
Interprocedural Control Dependence

SAURABH SINHA and MARY JEAN HARROLD
Georgia Institute of Technology
and
GREGG ROTHERMEL
Oregon State University

Program-dependence information is useful for a variety of applications, such as software
testing and maintenance tasks, and code optimization. Properly defined, control and data
dependences can be used to identify semantic dependences. To function effectively on whole
programs, tools that utilize dependence information require information about interprocedural
dependences: dependences that are identified by analyzing the interactions among procedures.
Many techniques for computing interprocedural data dependences exist; however, virtually no
attention has been paid to interprocedural control dependence. Analysis techniques that fail to
account for interprocedural control dependences can suffer unnecessary imprecision and loss
of safety. This article presents a definition of interprocedural control dependence that
supports the relationship of control and data dependence to semantic dependence. The article
presents two approaches for computing interprocedural control dependences, and empirical
results pertaining to the use of those approaches.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debug-
ging—Debugging aids; Testing tools (e.g., data generators, coverage testing); D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement—Restructuring, reverse engi-
neering, and reengineering; D.3.3 [Programming Languages]: Language Constructs and
Features—Control structures; D.3.4 [Programming Languages]: Processors—Compilers;
Optimization; I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms—Analysis of
algorithms

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Interprocedural control dependence, interprocedural
analysis, semantic dependence, program slicing, software maintenance

This article is a revised and expanded version of a paper presented at the 1998 ACM SIGSOFT
International Symposium on Software Testing and Analysis [Harrold et al. 1998].
Authors’ addresses: S. Sinha and M. J. Harrold, College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332; email: sinha@cc.gatech.edu; harrold@cc.gatech.edu; G. Ro-
thermel, Computer Science Department, Oregon State University, Corvallis, OR 97331; email:
grother@cs.orst.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1049-331X/01/0400–0209 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001, Pages 209–254.

1. INTRODUCTION

Program-dependence information is useful for a variety of applications,
such as software testing and maintenance tasks, and code optimization.
Such information can be used, for example, to locate the cause of a software
failure, to evaluate the impact of a modification, to determine the parts of a
program that should be retested in response to a modification, or to identify
parts of the code to which optimizing transformations can be applied. For
such purposes, program dependences provide approximate but useful infor-
mation [Podgurski and Clarke 1990]. Control-dependence information cap-
tures the effects of predicate statements on program behavior. Data-
dependence information captures the effects of data interactions on
program behavior. Tools such as program slicers use control- and data-
dependence information for tasks such as debugging, impact analysis, and
regression testing.

Much research (e.g., Bilardi and Pingali [1996], Cytron et al. [1991],
Ferrante et al. [1987], Pingali and Bilardi [1997], Pollock and Soffa [1989],
and Ryder and Paull [1988]) has addressed the problems of computing and
utilizing intraprocedural dependences: dependences within procedures that
can be computed by analyzing procedures independently. That research has
considered both control and data dependence.

To function effectively on whole programs, however, techniques that
require dependence information must account for interprocedural depen-
dences: dependences that can be computed only by analyzing the interac-
tions among procedures. Various definitions of, and methods for computing
and utilizing, interprocedural data dependences have been presented, and
the necessity of considering these dependences in interprocedural analyses
is well understood (e.g., Cooper and Kennedy [1988], Harrold and Soffa
[1994], Landi and Ryder [1992], Pande et al. [1994], Reps et al. [1995],
Sharir and Pnueli [1981]). In contrast, virtually no attention has been paid
to the definition or computation of interprocedural control dependence. Our
search of the research literature reveals only one attempt to define and
compute interprocedural control dependence [Loyall and Mathisen 1993];
however, as we show in Section 6, that definition and approach can omit
dependences. Furthermore, we have found no interprocedural analysis
techniques that explicitly consider the effects of interprocedural control
dependences.

Our empirical studies indicate that the failure to account for interproce-
dural control dependences may significantly affect analysis results. When
analysis techniques that utilize dependence information are applied to
programs without accounting for interprocedural control dependences, the
techniques can identify dependences that do not exist, which can lead to
excessively large solutions to analysis problems; the techniques can also
ignore dependences that do exist, which can lead to errors of omission in
solutions to analysis problems. For some analyses, such as slicing for
reverse engineering, errors of omission may be acceptable [Murphy and

210 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Notkin 1996]; for other analyses, such as slicing for program integration,
errors of omission are not allowable [Horwitz et al. 1989].

This article addresses the issues surrounding interprocedural control
dependences and their potential effects on interprocedural analysis tech-
niques. The main contributions of the article are:

—A description of several ways in which control dependences computed
intraprocedurally inaccurately model the control dependences that exist
in whole programs.

—A precise definition of interprocedural control dependence. Unlike the
previously presented definition [Loyall and Mathisen 1993], this defini-
tion supports the relationship between syntactic and semantic depen-
dence [Podgurski and Clarke 1990] that must hold if analyses based on
dependence information are to model conservatively the semantic depen-
dences in programs.

—Two approaches for computing interprocedural control dependences: one
approach computes precise interprocedural control dependences but may
be inordinately expensive; the other approach summarizes control depen-
dences, and efficiently obtains a conservative (safe) estimate of those
dependences at the cost of some precision. The article provides empirical
results pertaining to the effectiveness and efficiency of these approaches.

The remainder of this article is organized as follows. The next section
provides background information necessary to support our definition of
interprocedural control dependence. Section 3 demonstrates several effects
related to interprocedural control dependence, and then provides our
definition of interprocedural control dependence. Section 4 presents our
algorithms for calculating interprocedural control dependence, and Section
5 presents empirical results obtained in the use of the second algorithm.
Section 6 reviews related work, and illustrates the drawbacks of the
existing definition of interprocedural control dependence. Finally, Section 7
presents conclusions and outlines possible future work.

2. BACKGROUND

To demonstrate the semantic basis for uses of program dependences, and to
evaluate some of those uses, Podgurski and Clarke [1990] present a formal
model of program dependences. They distinguish several types of control
and data dependences, and describe conditions under which identification
of such (syntactic) dependences may or may not imply identification of
semantic dependences (cases where the behavior of a statement can indeed
affect the execution behavior of another statement). Their results show that
a maintenance tool, such as a slicer, that uses control and data depen-
dences to identify a superset of the statements that could semantically
affect another statement can omit semantic dependences if it utilizes
inappropriate definitions or computations of data- or control-dependence
information.

Interprocedural Control Dependence • 211

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Our definition of interprocedural control dependence builds on this
previous work. This section presents definitions drawn directly from, or
based on, those given in Podgurski and Clarke [1990] that are prerequisite
to that definition.

Control dependences are typically defined in terms of control-flow
graphs, paths in those graphs, and the postdominance relation.

Definition 1. A control-flow graph (CFG) G 5 ~N, E! for procedure P is
a directed graph in which N contains one node for each statement in P, and
in which E contains edges that represent possible flow of control between
statements in P. N contains two distinguished nodes, ne and nx, represent-
ing entry to and exit from P, respectively, where ne has no predecessors,
and nx has no successors. If P contains multiple exit points, E contains an
edge from each node that represents an exit point to nx. Each call site in P
is represented by a call node and a return node in G, and there is an edge
from each call node to its associated return node. Each node in N is
reachable from ne, and nx is reachable from each node in N. Each node in N
that represents a predicate statement is called a predicate node and has
exactly two successors; all other nodes in N except nx have exactly one
successor.

Definition 2. An n1 – nk path in a CFG G 5 ~N, E! is a sequence of
nodes W 5 n1, n2, . . . , nk such that k $ 0, and such that, if k $ 2, then
for i 5 1, 2, . . . , k 2 1, ~ni, ni11! [E.1

Definition 3. Let G 5 ~N, E! be a CFG. A node u [N postdominates a
node v [N if and only if every v – nx path in G contains u.

Several forms of control dependence have been identified in the research
literature. We restrict our attention to the form of control dependence
found most commonly in the literature, described as “control dependence”
[Ferrante et al. 1987], as “direct, strong control dependence” [Podgurski
and Clarke 1990], and as “classical control dependence” [Bilardi and
Pingali 1996].

Definition 4. Let G 5 ~N, E! be a CFG, and let u, v [N. Node u is
control dependent on node v if and only if v has successors v9 and v99 such
that u postdominates v9 but u does not postdominate v99.

For control-dependence computation, a CFG G is augmented with a
unique predicate node ns, and edges (ns, ne), labeled “true,” and (ns, nx),
labeled “false” [Ferrante et al. 1987]. By this mechanism, nodes in G that
are not control dependent on any predicate nodes are control dependent on
entry to the procedure.

1Podgurski and Clarke [1990] use the term “walk” to refer to a sequence of adjacent nodes in a
graph. We use the term “path” to refer to such a sequence because it is more standard in the
literature.

212 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

The following definitions extend the CFG to model data elements, and
use this extension to define data dependence.

Definition 5. A def/use graph is a quadruple Gdu 5 ~G, S, D, U !,
where G 5 ~N, E! is a CFG, S is a finite set of symbols called variables,
and D : N 3 P~S!, U : N 3 P~S! are functions.

Definition 6. Let Gdu 5 ~G, S, D, U ! be a def/use graph with G 5
~N, E!, and let u, v [N. Node u is data dependent on node v if and only if
there exists a path vWu in Gdu such that ~D~v! ù U~u!! 2 D~W ! Þ f,
where D~W ! 5 øni [W~ni[y $u, v%!D~ni!.

The next definition captures the notion that two nodes in a def/use graph
may be connected by a chain of data and control dependences, resulting in a
syntactic dependence.

Definition 7. Let Gdu 5 ~G, S, D, U ! be a def/use graph with G 5
~N, E!, and let u, v [N. Node u is syntactically dependent on node v if
and only if there is a sequence n1, n2, . . . , nk of nodes, k $ 2, such that
v 5 n1, u 5 nk, and for i 5 1, 2, . . . , k 2 1 either ni11 is control depen-
dent on ni or ni11 is data dependent on ni.2

Podgurski and Clarke [1990] define semantic dependence, and relate it to
syntactic dependence. Informally, when the semantics of statement s may
affect the execution of statement s9, s9 is semantically dependent on s. A
more formal definition is based on notions of interpretations, computation
sequences, and execution histories, defined as follows [Podgurski and
Clarke 1990].

Definition 8. Let Gdu 5 ~G, S, D, U ! be a def/use graph with G 5
~N, E!. An interpretation of Gdu is an assignment of partial computable
functions to the vertices of Gdu. The function assigned to a vertex v [N is
the function computed by the program statement that v represents; it maps
values for the variables in U~v! to values for the variables in D~v! or, if v is
a decision vertex, to a successor of v.

Definition 9. A computation sequence of a program is the sequence of
states (pairs consisting of a statement and a function assigning values to
all the variables in the program) induced by executing the program with a
particular input.

Definition 10. Let Gdu 5 ~G, S, D, U ! be a def/use graph with G 5
~N, E!. An execution history of a vertex v [N is the sequence whose ith
element is the assignment of values held by the variables of U~v! just
before the ith time v is visited during a computation.

2Podgurski and Clarke [1990] define two types of syntactic dependence: weak and strong. We
restrict our attention to the latter, and refer to it simply as syntactic dependence.

Interprocedural Control Dependence • 213

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Given these definitions, Podgurski and Clarke [1990] define semantic
dependence as follows:

Definition 11. A node u in a def/use graph Gdu is semantically depen-
dent on a node v in Gdu if there are interpretations I1 and I2 of Gdu that
differ only in the function assigned to v, such that, for some input, the
execution history of u induced by I1 differs from that induced by I2.

Semantic dependence of u on v can be demonstrated in either of two
ways: (1) if for some pair of interpretations, the execution histories of u
differ in some pair of corresponding entries, or (2) if for some pair of
interpretations, the execution histories of u have different lengths. When
case (1) holds, or when case (2) holds with respect to finite portions of
computations, the semantic dependence is said to be finitely demonstrated:
this necessarily occurs when programs halt, but can also occur for nonhalt-
ing programs.

There is no algorithm to determine, for arbitrary statements s and s9,
whether s9 is semantically dependent on s; however, Podgurski and Clarke
[1990] demonstrate that given appropriate definitions of control and data
dependence, there exist useful relationships between syntactic and seman-
tic dependence. In this article, we restrict our attention to the relationship
stated in the following theorem:3

THEOREM 1. Let Gdu 5 ~G, S, D, U ! be a def/use graph with G 5 ~N, E!,
and let u, v [N. If u is semantically dependent on v and if this semantic
dependence is finitely demonstrated, then u is syntactically dependent on v.4

Theorem 1 is significant because it shows, that given appropriate defini-
tions of control and data dependence, syntactic dependence is a necessary
condition for (finitely demonstrated) semantic dependence. Thus, the theo-
rem provides justification for algorithms that use syntactic dependence to
approximate semantic dependence. We refer to this desirable relationship
between syntactic and semantic dependence as the syntactic-semantic
relationship.5

3. INTERPROCEDURAL CONTROL DEPENDENCE

In this section, we illustrate three effects that impact interprocedural
control dependences. We then define interprocedural control dependence.

3Podgurski and Clarke present additional definitions of control and syntactic dependence that
provide a necessary condition for semantic dependence for programs that do not halt.
4A proof of this theorem is given in Podgurski [1989], and sketched in Podgurski and Clarke
[1990].
5Of course, there is a trivial way to construct an algorithm that preserves the syntactic-
semantic relationship: the algorithm simply makes every statement syntactically (control or
data) dependent on every other statement. Clearly, this approach is unsatisfactory. The goal of
an algorithm for approximating semantic dependencies, therefore, is to compute sufficiently
tight approximations.

214 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

3.1 Effects that Impact Interprocedural Control Dependences

Figure 1 presents a program Sum that consists of three procedures: M (the
entry procedure), B, and C. The two insets in the figure provide alternative
versions of two lines of the program; we use these alternatives to illustrate
specific points. Intraprocedural control-dependence analysis operates inde-
pendently on individual procedures, ignoring both the context in which
each procedure is invoked, and the side-effects on control dependence that
may be caused by a called procedure. Table I illustrates the intraprocedural
control dependences for Sum.

Considering Sum as a whole, however, we can observe three ways in
which control dependences that are computed intraprocedurally inaccu-
rately model the semantic dependences that exist between statements in
the program.

First, consider the version of Sumcreated by substituting the alternative
versions of lines 6 and 18: this version of Sum contains only one call to B,
and halts (assuming normal termination) only on reaching the implicit halt
in statement 8. In this version, statement 4 immediately determines
whether statement 5 (the call to B) executes, and in so doing, immediately
determines whether statements 10, 11, and 14 in B and statement 17 in C
execute. It is easy to show, that in terms of Definition 11, statements 10,
11, 14, and 17 are semantically dependent on statement 4, even in the
absence of data dependences. To preserve the syntactic-semantic relation-
ship, interprocedural control-dependence analysis must identify statements
10, 11, 14, and 17 as control dependent on statement 4; intraprocedural
analysis alone does not do this. We call this the entry-dependence effect.

Second, consider the version of Sumcreated by substituting the alterna-
tive version of line 18, but not substituting the alternative version of line 6:
this version contains both calls to B, but halts (assuming normal termina-
tion) only on reaching statement 8. The presence of the second, uncondi-
tional call to B in statement 6 means, that assuming normal termination,
statements 10, 11, 14, and 17 necessarily execute at least once during any
execution of Sum. Moreover, these statements execute regardless of the

alternative version of 6:

6’ noop

 read i,j

 call B

 endwhile

 print sum

end M

begin M

procedure M

1

2

3

4

5

6

7

8

procedure B

begin B

 call C

 if j >= 0 then

 sum = sum + j

 read j

 sum = 0

 while i < 10 do

 endif

 call B

9

10

11

12

14 i = i + 1

13

15 end B

begin C16

17

18

19

procedure C

 if sum > 100 then

 endif

 halt

end C

alternative version of 18:

18’ print("error")

Fig. 1. Program Sumwith alternative versions of two of its statements.

Interprocedural Control Dependence • 215

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

evaluation of statement 4. One possible application of the definition of
postdominance (Definition 3) might seem to imply that statements 10, 11,
14, and 17 postdominate statement 4, and thus, cannot be control depen-
dent on statement 4. (Loyall and Mathisen [1993] draw this conclusion.)
However, despite the fact that the second call to B guarantees that
statements 10, 11, 14, and 17 execute at least once, statement 4 does
determine the number of times that those statements execute. Thus,
statements 10, 11, 14, and 17 are semantically dependent on statement 4,
even in the absence of data dependences. It follows that to preserve the
syntactic-semantic relationship, interprocedural control-dependence analy-
sis must identify statements 10, 11, 14, and 17 as control dependent on
statement 4. We call this the multiple-context effect.

Third, consider the version of Sum presented in the figure, with neither
alternative line substituted: in this case, the program can also halt at
statement 18. This explicit halt statement has far-reaching effects on the
control dependences in Sum—effects that combine with the first two effects
to further complicate the program’s interprocedural control dependences.
For example, in this version of Sum, statements 11 and 14 depend most
immediately for their execution on statement 17, because of the explicit
halt statement. It is easy to show, that in terms of Definition 11,
statements 11 and 14 are semantically dependent on statement 17, even in
the absence of data dependences. As a second example, statement 4 is now
also semantically dependent on statement 17: when the predicate in
statement 17 is true, statement 4 executes at least one time fewer than
when the predicate in statement 17 is false. Furthermore, statement 6 is
now semantically dependent on statement 4: the presence of the halt
statement that is reachable from the call to B has the effect that, now,
different interpretations of the function associated with statement 4 affect
whether statement 6 is reached (and thus determine the number of times
that it executes). To preserve the syntactic-semantic relationship, interpro-
cedural control-dependence analysis must identify the control dependences
that are responsible for these semantic dependences. We call this the
return-dependence effect. We call the explicit halt statements that can
cause this effect embedded halts, to distinguish them from implicit program
termination points.

Table II illustrates the complete set of interprocedural control depen-
dences necessary to preserve the syntactic-semantic relationship for Sum. A
comparison of these dependences with those computed intraprocedurally
(see Table I) reveals extensive differences. The intraprocedural and inter-
procedural dependences include seven in common; the intraprocedural
dependences include seven not required in the interprocedural context; and
the interprocedural dependences include seven not detected by the intra-
procedural analysis.

To obtain initial data about the use of embedded halts in practice in a
language that supports them, we examined a variety of nontrivial C
programs. Table III summarizes the programs we examined. We examined
20 programs from the Aristotle analysis system [Harrold and Rothermel

216 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

1997]; 23 programs from the Eli text processor generation system; the
Empire Internet game; 20 programs from the GCC2.3.3 compiler distribu-
tion; the Omegadata-dependence analyzer;6 seven programs that were used
by researchers at Siemens for a study on data-flow testing [Hutchins et al.
1994]; and the XVCGtool for displaying graphs.

In C, halt functionality is provided by the exit() system call. Where
possible, we used Aristotle to analyze the source code, and inspected the
analysis information to determine if an exit() in some function other than
main could be reached (statically) from the beginning of the program. (By
ignoring exit() statements in main we were able to exclude “nonembed-
ded” exit() statements, used unconditionally at the ends of the programs,
that cannot affect control dependences.) For programs that Aristotle
could not completely analyze, we determined this information by manual
inspection of the source code. As Table III illustrates, over 63% of the
programs we examined, and at least 42% of the programs in each group of
programs, contained exit() statements. Although further study is neces-
sary to determine the extent to which these results generalize, the results

6See http://www.cs.umd.edu/projects/omega/omega.html for information about the
Omega project.

Table I. Intraprocedural Control Dependences for Sum

Control Control
Statements Dependent on Statements Dependent on

2, 3, 4, 6, 7 entry M 4, 5 4
10, 11, 14 entry B 12, 13 11

17 entry C 18 17

Table II. Interprocedural Control Dependences for Sum

Control Control
Statements Dependent On Statements Dependent On

2, 3, 4 entry M 5, 6, 10, 17 4
4, 7, 11, 14, 18 17 12, 13 11

Table III. Presence of Embedded Halts in C Programs

Program Group Number of Programs
Number of Programs that
Contain Embedded Halts

Aristotle 20 10
Eli 23 11
Empire 1 1
GCC 20 19
Omega 1 1
Siemens 7 3
XVCG 1 1
Total 73 46

Interprocedural Control Dependence • 217

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

do support hypotheses that (1) in C programs, embedded halts are used
frequently, and (2) this frequent use is consistent over a range of programs.

Embedded halts are not the only cause of return-dependence effects.
Other language constructs, such as setjump–longjump statements in C, and
exception-handling constructs in Java and C11, also cause these effects. In
this article, we restrict our attention to embedded halts.

3.2 Definition of Interprocedural Control Dependence

The entry-dependence, multiple-context, and return-dependence effects
constitute three ways in which intraprocedural control dependence compu-
tation fails to preserve the syntactic-semantic relationship with respect to
control dependences for whole programs. Other effects may also exist. To
preserve the syntactic-semantic relationship, a definition of interproce-
dural control dependence must account for all such effects; this section
provides such a definition. Our definition relies on an interprocedural
inlined flow graph (IIFG). An IIFG is the graph, possibly infinite, that
results when we inline all procedures at their call sites and construct a
control flow graph from the resulting program; as such, an IIFG represents
the control flow in a program that has been rolled out [Binkley 1992]. Like
the invocation graph [Emami et al. 1994] and the context graph [Atkinson
and Griswold 1996], the IIFG is fully context sensitive: it accounts for the
calling sequence that leads to each call. However, unlike the invocation and
context graphs, the IIFG is also flow sensitive: it accounts for the control
flow of the individual procedures. We define the IIFG more formally as
follows:

Definition 12. Let P be a program, and let G be a collection of CFGs,
Gk, k . 0, that contains, for each procedure Pi, i . 0, in P, one copy of the
CFG for each call site in P that calls Pi. Furthermore, let E be the set of
edges and N be the set of nodes in the Gk, k . 0. An interprocedural
inlined flow graph (IIFG) GI 5 ~NI, EI! for P is a directed graph: NI 5 N
ø $nstop%, EI 5 ~E 2 CR 2 HX! ø CE ø XR ø HS; nstop is a unique
node that represents exit from P; CR is the set of edges from call nodes to
the corresponding return nodes; HX is the set of edges from nodes that
represent embedded halts to the exit nodes of the respective CFGs; CE is
the set of edges from call nodes to the entry nodes of the Gk; XR is the set
of edges from the exit nodes of the Gk to the return nodes; and HS is the set
of edges from nodes that represent embedded halts to nstop.

Note that a given statement in P corresponds to a set of IIFG nodes—one
for each calling context in which the statement can be executed. We denote
the set of nodes in GI to which a given statement s in P corresponds by
NodeSet~s!.

Figure 2 depicts the IIFG for program Sum. Each call site is represented
by call and return nodes; the CFG for the called procedure is inlined at
each call node. The CFGs are connected by (call node, entry node) and (exit

218 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

node, return node) edges, shown as dashed lines. The IIFG in Figure 2
contains two copies of the CFG for procedure B, corresponding to call nodes
5a and 6a; each inlined CFG for B contains a call to C, and therefore the
IIFG contains two copies of the CFG for C as well. Nodes from which control
can exit the program (nodes 8 and 18) are connected to a unique exit node.

The definitions of paths, postdominance, control dependence, def/use
graphs, data dependence, syntactic dependence, and semantic dependence
presented in Section 2 apply to IIFGs as follows:

Definition 13. A path in an IIFG GI 5 ~NI, EI ! is a sequence of nodes
W 5 n1, n2, . . . , nk, such that k $ 0, and such that, if k $ 2, then for i
5 1, 2, . . . , k 2 1, ~ni, ni11! [EI.

Definition 14. Let GI 5 ~NI, EI ! be an IIFG. A node u [NI postdomi-
nates a node v [N I if and only if every v – nstop path in GI contains u.

Definition 15. Let GI 5 ~NI, EI ! be an IIFG, and let u, v [NI. Node u
is control dependent on node v if and only if v has successors v9 and v99 such
that u postdominates v9 but u does not postdominate v99.

Definition 16. A def/use IIFG is a quadruple GI2du 5 ~GI, S, D, U !,
where GI 5 ~NI, EI ! is an IIFG, S is a finite set of symbols called variables,
and D : NI 3 P~S!, U : NI 3 P~S! are functions.

17. if sum > 100 then

16. enter C

F
18. halt

T

18. halt

19. exit C

17. if sum > 100 then

16. enter C

T
F

19. exit C

T

4. while i < 10 do

3. sum = 0

2. read i,j

1. enter M

5a. call B

5b. return B

F

6b. return B

6a. call B

7. print sum

8. exit M

exit

10b. return C

11. if j >= 0 then

13. read j

14. i = i + 1

F

9. enter B

10a. call C

15. exit B

12. sum = sum + j

T

10b. return C

11. if j >= 0 then

13. read j

14. i = i + 1

F

9. enter B

10a. call C

15. exit B

12. sum = sum + j

T

Fig. 2. Interprocedural inlined flow graph for program Sum.

Interprocedural Control Dependence • 219

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Definition 17. Let GI2du 5 ~GI, S, D, U ! be a def/use IIFG with GI 5
~NI, EI !, and let u, v [NI. Node u is data dependent on node v if and only
if there exists a path vWu in GI2du such that ~D~v! ù U~u!! 2 D~W ! Þ
f, where D~W ! 5 øni [W~ni[y $u, v%!D~ni!.

Definition 18. Let GI2du 5 ~GI, S, D, U ! be a def/use IIFG with GI 5
~NI, EI !, and let u, v [NI. Node u is syntactically dependent on node v if
and only if there is a sequence n1, n2, . . . , nk of nodes, k $ 2, such that
v 5 n1, u 5 nk, and such that for i 5 1, 2, . . . , k 2 1 either ni11 is
control dependent on ni or ni11 is data dependent on ni.

Definition 19. Let GI2du 5 ~GI, S, D, U ! be a def/use IIFG with GI 5
~NI, EI !. An interpretation of GI2du is an assignment of partial computable
functions to the vertices of GI2du. The function assigned to a vertex v [

NI is the function computed by the program statement that v represents; it
maps values for the variables in U~v! to values for the variables in D~v! or,
if v is a decision vertex, to a successor of v.

Definition 20. Let GI2du 5 ~GI, S, D, U ! be a def/use IIFG with GI 5
~NI, EI !. An execution history of a vertex v [NI is the sequence whose ith
element is the assignment of values held by the variables of U~v! just
before the ith time v is visited during a computation.

Definition 21. A node u in a def/use IIFG GI2du is semantically depen-
dent on a node v in GI2du if there are interpretations I1 and I2 of GI2du that
differ only in the function assigned to v, such that, for some input, the
execution history of u induced by I1 differs from that induced by I2.

Given these definitions, the following theorem holds:

THEOREM 2. Let GI2du 5 ~GI, S, D, U ! be a def/use IIFG with GI 5
~NI, EI !, and let u, v [NI. If u is semantically dependent on v and if this
semantic dependence is finitely demonstrated, then u is syntactically depen-
dent on v.

The proof of the theorem follows from Podgurski and Clarke’s proof of
Theorem 1, and the relationship between the graphs used by Podgurski and
Clarke in that proof and the IIFG. See Appendix A for further discussion.

Given this theorem, the syntactic-semantic relationship holds for the
IIFG-based definition of control dependence (Definition 15). The theorem is
significant for reasons similar to those that render Theorem 1 significant: it
asserts, that given appropriate definitions of control and data dependence,
syntactic dependence is a necessary condition for (finitely demonstrated)
semantic dependence. However, Theorem 2 applies in the interprocedural
context, and thus provides justification for (and a measure of success of)
interprocedural algorithms that use syntactic dependence to approximate
semantic dependence.

220 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

4. COMPUTING INTERPROCEDURAL CONTROL DEPENDENCES

In this section, we present two approaches for computing interprocedural
control dependences. The first approach computes precise interprocedural
control dependences, but may be inordinately expensive. The second ap-
proach summarizes interprocedural control dependences, and computes a
conservative estimate of those dependences more efficiently than the first
approach, but at the cost of some precision.

4.1 Precise Computation of Interprocedural Control Dependences

One way to compute interprocedural control dependences for a program P

is to build the IIFG GI for P, and apply an existing algorithm, such as those
described in Bilardi and Pingali [1996], Cytron et al. [1991], Ferrante et al.
[1987], and Pingali and Bilardi [1997], to GI. For nonrecursive programs,
this approach computes precise interprocedural control dependences.

In practice, this approach may be expensive. The IIFG construction
inlines a procedure at each call site to that procedure; thus, the size of an
IIFG may be exponential in the size of the program that it represents.
Moreover, for a recursive program, the IIFG is infinite, and can be
constructed only by limiting the number of expansions of the procedures
involved in recursion (which, in turn, limits the precision of the control-
dependence computation on that IIFG).

To investigate the cost of the IIFG-based approach, we examined the
sizes of the IIFGs for several programs. Table IV describes the programs
that we used in the study, and lists the number of noncomment lines of
code in the programs.7 Table V provides data about the sizes of the IIFGs of

7This set of programs differs from the set we used for our study of the occurrence of embedded
halts, reported in Table III. The objective of the embedded-halt study was to motivate our
research, and the study required only limited processing of the programs. Thus, we were able
to examine a large number of programs and conclude that embedded halts do occur often in
practice. However, the empirical studies reported in this section required extensive processing
of the programs with our prototype tools, and examination of the results for correctness. Thus,
we selected a subset of the programs for study. Future work includes more experimentation
with additional subjects, including those from Table III.

Table IV. Programs Used for the Empirical Studies Reported in this Article

Subject Description LOC

armenu Aristotle analysis system [Harrold and
Rothermel 1997] user interface

5835

dejavu Interprocedural regression test selector
[Rothermel and Harrold 1997]

2655

diff File-differencing tool 1447
flex Lexical analyzer generator 4357
mpegplayer MPEG player 5380
netmaze 3D maze combat game 4688
space Parser for antenna-array description language 5889
unzip Zipfile extract utility 2370

Interprocedural Control Dependence • 221

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

those programs. For programs that contained recursion, we expanded the
recursive procedures once, and determined the increase in IIFG size that
would be caused by each additional expansion.

As the data illustrates, three of the programs—armenu , flex , and
mpegplayer —exhibited between one and two orders-of-magnitude in-
creases in their IIFG sizes over the sizes of their respective CFGs. For the
remaining four programs, including one program that contained recursion,
the IIFG sizes increased by factors of 2 to 5 over the sizes of the respective
CFGs.

Figure 3 shows the increases in IIFG sizes as a bar graph; the vertical
axis shows the factor of increase in IIFG size over the sizes of the CFGs.
The factor of increase ranges from 2 to 59; for recursive programs, this
factor would increase further with each additional expansion of the recur-
sive procedures. Among the nonrecursive programs, mpegplayer exhibits
the largest increase in size—by a factor of 59—from 4705 nodes in the
CFGs to 278,267 nodes in the IIFG.

These results suggest that the use of the IIFG and a traditional algo-
rithm [Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al. 1987;
Pingali and Bilardi 1997] to compute interprocedural dependences for
whole programs may be inordinately expensive. This expense must be
weighed, in practice, against the precision requirements of particular
applications. Nevertheless, it seems reasonable to seek alternative ap-
proaches for computing interprocedural control dependences that sacrifice
precision for efficiency, while remaining conservative in that they do not
omit interprocedural dependences that do exist in a program. We next
present one such approach.

4.2 Efficient, Conservative Computation of Interprocedural Control Depen-
dences

The IIFG-based approach just presented computes interprocedural control
dependences between nodes in the IIFG. A program statement may corre-
spond to several nodes in an IIFG—one node for each calling context in
which the procedure containing the statement can execute. Therefore, the
IIFG-based approach computes distinct control dependences for each calling

Table V. IIFG Sizes for Programs with Each Recursion Expanded Once

IIFG Size Increase per Recursion Expansion

Subject CFGs Nodes CFGs Nodes CFGs Nodes

armenu 93 8027 16425 474650 15444 451656
dejavu 90 3485 227 6872 – –
diff 41 1876 232 7193 – –
flex 88 3728 4435 109289 3092 85803
mpegplayer 105 4705 18528 278267 – –
netmaze 91 4585 402 15602 – –
space 136 5725 1552 30662 – –
unzip 37 2038 206 6074 10 270

222 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

context in which a statement can execute; we call such dependences
context-based interprocedural control dependences. An alternative approach
for computing interprocedural control dependences is to ignore the context-
based distinctions and, instead, compute those dependences by summariz-
ing the control dependences that exist in at least one calling context of
execution of a statement; we call such dependences statement-based inter-
procedural control dependences.

A precise definition of statement-based interprocedural control depen-
dence, in terms of IIFG nodes and the NodeSet function, is as follows:

Definition 22. Let P be a program, GI be the IIFG for P, and s1 and s2 be
statements in P. Statement s1 is control dependent on statement s2 if and
only if there exist nodes u, v [GI such that u [NodeSet~s1!, v [

NodeSet~s2!, and u is control dependent on v.

Because statement-based control dependences summarize the control
dependences that exist in different calling contexts, they do not encode
control-dependence information as precisely as do context-based control
dependences. However, because context-based control dependences, defined
on the IIFG, preserve the syntactic-semantic relationship, statement-based
control dependences, which summarize those control dependences, also
preserve that relationship.

THEOREM 3. Statement-based control dependences preserve the syntactic-
semantic relationship.

PROOF. The proof requires a definition of what it means for a statement
to be semantically or syntactically dependent on another statement. Infor-
mally, we say such a dependence exists if it exists in some calling context.
More formally, we say that a statement s1 [P is (semantically/syntacti-
cally) dependent on another statement s2 [P if and only if there exist
nodes n1, n2 [GI2du, the def/use IIFG for P, such that n1 [NodeSet~s1!
and n2 [NodeSet~s2!, and such that n1 is (semantically/syntactically)

un
zipfle

x

de
ja
vu

ar
m

en
u

sp
ac

e
di
ff

ne
tm

az
e

m
pe

gp
la
ye

r

0

10

20

30

40

50

60

0

10

20

30

40

50

60

II
F

G
 n

o
d

e
s

/
C

F
G

 n
o

d
e

s

Fig. 3. Factors of increase in IIFG sizes over the sizes of the CFGs.

Interprocedural Control Dependence • 223

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

dependent on n2. The proof then proceeds as follows. Suppose s1 is
semantically dependent on s2. Then there exist nodes n1, n2 [GI2du, the
def/use IIFG for P, such that n1 [NodeSet~s1! and n2 [NodeSet~s2!, and
such that n1 is semantically dependent on n2. But then, by Theorem 2, n1 is
syntactically dependent on n2; thus, s1 is syntactically dependent on s2. e

Given Definition 22, it follows that we could compute statement-based
interprocedural control dependences by first computing context-based con-
trol dependences on the IIFG, and then transforming them into statement-
based control dependences using the NodeSet associations. Such an ap-
proach, of course, would be more expensive than simply computing context-
based control dependences. A more efficient algorithm exists, however, that
does not require an IIFG. This algorithm uses a representation that is
linear in the size of a program to compute precisely the same statement-
based interprocedural control dependences that would be computed using
the IIFG.

4.2.1 The Algorithm. The algorithm proceeds in two phases: (1) Phase 1
identifies call sites to which control may not return due to the presence of
embedded halts, and uses this information to compute partial control
dependences and construct an augmented control-dependence graph for
each procedure; (2) Phase 2 connects the augmented control-dependence
graphs for the procedures to construct an interprocedural control-depen-
dence graph for the program, and traverses the graph to compute interpro-
cedural control dependences.

Phase 1: Computation of Partial Control Dependences. The computation
of partial control dependences, performed by the first phase of our algo-
rithm, accounts for the effects of embedded halts. To compute partial
control dependences, we augment the CFG with “placeholder” nodes that
represent the potential effects of external control dependences on nodes
within the CFG; we call the resulting graph an augmented control-flow
graph (ACFG). We define an ACFG more formally as follows:

Definition 23. Let G be a CFG for procedure P in P. Let N be the set of
nodes in G. Let E be the set of edges in G. Let CN 5 $CN1, CN2, . . . ,
CNj% be nodes in G that represent call sites where control may not return
from the called procedures due to the presence of embedded halts, and let
RN be the set of return nodes associated with the call nodes in CN. An
augmented control-flow graph (ACFG) GA 5 ~N A, EA! is a directed graph:
N A 5 N ø $nsx% ø RP; EA 5 ~E 2 CR 2 HX! ø CP ø PE ø SX; nsx is
a unique super-exit node that represents all potential exits from P; RP is a
set of return-predicate nodes, one for each call node in CN, that represent
predicates that are external to P and affect the control dependences of
statements in P; CR is the set of edges from each call node in CN to its
corresponding return node; HX is the set of edges from nodes that represent

224 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

embedded halts to the exit node; CP is a set of edges, one from each node
n [CN to the node in RP associated with n; PE is a set of edges, one
labeled “T” from each node n [RP to the node in RN associated with n,
and one labeled “F” from each node n [RP to nsx; and SX is a set of edges
that connect the exit node and each halt node to nsx.

To illustrate, Figure 4 displays the CFG and the ACFG for procedure M
from our example program. The ACFG contains a super-exit node, repre-
senting all exit points from the procedure that is connected to the rest of
the graph by edge (exit M, super exit). The graph contains return-predicate
nodes RP5b, representing the predicates on which the return from the call
at 5a depends, and RP6b, representing the predicates on which return from
the call at 6a depends. Edge (RP5b, 5b) with label “T” represents control
returning from B, and edge (RP5b, super exit) with label “F,” represents
control not returning from B. Edge (5a, RP5b) represents the fact that
following the call, predicates in the called procedures determine whether
control returns to procedure M. The graph contains similar edges for
return-predicate node RP6b.

The definitions of paths, postdominance, and control dependence apply to
the ACFG as follows:

4. while i < 10 do

T

3. sum = 0

1. enter M

5b. return B

F

2. read i,j

6a. call B

5a. call B

6b. return B

7. print sum

8. exit M

super exit

RP6b

RP5b

F

F

4. while i < 10 do

T

T

3. sum = 0

1. enter M

5b. return B

F

2. read i,j

6a. call B

6b. return B

7. print sum

8. exit M

5a. call B

T

Fig. 4. Control-flow graph for procedure M (left), and augmented control-flow graph for M
(right).

Interprocedural Control Dependence • 225

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Definition 24. A path in an ACFG GA 5 ~N A, EA! is a sequence of nodes
W 5 n1, n2, . . . , nk such that k $ 0, and such that, if k $ 2, then for
i 5 1, 2, . . . , k 2 1, ~ni, ni11! [EA.

Definition 25. Let GA 5 ~N A, EA! be an ACFG. A node u [N A post-
dominates a node v [N A if and only if every v – nsx path in GA contains u.

Definition 26. Let GA 5 ~N A, EA! be an ACFG, and let u, v [N A.
Node u is control dependent on node v if and only if v has successors v9 and
v99 such that u postdominates v9 but u does not postdominate v99.

Partial control dependences are the control dependences computed using
the ACFG. Like the intraprocedural control-dependence computation [Fer-
rante et al. 1987], the partial control-dependence computation adds a
dummy predicate node ns, an edge ~ns, ne! labeled “true,” and an edge
~ns, nsx! labeled “false” to the ACFG. Table VI shows the partial control
dependences computed from the ACFGs for the procedures in Sum.

To represent partial control dependences, Phase 1 of the algorithm
constructs an augmented control-dependence graph (ACDG); we define an
ACDG more formally as follows:

Definition 27. Let GA be an ACFG for procedure P in P. Let N A be the
set of nodes in GA, and let RP 5 $RP1, RP2, . . . , RPj% be return-predi-
cate nodes in GA with the corresponding return nodes RN 5 $RN1, RN2,
. . . , RNj%. An augmented control-dependence graph (ACDG) GD 5 ~N D, ED!
is a directed graph: N D 5 N A 2 RP 2 nsx; ED 5 CD ø E ø R; CD is a
set of edges, and it contains an edge ~n1, n2!, n1, n2 [N D, if the partial
control dependences for n2 include n1; E is a set of edges, and it contains an
edge ~ne, n!, n Þ ne, labeled “T” if the partial control dependences for n
include ns; R is a set of edges, and it contains an edge ~RNi, n!, n Þ RNi,
labeled “T” if the partial control dependences for n include RPi, where RNi

is the return node associated with return-predicate node RPi. Each node
n [N D 2 ~ne ø RN ! has at least one predecessor and no successors;
nodes in ~ne ø RN ! have no predecessors.

Figure 5 shows the ACDG for procedure M. The ACDG contains control-
dependence edges to represent partial control dependences. The source of
each control-dependence edge is a predicate node or a placeholder node; a

Table VI. Partial Control Dependences for SumComputed Using the ACFGs

Control Control
Statements Dependent on Statements Dependent on

2, 3, 4 entry M 4, 5b RP5b
5a, 6a 4 6b, 7, 8 RP6b
9, 10a entry B 10b, 11 RP10b
12, 13 11 16, 17 entry C
18, 19 17

226 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

placeholder node is either an entry node or a return node for a PNRC. If a
node n is control dependent on the dummy start predicate ns, the ACDG
contains an edge from the entry node ne to n. If a node n is control
dependent on a return predicate, the ACDG contains an edge from the
return node associated with that return predicate to n; thus, the ACDG
contains no return-predicate nodes. For example, the partial control depen-
dences for procedure M show that node 4 is control dependent on return
predicate RP5b. Therefore, in the ACDG for M, there exists an edge from
node 5b—the return node associated with return predicate RP5b—to node
4.

Figure 5 illustrates that the ACDG can have multiple root nodes. Each
root node represents a point in the corresponding procedure P where
control enters P—either through a call site that calls P or through a return
site in P—and where external predicates control the statements in P that
are reached from that entry. The entry node and the return nodes for
PNRCs represent such points in a procedure, and therefore, appear as root
nodes in the ACDG. Each root node in the ACDG is thus a placeholder for
external predicates. As the figure illustrates, the ACDG can also have
disconnected components.

Our approach to computing partial control dependences involves two
main steps. In Step 1, given program P, we identify the call sites in P where
control, on entering the called procedure, may fail to return to the caller
due to the presence of an embedded halt. In Step 2, we use this information
to construct ACFGs and ACDGs for the procedures in P.

Figure 6 presents our algorithm, ComputePartialCD . The algorithm
takes as input the set of CFGs $CFG1, CFG2, . . . , CFGj% for procedures
$P1, P2, . . . , Pj%, respectively, in program P, and outputs, for each Pi in P,
the ACDG for Pi. The algorithm proceeds in two steps, which correspond to
the steps described above. We next describe each step of the algorithm in
turn.

Step 1 (line 1) of ComputePartialCD calls procedure ClassifyCall-
Sites to identify potentially nonreturning call sites (PNRCs) in P: call sites
to which control may not return from called procedures due to the presence of
embedded halts. To identify these call sites, ClassifyCallSites requires

4. while i < 10 do

7. print sum

5a. call B

5b. return B 6b. return B

8. exit M

1. enter M

6a. call B

3. sum = 0

2. read i,j

T
T

T

T
T

T

T F

Fig. 5. Augmented control-dependence graph for procedure M.

Interprocedural Control Dependence • 227

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

information about interprocedural flow of control in P. ClassifyCall-
Sites uses the procedure shown in Figure 7 to identify PNRCs in P. To
obtain PNRC information, the procedure (line 1) constructs an interproce-
dural control-flow graph (ICFG) that connects individual CFGs at call
nodes [Landi and Ryder 1992]. We define the ICFG more formally as
follows:

Definition 28. Let P be a program with procedures P1, P2, . . . , Pj and
let G 5 G1, G2, . . . , Gj be the corresponding CFGs for the Pi, 1 # i # j.
Let E be the set of edges in the Gi and N be the set of nodes in the Gi. An
interprocedural control-flow graph (ICFG) GC 5 ~NC, EC! for P is a directed
graph: NC 5 N; EC 5 ~E 2 HX 2 CR! ø CE ø XR; HX is a set of edges
connecting nodes that represent embedded halts to exit nodes; CR is a set
of edges connecting call nodes to return nodes; CE is a set of (call node,
entry node) edges, one from each call node to the entry node of the called
procedure; and XR is a set of (exit node, return node) edges, one to each

Fig. 6. The algorithm for computing partial control dependences.

228 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

return node from the exit node of the procedure returned from. Each
statement in P corresponds to a unique node in the ICFG for P.

Figure 8 depicts the ICFG for program Sum. Each call site is represented
by call and return nodes; the CFGs are connected by (call node, entry node)
and (exit node, return node) edges, shown as dashed lines. Unlike the IIFG,
the ICFG contains a single copy of the CFG for each procedure in a
program. Also, in the ICFG, nodes that represent halt statements are not
connected to a unique exit node.

After constructing the ICFG, ClassifyCallSites calls procedure Com-
puteDNRPs (line 2). ComputeDNRPs calculates three pieces of data: (1)
DNRPList, the list of definitely nonreturning procedures (DNRPs) in P:
procedures from which control (statically) cannot return due to the pres-
ence of embedded halts; (2) UnreachList, a list of nodes in the ICFG that
cannot be reached (statically) from the entry node; and (3) HNList, a list of
nodes in the ICFG that represent embedded halts that can be reached
(statically) from the entry node. To calculate this data, ComputeDNRPs
performs a depth-first traversal along realizable paths in the ICFG,8

marking nodes as it reaches them, until no unmarked nodes remain.
During this traversal, ComputeDNRPs places all halt nodes that it reaches
on HNList. Following the traversal, the procedure examines the exit nodes
of individual CFGs in the ICFG. Any exit node that is not marked indicates
that the procedure to which that exit node belongs is definitely nonreturn-
ing; ComputeDNRPs places that procedure on DNRPList. Also, any un-
marked nodes are statically unreachable; ComputeDNRPs places these on
UnreachList.

8A path in an ICFG is realizable if whenever control leaves a procedure through a normal
procedure exit, such as the end of the procedure or a return statement, it returns to the
procedure that invoked it.

Fig. 7. The algorithm for classifying call sites.

Interprocedural Control Dependence • 229

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Following the call to ComputeDNRPs, ClassifyCallSites uses
UnreachList to remove all statically unreachable nodes (line 3) from the
ICFG and all CFGs.

The algorithm can now determine PNRCs. The procedure for accomplish-
ing this, ComputePNRCs, takes as input the ICFG, from which unreachable
nodes have been removed, the list of definitely nonreturning procedures
DNRPList, and the list of halt nodes HNList. The procedure performs a
reverse depth-first traversal of the ICFG, starting at halt nodes and nodes
that represent calls to definitely nonreturning procedures, ascending into
calling procedures but not descending into called procedures. Any call site
reached during the traversal is a PNRC, and the called procedure is
potentially nonreturning. The algorithm places these call nodes on
PNRCList. When the traversal terminates, the procedure returns
PNRCList and the modified CFGs.

To illustrate the operation of ClassifyCallSites , consider our example
program. Called with the CFGs for this program, ClassifyCallSites
first creates the ICFG shown in Figure 8. ComputeDNRPs determines that
no procedures in this program are definitely nonreturning and that all
nodes in the ICFG are reachable, and adds node 18 to HNList. ComputePN-
RCs then performs a reverse depth-first traversal of the ICFG from node
18. During this traversal, the algorithm adds call nodes 5a, 6a, and 10a to
PNRCList because the associated call sites are potentially nonreturning.

Following the identification of PNRCs, in Step 2 (lines 2–20), Compute-
PartialCD (shown in Figure 6) computes the set of partial control depen-
dences and constructs the ACDG for each procedure Pi in P. To do this,

7. print sum

T

8. exit M

10b. return C

19. exit C

4. while i < 10 do

3. sum = 0

2. read i,j

1. enter M

11. if j >= 0 then

13. read j

14. i = i + 1

17. if sum > 100 then

16. enter C

5a. call B

5b. return B

F

F

T

9. enter B

10a. call C

15. exit B

12. sum = sum + j

T

F
18. halt

6b. return B

6a. call B

Fig. 8. Interprocedural control-flow graph for program Sum.

230 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

ComputePartialCD first constructs the ACFG for Pi (lines 3–17). Com-
putePartialCD initializes the ACFG (line 3), and creates a super-exit node
Nsx and adds it to the ACFG (line 5). Next, the algorithm connects the exit
node to Nsx (line 6). ComputePartialCD then iterates through each PNRC
in Pi (lines 7–13), creates a return-predicate node for that PNRC and adds
it to the ACFG (line 8), removes the edge that connects the call node to the
corresponding return node (line 9), connects the call node to the return-
predicate node (line 10), and creates outgoing edges labeled “T” and “F”
from the return-predicate node (lines 11–12). ComputePartialCD also
removes edges that connect halt nodes to the exit node, and connects the
halt nodes to the super-exit node (lines 14–17).

Having constructed the ACFG for Pi, ComputePartialCD next computes
partial control dependences for Pi by applying an existing technique for
control-dependence computation [Bilardi and Pingali 1996; Cytron et al.
1991; Ferrante et al. 1987; Pingali and Bilardi 1997] to the ACFG for Pi

(line 18). Finally, the algorithm constructs the ACDG for Pi (line 19).

Phase 2: Computation of Interprocedural Control Dependences. Intra-
procedural control-dependence computation applied to an ACFG produces
correct control dependences for all nodes that are control dependent on
nonplaceholder nodes in the ACFG; however, control dependences for nodes
that are control dependent on placeholders—entry or return nodes—must
be adjusted. Phase 2 of our algorithm performs this adjustment and
computes interprocedural control dependences.

To compute interprocedural control dependences, the algorithm con-
structs an interprocedural control-dependence graph (ICDG). We define an
ICDG more formally as follows:

Definition 29. Let P be a program with procedures P1, P2, . . . , Pj, and
let G 5 G1

D, G2
D, . . . , Gj

D be the corresponding ACDGs for the Pi, 1 # i # j.

3. sum = 0

1. enter M

4. while i < 10 do

5a. call B 6a. call B

6b. return B

7. print sum

control dependence on predicate

8. exit M

interprocedural control flow

12. sum = sum + j

19. exit C18. halt

control dependence on placeholder

2. read i,j
5b. return B

T
T

T

T

T T

T F

9. enter B

T

11. if j >= 0 then

13. read j

TT

10b. return C

15. exit B

14. i = i + 1

T

T
T

10a. call C

16. enter C

17. if sum > 100 then

T

T F

Fig. 9. Interprocedural control-dependence graph for program Sum.

Interprocedural Control Dependence • 231

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Let N D be the set of nodes in the Gi
D and ED be the set of edges in the Gi

D.
An interprocedural control-dependence graph (ICDG) GD 5 ~ND, ED! for P is
a directed graph: ND 5 N D; ED 5 ED ø CE ø XR; CE is a set of (call
node, entry node) edges, one from each call node to the entry node of the
called procedure; and XR is a set of (exit node, return node) edges, one to
each return node from the exit node of the procedure returned from.

Figure 9 shows the ICDG for program Sum. Apart from the control-
dependence edges, the ICDG contains call and return edges. At each call
site, a call edge connects the call node to the entry node of the called
procedure; for example, a call edge connects call node 5a to entry node 9. At
each call site, a return edge connects the exit node of the called procedure
to the return node for the call site; for example, a return edge connects exit
node 15 to return node 5b.

Figure 10 presents ComputeInterCD , the algorithm for Phase 2 of the
interprocedural control-dependence computation. ComputeInterCD takes
three inputs: (1) the ACDGs for the procedures in a program, (2) the list of
nodes that are control dependent on placeholders (CDPL), and (3) partial
control dependences (excluding placeholders) for each node. The algorithm

Fig. 10. The algorithm for computing interprocedural control dependences.

232 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

constructs the ICDG by connecting the ACDGs using call and return edges
(line 1). Then, the algorithm traverses the ICDG once for each node that is
control dependent on a placeholder (lines 2–17). For each such node M, the
algorithm traverses the ICDG backward along all paths, starting at each
predecessor P of M that is a placeholder, and identifies the closest
predicates that are reachable from P along those paths; P is a placeholder
for the external predicates that are reached along the paths. To identify
such predicates, the traversal along a path terminates when it reaches a
control-dependence edge whose source is a nonplaceholder (neither an
entry node nor a return node). The algorithm uses worklist to traverse the
ICDG, and marks nodes as they are visited.

For each node M that is control dependent on a placeholder, the algo-
rithm initiates the ICDG traversal by marking the ICDG nodes as unvis-
ited (line 3), and initializing worklist by adding placeholder predecessors of
M to worklist (line 4). Following the initialization, the algorithm traverses
the ICDG by removing a node from worklist and processing it, until
worklist becomes empty (lines 5–16).

The algorithm removes a node N from worklist (line 6) and examines all
predecessors of N in the ICDG (lines 7–15). If a predecessor P is a predicate
node, the algorithm has identified a control dependence for node M.
Therefore, the algorithm adds P to the set of control dependences for node
M (line 9), and terminates the traversal of the ICDG along that path. For
example, to process node 15, which is control dependent on a return node,
the algorithm initializes node 15 on worklist. Then, the algorithm traverses
the path (15, 10b, 19, 17) in the ICDG for Sum, and identifies node 17 as the
predicate on which node 15 is control dependent. For another example, to
process node 10a, which is control dependent on an entry node, the
algorithm traverses the ICDG backward along all paths, starting at node
10a, and identifies node 4 as the predicate on which node 10 is control
dependent.

After the algorithm has processed each node that is control dependent on
a placeholder, it has identified for each such node the external predicates
on which the node is control dependent. Finally, the algorithm builds and
returns the set of interprocedural control dependences for the program
(lines 18–21).

4.2.2 Complexity of the Algorithm. The cost of our algorithm for com-
puting interprocedural control dependences is determined by the costs of
the two phases of the algorithm—ComputePartialCD (Figure 6) and Com-
puteInterCD (Figure 10).

Step 1 of ComputePartialCD invokes the procedure ClassifyCall-
Sites (Figure 7), which identifies DNRPs, removes unreachable nodes
from the ICFG and the CFGs, and identifies PNRCs. Let N and E be the
number of nodes and edges, respectively, in the ICFG. The procedure that
identifies DNRPs, ComputeDNRPs, performs a depth-first traversal of the
ICFG; therefore, the cost of ComputeDNRPs is O~N 1 E!. Next, Classify-

Interprocedural Control Dependence • 233

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

CallSites removes unreachable nodes from the ICFG and CFGs, which
can be accomplished in time linear in the sizes of those graphs. Finally,
using the list of halt nodes and call nodes for DNRPs, ClassifyCallSites
identifies PNRCs. The procedure that identifies PNRCs, ComputePNRCs,
traverses the ICFG once for each halt node and each call node for a DNRP.
Let H and CDNRP be the number of halt nodes and call nodes for DNRPs,
respectively, in a program. Then, the cost of ComputePNRCs is O~~H 1
CDNRP!*~N 1 E!!.

Step 2 of ComputePartialCD creates the ACFG and computes partial
control dependences for each procedure. Let NC and EC be the number of
nodes and edges in a CFG, and let CPNRC be the number of PNRCs in a
procedure. The cost of constructing the ACFG is O~NC 1 EC 1 CPNRC!. After
constructing the ACFG, Step 2 of ComputePartialCD calculates partial
control dependences by applying an existing technique for control-depen-
dence computation [Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante
et al. 1987; Pingali and Bilardi 1997] to the ACFG of each procedure. The
costs of these techniques vary from linear [Bilardi and Pingali 1996;
Pingali and Bilardi 1997] to quadratic [Cytron et al. 1991; Ferrante et al.
1987] in the size of the graph to which they are applied.

ComputeInterCD traverses the ICDG once for each node that is control
dependent on a placeholder; each traversal is linear in the size of the ICDG.
Let N be the number of nodes in the ICDG, E the number of edges in the
ICDG, and Npl the number of ICDG nodes that are control dependent on a
placeholder. Then, the worst-case complexity of ComputeInterCD is
O~Npl*~N 1 E!!.

4.2.3 Correctness of the Algorithm. Our algorithm computes statement-
based interprocedural control dependences by summarizing, for each state-
ment, the control dependences that exist in different calling contexts for
that statement in the IIFG. To demonstrate the correctness of our algo-
rithm, we show that our algorithm computes the same statement-based
control dependences as are computed by an alternative approach that
constructs an IIFG, applies a traditional algorithm for control-dependence
computation to the IIFG, and summarizes the control dependences for each
statement using the NodeSet relations.

The overall structure of the proof is as follows. First, we classify paths in
the IIFG based on the sequences of call and return edges that appear in the
paths. Next, we characterize paths in the ICDG that are traversed by the
algorithm. Finally, by considering the types of path in the IIFG along
which an interprocedural control dependence relation occurs, and the types
of paths that are traversed by our algorithm, we prove the following
theorem. The appendix provides an outline of the proof; further details of
the proof can be found in Sinha et al. [2000].

THEOREM 4. Let GI be the IIFG for program P. Let u and v be nodes in GI.
Let su and sv be the statements in P such that u [NodeSet~su! and v [

234 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

NodeSet~sv!. u is control dependent on v if and only if ComputeInterCD
identifies su as control dependent on sv.

4.3 Summary

We have presented two approaches for computing interprocedural control
dependences; the first approach computes context-based control depen-
dences, and the second computes statement-based control dependences.
These two approaches lie in a spectrum of approaches that compute
interprocedural control dependences with various degrees of context sensi-
tivity. The context-based approach expands all calling contexts for a
statement, and computes distinct control dependences for the statement in
each calling context. The statement-based approach summarizes all calling
contexts for a statement, and computes a single set of control dependences
for that statement. Other approaches, intermediate between these two,
may selectively expand the calling context of a procedure [Atkinson and
Griswold 1996], and compute control dependences with varying degrees of
precision and efficiency. The ability of such approaches to compute inter-
procedural control dependences safely can be evaluated using our definition
of interprocedural control dependence.

5. EMPIRICAL EVALUATION

To evaluate our algorithm, we conducted two empirical studies with imple-
mentations of ComputePartialCD and ComputeInterCD . To obtain the
CFGs and the intraprocedural control-dependence information required for
the studies, we used the analysis tools provided by the Aristotle analysis
system [Harrold and Rothermel 1997]; the control-dependence analyzer in
the Aristotle analysis system implements the control-dependence algo-
rithm described by Ferrante et al. [1987]. We used the programs listed in
Table IV for both the studies.

5.1 Efficiency of Interprocedural Control-Dependence Computation

The goal of our first study was to evaluate the performance of ComputeIn-
terCD in practice. Recall that the complexity of ComputeInterCD is
O~Npl*~N 1 E!!, where Npl is the number of ICDG nodes whose partial
control dependences include a placeholder, and where N and E are the
number of nodes and edges, respectively, in the ICDG. To resolve the
control dependences of nodes represented by Npl, ComputeInterCD
traverses the ICDG starting at those nodes.

Figure 11 presents data about the percentage of nodes whose partial
control dependences include an entry or a return placeholder. The number
at the top of each bar is the total number of nodes in the ICDG for that
program. Five of the programs—armenu , diff , flex , mpegplayer , and
space —contain statically unreachable statements; for these programs, the
number of ICDG nodes is less than the number of nodes in the CFGs (listed
in Table V) because Phase 1 of our algorithm identifies and removes nodes

Interprocedural Control Dependence • 235

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

that correspond to statically unreachable statements. The percentage of
nodes whose partial control dependences include a placeholder range from
15.6% for armenu to 36% for flex . On average, 26.3% of ICDG nodes are
control dependent on a placeholder.

The second factor in the cost equation for ComputeInterCD measures the
percentage of the ICDG that is traversed by ComputeInterCD while
resolving a node that is control dependent on a placeholder. Although
theoretically ComputeInterCD can traverse the entire ICDG while process-
ing a node, in practice, we expect it to traverse only a fraction of the ICDG.
To test this hypothesis, we gathered data about the percentage of ICDG
nodes and edges that are traversed by the algorithm while processing the
nodes whose partial control dependences include a placeholder.

Figure 12 presents the percentage of ICDG nodes and edges that are
traversed by ComputeInterCD ; each bar in the figure represents the
proportion of ICDG nodes and edges that are traversed, averaged over the
nodes that are processed by ComputeInterCD . As the figure illustrates, for
each program, ComputeInterCD traverses fewer than one percent of the
nodes and edges in the ICDG: the average is highest at 0.71% for armenu ,
and is as low as 0.13% for netmaze . This result strongly supports our belief
that the quadratic worst-case performance of ComputeInterCD may not be
realized in practice, and that ComputeInterCD may scale well for large
programs.

Although Figure 12 shows the percentage of ICDG that is traversed, on
average, for each program, it does not illustrate the distribution of those
percentages. The scatter plot on the left in Figure 13 illustrates the
distribution of the percentages: it shows, for each node that is processed by
ComputeInterCD , the percentage of the ICDG that is traversed. There are
8,898 data points in the scatter plot, which correspond to the nodes that are
processed by ComputeInterCD . The cluster of points at the bottom of the
plot illustrates that the algorithm traverses a small fraction of the ICDG

Nodes whose partial

control dependences
Nodes whose partial

control dependences

include only predicates

include a placeholder

100

80

60

40

20

0

100

80

60

40

20

0

34857908 1827 3679 4681 4585 5668 2038

un
zipfle

x

de
ja
vu

ar
m

en
u

sp
ac

e
di
ff

ne
tm

az
e

m
pe

gp
la
ye

r

Fig. 11. The percentage of nodes whose partial control dependences include an entry or a
return node; such ICDG nodes are processed by ComputeInterCD .

236 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

for most of the nodes. For each node, the algorithm traverses less than 10%
of the ICDG nodes and edges. The segmented bar on the right in Figure 13
provides a different view of the data: it partitions the nodes based on the
percentage of the ICDG nodes and edges that are traversed by ComputeIn-
terCD . As the figure shows, for over 94% of the nodes, ComputeInterCD
traverses less than 1% of the ICDG nodes and edges.

5.2 Differences between Intraprocedural and Interprocedural Control Depen-
dences

The goal of our second study was to examine the extent to which interpro-
cedural control dependences (computed by our second approach) differ from

fle
x

de
ja
vu

ar
m

en
u

sp
ac

e
di
ff

ne
tm

az
e

un
zip

m
pe

gp
la
ye

r
0

0.24%

0.13%

0.22%

0.47%

0.40%

P
e

rc
e

n
ta

g
e

 o
f
IC

D
G

 n
o

d
e

s
a

n
d

 e
d

g
e

s

tr
a

ve
rs

e
d

 o
n

 a
ve

ra
g

e

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0

0.71%

0.17%

0.29%

Fig. 12. The percentage of nodes and edges in the ICDG that are traversed, on average, by
ComputeInterCD for nodes whose partial control dependences include a placeholder.

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

P
e

rc
e

n
ta

g
e

 o
f
IC

D
G

 n
o

d
e

 a
n

d
 e

d
g

e
s

tr
a
ve

rs
e

d

and edges

Percentage
of ICDG nodes

traversed

in
cl

u
d

e
 a

 p
la

ce
h

o
ld

e
r

[0, 1]

(1, 3]

(3, 10)

100

80

60

40

20

0

8898

N
o

d
e

s
w

h
o

se
 p

a
rt

ia
l c

o
n

tr
o

l d
e

p
e

n
d

e
n

ce
s

Fig. 13. The percentage of nodes and edges in the ICDG that are traversed by ComputeIn-
terCD for each node whose partial control dependences include a placeholder (left); the
percentage of nodes for which ComputeInterCD traverses various percentages of the ICDG
nodes and edges (right).

Interprocedural Control Dependence • 237

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

intraprocedural control dependences (computed by applying a traditional
algorithm for computing control dependences [Bilardi and Pingali 1996;
Cytron et al. 1991; Ferrante et al. 1987; Pingali and Bilardi 1997] to each
CFG in a program).9

Intraprocedural control-dependence computation does not consider the
effects that interactions among procedures can have on control depen-
dences. Therefore, intraprocedural control dependences can exclude depen-
dences that exist because of interactions among procedures; interproce-
dural control dependences include such dependences. Also, intraprocedural
control dependences can contain spurious control dependences—depen-
dences that do not exist when interactions among procedures are consid-
ered; interprocedural control dependences exclude such dependences. Fi-
nally, intraprocedural control dependences can include dependences that
are computed also by the interprocedural control-dependence computation;
such common control dependences are unaffected by the interactions
among procedures.10

Figure 14 shows the percentage of ICFG nodes whose control depen-
dences are affected by the interactions among procedures; such nodes have
different intraprocedural and interprocedural control dependences. The
numbers at the top of the bars in the figure are the number of ICFG nodes,

9As mentioned earlier, we used an implementation of the control-dependence algorithm
described in Ferrante et al. [1987] for the empirical studies. However, the other algorithms
[Bilardi and Pingali 1996; Cytron et al. 1991; Pingali and Bilardi 1997] would also compute
the same control dependences when applied to the CFGs; therefore, the discussion in this
section applies to those algorithms as well.
10In some cases, the intraprocedural control-dependence computation identifies a statement as
control dependent on entry into the procedure to which the statement belongs, whereas the
interprocedural control-dependence computation identifies that statement as control depen-
dent on entry into the program. In the empirical results reported in this section, we considered
such control dependences as common control dependences.

Statically unreachable nodes

33057841 1794 3552 4495 4403 5453 1964
100

80

60

40

20

0

100

80

60

40

20

0

dependences differ
and interprocedural control
Nodes whose intraprocedural

Nodes whose intraprocedural
and interprocedural control
dependences are the same

un
zipfle

x

de
ja
vu

ar
m

en
u

sp
ac

e
di
ff

ne
tm

az
e

m
pe

gp
la
ye

r

Fig. 14. The percentage of ICFG nodes whose intraprocedural and interprocedural control
dependences differ.

238 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

excluding the entry and the exit nodes, in the respective programs. The
figure also shows the percentage of nodes that are statically unreachable;
such nodes occur in armenu , diff , flex , mpegplayer , and space . The
percentage of nodes whose control dependences differ ranges from 9.5% for
dejavu to 37.2% for mpegplayer . On average, the control dependences of
26.8% of the nodes differ.

Figure 15 presents data about interprocedural control dependences com-
puted for the programs. The graph at the top in the figure shows the
percentages of interprocedural control dependences that are computed only
by the interprocedural control-dependence computation, and those that are
computed also by the intraprocedural control-dependence computation. The
number at the top of each bar is the total number of interprocedural control
dependences computed for that program. The percentage of control depen-
dences that are missed by the intraprocedural control-dependence compu-
tation ranges from 20% for dejavu to 80% for armenu . On average, 66.1%

control-dependence path
an unbalanced-right-left

control-dependence path
an unbalanced-right

control-dependence path
an unbalanced-left

a control-dependence edge

context
in the intraprocedural
dependences that are missed
Interprocedural control

context
also in the intraprocedural
dependences that are computed
Interprocedural control

un
zipfle

x

de
ja
vu

ar
m

en
u

sp
ac

e

ne
tm

az
e

m
pe

gp
la
ye

r
di
ff

un
zipfle

x

de
ja
vu

ar
m

en
u

sp
ac

e
di
ff

ne
tm

az
e

m
pe

gp
la
ye

r

80

60

40

20

0

100

80

60

40

20

0

828 5745 1745 7129 116836473 50451121

interprocedural context along:
that are computed only in the
Interprocedural control dependences

100

100

80

60

40

20

0

100

80

60

40

20

0

58534140 2576 8044 9188 10940 332845583

Fig. 15. The percentage of interprocedural control dependences that are missed by the
intraprocedural control-dependence computation (top), and the classification of those control
dependences based on the type of path in the ICDG along which they are computed (bottom).

Interprocedural Control Dependence • 239

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

of the interprocedural control dependences are missed by the intraproce-
dural control-dependence computation.

Each control dependence that is missed by the intraprocedural control-
dependence computation is computed either by ComputePartialCD (and
received as an input by ComputeInterCD), or by ComputeInterCD along a
control-dependence path in the ICDG. Intuitively, a control-dependence
path in the ICDG is a path from a predicate node to a node that is control
dependent on a placeholder.11 Each control-dependence path crosses proce-
dure boundaries and contains one or more call and return edges. The
sequence of call and return edges along a control-dependence path can
contain (1) only call edges (the path is an unbalanced-left control-depen-
dence path), (2) only return edges (the path is an unbalanced-right control-
dependence path), or (3) a subsequence that contains only return edges
followed by a subsequence that contains only call edges (the path is an
unbalanced-right-left path). Control dependences computed along unbal-
anced-left control-dependence paths are caused by call relations among the
procedures, whereas control dependences computed during the partial-
dependence computation or along unbalanced-right or unbalanced-right-
left control-dependence paths are caused by the effects of PNRCs.

The graph at the bottom in Figure 15 classifies the missed control
dependences using the above criteria. It shows the percentage of missed
control dependences that are computed by ComputePartialCD (and repre-
sented as control-dependence edges in the ICDG), or by ComputeInterCD
along different types of control-dependence paths. The number at the top of
each bar is the total number of missed control dependences for that
program; this number is also represented as a percentage by the darker
segment in the graph at the top. The data in the figure illustrate that only
a small fraction of the missed interprocedural control dependences are
identified during the partial control-dependence computation: on average,
the percentage of such control dependences is 5.9%. The percentage of
missed control dependences that are computed along unbalanced-left paths
ranges from 25.4% for armenu to 84.3% for netmaze . On average, 35.2% of
the missed control dependences are computed along unbalanced-left paths,
and are therefore caused because of call relations among the procedures.
The remaining 58.9% of the missed control dependences are caused because
of the effects of PNRCs: 56.1% are computed along unbalanced-right paths,
and 2.8% are computed along unbalanced-right-left paths.

Figure 16 presents data about intraprocedural control dependences com-
puted for the programs. The data illustrate the extent to which intraproce-
dural control dependences include spurious dependences. The graph at the
top in the figure shows the percentages of intraprocedural control depen-
dences that are computed only by the intraprocedural control-dependence
computation, and those that are computed also by the interprocedural
control-dependence computation. The number at the top of each bar is the
total number of intraprocedural control dependences computed for that

11See Appendix B for formal definitions of control-dependence paths and their types.

240 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

program. The percentage of spurious control dependences ranges from 9.3%
for dejavu to 36.5% for mpegplayer . On average, 23.7% of the intraproce-
dural control dependences are spurious; such dependences do not exist
when interactions among procedures are considered.

The graph at the bottom in Figure 16 classifies the spurious control
dependences based on a semantic interpretation of those control depen-
dences. A spurious control dependence is computed only by the intraproce-
dural control-dependence computation. Let s be a statement in procedure P
such that s is control dependent on p and such that the control-dependence
relation is spurious. In this control-dependence relation, p is either a
predicate in P or the entry into P. If p is a predicate, the control-
dependence relation is clearly spurious, and provides misleading informa-
tion, because p does not control the execution of s. However, if p is the
entry into P, the control-dependence relation can provide information that
is not misleading but incomplete. Suppose that p is the entry into P. Then,

represent:
intraprocedural context and
that are computed only in the
Intraprocedural control dependences

context

context

fle
x

ar
m

en
u

sp
ac

e
di
ff

ne
tm

az
e

un
zip

de
ja
vu

m
pe

gp
la
ye

r

un
zipfle

x

de
ja
vu

ar
m

en
u

di
ff

m
pe

gp
la
ye

r

100

80

60

40

20

sp
ac

e

100

80

60

40

20

0

2076 338 707 1346 1774 935 1910 336

Intraprocedural control
dependences that are computed
also in the interprocedural

ne
tm

az
e

only in the intraprocedural
dependences that are computed
Intraprocedural control

spurious control dependences

incomplete control dependences

0

100

80

60

40

20

0

100

80

60

40

20

0

3650 4345 5217 5043 5721 249611186 2162

Fig. 16. The percentage of intraprocedural control dependences that are computed only by
the intraprocedural control-dependence computation (top), and a classification of those control
dependences (bottom).

Interprocedural Control Dependence • 241

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

the intraprocedural control-dependence relation is equivalent to stating,
that if control enters procedure P, then s is definitely reached. This
statement is valid also in the interprocedural context if all interprocedural
control dependences for s are computed along only unbalanced-left or
unbalanced-right-left paths. In such cases, although external predicates
control the execution of s, it is still valid to say, that if control enters P,
then s is definitely reached. Therefore, in such cases, the intraprocedural
control-dependence relation does not provide misleading information; it
provides incomplete information.

The graph at the bottom in Figure 16 classifies the intraprocedural
control dependences as spurious or incomplete. The graph illustrates, that
for armenu , diff , flex , and mpegplayer , a considerable percentage of the
intraprocedural control dependences are spurious: 85.7% for armenu , 73.6%
for diff , 74.8% for flex , and 67.7% for mpegplayer . On average, 61.1% of
the intraprocedural control dependences are spurious.

6. RELATED WORK

Definitions of control dependence appear frequently in the research litera-
ture (e.g., Bilardi and Pingali [1996], Cytron et al. [1991], Ferrante et al.
[1987], Loyall and Mathisen [1993], Pingali and Bilardi [1997], and Podgur-
ski and Clarke [1990]). In most cases (with the exception of the definition
in Loyall and Mathisen [1993], discussed below) these definitions are
stated in terms of relationships between nodes in flow graphs that are
described as representing “programs.” However, these definitions seldom
explicitly describe the way in which these graphs can represent whole
programs built of interacting procedures. For example, Podgurski and
Clarke [1990] state that their definition of the control flow graph can
represent any procedural program; however, as presented, that definition
also applies to a class of ICFGs on which the syntactic-semantic relation-
ship does not hold (see Appendix A for details). Our Definition 12 clarifies
the application of Podgurski and Clarke’s (and other flow-graph based)
definitions of control dependence to the interprocedural setting.

Various algorithms for calculating control dependences exist (e.g., Bal-
lance and Maccabe [1992], Bilardi and Pingali [1996], Cytron et al. [1991],
Ferrante et al. [1987], Harrold and Rothermel [1996], and Loyall and
Mathisen [1993]). Some of these algorithms (e.g., Ballance and Maccabe
[1992] and Harrold and Rothermel [1996]) operate on abstract syntax trees
for individual procedures and are therefore strictly intraprocedural. As
presented, most other algorithms operate on control-flow graphs. We have
shown, that when such algorithms are applied independently to control-
flow graphs for individual procedures in program P without accounting for
the context in which those procedures are invoked in P, the algorithms can
calculate control dependences in a manner that does not support the
syntactic-semantic relationship. Alternatively, given an IIFG, these algo-
rithms can calculate correct control dependences for P for nonrecursive

242 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

programs; however, the size of the IIFG may be exponential in program
size; thus, such an application may be inefficient.

Loyall and Mathisen [1993] use ICFGs to define interprocedural control
dependence. They define an interprocedural walk in an ICFG GC to be a
sequence of nodes that represent a realizable path through GC. A node v
[GC is said to postdominate a node v [GC if and only if every interproce-
dural walk from v to the exit node of the ICFG contains u. Control
dependence is then defined in a manner similar to that of our Definition 4.
However, this definition does not support the syntactic-semantic relation-
ship. To see this, refer again to Figure 1, and consider the version of Sum
created by substituting the alternative version of line 18, but not substitut-
ing the alternative version of line 6: this version contains both calls to B,
but halts (assuming normal termination) only on reaching statement 8.
Consider also the ICFG for this version of Sum, not pictured, but easily
constructed from the ICFG of Figure 8 by replacing node 18 with its
alternative version, and adding an edge from that node to node 19.12 In this
ICFG, because of the unconditional calls to B in node 6a and to C in node
10a, nodes 10, 11, 14, and 17 occur on every realizable path from both
successors of node 4 (6a and 5a). Thus, according to Loyall and Mathisen’s
definitions, nodes 10, 11, 14, and 17 postdominate both successors of 4, and
thus they are not control dependent on node 4. According to Podgurski and
Clarke’s definition of semantic dependence, however, nodes 10, 11, 14, and
17 are semantically dependent on node 4, because the condition in node 4
determines (through its control of the call to B in 5a) the number of times
these statements execute. Thus, in this case, Loyall and Mathisen’s defini-
tions of control dependence do not support the syntactic-semantic relation-
ship.

Loyall and Mathisen extend their basic definitions, summarized above, to
account for the presence of embedded halts. Their extended definitions
utilize an ICFG in which halt nodes are connected to a unique ICFG exit
node, and (we believe) correctly identify the effects of halts on control
dependences (at least in cases where that effect does not interact with the
multiple-context effect). However, this extended definition does not circum-
vent the difficulty described above; thus, the extended definition does not
support the syntactic-semantic relationship.

Loyall and Mathisen do not provide an algorithm for calculating interpro-
cedural control dependences between nodes or statements; their goal is to
define and calculate control dependence between procedures, and they use
their definitions of interprocedural control dependence between nodes to
define control dependence between procedures. By their definition, a proce-
dure Pi is control dependent on procedure Pj if and only if there exists some
node ni in the portion of the ICFG associated with Pi, and some node nj in the
portion of the ICFG associated with Pj, such that ni is control dependent

12An ICFG of Loyall and Mathisen’s form also merges call and return nodes; however, this
does not affect our argument.

Interprocedural Control Dependence • 243

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

on nj. Loyall and Mathisen provide an algorithm for calculating procedure-
level control dependences without first calculating node-level dependences.
Although procedure-level dependence is not our focus in this work, we
observe that this algorithm has two drawbacks. First, the procedure-level
control dependences calculated by Loyall and Mathisen’s algorithm conflict
with those identified by their definition. For example, applied to the
version of Sum that does not contain the embedded halt, Loyall and
Mathisen’s definitions imply that no nodes in B are control dependent on
the predicate in M, because they all postdominate the successors of that
predicate through the second, unconditional call to B in node 6a. However,
Loyall and Mathisen’s algorithm does identify procedure B as control
dependent on procedure M, on the basis of the existence of the conditional
call to B in M. In this case then, and, we believe, in general, their algorithm
for calculating procedure-level control dependences does accommodate the
multiple-context effect—at least for programs that do not contain embed-
ded halts.

The second drawback of Loyall and Mathisen’s algorithm is that it does
not accommodate the embedded-halt effect. Thus, the algorithm can incor-
rectly identify control dependences between procedures for programs that
contain halts. For example, in Sum, the second call to B (from node 6a) is
control dependent on predicate node 17 due to the embedded halt at node
18; thus, node 10a in B is control dependent on that predicate node.
According to Loyall and Mathisen’s definition of procedure-level control
dependence, B is control dependent on C; similar reasoning also shows, that
by their definition, C is control dependent on C. Loyall and Mathisen’s
algorithm identifies neither of these procedure-level control dependences.

7. CONCLUSIONS AND FUTURE WORK

There are three primary contributions of this article. First, the article
identifies and discusses several ways in which control dependences calcu-
lated intraprocedurally do not correctly represent control dependences that
exist in programs. Second, the article presents a precise definition of
interprocedural control dependence that supports the syntactic-semantic
relationship. Third, the article presents two approaches for computing
interprocedural control dependences: one approach computes precise inter-
procedural control dependences but may be inordinately expensive; the
other approach efficiently obtains a conservative estimate of those depen-
dences.

Interprocedural control dependences are useful for applications in soft-
ware testing and maintenance. For example, the partial control depen-
dences computed in the first phase of our algorithm can be used by an
interprocedural slicing algorithm to account correctly for interprocedural
control dependences in programs that contain embedded halts [Harrold and
Ci 1998]. For further example, statement-based interprocedural control
dependences computed by our algorithm can be used to calculate procedure-
level dependences [Loyall and Mathisen 1993], which provide a higher-level

244 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

view of dependences than statement dependences for use in program
comprehension, debugging, and impact analysis.

Our first approach to computing interprocedural control dependences
distinguishes each calling context in which a procedure can be invoked, and
computes distinct control dependences for each calling context. To compute
such control dependences, the approach inlines the called procedure at each
call site, and constructs a representation that can be exponential in the size
of the program. Our study on the effects of such inlining (see Figure 3)
shows, that for some programs, the resulting representation can be exces-
sively large, which can cause our first approach to be impractical. However,
for other programs, the representation grows by only a few factors over the
program size; for such programs, our first approach may be applicable.
Future experiments that study not only the effects of procedure inlining
but also evaluate the performance of the traditional control-dependence
algorithms [Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al.
1987; Pingali and Bilardi 1997] on the inlined representations would help
establish the parameters that determine the feasibility and applicability of
our first approach.

Our second approach to computing interprocedural control dependences
does not distinguish the calling contexts in which a procedure can be
invoked to compute control dependences efficiently. For applications such
as computation of procedure-level control dependence, this loss of context-
specific information causes no imprecision in analysis results. In future
work, we intend to investigate the precision that is lost in going from the
context-based approach to the statement-based approach, and the effects of
the loss of this precision on other analysis techniques.

Embedded halts belong more generally to a class of constructs that cause
arbitrary interprocedural transfer of control, which, in practical programs,
includes constructs such as exception handling and interprocedural jumps.
Our definition of interprocedural control dependence applies to programs
that contain such constructs. Our current work includes an investigation of
the effects of such constructs on interprocedural control dependence compu-
tation and on other analysis techniques [Sinha and Harrold 2000; Sinha et
al. 1999], with the aim of of generalizing the results presented in this
article to constructs that cause arbitrary interprocedural transfer of con-
trol.

We believe that our definitions extend to weak control dependence
[Podgurski and Clarke 1990], and thus, can define interprocedural control
dependences that preserve the relationship between weak syntactic depen-
dence and (possibly nonfinitely demonstrated) semantic dependence dem-
onstrated by Podgurski and Clarke. Future work could investigate this
extension, and the relationship of these results to generalized control
dependence [Bilardi and Pingali 1996].

Interprocedural Control Dependence • 245

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

APPENDIX

A. FLOW GRAPHS, INTERPROCEDURAL CONTROL DEPENDENCE, AND
THE SYNTACTIC-SEMANTIC RELATIONSHIP

Podgurski and Clarke [1990] define control-flow graphs as follows. A
control-flow graph G is a directed graph that satisfies each of the following
conditions:

(1) The maximum out-degree of the nodes is at most two (this restriction is
made for simplicity only).

(2) G contains two distinguished nodes: the initial node ne, which has
in-degree zero, and the final node nx, which has out-degree zero.

(3) Every node of G occurs on some ne to nx walk.13

Podgurski and Clarke [1990] state that their definition of a control-flow
graph, though somewhat restricted to simplify presentation, “can be used to
represent any procedural program. . . by employing straightforward repre-
sentation conventions involving the use of dummy vertices and arcs.”
However, as stated, their definition of control-flow graph fails to exclude a
class of ICFGs for which, under the given definitions of postdominance and
control dependence, the syntactic-semantic relationship does not hold.
Specifically, consider the set of programs that contain no unreachable code,
and no procedures that are called more than twice. An ICFG for these
programs meets the three conditions for control-flow graphs stated above.
However, when Podgurski and Clarke’s definitions of postdominance and
control dependence are applied to the ICFG for our example program, the
effect described in Section 3.1 as the multiple-context effect results: nodes
10, 11, 14, and 17, although semantically dependent on node 4, are not
control dependent on node 4, because they do not postdominate either
successor of node 4.

On closer examination of Podgurski and Clarke [1990], focusing particu-
larly on the proof of the syntactic-semantic relationship, it is clear that
Podgurski and Clarke require additional properties of control-flow graphs
that are not stated in the definition cited above. The authors define the
context14 CON~v, Wv! of a node v with respect to an initial walk Wv in a
def/use graph Gdu to be a directed tree that represents the cumulative flow
of data to v along W. We refer the reader to Podgurski and Clarke [1990, p.
975] for details; however, the idea is that the context of node v on walk Wv

13The discussion in this section is drawn directly from Podgurski and Clarke [1990]. For
simplicity of reproducing that discussion, we retain the use of the term “walk” in that
discussion to refer to a path.
14Podgurski and Clarke use the term “context” in a different sense than we do. Our usage
pertains to the sequence of procedure calls that lead up to a particular procedure call.
However, to avoid unnecessary complications in presenting their discussion, we retain their
usage of the term.

246 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

is similar to the set of symbolic values held by variables in the use set U of
the node along walk Wv. Next, the authors define a hyperwalk to be either
an ordinary walk on graph G, or an infinite walk. A hyperwalk is consistent
“if there are no two occurrences of a decision node d in W that have the
same context but are followed by different successors of d.” Because the
context of a node determines the values of the variables in the use set of
that node when a walk to that node is executed, that context determines
the branch taken at that node; thus, an executable hyperwalk must be
consistent. Finally, the authors define a pair of hyperwalks as reciprocally
v-consistent if (informally), the fact that the hyperwalks diverge at a pair of
nodes implies that either their contexts differ at those nodes, or the node v
whose interpretation has changed causes the difference.

The notions of consistency and reciprocal v-consistency are central to
Podgurski and Clarke’s proof of the syntactic-semantic relationship. How-
ever, ICFGs do not properly support these notions. In ICFGs, exit nodes,
like predicate nodes, may have multiple successors. The direction of control
flow from such nodes is not, however, determined solely by the context of
those nodes; instead, it is determined by the identity of the call node from
which the exiting procedure was invoked. An exit node in an ICFG may
occur twice in a hyperwalk, both times with the same context, but in each
case followed by a different successor. Thus, an executable hyperwalk on an
ICFG need not be consistent; and thus, Podgurski and Clarke’s proof does
not apply to ICFGs. In contrast, the IIFG, in which procedures are inlined,
does support the notions of consistency and reciprocal v-consistency, be-
cause it explicitly depicts control flow from exit nodes to their successors,
and is otherwise identical to the flow graphs defined by Podgurski and
Clarke. The fact that IIFGs possess the properties of graphs that allow
Podgurski and Clarke to prove Theorem 2 implies that those proofs apply
also to IIFGs.

To state that our definition of the IIFG and of interprocedural control
dependence corrects deficiencies in Podgurski and Clarke’s is unduly
strong; their definition must be intended to exclude ICFGs, and the natural
extension of their graphs to the interprocedural context is to the IIFG.
Thus, it is more appropriate to say that our definitions clarify, rather than
correct, Podgurski and Clarke’s definitions of control dependence, and the
application of those definitions to interprocedural control dependence.

B. PROOF OF CORRECTNESS OF OUR ALGORITHM FOR COMPUTING
STATEMENT-BASED INTERPROCEDURAL CONTROL DEPENDENCES

Our algorithm computes statement-based interprocedural control depen-
dences by summarizing, for each statement, the control dependences that
exist in different contexts for that statement in the IIFG. To demonstrate
the correctness of our algorithm, we show that our algorithm computes the
same statement-based control dependences as are computed by an alterna-
tive approach that constructs an IIFG, applies a traditional algorithm for

Interprocedural Control Dependence • 247

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

control-dependence computation to the IIFG, and summarizes the control
dependences for each statement using the NodeSet relations. We present
here only an outline of the proof; further details of the proof can be found in
Sinha et al. [2000].

The overall structure of the proof is as follows. First, we classify paths in
the IIFG. Next, we characterize paths in the ICDG that are traversed by
the algorithm. Finally, we show by cases that (1) if a control-dependence
relation occurs along a certain type of path in the IIFG, then there exists a
corresponding path in the ICDG that is traversed by the algorithm, and (2)
if the algorithm traverses a certain type of path in the ICDG, then there
exists a control-dependence relation along a corresponding type of path in
the IIFG.

We classify IIFG paths based on sequences of call and return edges that
appear in the paths; previous work [Melski and Reps 1998] defined such
paths in the ICFG. A path in the IIFG is a same-level path if each call edge
in the path is matched with a return edge. A same-level path represents an
execution sequence that begins and ends in the same CFG; the depth of the
call stack is the same at the beginning and the end of such a path. A path is
an unbalanced-left path if it contains at least one call edge that is not
matched by a return edge. An unbalanced-left path represents an execution
sequence in which some procedure calls have not completed; the call stack
is deeper at the end of such a path than at the beginning. A path is an
unbalanced-right path if it contains at least one return edge that is not
preceded by a matching call edge. An unbalanced-right path represents an
execution sequence in which some procedure calls complete such that the
sequence that led to the invocations of those procedures is not part of the
path; the call stack is thus shallower at the end of an unbalanced-right
path than at the beginning. Finally, a path is an unbalanced-right-left path
if it contains an unbalanced-right subpath followed by an unbalanced-left
subpath.

It follows from the definition of an IIFG that each path in an IIFG is a
same-level path, an unbalanced-left path, an unbalanced-right path, or an
unbalanced-right-left path. Moreover, as the following lemma shows, each
path between two nodes in an IIFG is of the same type.

LEMMA 1. Let GI be an IIFG, and let u and v be nodes in GI. Let cu
1
3v be

the set of paths from u to v. Then, each c [cu
1
3v is of the same type.

PROOF. The proof considers each of the four types of paths that any c

[cu
1
3v can be, and shows that all other paths in cu

1
3v must also be of that

type. The proof uses the properties of the IIFG that (1) in an IIFG, a
different copy of the CFG is inlined at each call site, and (2) an IIFG
contains no interprocedural cycles that are caused by recursion [Sinha et
al. 2000]. e

Next, we characterize paths in the ICDG that are traversed by Compute-

InterCD . A placeholder segment in an ICDG is a path ~ X, P, N!, where

248 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

edge ~ X, P! is a call or a return edge, and edge ~P, N ! is a placeholder
control-dependence edge. An entry placeholder segment is a placeholder
segment in which ~ X, P! is a call edge and in which P is an entry
placeholder. A return placeholder segment is a placeholder segment in
which ~ X, P! is a return edge and in which P is a return placeholder. A
control-dependence path in an ICDG is a path C 5 ~P, X1! z PS1 z PS2 z

. . . z PSm,15 m $ 1, where PSi 5 ~ Xi, Pi, Ni!, 1 # i # m, is a place-
holder segment, and edge ~P, X1! is a predicate control-dependence edge.

A control-dependence path is composed of a control-dependence edge
followed by one or more placeholder segments. Figure 17 illustrates a
control-dependence path in the ICDG for Sum; the path consists of two
return placeholder segments: (19, 10b, 15) and (15, 6b, 8). As for paths in
the IIFG, we classify control-dependence paths according to calls and
returns that appear along the paths. An unbalanced-left control-dependence
path contains one or more unmatched call edges; each placeholder segment
in such a path is an entry placeholder segment. An unbalanced-right
control-dependence path contains one or more unmatched return edges;
each placeholder segment in such a path is a return placeholder segment.
An unbalanced-right-left control-dependence path is an unbalanced-right
control-dependence path followed by one or more entry placeholder seg-
ments. For example, the path shown in Figure 17 is an unbalanced-right
control-dependence path.

The following lemma shows that ComputeInterCD traverses all and only
control-dependence paths in the ICDG.

15The notation c1 z c2 represents a concatenation of paths c1 and c2, where the last node in
path c1 is the same as the first node in path c2.

3. sum = 0

1. enter M

4. while i < 10 do

5a. call B

7. print sum

6a. call B

control dependence on predicate

control dependence on placeholder

interprocedural control flow
18. halt

2. read i,j

12. sum = sum + j

5b. return B

T
T

T

T

T T

T F

9. enter B

T

11. if j >= 0 then

13. read j

TT

10b. return C

15. exit B

14. i = i + 1

T

T
T

10a. call C

16. enter C

17. if sum > 100 then

T

T F

6b. return B

8. exit M

19. exit C

Fig. 17. An unbalanced-right control-dependence path in the ICDG for Sum. The path
consists of two return placeholder segments: (19, 10b, 15) and (15, 6b, 8).

Interprocedural Control Dependence • 249

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

LEMMA 2. Let GD be an ICDG. There exists a control-dependence path C

in GD if and only if ComputeInterCD traverses C.

PROOF. ~f! First, the proof states that (1) each control-dependence path
is incident only on a node that is control dependent on a placeholder, and
(2) ComputeInterCD processes each node that is control dependent on a
placeholder. Next, the proof shows, that while processing a node that is
control dependent on a placeholder, ComputeInterCD traverses each con-
trol-dependence path incident on that node.

~d! Each path traversed by ComputeInterCD starts at a node that is
control dependent on a placeholder. Depending on whether the node is
control dependent of an entry or a return placeholder, the proof shows—
using the properties of a control-dependence path—that the path traversed
by ComputeInterCD must be an unbalanced-left, an unbalanced-right, or
an unbalanced-right-left path [Sinha et al. 2000]. e

The next lemma shows that a postdominance relation between two nodes
that belong to the same CFG in an IIFG is preserved in the corresponding
ACFG.

LEMMA 3. Let GI be an IIFG, and let u and v be nodes in CFG Gi in GI.
Let GA be the ACFG that corresponds to Gi, and let U and V be the nodes in
GA that correspond to u and v, respectively. U postdominates V if and only
if u postdominates v.

PROOF. ~d! Suppose that u postdominates v. Show that U postdomi-
nates V. The proof uses contraposition: it assumes that U does not
postdominate V, and shows that this causes u to not postdominate v. If U
does not postdominate V, there exists a V – Nsx path C 5 ~V, N1, N2,
. . . , Nj, Nsx! in GA such that U does not appear in the path. The proof
considers two cases for C—whether C contains a node that represents a
call site—and shows, that in each case, there exists a path in GI from v to
the exit node of GI that does not contain u [Sinha et al. 2000].

~f! The proof again shows that the contrapositive of the implication is
true: it assumes that u does not postdominate v, and shows that this
causes U to not postdominate V. Because u does not postdominate v, there
exists a path c from v to the exit node of GI that does not contain u. The
proof considers three cases for c—(1) c contains no call site, (2) c contains
a definitely returning call site, or (3) c contains a PNRC—and shows, that
in each case, there exists a V – Nsx path C in GA that does not contain U
[Sinha et al. 2000]. e

LEMMA 4. Let GI be the IIFG for program P. Let u and v be nodes in GI.
Let cv

1
3u be the set of paths from v to u such that each path c [cv

1
3u is a

same-level path. Let GD be the ICDG for P. Let U and V be the nodes in GD

250 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

that correspond to u and v, respectively. Then, u is control dependent on v if
and only if there exists an edge from V to U in GD.

PROOF. Because each c is a same-level path, u and v belong in the same
CFG Gi in GI. Let GA be the ACFG for Gi. Then, according to Lemma 2, the
postdominance relation between any two nodes in Gi is equivalent to a
postdominance relation between the corresponding nodes in GA. Moreover,
as a consequence of Lemma 2, a node belonging to Gi does not postdominate
another node belonging to Gi if and only if the corresponding nodes in GA

have the same relation. Then, it is easy to show that u is control dependent
on v if and only if U is control dependent on V (or equivalently, there exists
an edge from V to U in GD) [Sinha et al. 2000]. e

LEMMA 5. Let GI be the IIFG for program P. Let u and v be nodes in GI.
Let cv

1
3u be the set of paths from v to u. Let GD be the ICDG for P. Let U and

V be the nodes in GD that correspond to u and v, respectively.

(1) Let each path c [cv
1
3u be an unbalanced-right path. Then, u is control

dependent on v if and only if there exists an unbalanced-right control-
dependence path C in GD from V to U.

(2) Let each path c [cv
1
3u be an unbalanced-left path. Then, u is control

dependent on v if and only if there exists an unbalanced-left control-
dependence path C in GD from V to U.

(3) Let each path c [cv
1
3u be an unbalanced-right-left path. Then, u is

control dependent on v if and only if there exists an unbalanced-right-
left control-dependence path C in GD from V to U.

PROOF. (1) ~f! Suppose that u is control dependent on v. Show that
there exists path C in GD. The proof shows, by induction on the number of
unmatched returns in c, that there exists a corresponding path C in GD.

For brevity, we outline only the basis step of the proof.

Basis Step. Each c [cv
1
3u contains a single unmatched return. Let x

and r be the exit node and the return node, in Gv and Gu respectively, that
are the source and the target of the unmatched return edge. Let X and R be
the corresponding ICDG nodes.

The proof for the basis step proceeds as follows. (1) First, the proof shows
that x is control dependent on v. Then, because X and V belong in the same
ACFG, according to Lemma 2, X is control dependent on V. Thus, GD

contains an edge ~V, X!. (2) Next, the proof shows that there exists an edge
~R, U ! in GD; this follows from Lemma 2 and the construction of the ACFG.
(3) Finally, the proof shows that there exists a return edge ~ X, R! in GD.
Then, concatenating edges ~V, X!, ~ X, R!, and ~R, U ! yields the unbal-
anced-right control-dependence path C. In the inductive hypothesis, the

Interprocedural Control Dependence • 251

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

proof assumes that if c contains k unmatched returns, there exists a
corresponding unbalanced-right control-dependence path in GD from V to
U. Finally, in the inductive step, the proof shows, that if the number of
unmatched returns increases by one, then there still exists a corresponding
unbalanced-right control-dependence path in GD [Sinha et al. 2000].

(1) ~d! Suppose that there exists an unbalanced-right control-depen-
dence path C from node V to node U in GD. Show that u is control
dependent on v in GI.

In this case, the proof uses induction on the number of return placeholder
segments in C [Sinha et al. 2000].

(2), (3) The proof proceeds in a similar manner; see Sinha et al. [2000] for
details. e

The proof of Theorem 4 follows directly from the preceding lemmas. For a
given control-dependence relation, u control dependent on v, in the IIFG,
Lemma 1 establishes the types that the paths from v to u can be. The proof
considers each of these types, and shows, that in each case, there exists
either a corresponding control-dependence edge (Lemma 4) or a correspond-
ing control-dependence path (Lemma 5) in the ICDG, and that the algo-
rithm traverses this edge or path [Sinha et al. 2000].

For a given control-dependence relation, U control dependent on V,
computed by the algorithm, either the relation is computed by Compute-
PartialCD (and ComputeInterCD receives that relation as an input) or by
ComputeInterCD along a control-dependence path (Lemma 2). Then, using
the results of Lemmas 4 and 5, the proof shows that there must exist a
corresponding control-dependence relation in the IIFG [Sinha et al. 2000].

ACKNOWLEDGMENTS

We thank Sujatha Sathi and Jim Jones for help with the development and
implementation of ComputePartialCD and ComputeInterCD . Also, the
anonymous reviewers provided useful feedback that improved the article.

REFERENCES

ATKINSON, D. C. AND GRISWOLD, W. G. 1996. The design of whole-program analysis tools. In
Proceedings of the 18th International Conference on Software Engineering (ICSE ’96, Berlin,
Germany, Mar. 25–29), H. D. Rombach, Chair. IEEE Computer Society Press, Los Alamitos,
CA, 16–27.

BALLANCE, R. AND MACCABE, B. 1992. Program dependence graphs for the rest of us. Tech.
Rep. 92-10 Nov. University of New Mexico, Albuquerque, NM.

BILARDI, G. AND PINGALI, K. 1996. A framework for generalized control dependence. In
Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design and
Implementation (PLDI ’96, Philadelphia, PA, May 21–24), C. N. Fischer, Chair. ACM Press,
New York, NY, 291–300.

BINKLEY, D. 1992. Using semantic differencing to reduce the cost of regression testing. In
Proceedings of the 1992 Conference on Software Maintenance (Nov.). 41–50.

COOPER, K. D. AND KENNEDY, K. 1988. Interprocedural side-effect analysis in linear time. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

252 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

Implementation (PLDI ’88, Atlanta, GA, June 22–24), R. L. Wexelblat, Ed. ACM Press, New
York, NY, 57–66.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13, 4 (Oct.), 451–490.

EMAMI, M., GHIYA, R., AND HENDREN, L. J. 1994. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN ’94
Conference on Programming Language, Design and Implementation (PLDI ’94, Orlando, FL,
June 20–24), V. Sarkar, B. Ryder, and M. L. Soffa, Chairs. ACM Press, New York, NY,
242–256.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987. The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July), 319–349.

HARROLD, M. J. AND CI, N. 1998. Reuse-driven interprocedural slicing. In Proceedings of the
20th International Conference on Software Engineering (ICSE ’98, Kyoto, Japan,
Apr.). IEEE Press, Piscataway, NJ, 74–83.

HARROLD, M. J. AND ROTHERMEL, G. 1996. Syntax-directed construction of program depen-
dence graphs. OSU-CISRC-5/96-TR32. Ohio State University, Columbus, OH.

HARROLD, M. J. AND ROTHERMEL, G. 1997. Aristotle: A system for research on and
development of program-analysis-based tools. OSU-CISRC-3/97-TR17. Ohio State Univer-
sity, Columbus, OH.

HARROLD, M. J. AND SOFFA, M. L. 1994. Efficient computation of interprocedural definition-
use chains. ACM Trans. Program. Lang. Syst. 16, 2 (Mar.), 175–204.

HARROLD, M. J., ROTHERMEL, G., AND SINHA, S. 1998. Computation of interprocedural control
dependence. In Proceedings of ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’98, Clearwater Beach, FL, Mar. 2–5), W. Tracz, Ed. ACM
Press, New York, NY, 11–20.

HORWITZ, S., PRINS, J., AND REPS, T. 1989. Integrating noninterfering versions of programs.
ACM Trans. Program. Lang. Syst. 11, 3 (July), 345–387.

HUTCHINS, M., FOSTER, H., GORADIA, T., AND OSTRAND, T. 1994. Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of the
16th International Conference on Software Engineering (ICSE ’94, Sorrento, Italy, May
16–21), B. Fadini, L. Osterweil, and A. van Lamsweerde, Chairs. IEEE Computer Society
Press, Los Alamitos, CA, 191–200.

LANDI, W. AND RYDER, B. 1992. A safe approximate algorithm for interprocedural pointer
aliasing. In Proceedings of the 5th ACM SIGPLAN Conference on Programming Language
Design and Implementation (SIGPLAN ’92, San Francisco, CA, June 17–19), R. L. Wexelb-
lat, Ed. ACM Press, New York, NY, 235–248.

LOYALL, J. P. AND MATHISEN, S. A. 1993. Using dependence analysis to support the software
maintenance process. In Proceedings of the Conference on Software Maintenance
(Sept.). 282–291.

MELSKI, D. AND REPS, T. 1998. Interprocedural path profiling. TR-1382 (Sept.). Computer
Science Department, Univ. of Wisconsin at Madison, Madison, WI.

MURPHY, G. C. AND NOTKIN, D. 1996. Lightweight lexical source model extraction. ACM
Trans. Softw. Eng. Methodol. 5, 3, 262–292.

PANDE, H., LANDI, W., AND RYDER, B. G. 1994. Interprocedural def-use associations in C
programs. IEEE Trans. Softw. Eng. 20, 5 (May), 385–403.

PINGALI, K. AND BILARDI, G. 1997. Optimal control dependence computation and the Roman
chariots problem. ACM Trans. Program. Lang. Syst. 19, 3, 462–491.

PODGURSKI, A. 1989. The significance of program dependences for software testing, debugging,
and maintenance. Ph.D. Dissertation. University of Massachusetts Press, Amherst, MA.

PODGURSKI, A. AND CLARKE, L. A. 1990. A formal model of program dependences and its
implications for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.
16, 9 (Sep.), 965–979.

POLLOCK, L. L. AND SOFFA, M. L. 1989. An incremental version of iteractive data flow
analysis. IEEE Trans. Softw. Eng. 15, 12 (Dec.), 1537–1549.

Interprocedural Control Dependence • 253

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

REPS, T., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via
graph reachability. In Papers of the 22nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’95, San Francisco, CA, Jan. 22–25), R. K. Cytron
and P. Lee, Chairs. ACM Press, New York, NY, 49–61.

ROTHERMEL, G. AND HARROLD, M. J. 1997. A safe, efficient regression test selection
technique. ACM Trans. Softw. Eng. Methodol. 6, 2, 173–210.

RYDER, B. G. AND PAULL, M. C. 1988. Incremental data-flow analysis algorithms. ACM Trans.
Program. Lang. Syst. 10, 1 (Jan.), 1–50.

SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications, S. S. Muchnick and N. D. Jones, Eds.
Prentice-Hall, Englewood Cliffs, NJ, 189–233.

SINHA, S. AND HARROLD, M. J. 2000. Analysis and testing of programs with exception-handling
constructs. IEEE Trans. Softw. Eng. 26, 9 (Sept.), 849–871.

SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. 1999. System-dependence-graph-based slicing
of programs with arbitrary interprocedural control flow. In Proceedings of the 21st
International Conference on Software Engineering (ICSE ’99, May). IEEE Press, Piscat-
away, NJ, 432–441.

SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. 2000. Interprocedural control dependence.
GIT-CC-00-17 (June). College of Computing, Georgia Institute of Technology, Atlanta, GA.

Received: January 1999; revised: September 1999; accepted: September 2000

254 • S. Sinha et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, April 2001.

