
that can be written linearly. The disadvantage of linearLisp is that the extraction of subexpressions is a fairlyinvolved, rather than an elementary, operation. It is not!lard to write, in linear LrsP, functions that correspond to.he basic functions of LISP, so that, mathematically,inear Lisp includes LISP. This turns out to be the most:onvenient way of programming, in linear Lrsp, the moreomplicated manipulations. However, if the functionsre to be represented by computer routines, Lisp is essen­:ally faster.
. Flowcharts and Recursion Since both the usual form of computer program and re.1rsive function definitions are universal computationally,is interesting to display the relation between them. The!l.nslation of recursive symbolic functions into computerograms was the subject of the rest of this report. In this:!tion we show how to go the other way, at least ininciple. The state of the machine at any time during a computa.n is given by the values of a number of variables. Let•se variables be combined into a vector t, Consider a,gram block with one entrance and one exit. It defines:I is e�ntially defined by a cert-a.in function f that:es one machine configuration into another, that is, f hasform t = raJ. Let us call f the associated function ofprogram block. Xow let a number of such blocks be1bined into a program by decision elements 1r that de-• after each block is completed which block will be !•red next. X evertheless, let the whole program still e one entrance and one exit.

FJG. 5

give as an example the flowchart of figure 5. Let us>e the function r[tl that gives the transformation of'tor t between entrance and exit of the whole block.

\Ve shall define it in conjunction with the functions
sf�] and t[!], which give the transformations that � under­
goes between the points S and T, respectively, and the exit.We have

r[�] = [7n[t) - s(f1[!ll; T - s[f2[EJll
s[�I = [721[El - r[�l; T - t[fa[Elll
t[tl = [1ruUl - f.[!l; -ira2Ul - r[!J; T t!f:[!lll

Given a flowchart with a single entrance and a single
exit, it is easy to write down the recursive function that
gives the transformation of the state vector from entrance
to exit in terms of the corresponding functions for the
computation blocks and the predicates of the branch
points. In general, we proceed as follows.

In figure 6, let fJ be an n-way branch point, and let
f1 , • · , , fn be the computations leading to branch points
P1 , f3t , · · • , f1n . Let q, be the function that transforms �hetween fJ and the exit of the chart, and let 'Pi , · · · , 4'n be
the corresponding functions for f31 , • • • , {3 •• We then
write

q,{fl = lP1IEl - c/>1(f1Wl; ...
j Pn[!] - 4'n[fn[tlll

Acknowledgments

The inadequacy of the >.-notation for naming recursive
functions was noticed by N. Rochester, and he discovered
an alternative to the solution involving label which has
been used here. The form of subroutine for cons which
permits its composition with other functions was invented,
in connection with another programming system, by C.
Gerberick and H. L. Gelernter, of IBM Corporation. The
LISP programming system was developed by a group
including R. Brayton, D. Edwards, P. Fox, L. Hodes, D.
Luckham, K. Maling, J. McCarthy, D. Park, S. Russell.

The group was supported by the M.I.T. Computation
Center, and by the M.I.T. Research Laboratory of Elec­
tronics (which is supported in part by the r.s. Army

(Signal Corps), the C.S. Air Force (Office of Scientific
Research, Air Research and Development Command),
and the r.s. Navy (Office of �a val Research)). The author
also wishes to acknowledge the personal financial support
of the Alfred P. Sloan Foundation.

�

•••

/3, 13; 13n

FJG, 0

REFERENCE:-;

1. J. l\·lcCARTHY, Programs with commou 8elll!e, Paper pn,:si,ntcd
at the Symposium on the Mechanization of Thought Proc
esses, National Physical Laboratory, Teddiugton, England,
Nov. 24-27, 1958. (Published in Proceedings of the �ympo
sium by H. M. Stationery Office).

2. A. NEWELL AND J. C. SHAW, Programming the logic theory
ma.chine, Proc. Western Joint Computer Conference, Fch.
1957. 3. A. CHURCH, The Calculi of La111bda•Com•c1·sion (Princeton
University Press, Princeton, �- J., 1941).

4. FORTRAN Programmer's Reference Manual, IBM Corporu­
tion, New York, Oct. 15, 1956.

5. A. J. PERLI& ANO K. SAMELSON. International algebraic lu.n
gu11ge, Preliminary Report, Comm. A.ssoc. Comp. M_arh., Dec.
]!)58.

Symbol Manipulation by Threaded Lists* ,J .,., 3 :3
-1
r

:J

A. J. PERLIS .-\�I> CHARLES THOR:'l:TOK, CarMgie lnstitul.e of Technology, Pittsburgh, Pa.

Part I: The Threaded List Language

I. Introduction

In the field variously called artificial intelligence,
heuristic programming, automata theory, etc., many of

• The work was supported in part by the Office of Naval Re­
search under contract number Nonr-760 (18), Nr 049 141 and by
the U. S. Army Signal Corps under contract number Da 36-039
Sc 75081, File No. 0195-PH-58-91 (4461).

the most interesting problems do not lend themselves
readily to solutions formulated in the automatic program­
ming systems now in wide use. Several new approaches
to more adequate and natural programming systems have
been made in the past few years. Notable among these
are the list structure languages of the IPL family developed
by Newell.Simon-Shaw [I 1 and LISP by McCarthy [21.
They provide great flexibility for the construction of
highly composed programs, and are able to represent and
process systems of arbitrarily great complexity, subject

Communications or the ACM 195

,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367177.367202&domain=pdf&date_stamp=1960-04-01

to machine limitations. Specifically, they po&.c:ess the
properties;

(i) Arbitrary nesting of subroutines, thus permitting
definition of complex functions by programs composed
of more "simple" functions.

(ii) Functions may be defined recursively.
(iii) A memory structure permitting the use of data

whose space requirements may continuously vary <luring
the execution of a program.

In addition, the LISP language permits ils commands
to be represented in a statement form.

This paper presents an addition to the list structure
languages which is expected to add to the above advan­
tages while simplifying mu.chine processing of lists. This
is done by the use of threaded liats.

A threaded list is a list structure in which the last ele­
ment of each list specifies the location of the head of the
list of which it is the terminal member. A formal definition
is given in the following section. The advantage of this
structure is that it permits the definition of various modes
for sequencing through lists without requiring the use of
the usual push-down lists for retaining sequencing informa­
tion. This corresponds, in the representation of programs
by list structures, to the representation of all computable
functions iteratively, rather than recursively. That itera­
tion is in fact adequate hru, been shown by R. M. Robinson
[3] and Julia Robinson (4). Explicit program-controlled
sequencing permits- in many cases- simple coding and
processing.

It is interesting to note that the iterative definitions
can be made with little or no increase in complexity over
more customary recursive definitions; in many cases they
are actually simpler, as will be observed from the examples
of threaded list programs in this paper.

The examples given of manipulation of threaded lists
are from elementary algebra. The striking result is that
algebraic operations which are distant from machine
primitives can be built up quite easily using very few
primitives. Aside from the computing simplicity which
results from iterative operation, it is noted that the human
programming task is lightened, since the processes which
can be defined are similar to those often used by humans
in the manipulations of symbols.

2. Definition of a Threaded List
Let I denote the set of positive integers, and let

X denote the set of symbols which may occur as data.
~ threaded list is a set, S, of n quartets, t; = (A1,f;,Li,R;),
1 = I, 2, · · · , n, where the domains of A1 , f; , L; ,
and R ; are I, (0, I, 2) , I U X, and I, respectively;
and where the following algorithm est.ablishes a l -to-1
correspondence between the members of Sand the integers
1, 2, • • •, n.

1. Let S' be the subset of S whose members are defined
by:

t;ES' ~ 3tJES:, (R; = A;) /\ (f; = 2) /\ (f1 = 1)

If S' is empty, then S is not a threaded list.

196 Communications or the ACM

2. Let some t; ES', say t11, correspond to 1. The corre­
spondence of the remaining members of S is specified
inductively. Suppose t 1 corresponds to m, 1 ~ m ;;; u.
Then

fJ = 0 = h for which Ak = R; corresponds to m + l;
fi = 1 ~ L; U implies t.hat S is not a threaded list; else

t k for which Ak = Ri corresponds to m + I;
fJ = 2 = R i = An, algorit.hm terminates; else h for

which Ak = Ha1 corresponds to m + I.

:t If exactly one member of S', h, creates the 1-to-l
conespondence, then S is a threaded list and t• is called
the head of the list.

The four elements of each quadruplet of a threaded
list carry information about the structure and content of
the list. The quadruple (A. : f., L,, R.) is called a word,
and is denoted by z. A. is the address of z. f. is the
prefi.i: part of z. If f. = 0 or 2, then L, is an elementary
symbol, and z is called an element. If f, = I, there exists
a word y such that f>' = 2 and Ry = A,. In this case, z
is the first word of a threaded list, and this threaded list
is a sublist of the list of which z is a word. Ay is then called
the address of this sublist.

R . always contains the address of a word. If z is the
first word of a sublist y, then R. is the address of the next
element or sublist of y (this may be a null word, i.e., the
word of the form (w: 2, A, y), where A is the null symbol).
If f. = 2, then z is the terminal word of the list y of which
it is a member, and R, = Ay. Otherwise, R, gives the
address of another word in the list of which it is a member.
This word is the null word if A. is the last sublist of some
list, and is not followed by a non-null terminal word.

An example of a threaded list will clarify the nboYc
relationship;

1: 1, 2, 0
2 : 0, b , 3
3: 1, 6, 4
4 : 1, 9, 5
5 : 2, e, 1
6 : o, r, 1
7: 1, 11, 8
8: 2, A, 3
9 : 0, h, 10

10: 2, i, 4
11 : 2, j , 7

The sublists of 1 are 3 and 4; the sublist of 3 is 7. It is
to be stressed that the numerical sequence of addresses in
the above list is of no importance. Since R. ties each word
z to a successor, i.e., " threads" the list, the words are
ordered, and it mAkes no difference what addreEses the
words occupy in memory. This is, of course, true of list
structures in general. The essential innovation of threaded
lists is the addition of threads from the end of each sub­
list of a list, to the next word on the list. This allows a
simple, efficient method of sequencing to be carried out
on a list, which will arrive at each element of every sub­
list, without the use of the usual pushdown lists.

3. Program Format

We assume a basic set of primitive operations, from
which will be built definitions of all operations used to
manipulate threaded lists. These definitions are made in
the following format :

A definition is a string of primitive and/ or defined
operations, terminated on the left by the symbol (, and
on the right by the symbol), the interior of which is sub­
ject to the following st.ructure conditions: The symbol
occurs 4n times, for some n > 0. For each k :S n, the
symbols and operations occurring between the (4k)-th
and (4k + 4)-th , are termed jointly the kth line. Each
i;uch line is divided by the punctuation mark I into four
fields, some of which may be empty. The first field, called
the kth identifier field, contains an identifying integer
"•. The second field is the kth condition field. The remain­
ing two fields of the kth line are called the kth left and right
action fields, respectively. They are denoted by "nka"
and "nkb". Each field contains at least one symbol, with
the exception that the kth condition field is empty if the
kth right action field is empty. Each non-empty field con­
tains a string of operations, separated by commas, and
terminated by one of the four symbols " nk", "nka",
"nkb" or "exit", where 1111 , Ilka, or nkh respectively, are
non-empty.

A definition is a program if the following procedure
terminates.

I. The first listed line is examined first .
2. Examine the associated condition field . If its condition is

1atisfied , execute t he operations listed in the ll.!!Sociuted left action
field in order of occurrence. If not satisfied, execute the operations
listed in the Msociated right action field.

3. The laat symbol in an action field specifies the line or the field
11·hich is to be examined or executed next. Termination occurs
when "exit" is encountered as the last symbol of an action field .

4. Primitives

We assume the arithmetic operations and representation
of expressions as is customary in algebraic programming
languages. Thus, (a-(b/ c+ d)•f) has its usual meaning
if the variables have numerical values when they are
encountered in the program.

The expressions A(z), f(z), L(z), R(z) occur only as
arguments of operations or programs, or as the elements
of relations. They represent the four fields of the word z,
as defined above, and are defined if z is the name of a
word

The condition field of any line in a program contains a
Boolean expression in relations between quantities of the
program. The value of a relation is true or false according
as it is satisfied or not. The value of a Boolean expression
is true or false as determined by the given logical combina­
tion of its constituent relat ions. The empty expression is
defined to be true. If the value of an expression is true then
the associated left action field is executed next; otherwise
the associated right action field is next executed.

Two relations are given as "atomic", i.e., undefined in
terms of the language. They are = and <. = is defined
on an arbitrary set of symbols. Either or both of these
symbols may be indicated, that is, they may be the con­
tents of some part of a word in a list. Thus, the relations
A(z) - " +", f(z) = 1, R (w) = A(L(y)) are defined.
The relation < is defined only when the symbols it re­
lates are numbers. These numbers may also be indicated.

We agree to use a standard set of symbols of the sen­
tential calculus i.e., /\, V, ::>, , in the conditional
field, to form combinations of relations. This is simply a
shorthand method, for programs logically equivalent to
those with logical connectives in the condition field can
be written without connectives. For,

1 I -, R a, 2 b, 3 is equivalent to I R I b, 3 I a, 2 ;

and

I I R /\ S I a, 2 I b, 3 1 is equivalent to

I I R I 4 I b, 3 1 4 l S a, 2 lb J.

Since these two logical operations form a functionally
complete set, all logical operations of the sentential
calculus may be expressed in terms of them. We are
therefore justified in shortening programs by using any
sentential connective in the condition fields. We have not,
however, intl'oduced any new primitives.

Another shorthand notation used is Rn(z), which
indicates then-fold composition of R with itself. Ln(z) is
similarly defined.

The predicate qtiote(z), which occurs in a condition
field, transfers control to the corresponding left action
field if z/ contains the symbol" (and perhaps others) .

The primitive operation a - b is defined for a word, a,
orthef-, R- or L-field of a word, and b any symbol, writ ten
or indicated. This operation places b in the position a.
If a is the name of a word, then b is placed in a, right­
justified, where a is considered as a unit, and not field
delimited. The operation a +- b occurs only in the action
fields of a program.

There is assumed to exist a list- though not defined
in the language lied the free storage list. A word in
this list is said to be free.

The primitive operation list(y, c) forms a list of the
following form:

y : l, b, C

b : 2, A y

for b free. If c = R{y), the notation is abbreviated to list
(y). There are three operations for inserting free words
into lists. Although these operations can be described in
terms of the operations already defined, they are given
here as primitive operations, since their definition is
determined by the mechanics of list representation,
rather than the mathematical structure of threaded lists.
The first such is isrte(z) , where z is a word. The result

Communication& ot the ACM 197

of applying isrte to z is dependent on the form of z:

Form of z

z: 0, b, c

z: 1, b, c
where z i~ the name of a list :
otherwise

{
z:2, b,c
I' : I, a , e

where d was free.

isrte(z)

z: 0, b, d
d : 0, A., c
z : 1, d, c
d : 0, 11., b
alarm
c: 1, a, d
d : 0, 11. , e

The second such operation is isrtw(z), defined as follows:

Form of z

z: 0, b, c

z : 1, b, c

{
z: 2, b, c
c : l, a, e

where d wae free.

Finally, isrtl(z) is defined:

Form of z

z:O, b,c

z: I, b, C

{
z:2,b,c
c: 1, a, e

where d was free.

isrtw(z)

z : 0, h, d
d : 0, /\., c
z: 1, d, c
d : 0, 11., h
c: l , a , d
d : 0, 11. , e

isrtl (z)

z: 0, b, d
d : 0,11.,c
z : 1, b, d
d : 0, A., c
z:O, b,d
d : 2,11., c

The significance of these operations will become clearer
after the three sequencing operations have been intro­
duced.

5. List Representations

A list may be specified explicitly in programs. In so
representing a linear representation is de!'irable, which
does not explicitly indicate internal addres.ses. The sym­
bols ", ", " (", and ")" are reserved to denote list delimiters
in this representation. " (" and its matching ") " delimit

a compound list, while "," is used to separate the li~t
entries. Thus P = (x, (y, b, c,), d, e) is the list

P: I, 2, 0
2: 0, (, 3
3 : 0, x, 4
4 : 0 , (, 5
5:0,y, 6
6: 0, b, 7
7: 0, C , 8
8: 0,), 0
9 : 0, d 10

10: 0 , e, 11
11:2,), P.

Such a "string" list representation is essentially free of
internal addresses and so is useful for input/ output pur­
poses. Threaded lists are, however, simpler for processing.
Consequently, two programs are defined which transfonn
from one representation to the other. 'l'hread(X,y1

takes the ''string" list y and creates X as its threaded
counterpart. String(y,X) takes the threaded list X and
creates y as its "string" counterpart.

thread (X, y) •

(I II seql (y, exit), list (X) , seqe (X, exit), 2 1

2 I L(y•) = "(" I isrte (X¢), list (X•), 2 3
:J I L(y¢) = ")" 12 I isrtw tX¢), L(X•) +- L(y¢), 2
4 I quote (y¢) 2 I f(X¢) +- I, 2)

string (y, X) ;s

(1 II seq w (X, exit) , list (y) , seql (y, exit}, 2 I
21 f (X•) = 1 isrtl (y¢}, L(y•) "(", 2 i 3 j
3 I f (X¢) = 0 isrtl (y¢), L (y•) +- L(X¢), 2 I 41
41 L (X¢) = A L(y•) +- ")", 2 I isrtl (y¢) , L(y•) +­

L(X¢), 4a I)
6. Sequencing

In the manipulation of threaded lists, it is necessary to
have modes of sequencing through the lists in such 11

manner that all of the elements, or all the words, or all of

Z* z¢+L(z¢)

N

f(z¢) ::0 Y z¢+R(z¢) L{z¢) =A
,., y N

z¢+R2(z¢) ti R{z¢) = s

y

F,o. I. The Mllle of z• is the value of z¢ !'pon exit.

198 Communicatlone of the ACM

the sublists, or a given list, will be encountered in some
order without repetition. For this purpose, three related
primitives are introduced: seqe(x,n), seqw(x,n), and
seql(x,n). The generic term for these is seq(.r,n) . These
are defined, in each case, when x is a threaded list and n
specifies a location field or non-empty action field of the
program. A list, called the Sequencing List, is a permanent.
part of memory. When the instruction seqe(x,n) , for
instance, is encountered in a program, an entry is made in
the Sequencing Table (which may be thought of as being
a threaded list), at the bottom of the list. The table has
the following form:

I \\' w;, n e
2 X XC m e
3 ,\' rt Jl I
4 ti a¢ ka e

The second column contains the names of lists; the fourth
column their exit addresses- that is, the field in the
program from which an instruction will be taken upon
completion of sequencing; the last column contains a
symbol indicating the type of sequencing that is to be
done on that particular list. Each entry in the Sequencing
List has the effect of initializing a sequencing mode for a
list. At program compile time, when the table is created,
each L¢ is set equal to its corresponding L, which is given
a numerical value (the assigned name of the list).

During the running of the program, use is made of
another primitive operation, def(a,b). This instruction
has the effect of allowing a seq(a,n) to be executed at
run time. Although a and n have already been entered in
the table at assembly time, def(a,b) changes the entry
a to the current value of b { and b of course may be an
indicated value, such as L(j)). It is thus possible to have
any number of sequencing modes operative simultaneously
on any list. This is simply done by giving the list several
different names by means of the def(a,b) instruction.
After program compilation the machine executing the
program recognizes each list that is being sequenced,
only by its entry in column one of the Sequencing Table.

Once the sequencing modes for each lis~ have been
initialized by entry in the Sequencing Table, the actual
sequencing through lists can be carried out a t run time
by the instruction u. This primitive operation is defined
when z is a threaded list. It produces one of three results,
depending on which sequencing mode was defined for the
list z.

The symbol z¢ means the current position of the se­
quencer in list z. Before the first instruction z•, this is
equal to z. If z was initialized by seqe(z,n) , z• causes
the figure 1 to be executed. This has the effect of sequenc­
ing through z and all of its sublists, encountering a differ­
ent element on each pulse, u. When the list z has been
exhausted, the program transfers to instruction n.

If z was initialized by seql(z,n) , z• causes figure 2 to
be executed. This has the effect of sequencing through the
main sublists of z, regarding every element. in z itself as a

z¢= z
y

'
Z¢+-L(z¢) z¢:::;Z

y

F1<;. 2. The value of z• is the vah1e of zl, upon exit.

sublist. Each pulse z• causes a new list to be encountered.
When z has been exhausted, the program transfers ton.

If z was initialized by seqw(x,n), z• causes figure a
to be executed. This is identical with seqe(.r,n), except
that every word will be encountered exactly once. In

Fie. 3. The valtte of z• is the value of zt upon exit.

each sequencing mode, the occurrence of z• causes a
sequencing pulse, even if z• is written as part of another
expression. In a compound expression, the z•'s are pulsed
in the order of execution of the subexpressions in which
they occur.

The fun ct ion of the operations isrte(z) , isrtl(z) , and
isrtw(z) can be viewed as the insertion of a word following
the word z. In terms of the sequencing operations, the
null word inserted would be the next word encountered
after z, when using the corresponding type of sequencing.

Several other sequencing variants appear to be of some
use. Thus a conditional variant on each of the three basic
sequencing types may be useful. In this mode, the value
O or 1 stored in some specified location determines whether,
upon reaching a list word for which f - 2, sequencing

Communications of the ACM 199

continues or repeats on the list of which this word is the
terminal one. It is also simple to specify a program in the
available primitives which, when invoked, will move
from the current list position "back and up" to the head
of the list which is k levels above the current one.

Part II. Examples

I. Introduction

We have now defined a list language in which all parts
of a list structure can be manipulated independently of
their content. By using the different sequencing modes,
any sublist may be regarded as a single word, or its internal
structure can be considered. Efficient sequencing is pos­
sible since the threaded property of these lists indicates,
at the end of each sublist, how to reach the next word or
sublist in the list. Thus, in contrast to the more usual list
structure representation, a list of complex structure re­
quires essentially no more storage space during sequencing
for housekeeping information than does a simple list. All
of the structural information is immediately accessible at
t he point in the list structure where it is applicable.

Having established a program format for defining new
list processing operations, we can proceed to give examples
of symbol manipulation that can be carried out using
t.hreaded lists. For definiteness, rather than as any indica­
tion of its limit of usefulness, we restrict our attention to
certain manipulation problems involving algebraic struc­
tures, more particularly to polynomials and rational
functions.

2. Useful Definitions

First, we will define a few useful operation~ from the
primitives that are available.

c.i:ch(x , y) exchanges the contents of x and y, where
each may take on one of the forms f(z) , L(z) , R (z) , or z,
where z is a word :

exch(x, y) = (l 11 T- x, x+-y, y- T, exit I)

e<ipy(:c,y) creates a threaded list y which is, except for
internal address differences, identical to the list x :

copy(x, y) =

(1 I f(x) ~ 1 I L(y) +- L(x) , exit I

list(y),seqw(x, exit), seqw(y, exit), 2 I

2 1 f(x•) = 1 I isrtw(y¢), list(y•), 2 3

3 I f(x¢) = 0 I isrtw(y¢), 3b I L(y•) +- L(x¢), 2 I)

appndr(x,y) copies the list or word x, adding it as the
last word of list y :

appndr(x, y } 1c

{l II seql(y, exit) , 2

2 I f(y•) = 2 I 3 I 2 I

200 Communications of the ACM

3 I L(y¢) = A I 4 j isrtl(y¢), Y•, -l

-1 f (x) = 1 I isrtl(y¢), copy(x, y/), exit I

L(y¢) +- L(x¢), exit I)

XoTE: 1n the preceding and in the sequel, "a" is use<l
to refer to the svmbol a itself.

count(x ,y,z) ~ounts the number of occurrences of the
symbol "x" in the list y and in the sublists of y, and puts
this number in location z:

count(x, y, z) "= (1 II seqe(y, exit), z +- 0, 2 II
2 1 L(y•) = "x" , z +-z + 1, 2 12 1)

Predicates assign a value true or false to some specified
variable when evaluated. Several such useful predicates
follow.

equal,(E,.i;,y) assigns a (logical) Yalue, true or false,
to E depending on whether the list x is the same as
the list y-except for internal addressing differences:

equal(x, y) =
(1 I seqw(x, exit), seqw(y, exit) , E true, 2 I

2 I f(x•) = f(y•) I 3 I E +- false, exit I
3 I L(x¢) = L(y¢) 2 I 4 1

-1 I f (x ¢) = 1 I 2 I 2b I }

among(E, x, y) determines if the element. x is in the
list y:

among(E, x, y) =

(1 I seqe(y, exit), E +- false, 2

2 L(x) = L(y¢) I E +- true, exit 2)

sublist(B, x , y) determines if the list x is a sublist of
the list y:

sublist(E, x, y) = (1 I] seql(y, exi~), E +- false, 2 I

2 [I def(z, y•) , equal (x, z), 3 I

3 I L = true i E +- L, exit l 2 I)

3. Manipulation of Algebraic Structures

Algebraic structures can be represented in threaded
list form in a natural way. The expression a A b, where
A is one of the operations +, - , X, +, is represented by
a list of the form:

z: I, 1, 0
1: 0, A, 2
2: 1, a , 3
3: I , b, 4
4: 2, A, z

z: I , 1, 0
or 1: 0, A, 2

2:0, a ,3
3 : 2, b , z

In the first form 2 and 3 are lists, i.e., expressions, and in
the latter both are elements. Combinations of t,he two
types are represented in an obvious way. By the use of
parentheses, which of course indicate sublist structure,
we can define addition and multiplication for an arbi-

trary number of variables, by the recursive definitions

A(a1, a2) = A(a1, a2)

A(A(a1, a2, · · · , an), an+1) - A(a1 , a2, · · · , an+i)

It is convenient to introduce a standard form for the
representation of polynomials, which we term the verte­
brate form. It corresponds to the usual representation of
polynomials by terms in powers of the variable. The
general list of this form is given in figure 4, with a sche­
matic diagram of the list structure. Notational liberties
have been taken for the purpose of readability. Down­
ward pointing arrows represent the address of the next
following word; upward pointing arrows represent the
address of the preceding word which had the address of
the present word in its L-field. This representation of
polynomials is not efficient in terms of storage space but
it is efficient in terms of processing. '

4. Forms

An intuitive notion in symbol manipulation is that of
form. A programmatic interpretation of this concept is

given in the following. It is not intended to be a com­
pletely formal description, but rather to show how form
may be defined and used in symbol manipulation. A
J<mnat, P, is an empty threaded list. The string list repre­
sentation of an empty list is useful for describing formats.
A specification of the objects which may occupy the empty
places and an assignment of them, one to each empty
place in a format, defines a form. In the sequel the place
occupiers are:

1. specific symbols
2. identifiers of certain sets of symbols
a. identifiers of arbitrary forms.

Hereafter, the symbol A is to identify the universal set of
symbols and Bis to identify the universal set of all forms.

It is often important to correlate among the occupants
of a format. The notation C(k) means that each occupant
so designated refers to the same-but otherwise arbi­
trary- member of the set C. In particular A(2) refers
to any symbol, while A(a) refers to an arbitrary symbol
which is not necessarily the same as that denoted by
A(2) .

Z:1,✓ ,0
o,+,✓
1 ,A.,✓
l,ocn ,,.(
2,A,Z

OCn-1:0,+,.(
1,A,._1,,/

l,an-2,,/
2,A,,

A:0,•,✓

l,y,,,/
1,P,,✓

2,A,"'-
/31:0,+,.(

1,C~,✓
l,P2,✓
2,A,,

-r,:0,•,✓

0,x,✓

: l,'Yt,,I'
2,A,"'-

CJ:O,•,.(
O,d,,✓

1 ,&i,✓
2,A,.(

02:0,•,✓
O,d,,.I
l,oi,/
2,A,,

a,:0,+,.(
O,dp,✓
l,f1,/
2,A,"'-

f1:0,•,.(
O,e,,/
l ,f2,.(
2,A,,

e,:O,•,/
O,e,,/
2,e,+1,'\.

FIG. 4. The value of z• is the value of# upon exit.

Comn1unications of the ACM 201

Forms are used to constl'Uct the relation, denoted by
~P: a list, L, is in the relation instance of, ~. to a form,
P, by which is meant that the occupant of each place in L,
corresponding to a specified place in P, corresponds to
the occupant of the specified place in P in the sense:

If x is the occupant of the space in P, then
(i) If x is a list head, e.g., a " (", then the L place

occupant, y, satisfies f(y) = 1.
(ii) If x is a specific symbol, y is the same symbol.
(iii) If xis a set designator, then y is an element of x.
(iv) If xis A or B, then y is any symbol or list, respec-

tively.
(v) If xis C(k), then the occupants of all places in L

corresponding to the places in P occupied by C(k) must
be the same in the sense of the predicate equal(E,s,t) .

It, is often the case that the property of set membership
or symbol equality is inconvenient to apply since more
general predicates seem ca.lied for. Consequently, a natural
and simple generalization is to permit place occupants in
P of the form $(Pk) where S is any identifying symbol
and Pk identifies a predicate. In the predicate code, S
stands for its place correspondent in L, and the logical
value of the predicate is determined on that basis. Con­
sequently,

(vi) If x is C(Pk), Pk(y) must provide a value of
true.

Then one of (i) through (vi) must be satisfied for
each place in P in order that L5P.

In the course of determining the logical value of the
predicate, 5, specified in a condition field it is convenient
t.o generate a list of pairs of correspondents. It is natural
then to define in the associated left action field operations
involving the place occupiers of the form P. In the execu­
tion of these operations the L-place occupiers replace
their P-place correspondents whereve1· they occur in the
action field. In the programs that follow xi;(• • •) is a
short notation for form (E,w,x,thread((• • •))) and
x+-~(· · ·) is a short notation for transform
(x,thread((· · ·))). The program form(E,w,y,x) which
follows does not permit place occupiers utilizing predicates.
The list x is a threaded list description of the form P,
the list y is the list being checked, the list w is the list
of pairs of correspondents generated, and E is the logical
value of the predicate:

form(E, w, y, x) •

(1 II seqw(x, exit), list(w), seql(w, exit), def(p, yi),

E +- true, 2 II
2 f(x•) -;r& I j a -1

;~ I (L(xt) = A(k)) /\ (f(p) ~I)/\ (f(x¢) = f(p))

prev(E, x¢, p) , 5 IO I

5 I def(p, R (p)), 2 11

-1 I f(y¢) = l I dcf(p, L(p)), 2 1 E +- false, exit I

202 Communications of the ACM

10 I (f(x¢) = f(yi)) /\ (L(x¢) = A(k)) A

(f(y¢) -;,& I) V (L(x¢) = L(yi)) I prev{E, x¢, p),

7 18 '

71 f(p) = 2 ' def(p, R(p)), 5 5 I
8 I L(x¢) = B(k) I 3a I E +- false, exit I)

pl'ev(H, r, s) =
(l t def(z, w), seql(z, 5), seql(w, 5), H +- true, 2 'I
2 equal(z•, r) I 3 j z•, 2

3 I equal(z•, s) 1 exit I H +- false I

5 I isl'tl(w), list(w•), copy(wt,r), isrtl (w¢),

list(w•), copy(w¢, s), exit I
The program transform(x , y) creates the list x from the
form y by replacing each place occupier of y by its corre­
spondent in w generated from the program above.

tramform(x, y) =
(1 II seqw(y, exit), seqw(x, exit), 2

2 I f(y•) -;,& I I 3 j list(x¢), -1 '

3 I L(y¢) = A(k) I copy{x¢, as.soc(L(y¢), w)), -l

L(xt) t- L(yt) , 4

-l I isrte(x¢), x•, 2 I
As shorthand for transform(x,y), we write y <- tx.
The program assoc(t, z) assumes z t.o be a list of pairs
and that t is among the pairs. The list sharing a pair
with t is the output of this program(2). Its coding is left
as an exercise to the reader.

5. Examples

The program cval(n) is used as a subprogram in
div(p,q, r ,s,x). It is defined for any list, n, of algebraic
structure, where all L-field entries are either addresses,
arithmetic operations, or numbers. Its output is in L(n),
a number which results from evaluating the expression,
performing the indicated arithmetic operations.

eval (n) Iii

(1 1 L(n) ¢ ("+" V " -" V "+" V "•") I exit I
scqw(n, la), 2

2 I f(n•) = 1 I 3 12
:3 I n¢3("-", A(l), A(2)) I L(n¢) +- A(l) - A(2),

2 I -1

4 n¢ij("+", A(l), A(2)) L(n¢) +- A(I) + A(2),

2 j 5

5 l n¢~("•", A(l) , A(2)) L(n¢) +- A(l) •A(2),

2 16 1

6 I n¢\J(" +", A(l) , A(2)) L(n¢) - A(l) + A(2),

2 12)

With the apparatus of forms at our disposal, we can
write a program that, given a list of the form:

z: 1, l, 0
1: 0,"z" ,2
2 : I , a, 3
3 : l, b, 4
4 : 2, ,\, z

where a and b are lists of algebraic structure, will reduce
2 to a list in which a and b are polynomials in vertebrate
form. No further restrictions are placed on a and b. This
program is called simplify(z, x), where z is a polynomial
in X.

The program simp(R, x) takes any algebraic ex­
pression, R, in x, and transforms it into a rational ex­
pression, i.e., a quotient of two polynomial expressions in
vertebrate form.

simp(R, x) (1 11 threa<l(S, (" = ", R, 1), simplify(S, x),

thread(R, ("+", RL{S), R2L(S)), exit I!)
We can, by means of a relatively simple program,

execute the synthetic division of one polynomial by
another. The program div(p, q, r, s, x) stores in r the
Yertebrate form of the polynomial that is the quotient
of p and q, and in s the remainder polynomial. p and q
are assumed to be in vertebrate form in the variable x.

Given a rational function R, the program reduce(R, x)
factors out all common (in the symbolic sense) poly­
nomial factors in numerator and denominat-or, and leaves
the result in R. The input list is the quotient of two poly­
nomials in vertebrate form. This is essentially the Euclid­
ean algorithm for(symbolic) polynomials.

The programs follow:

div(P, Q, R, S, x) e

(1 I\ copy(P,S), list(R) , copy(R~L(Q),B), count
(x,RL(Q),L(n)) , 4 I

4 11 copy(R4L(Pl),A), count(x,RL(S),L(m)),
L(e) - L(m) - L(n), thread, (X,(l)),
copy(Q, B2), a II

2 I e = 0 1 copy(X,Y) , copy(A,Al) , copy(B,Bl),
thread(Pl,("-", S, ("•", B2, ("+", A, B)))),
copy(Pl,S) , simp(S,x), thread(RI,("+", R,
("•", Y, ("+", AI, Bl)))) , copy(RI, R), 4
copy(X, XI), thread(X, ("•", "x", Xl)), 2

3 I e = -1 I simp{R, x), exit 2)

simplify(Z, X) =
(1 I seqe(Z, 10) , list(a), list(b) , 2 I L(a) - L(a) +

I, 6]

2 1 Zt\J("•", ("+", C, D,), B) l Zt -\t ("+", ("•",

C, B), ("•", D, B)), z•, lb I 3

3 I Z¢ij("+", ("+", C, D), B) Z¢ - \t (" -· ,, . ,

("+", C, ("•", B, D)) , D), Z•, lb 4 1

4 1 ztijC "•", (" +", c, D), B) I z;, - \t ("+", C"•",
C, B), D), z., lb I 5 I

5 I Z¢5("+", ("+", C, D ,) , B) I Zt - '.t ("+",

("•", B, D), C) , z., lb I (i I
6 I Z¢i'j("•", A, ("+", B, C)) Z¢ - ~ ("+", ("•".

B, A),("•", B, C)) , Z•, 21b 7

7 I Zt\J("+", A,("+", B, C)) I Zt - ~("+ ", (•' + " ,

B, ("•", A, C)), C), Z•, 21h 8 1

8 I Zt~("•", A,("+", B, C)) I Z/ +---'.!:(" -;. " "•" ,

B, A) , C), z., 21b I 9 I
9 I Zt,ij("+", A,("+", B, C)) I zt- ~ ("+", ("•",

A, C) , B), Z•, 21b Z•, 2]

10 I L(a) = 0 11 la

11 I L(b) = 0 I 12 I Z - A(z) , seqe(Z, 23) , 15 I
12 I Zt5("=", (" +", A, B) , ("+", C, D)) I Zt -

'.!:("=", ("•", A, D), ("•", C, B)), seqe(Z, 10),

L(a) - 0, 2 I 13 I

13 I Zt\J("=", ("+", A, B) , D) I Zt - 'l:'("=", ("•",

D, B), A), seqe(Z, 10), L(a) - 0, 2 I 14 I
14 I Z¢5(" = ", A,(":", B, C)) Zt - '.!:("=", B,

("•", A, C)), seqe(Z, 10), L(a) - 0, 2 ! Z - A(Z),

seqe(Z, 23), 15 I
15 Zto("+", ("+", A, B), C) I Z¢~("+," A,

("+", C, B)), Z•, 15 I seqe(Z, 18), seqe(Z, 21),

list (d) , d - Z, 17 I
17 I Z¢ij("•",A,B),("•",C,D)) zt-~("•",A, ("•",

B, ("•", C, D))), Z•, 17 I list (c), 16 I
18 , Zt\J("•",C(Pl), ("•",A,B)) IZ/+---'l:'("•",A,("•",

C, B)), Z•, 18 I Z•, 18

16 I C = 0 Z - d, seqe(Z, 15b), 22 IC 0, Z - d,

seqe(Z, 21), 19 I

19 1 ZtiH"•", A, B(P2)) I 16 l 18 I
22 I LRL2R\Z•) = X exch(LR2 (Z)), LRL(d)),

15 22

23 II Z - A(Z), list (C), seql (Z, 25), 23b I count(X, Z•,

a), count(X, LR2(Z), b), 2-1 I
24 I a < b I exch(Z, LR2(Z)) , c- C + 1, 23b 23b I

Communications of' the ACM 203

25 I C = 0 I seqe (Z, exit) , 27 I 24

26 j Z~ij("+", ("•," A(P:3), B) , ("+", ("•", D(P-1) ,

E), F)) I Z¢ +- ~ ("+", ("•", .-\., ("+", B, E)), I.-) .

z., 26 l z., 26 I
21 11 L(a) +- L (a) + 1, 2 1

1

Pl l C = "X" IT, 18 I F, 18b

P.2 I B ~ "•'' I T, 19 l F, 19b I
P3 II list(n), count(X, A, n) 26 ll
P-1 11 list (m), count(X, D, m) P-11 ',

P41 I m = n I T, 26 1 F, 26b I)

reduce(R, x) 31

(1 II copy(RL(R), R2), copy(R2L(R), Rl), ~ 11

3 11 div(R2, RI , A, B, x), copy(Rl, R2), copy(B,
RI) , 2 U

2 I L(Rl) = 0 div(RL(R) , RI, RL(R), A, x), div
(R2L(R), RI, R2L(R), A, x), exit I 3 j)

diff(R, x, S) a

(1 II copy(R, T), seqe(T , 5) , thread(U, ("+ ", "x",
"~x")), 2 11

5 II copy(R, U), thread(S, (''+", U, T), " ~x") ,
simp(S, "x"), scqe(S, 4), :3 1

2 L(T•) = x I copy(U, T¢), 2 2 I
3 I L(S•) = "~x" 1 L(Sf) +- 0, 3 I :3 j

-1 I simp(S, x), exit I')
poly(X, Y, Z, y, E) =1

(1 ll Jist(Z2), J}(Z2) +- 0, copy(RL(Y) , R) , E +­
false, def(LRLR2LRL(X), A) , count(A, RLRL(x) ,
11), count(A, R2L(Y) , m), count (A, R2L(x), q) ,
count(A, RL(Y), r), e +- L(m) + L(q), d +- L(r)
+ L(n) , thread(V, (1)) , t.hread(W, (1)), c +- e,2 11

2 I e = f /\ int(e) I 3 I E +- false, f +- 0, exit

3 I e = 0 I e +- c - f - l, -1 t copy(Z, Zl), thread
(Zl, ("•", y, Zl)), copy(RL(x), Pl), copy(W, WI),
thread(Wl, ("•", Pl, Wl)) , 3 I

4 I f = 0 I f+- c - e, thread(T , C-'•", U, V)), simp
(T, A) , div(R, T , C, A, A) , copy(Zl, Z5) , copy
(Z, Z4) , thread(Z2, ("+", (Z2), "•", Z3, C)))),
thread(R, (" -", R, ("•", (C, ("• ", U, Z4))))) ,
simp(R, A), 5 I copy(U, Ul) , copy(R2L(X), QI) ,
tbread(U, ("•", Ql, Ul), 3 I

5 I L2
(R) = 0 I simp(Z, y), exit I 3 I)

int(e) means e is an integer. This is not considered a
primitive, but rather a part of the integer arithmetic we
have had available from the beginning.

Communications of the ACM

The program dijf(R,x,S) differentiates the rational
function in list R with respect to the symbol x occurring
in R, and stores the result in list S, i11 the form of a ra­
tional function. The program uses direct evaluation by
the delta method. This gives some indication of the facility
attainable in handling algebraic expressions as threaded
lists.

Poly(E,X, Y,Z,y) takes two rational functions X and
Y and determines whether or not X is a polynomial in
Y, true or false in E, and if true stores in Z the verte­
brate polynomial form in the designator y such that if Y
is substituted in Z for all occurrences of y, X is obtained
in a (possibly) transformed representation.

6. Conclusion

Two features of processing of symbolic structures
expressed as threaded lists stand out. Considering the
complexity possible in algebraic expressions, it is pleasant
to be able to manipulate them with so few extensions of
the above rather simple primitive operations. Secondly,
the methods used in the programs conespond fairly closely
to the methods used by people in handling these struc­
tures. These facts would seem t,o be closely related. The
three straightforward yet basically different modes of
sequencing are defined simply enough, due to the threaded
feature of these list structures. They allow us to look at
the large-scale or small scale structure of lists, or at their
contexts, by means of very direct instructions. And, in
fact, this is what people do in processing algebraic expres­
sion. Thus, we are enabled to count, or rearrange, or what
we will, using "natural" instructions. The coding of the
above programs was, in fact, relatively easy, correspond­
ing to the way the programmer would " like" to do them.

7. Implementation

The system, essentially as outlined above, is currently
being implemented on the 650 computer system at
Carnegie Tech. The TASS assembly system, developed
at Carnegie, is being used as the compiler. The powerful
macro and subroutine facilities in the assembler make the
coding of the primitives and more general codes quite
easy to accomplish.

A more general compiler will be developed during the
coming summer for a different computer but using the
macro assembler as the basis for the compilation technique.

REFERENCES

I. SHAW, J. C. , ET AL. A command st rncture for complex in for
rnation processing. P roceedings of the 1958 Wu tern Joint
Computer Conference, May 1968.

2. McCARTHY, JoH~. Recursive functions of symbolic expressions
and their computation by machine. Progress Report, RLE,
MIT.

3. RoBr:-.soN, R . M . Primitive recur!!ive funct ions. Bull. Amer.
1llath. Soc. 6S (1950), 925.

4. Rou,:-.sos, J U LIA. General recursive functions. Proc. Amer.
Math. Soc. I (1950), 703.

