let n be the number of variables and NI be 
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number of objects in image I: in the worst case (exhaustive search), all n-permutations of NI objects (i.e., NI! / 

(NI -n)!) have to be searched in order to find solutions in I. In most applications where NI >>n, this number is 

O(NI
 n), meaning that the retrieval of configuration queries can be exponential to the query size. In order to 

avoid this problem, most related previous techniques (e.g., [GR95],[NNS96]) have focused on a specific 

instance where each image contains a spatial arrangement of the same set of known (labelled) objects. The 

goal is to find all images that contain a subset of the objects matching some given configuration. The problem 

in this case is polynomial (O(n2)), since it suffices to locate all query objects in some image and then for each 
pair calculate its similarity to the input constraints.  

Petrakis and Faloutsos [PF97] move a step further and employ spatial indexing to solve configuration 

queries for images that contain a constant number of labelled objects (e.g., lungs) and a small number of 

unlabelled ones (e.g., tumours). They map each image onto a point in multi-dimensional space, where each 
dimension corresponds to a relation between a specific pair of objects (the number of dimensions is quadratic 

to the number of objects), and engage R-trees for nearest neighbour retrieval. In order to keep the number of 

dimensions stable, images containing unlabelled objects are decomposed into combinations of images of fixed 

size. Although the above method (and feature-based methods, in general) is efficient for domains involving 
small images with few unlabelled objects (e.g., medical databases of X-rays) it is not applicable to large 

images of unlabelled objects, because of the potentially huge number of dimensions4 (R-trees are not suitable 

for spaces of very high dimensionality [B+98]) and the enormous number of sub-images generated by the 

decomposition of each image in smaller ones with a certain number of objects. In addition, the method can 
only be applied with a predetermined resolution scheme according to which the multi-dimensional index is 

built. On the other hand, our techniques do not make any assumptions about the size of images and the types 

of objects but solve the general problem assuming the same indexes as for window and join queries. 

A number of methods are based on several variations of 2D strings, which encode the arrangement of 
objects on each dimension into sequential structures. 2DB strings [LYC92] capture the object projections, 

effectively approximating each object by its MBR (similar to the approach taken here). 2DC and 2DG strings 

decompose objects in entities with disjoint convex hulls, allowing the representation of more detailed spatial 

information at the expense of storage [CJL89],[LH92]. Every database image is indexed by a 2D string; 
queries are also transformed to 2D strings and configuration similarity retrieval is performed by applying 

appropriate string matching algorithms [CSY87]. If the query contains only labelled objects, the cost of 

processing each image is linear, while in the general case it is exponential since matching has to be performed 

for multiple instantiations of the variables to different image objects. Unlike our methods, users are not 
allowed to define and use their own relations but only the scheme according to which 2D strings are built.  

In case of non-indexed images with unlabelled objects, Papadias et al. [P+99] propose retrieval heuristics 

for configuration similarity based on genetic algorithms, iterated improvement and simulated annealing. 

                                                           
4 If all images contain N objects and the resolution scheme defines r relations, the number of dimensions would be r⋅N2, that is, for the 
distance-enhanced scheme and images of only 5 objects, the number of dimensions would be 1025.  
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Experimental evaluation suggests that these techniques, outperform forward checking for queries of the form 

"find one solution (or a small percentage of the solutions) with similarity above a target" or "find the best 

solution within a restricted time". Although they are efficient for retrieval involving numerous relatively small 
images (e.g., video clips, medical imagery), the methods cannot be applied for queries involving the retrieval 

of all solutions in large indexed images.  

An alternative approach for processing configuration queries using underlying indexes is motivated by 

multiway spatial joins [MP99]5. Consider the example query of Figure 2.7: MSJ can be applied for computing 
the join between V0 and V1 and between V2 and V3; the intermediate results may then be combined by some 

pairwise algorithm for non-indexed inputs. A problem with this approach is that algorithms for non-indexed 

inputs (see Section 4 for references) are developed for the overlap predicate and exact retrieval. Their 

extension to arbitrary constraints and approximate retrieval is complicated and outside the scope of this paper. 
Conversely, the proposed algorithms can be easily modified for multi-way spatial join processing. Papadias et 

al. [PMT99] describe formulae for the expected number of solutions in case of uniform datasets and overlap 

constraints, which are applied for optimization of joins using a combination of WR and MFC. The idea is 

similar to JWR, but instead of two, any number of inputs can be processed by MFC and then pipelined to WR. 
This technique, however, cannot be effectively employed for configuration similarity queries due to the lack 

of accurate estimations for the number of solutions in case of arbitrary relations. Park et al. [PCC99] proposed 

a modified version of MFC and several optimization techniques which is efficient for multiway spatial joins 

involving dense datasets and query graphs. 

6. MOTION QUERIES 

In this section we show how our techniques can be applied for the handling of motion queries. Motion can be 

defined as a temporal sequence of discrete phenomena called frames. Assuming an ordered set of frames 

representing any ordered collection of images of moving objects (e.g., satellite imagery), several queries may 
be of importance to a user, examples of which are given below: 

1. Find the set of frames where a set of objects move from some initial positions to some destinations. 

2. Find the set of frames where an object performs a specific movement with respect to a reference object.  

3. Describe the movement of an object as a set of relation variances. 
4. Which object moves (qualitatively) faster? 

5. Given a set of frames, find a frame with a specific spatial arrangement. 

The core of any motion query processor must include a mechanism that compares consecutive frames and 

decides whether they are similar enough to be regarded as "elementary" motion. Similarity between different 
movement patterns relies on several factors: 

                                                           
5 Multiway spatial joins can be thought of as a special form of configuration queries, where the spatial constraint is overlap and 
retrieval is exact. 
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• the resolution scheme; e.g. a small object's movement along a large reference object will not be 

considered as motion unless a sufficiently refined resolution is adopted to distinguish among several 

overlap relations 
• the sampling rate of frames, as it controls the perceived motion's smoothness 

• the user's expectations and the application requirements 

There exist various ways to elaborate on the identification of motion patterns. For instance, assume that we 

are interested in assessing "smooth motion" as opposed to arbitrary movement. Figure 6.1 illustrates the initial 
position of object A with respect to a reference object B, seven intermediate frames, and the final frame which 

shows A in its target position. The assessment of whether these frames constitute "smooth motion" is based on 

a comparison of relative objects' positions.  

Let Ri be the relation between A and B in frame i. Then a motion constraint can be defined as: d(Ri, Ri-1) ≤ 
τ, meaning that in order for an arbitrary movement to constitute motion the distance between the relations of 

A and B in two successive frames must be less or equal than a certain threshold (e.g., τ=2). An obvious 

implicit constraint is that A is not allowed to have the same position in any two successive frames. The degree 

of smoothness can be indicated by several possible measures, one of which is the following: 
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S where f is the number of frames 

As long as the above constraints hold, the smaller the value of S, the smoother the movement in the 

corresponding set of frames. For the example in Figure 6.1 (at the distance enhanced resolution scheme), the 

value of S is (2+0+2+2+0+0+2+2)/8 = 1.25, which could be less for a more dense sampling of frames. 

In order to evaluate the cost of motion queries as a function of various input parameters, we constructed an 
artificial database aiming at simulating a satellite imagery application. The initial image (or frame) contains 

5,000 distinct objects uniformly distributed in a square workspace with density 0.2. Between two successive 

images, each object moves at a maximum distance of 5% on each axis with probability 0.1 (essentially the 

majority of objects in two successive frames are in the same position, while a few are in neighboring ones). 
We have developed algorithms that use this database to process the following queries: 

A

B B B A

R (A,B)x-y001110000-000000100
000010000-000000100

00001000-000000100

000011100-000000100

000000100-000000100

000000100-000000100

000000100-000000100

000000100-000011100

000000100-001111100

starting frame final frameintermediate frames

δ

δ

 
Figure 6.1 Assessing movement by fixed reference 
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1. Given a well-defined starting window W1 and ending window W2, find all objects in a specific sequence 

of frames that have moved from W1 to W2. The query is processed by finding for each object oi the first 

frame fi and the last frame li in the sequence where the object intersects W1 and W2, respectively. If fi is 
before li then the object qualifies the query. In order to detect motion, we define a reference window Wref 

whose end-points are considered the average of the corresponding end points of W1 and W2, i.e., Wref, l = 

½(W1,l + W2,l), etc. We verify whether a candidate object moves, by comparing its relation to Wref in 

consecutive frames, as described above. 
2. Given a (not necessarily static) reference object oj, find all objects in a sequence of frames which have 

changed relative position with respect to oj, according to a starting relation Rst and an ending Rend. This 

query is processed in a similar way as the first one, by defining W1 and W2 using the position of oj at each 

frame. The reference object oi is used to detect motion. 
3. Given a well-defined (static) reference window W, find the fastest object oi in a sequence of frames which 

has moved with respect to W, according to a starting relation Rst and an ending Rend. Speed is defined as 

the number of frames between the starting and ending position of the move. This query is processed by 

first identifying the objects which have moved with respect to the reference window and then ranking 
them according to their speed. Again, the reference window W is used for motion detection. 

Figure 6.2 illustrates retrieval results from the database. For the sake of presentation, we have drawn versions 

of the same object in a sequence of frames together. Figure 6.2(a) shows the trajectory of an object moving 

between two windows. Figure 6.2(b) shows the move of an object that changes relative position with respect 
to a static object, while in 6.2(c) the reference object is moving as well. Results of the third query type are 

depicted in Figure 6.2(d) and 6.2(e). In this example query, nine objects have changed relative position with 

the reference window W, according to the constraints. The move of the fastest one (Figure 6.2(d)) lasts 10 

frames, whereas the slowest one (Figure 6.2(e)) moves for 48 frames. The move in some cases is too smooth 
to be visible in the corresponding figure. 

Since all types of queries are reduced to motion detection between two windows, we experimented only 

with queries of the first type. The results of the experiment can be used to draw conclusions for the other 

query types. We measured the response time (in seconds) of queries of the first type as a function of the 
number of frames (10, 20, …,100) and the ratio query_window_area/average_object_area (50, 100, …, 500). 

Figure 6.3 shows the results. Observe that query time increases linearly with the length of the sequence of 

frames where inside we seek for a move. It is also linear to the size of the windows W1 and W2 since the 

number of objects that lie in a window is linearly dependent to its area. 
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Figure 6.3 Cost of simple motion queries 
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Apart from the three types of simple queries described above, more complex ones can be processed using our 

framework. Queries such as "Given a set of frames, find a frame with a specific spatial arrangement" are 

easily modelled as structural queries in multiple frames (instead of single images). Queries of the form: "Find 
all pairs of objects that perform a specific movement with respect to each other" can be processed as spatial 

joins, where the input constraints correspond to movement relations. This special type of motion query, called 

motion join, can be expressed as follows using the proposed framework. Given a sequence of frames, find all 

pairs of objects (oi, oj) having a starting relation Rst at the first frame f, an ending relation Rend at the last frame 
l and move in the intermediate frames. We have implemented three algorithms that process motion joins: 

1. OID join. This method performs two multi-relational spatial joins (see section 4) at the two frames f and l, 

using the respective relations Rst and Rend. It then sorts and merges the identifiers of the qualifying pairs in 

order to find the common object pairs that constitute the problem’s solution. 
2. Join and verify. This method performs a multi-relational join to one of the two frames, where the 

respective relation is expected to be more restrictive. We will explain later how the constrainedness of a 

relation is defined and used as a metric for this algorithm. Each qualifying pair of objects is then tested 

whether it satisfies the other relation in the less restrictive frame. 
3. Nested loops. In this simple method each object pair is checked for satisfaction of both relations at both 

frames. Naturally, this method is expected to be more expensive than the other two, but we implemented 

it for the sake of comparison with them. 

Verification of move in the intermediate frames is done in the same way for all methods. Figure 6.4 illustrates 
the relative performance of the three methods using the database described above. The y-axis shows the 

retrieval cost in seconds, whereas the x-axis captures the reverse constrainedness of a query defined as 

follows. Let size(f,R) be the expected output size (i.e. number of qualifying object pairs) of a multirelational 

self-join in frame f using relation R. This quantity can be easily estimated using selectivity formulae for 
spatial join queries. More specifically, it is defined as the area of the window defined by R and a random 

object in the frame using the methodology of WR (see Section 5.2), divided by the area of the workspace. 

Relations R100000000 and R000000001 naturally have the largest output size (i.e. they are the loosest). The reverse 

constrainedness of a motion join is defined as the minimum expected output size of the joins on the two 
frames, divided by the largest possible expected output size on a frame. Thus queries including only relations 

R100000000 and R000000001 are expected to have large reverse constrainedness and queries that include relations 

with the central bit on will have small reverse constrainedness. For each constrainedness value in the 

experiment we ran 100 queries and took the average. 
As expected, nested loops presents a stable behaviour; its cost is independent on the constrainedness and 

much higher than the cost of the other methods. From the other alternatives, join and verify is the winner in all 

cases, having an almost stable performance difference with OID join. Since the number of objects in each 

frame is relatively small, verification was performed in memory with low cost. However, for large 
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applications verification may require access to secondary memory, thus join and verify may be less efficient 

than OID join in some cases. 
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Figure 6.4 Experimental comparison of motion join methods 

Although not initially the main motivation for this work, this section touches briefly upon motion queries, 
treating them as special cases of spatio-temporal queries. The main goal of the section is to indicate the 

flexibility of our framework and its easy adaptation for various applications. We examined some obvious 

query cases entailing movement of objects and conducted a few experiments. However, the framework could 

be potentially used for more complicated motion analysis tasks, e.g. the identification of motion patterns like 
periodicity, global motion patterns vs. single-axis patterns, etc. This could be accomplished in conjunction 

with the use of string matching algorithms to identify patterns in both relation variances and relation strings.  

7. CONCLUSION 

In this work we have attempted an in-depth treatment of spatio-temporal queries. In addition to traditional 
spatio-temporal applications, their importance is even more stressed, considering them as a means to 

effectively retrieve information from large unstructured or semi-structured multimedia repositories like the 

WWW, where the condition is spatio-temporal structure instead of textual content. In essence, such queries 

represent similarity assessments among spatio-temporal configurations. Therefore, exact matches may not be 
sufficient for users. Instead, approximation (similarity) measures should be employed to relate each retrieved 

configuration with the queried one. 

We have reduced this general similarity problem to elementary 1D relation similarity and, by borrowing 

concepts from spatio-temporal reasoning research, we have defined a formal yet practical framework for 
encoding 1D relations in a way that allows efficient reasoning on conceptual neighborhoods. We subsequently 

extended the model in a uniform way to arbitrary dimensions and multiple resolution levels with respect to the 

definition of relations, thus covering many potential applications. This logical representation proved effective 

and efficient for spatio-temporal retrieval, used in conjunction with appropriate data structures such as R-
trees.  

We applied the framework in three major types of spatio-temporal queries which have been the topic of 

active research in the database community: object retrieval, spatial joins and structural similarity, as well as to 
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a special class of motion queries as an indication of the flexibility of our approach. In addition to algorithms, 

we provided optimization methods and evaluated the performance of query processing through experiments 

with real data. Due to the lack of available higher-dimensional real data, we confined our experiments to 2D. 
This however does not undermine the validity of our approach, as similar indexing techniques are employed 

for 3D or 4D data (see [VTS98]), thus rendering our framework directly applicable.  

Our techniques have a wide range of potential applications in various areas involving multi-dimensional 

data. A relative limitation of the approach is in its dependence on visual feature extraction algorithms, as our 
model assumes that images are pre-processed. For example, in order to assess motion in a set of satellite 

images, one has first to identify meaningful objects, define MBRs, index them, and subsequently apply our 

techniques. In some applications, objects are already identified when images are entered in the system (e.g., 

most VLSI and GIS applications), while in others identification can be done automatically due to domain 
restrictions (medical images).  

Future continuation of this work is possible in both theoretical and practical directions. For example, the 

algebraic properties of different sets of relations that are feasible at different resolution levels could be studied 

and motivate the framework's extension to hierarchical relation similarity problems. From a practical point of 
view, a very fruitful research direction would be the coupling of our techniques with appropriate query 

languages for spatio-temporal domains (possibly a combination of pictorial and verbal languages). Finally, 

findings from the currently active research on indexing techniques for higher dimensions are expected to 

enrich the applicability range of our approach and improve its computational feasibility. 
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TABLE OF SYMBOLS 
N[i] node 
Nk node Entry 
Nk,l lower left point of the MBR of Nk (also used for all types of rectangles) 
Nk,u upper right point of the MBR of Nk(also used for all types of rectangles) 

R↓p  projection of multi-dimensional relation R on axis p (also used for all types of rectangles) 
C user constraint 
d(R,C) distance between C and relation R (as defined by the conceptual neighborhood graph) 
Vi query variable (also used to denote primary objects to be retrieved) 
Cij constraint between variables Vi and Vj 
rk object rectangle (also used to denote reference objects in window queries) 
Vi←rk instantiation of variable Vi to object rk 
d(Cij,R(rk,rl)) distance between Cij and R(rk,rl) where Vi←rk and Vj←rl 
τ maximum d(Cij,R(rk,rl)) permitted by the query 

Τ maximum ∑d(Cij,R(rk,rl)) permitted by the query 
domain[i][j]  set of consistent values for Vj at instantiation level i (for FC and MFC) 
domainWindow[i][j]  window containing the consistent values for Vj at instantiation level i (for WR and JWR) 
 


