Announcement

Objective

A new editorial drpartment called "Algorithms" has bepa added to the Commonications. This deparment was atablinhed to publish atgorithms consisting of "proce" dures" and programs in the Aroot language Contributed thes may take one of three possible forms: An Aboharam, Cermacetrox of a previously published algoritho, Ramark on a prevously published algorithm. The section will always be headed by a disclamer and a statement permitting reproduction. Contributions should be sent to

> J. H. Wrasten
> Computation Labomatory
> National Buremu of Standards
> Washington $25, \mathrm{DC}$.

It should be noted that algorithms in Awos may conthne to appear in any other department of the Communications when these altorithms occur naturally within an exposition of a subject oriented towards the Getivities of that department.

Algorithm

A contributed Agorithm should be in the following form:
 sponess

Aserract: This is a brief description of the algorthm, and must be less than 200 words in length. The purpose of the alyorithm should be stated, giving stecuracy, ranges, derivation or references, tabular space requirements, and any other information that might help a user. The status and method of checkout might also be given. This abstract should always be expressed as a comment in Alcol notation.
Ancontram: The Algon language must be used (see Preliminary FieportInternational Algebraic Language Communications, ACM December, 1958). The author should use the Publication form of Algol and is

[^0]requested to write the algorithms in a style patterned after the most recent algorithms appearing in this section of the Communications.

Certification

The successful use of a published algorithm, either by machine or hand compilation, enhances its value. Therefore, contributions in the form of "Certifications" are also solicited by this department. It is anticipated that periodically, perhaps once a year, an index or catalog of algorithms along with references to all their certifications and remarks will be published. An algorithm in this "library" which includes several certifications assumes a certain stature.

A contributed Certification should be in the following form:
The word "Cemtification".
Identification of the algorithm being certified. This consists of the year and month of the Communications and the serial number of the algorithm, its name, and author.
name, employing organtzation and addrass of the conthebutor of this certification.
Centheleation: This should be a brief statement of how the algorithm was used, the values of quantities used, and results obtained. Information such as the type of computer used and the compiler or compiling method used may also be helpful. A strong form of certification is a test routine or test value generator which tests each possible branch of the algorithm. This test, in Accol, may be included in the certification.

Remarks

It is anticipated that a published algorithm may contain an error, may require clarification, or may be modified by someone (e.g., its author). For these purposes, "remarks' are solicited.

A contributed Remark should be in the following form: The word "Remark".
LDENTIFICATION OF THE ALGORLTHM BEING REMARKED UPON.
Name, employing organization and address of conTRIBUTOR OF THIS REMARK:
Remark: This should be limited to 200 words or less, but, in addition, it might include sections in Algol notation intended for addition to or replacement of sections of the algorithm being referred to.

Algorithms

Abstract

Contributions to this department must be in the form stated in the Algorithms Department policy statement (Communicalions, February, 1960). Contributions should be sent to J. H. Wegstein, Computation Taboratory, National Bureau of Standards, Washington 25, D. C. Algorithms should be in the Publication form of ALGOr, and written in a style patierned after the most recent algorithms appearing in this department.

Although each algorithm has been tested by its contributor, no warranty, express or implied, is made by the the contributor, the editor, or the Association for Compating Machinery as to the aceuracy and functioning of the algorithm and related algorithm material, and no responsibility is assumed by the contributor, the editor, of the Association for Computing Machinery in conncction therewith.

The reproduction of algorithms appearing in this department is explicitly permitted without any charge. When reproduction is for publication purposes, reference must be made to the algorithm author and to the Communications issue bearing the algorithm.

1. QuADI
R. J. Herbold

National Bureau of Standards, Washington 25, D. C.
comment QuadI is useful when integration of several functions of same limits at same time using same point rule is desired. The interval (a, b) is divided into m equal subintervals for an n-point quadrature integration. p is the number of functions to be integrated. w_{k} and u_{k} are normalized weights and abscissas respectively, where $\mathrm{k}=1,2,3, \cdots, \mathrm{n} . \mathrm{u}_{\mathrm{k}}$ must be in ascending order. $P(B, j)=$: (c) is a procedure which must be supplied by the programmer. It evaluates (c) the function (as indicated by j) for $B . I_{j}$ is the result of integration for function j;
procedure QuadI (a,b,m,n,p,w, $\left.w_{k}, P(B, j)=:(c)\right)=:(\mathrm{Ij})$ begin
QuadI:

LI

L2

Li :
$h:=(b-a) / m$
for $\quad j:=1(1) p \quad ; \quad I_{j}:=0$
$\mathrm{A}:=a-h / 2$
for $\quad i:=1(1) \mathrm{m}$
begin $A:=A+h$
for $\quad k:=1(1) n$
begin $\quad B:=A+(h / 2) \times u_{k}$
for $\quad j:=1(1) p$
hegin $P(B, j)=$: (c)
$I_{j}:=I_{j}+w_{k} \times \mathrm{c} \quad$ end $L 3 ;$ end $T .2$
end L1
for $\quad j:=1(1) p$
$I_{i}:=(h / 2) \times I_{j}$
return
integer ($\mathrm{j}, \mathrm{k}, \mathrm{i}$)
end QuadI

2. Rootfinder

J. Wegstein

National Bureau of Standards, Washington 25, 1
comment This procedure computes a value of $r=x$ fying the equation $x=f(x)$. The procedure c statement gives the function, an initial apl mation $a \neq 0$ to the root, and a tole paramater ϵ for determining the number c nificant figures in the solution. This accele itcration or secant method is describecl h^{\prime} wuthor in Communications, June, 1958.;
procedure $\operatorname{Root}(f(), a, \epsilon)=:(g)$
begin
Root $\quad \mathrm{b}:=\mathrm{a} ; \mathrm{c}:=\mathrm{f}(\mathrm{b}) \quad ; \mathrm{g}:=\mathrm{c}$
if $(c=a)$; return
$d:=a ; b:=c \quad ; \quad e:=c$
Hob: $\quad c:=f(b)$
$g:=(d \times c-b \times e) /(c-e-b+d)$
if (abs $((g-b) / g) \leqq \epsilon)$; return
$\mathrm{e}:=\mathrm{c} \quad ; \mathrm{d}:=\mathrm{b} \quad ; \quad \mathrm{b}^{\prime}:=\mathrm{g}$; goto Elol
end

3. Solution of Polynomial Equation by Batres Hytchcock Method
 A. A. Grau
 Oak Ridge National Laboratory, Oak Ridge, Tenn

procedure

BAIRSTOW (n, a[], eps0, eps1, eps2, eps3, K) $=$:
(m, x[l, y[], nat[], ex[]);
comment The Bairstow-Hitcheoek iteration is used t successively pairs of roots of a polyr equation of degree n with coefficien $\left(i=0,1, \cdots, n\right.$) where a_{n} is the constant ter exit from the procedure, m is the number of of roots found, $x[i]$ and $y[i] \quad(i=1, \cdots, m$: pair of real roots if nat $[i]=1$, the real anad nary parts of a complex pair if nat $[\mathrm{i}]=-$ ex[i] indicates which of the following conc

Corrigendum

In the paper "A Technique for Handling Macro Instructions" by Irwin D. Greenwald, Communications ACM 2, No. 11 (Nov. 1959):
(1) Use the term Scat (instead of Sos) in referring to the Share assembler. Sos is too comprehensive a term. (p.21, 2d par.)
(2) Label the example following (2) as example (2a), which reads:

$$
\begin{equation*}
\text { ALPHA M1 } Q+20, G A M, R H O, Z, O P 6 \tag{2a}
\end{equation*}
$$

(p. 21, 2d col., line 12).
(3) Then on p. 22, 1st col., 10th line from bottom, read:
"Thus, for example (2a), ...".

[^0]: - Buphtiest by Eitivos.

