Check for
Updates

puter to an instruction not in that sequence. Safeguards
can be provided to guarantec the return of control to the
original sequence; and, on balance, these safeguards make
the operations more powerful. The Execute mode of
instruction sequencing has many uses in subroutine
linkages, in special programming devices, and in monitor-
ing routines.

REFERENCES

1. Jures Mersas, “Program Interruption on the Univac Scientific
Computer,”’ Proceedings of the WJCC, p. 52 (1956).

2. F. P. Brooxks, “A Program-Controlled Program Interruption
System,”” Proceedings of the EJCC, p. 128 (1957).

3. Reference Manual, IBM 709 Data Processing System, p. 37
(1958).

4. Yu. A. Maxumupov, Radioteknika 3 (Mar., 1959) 44-57. In
English: Comm. ACM 2, No. 10 (Oct. 1959), 3.

An Algorithm Defining ArcorL Assignment Statements

Roeerr W. Frovp, Armour Research Foundation, Illinois Institute of Technology, Chicago, Ill.

It is not possible, by testing symbol pairs only [2],
to determine whether a given symbol string is consistent
with the formation rules of Argown [1]. For example, the
formula

I: 12: x[i:= 5j -+ 3.14.159;

violates four distinet formation rules of AucoL, yet each
pair of adjacent characters may appear in permissible
formulae. The algorithm deseribed here will determine,
with minor restrictions, whether a particular symbol
string is a permissible Arcorn assignment statement. I
believe that the same technique may be extended to deter-
mine whether a given symbol string is 8 permissible ALcoL
program or not, where a program is defined as a sequence
of permissible statements separated by semicolons. The
algorithm scans the formula from left to right, replacing
certain character pairs by single characters. If under the
allowable transformations the symbol string may be re-
duced to the single character Z, it is a well-formed formula
in ALcor; otherwise it violates the formation rules.
The algorithm represented by figure 1 assumes that the
formula is stored character by character in an array S,
beginning with S;. A second array R; is used for temporary
storage. The generalization function G(S;) is used to
replace all letters by I and all digits by G. Unambiguous
binary operators such as X, /, and T [3] are replaced by

170 Communications of the ACM

On. + and —, which are ambiguous in that they may
serve either as unary or as binary operators, are replaced
by ©.. For other characters S;, G(Si) = 8.

Table 1 describes the tabular function M, mapping
each character pair into either zero or some single char-
acter. Where no entry is made in table 1, the value of M
is taken to be zero. It is assumed that each character has
4 nonzero machine representation.

(START)— i%0 iei+ ]
jao0 i+l
- -—
R0 RG(S))
X (s, = " e
1
Y Ry = "' 2 N
¥

WELL FORMED
FORMULA

VIOLATION OF
FORMATION RULES

F1c. 1


http://crossmark.crossref.org/dialog/?doi=10.1145%2F367149.367170&domain=pdf&date_stamp=1960-03-01

TABLE

R
T N* N
, NE N
o, N
CoON N U G Ou Bey o Lo 12
N NN Sy Gw By B BTG
e N @ ©n B B Eo L
1 I IV FO.E. by L By Ty b
¥ e Oy Fop B Fe 1 b
B o G By Loy B Ty
o Ly Torn T
By B 1
B
o Fop Bt
= e

The charncters introduced by the substitution process
have the {ollowing meanings:

G an integer

N a number containing o decimal point

N, anincomplele number, ending in

Ny an ncomplete namber, ending in 3=

N a number ending with an exponent of 10

1 an identifier; a letter followed by letters or digits
vV & subscripted variable

E a parenthesized expression

8 a bracketed subscript

®, a unary arithmetic operator

&y a binary operatoer

®. an ambiguous operator {4+ or —), unary or

binary according to context

E. an expression followed by a comma

E, an cxpression followed by a righl parenthesis

T an expression (or lst of expressions separated
by commas) followed by a right bracket

I, an expression followed by a semicolon

RH  the replacement operator := followed by T

z an identifier or subscripled variable followed by
RH; a well-formed formula
F a function

REFERENCES

{. Preliminary Report—International Algebraic Language, Com-
warnications of the ACM 1 (Dee. 1058), 8-22.

2. Communicalions of the ACM 2 {April 1859), 10-i1.

3. Recommendations of the Suare Awncot. Committee, Com-
mungeations of the ACM 2 (Qetober 1959}, 25-26.

Numerical Inversion of Laplace Transforms’

Lotis A, Scevrrrioru, Phillips Petroleum Co.,, Idahe Falls, Idaho

L. Introduction

This vote deseribes a method for computing the inverse
xag' o Laplace transform F(s), when it is known that all
iw_tugijit\t‘iti% of 77(2) lie in the left half-plane, Im(s) < Q.
Fhle method has been programmed for the IBM 650 and
satistactory results obtained, Some limitations and pos-
sihle extensions will be indicated below.

,/ The impetus for the development of the program cane
%rl‘nm i problemn in the design of a reactor control system.
Fhe control system under consideration uses two control
wps, ane of which hag two time delays, so that the result-
iy tl'illlﬁ‘_fcl' funetion is of a complicated type involving
- ENpotentials in a nontrivial manner. 1t seemed computa-
tenally prohibitive {o try the traditional approach of

potes and residues o .

- boles and residues, so {he present direct method was de-
; veloped.

Wk

Do Work done under contract to the U, §. Atomie Energy Com-
i Hssion, "

2. The Complex Inversion Integral

If a given function #(s) fails to fall into a table of La-
place transforms, the usual procedure is to try to invert
it by use of the complex inversion integral:

. ] et iy
= . o o : 1
() 2m,j[ Fis)e” ds {1

)

Here ¢ is any real constant such that all singularities of
F(&) are in Im(s) < ¢

Tt is assumed that F(s) has an inverse f({) (continuous
and of exponential order) and that the inversion infegral
represents f({) in the sense that (see Churchill [t], Ch. 6):

| petie 0, t <0,
5‘“"[ L F(9)et ds = (3(04), 8 =0,  (2)
AW doim b"([)) > 0.

Communications of the ACM 171



